

CC3100/CC3200 SimpleLink[™] Wi-Fi[®]

The Internet of Things Made Simple Aaron Lee

SimpleLink[™] Wi-Fi[®] platform Lowest power, programmable wireless MCU, easiest to use

Value Propositions

- The lowest power: Run for over a year on two AA batteries •
- First single chip programmable Wi-Fi solution: Add Wi-Fi to any system •
- **Easiest to design with**: No Wi-Fi experience needed; HW designs, 30+ software • examples, extensive documentation and TI E2E support forum all readily available

Products	Features	App
<u>CC3200 Wireless MCU</u>	On-chip Internet & Wi-Fi security	Internet of Thin
 Integrated ARM Cortex-M4 MCU + Wi-Fi network processor 	Wireless MCU separate from TCP/IP Stack_free for customer applications	Home automation
 First programmable single chip Wi-Fi solution 	 Flexible provisioning: AP mode, WPS, SmartConfig and more 	Safety and secSmart energy
 <u>CC3100 Wi-Fi network processor</u> Embedded TCIP/IP stack 	 Cloud supported 	Industrial M2M
 Connect any MCU to the Internet of 	FCC/CE/ETSI/TELEC certified modules	Wireless audio
Inings	 SDK for development with Code Composer Studio and IAR support 	

ications

ngs (IoT)

- ion & appliance
- curity
- communication
- streaming

TEXAS INSTRUMENTS

CC3100/CC3200 benefits for Internet of Things

Industry standard **BSD** socket API for **TCP/IP** communication

Small driver footprint As low as 7KB host code

Build Internet applications quickly, reuse internet available source code

Enable integration with low-cost, low power MCUs like MSP430

TLS/SSL Internet security, HW crypto engine

Establish TLS connection in 200mSec for fast and secured user experience

Low power radio and advanced low power modes

Wi-Fi[®] sensors stay connected to the network for over a year using two AA batteries

Most Flexible Provisioning options -Access Point mode, WPS, Smartconfig[™]

TI modules certified for WW regulatory and Wi-Fi Alliance

Fast time to market Save customers over \$50K of test cost and test time per product family

Enables customers to set up devices easily and fast

EXAS INSTRUMENTS

The SimpleLink™ Embedded Wi-Fi® Advantage

Traditional Wi-Fi

• Designed for powerful microprocessors

SimpleLink[™] CC3100/CC3200

- Nearly all Wi-Fi and networking functions already handled by the Network Processor
- Use low capability MCU (7KB Flash & 700B RAM)
- Less expertise
- Lower system cost
- Faster time to market

SDIO

Wi-Fi MAC

Wi-Fi Baseband

Wi-Fi Radio

Connecting applications with TI Wi-Fi®

SimpleLink

TEXAS INSTRUMENTS

CC3100/CC3200 Applications

TEXAS INSTRUMENTS

SimpleLink[™] Wi-Fi Family

TI Information – Selective Disclosure

CC3100MOD and CC3200MOD • Modular certification for FCC, IC, CE, **TELEC, SRRC** Serial 32 KHz XTAL Flash 40 MHz XTAL CC3100/ CC3200 IC 20.5 mm × 17.5 mm

Deep dive into CC3100 & CC3200

Two pin compatible products based on the same Wi-Fi network processor

CC3100 Internet on a chip **Wi-Fi Network Processor** Embedded TCP/IP stack for systems using external low-cost MCU

TEXAS INSTRUMENTS

Wi-Fi Provisioning for Embedded Devices

How will my product connect to a Wi-Fi access point?

No display? No keyboard? No UI at all? No problem.

Ease of Use: Achieving AP connection for products without a UI

SimpleLink supports 3 provisioning methods:

- <u>AP mode</u> connect to device from any Smartphone / tablet and configure using phone UI. Industry most common \checkmark provisioning method.
- **WPS** Requires both AP support and physical access to the product. Industry standard \checkmark
- **SmartConfig** TI Propriety method. One step and secure configuration. Works for most network topologies, and can be \checkmark used to supplement AP mode or WPS

Most Flexible Wi-Fi provisioning Options

	Provisioning Method	Access Point Mode*	<u>SmartConfig</u> ™	
	What's needed	Web browser	Android or iOS phone app	Pus
	Networks supported	Any Network	Most networks	WPS
	How many Steps	Multiple Steps	1 step	1 s
	Number devices configured	Configure one device	Configure multiple devices	Cor
	Home network connection	Phone must disconnect from home network	Phone stays connected to the home network	
	Secure?	Secure	Secure	

http://processors.wiki.ti.com/index.php/CC31xx_&_CC32xx_Provisioning

TI Information – Selective Disclosure

TEXAS INSTRUMENTS

Built-in security - All on Chip

TI Information – Selective Disclosure

TEXAS INSTRUMENTS

Low Energy Consumption for Battery Powered Devices

Low Energy Consumption for Battery Powered Devices

Always On/ Idle Connected

- System is connected to AP and can respond immediately
- Industry lowest power while maintaining connection to AP.

125 uA

Sleep

Current

37 mA

Listen

Current

Further optimization using unique long sleep interval feature

Long Sleep Intervals

up to 1 sec

Intermittently Connected • Fast reconnection to AP and Internet using unique fast connect feature 95 mSec 200 mSec for secure TLS connection intervals 4 uA Hibernate Current

- System is in hibernate mode and wakes up for intermittently communication with server

*Battery life can vary significantly depending on use case and system design

TEXAS INSTRUMENTS

Low Power Leadership – Intermittently Connected

• Fast Connect Profile - Setup:

- No Security
- Tested in clean environment
- Tested with Cisco 1252
- Device connect to AP, send 1 UDP packet, wait for ACK and hibernate (Repeat in a loop)
- MSP430 + CC3100 device

Results:

- 3576uC per cycle. Transmit single UDP packet with Static IP (including the connection)
- **64.6uA** average for Fast Connect cycle every 60sec

Notes:

- Tested on Production device
- SFLASH current included (20uA)
- Vbat 3.3v
- Static IP

Texas Instruments

Low Power Leadership – Always Connected

Always Connected - Setup: ۲

- No Security
- Tested in clean environment
- Tested with Cisco 1252 •
- STA keep connection with AP (monitoring beacon reception) ٠
- MSP430 + CC3100 device •

PM Mode	Time interval in mSec	Current in mA (Static IP) mA	Current in mA (DHCP)mA
Default	102	0.672	0.691
LSI	204	0.453	0.464
LSI	510	0.303	0.312
LSI	1020	0.262	0.278
LSI	1530	0.253	0.269
LSI	2000	0.237	0.267

Beacon Reception

Sleep

Notes:

•LSI – Long Sleep Interval Power Mode– Define the wakeup interval of the device

- SFLASH current included (20uA)
- Vbat 3.3v

TEXAS INSTRUMENTS

Low Power Leadership – Always Connected

• Connected Profile With Various AP - Setup:

- Tested in clean environment
- Tested with 174 AP default configuration
- STA keep connection with AP (monitoring beacon reception)
 - Measured over 1Min
- CC3100 device

Results:

- <1mA current with 116 tested AP (~65%)
- <2mA current with 148 of the tested AP (~82%)
- High Jitter and Drift of Beacon in some AP results in Increase of power consumption

Notes:

- SFLASH current included (20uA)
- Vbat 3.3v
- Device power policy is at default (wake for every Beacon)

% of APs for Connected Mode Current

Texas Instruments

Low Power Leadership – RTLS Profile

• RTLS Profile - Setup:

- No Security
- Tested in clean environment
- Tested with Cisco 1252
- Device in Disconnect mode, send 3 packet (Transceiver mode) and hibernate (Repeat in a loop)
- MSP430 + CC3100 device

Results:

- **3183uC** per TAG cycle that contains 3 short packets at 30ms delay between them
- **57.8uA** average for TAG cycle every 60sec

Texas Instruments

SimpleLink CC3100 Wi-Fi® NWP overview

Best-in-class Wi-Fi core

• 802.11 b/g/n radio/baseband/MAC

Powerful Crypto engine

Enables fast secured WLAN
 and Internet connections w/ 256 bit encryption

Built in Power Management

- Integrated DC2DC
- Advanced low power modes

Integrated ARM[®] Cortex[™]-M3 MCU

- Dedicated to WLAN and TCP/IP stack
- Offloads the host application processor

Host Interfaces

- Interfaces with 8/16/32 MCUs over a SPI or UART
- SimpleLink driver has low memory footprint on host

SimpleLink CC3200 Hardware Overview

ARM[®] Cortex[™] M4 Core @ 80MHz

- Memory options
 - RAM (up to 256KB)
 - External Serial Flash Bootloader
 - Peripherals Drivers in ROM

• Rich peripheral interfaces (32 I/O pins)

- SPI (20 MHz max)
- UART (5Mbps max),
- I2C, I2S, SDMMC
- 4-channel 12 bit ADC (0.5MSPS)
- Parallel Interface
- 4 PWM controls
- Up to 27 GPIOs

• Built in Power Management

- Integrated DC2DC
- Advanced low power modes
- Hibernate mode with RTC
- Wi-Fi[®] Network Processor
 - 802.11 b/g/n STA, AP, P2P
 - IPv4 TCP/IP Stack
 - SimpleLink[™] drivers and ease of use

Wi-Fi[®] NWP

SimpleLink[™] CC3100/CC3200 NWP software

- CC3100/CC3200 Host Driver buildable for both RTOS and bare metal •
- Station, access point and Wi-Fi Direct® modes ٠
- Personal and enterprise security ٠
- **IPv4 TCP/IP Stack**
- 8 Simultaneous TCP or UDP sockets •
- 2 Simultaneous TLS v1.2 / SSL 3.0 sockets •
- Small memory foot print on MCU •
 - As low as 7 KB code space, 700 B data (MSP430, TCP Client example) \succ
- **Reference code for multiple TI MCUs provided for IAR and CCS IDEs** ۲
- MCU simulators for Windows and Linux: SimpleLink Studio

TEXAS INSTRUMENTS

Programming with SimpleLink Wi-Fi

Simple Wi-Fi Control

Examples:

- Start/Stop network Processor
 - sl_Start, sl_Stop
- Connect to an Access Point
 - sl_WlanConnect()
 - (auto-connect on startup: sl_WlanPolicySet(), sl_WlanProfileAdd())
- Change mode (Station Access Point, Peer to Peer)
 - sl_WlanSetMode()

Texas Instruments

Socket Standard

BSD Socket API

The Berkeley socket interface (also known as the BSD socket API) is an application programming interface (API) to code applications performing communication between hosts or between processes on one computer, using the concept of an Internet socket

- It was first developed at the University of California, Berkeley for use on Unix systems
- All modern operating systems now have some implementation of the Berkeley socket interface, as it became the standard interface for connecting to the Internet.
- The Berkeley socket API forms the de facto standard abstraction for network sockets

Texas Instruments

Socket API

BSD Socket API	SimpleLink Socket API	
accept()	sl_Accept()	
bind()	sl_Bind ()	
close()	sl_Close ()	
connect()	sl_Connect ()	
getbyhostaddr()		
getbyhostname()	sl_NetAppDnsGetHostByName()	
	sl_NetAppDnsGetHostByService()	
getsockopt()	sl_GetSockOpt ()	
listen()	sl_Listen ()	
poll()	Same function can be performed by select().	
recv()	sl_Recv ()	
recvfrom()	sl_RecvFrom ()	
select()	sl_Select ()	
send()	sl_Send ()	
sendto()	sl_SendTo ()	
setsockopt()	sl_SetSockOpt ()	
socket()	sl_Socket ()	

TEXAS INSTRUMENTS

Socket Standard

Simplelink Socket API

- sl_Htonl ()
 Reverse bytes on 32 bit variable
- sl_Htons ()

Reverse bytes on 16 bit variable

BSD Socket API

• poll ()

Checks socket descriptors for reading, writing, or exceptions.

- Same function can be performed by select().
- Difference is in way parameters are accepted.

ding, ns. be ct().

Texas Instruments

CC3200 SDK Examples

- Audio using I2S interface
- NTP (Network Time Protocol) sync
- HTTP client
- Low power modes
- Provisioning using AP mode
- XMPP
- MQTT
- SMTP
- Secured sockets
- ...and many more

TEXAS INSTRUMENTS

CC3100 SDK Examples

- NTP (Network Time Protocol) sync
- HTTP client
- Provisioning using AP mode
- XMPP
- MQTT
- SMTP
- Secured sockets
- ...and many more

TEXAS INSTRUMENTS

CC3100 Software Porting

U Texas Instruments

Create your own user.h file

- Create a <u>user.h</u> file that will include your configurations and adjustments
- Give the names of your functions
- You can use the empty template provided as part of this driver
- You can choose user.h file from one of the wide range of examples applications provided

TEXAS INSTRUMENTS

Define Device Enable/Disable Functions

- The CC3100 enable line (nHib) provides a mechanism to put the device into the minimum current consumption mode
 - sl_DeviceEnable
 - sl_DeviceDisable

TEXAS INSTRUMENTS

Define Serial Interface Functions

- Physical interfaces:
 - SPI
 - UART
- To be generic as possible, all access to the transport layer would be based on the following functions
 - sl_lfOpen
 - sl_lfClose
 - sl_lfRead
 - sl_lfWrite

SimpleLink³. Smart. Simple. Slick.

TEXAS INSTRUMENTS

Hand over WLAN Interrupt Control

- The WLAN IRQ line (HOSTINTR) provides a way for the CC3100 device to signal when attention is required from the host.
- User must write an interrupt handler that calls a function supplied by the driver
 - sl_lfRegIntHdlr

• Define functions for enabling and disabling interrupt

Texas Instruments

Define Event handlers

- The SimpleLink device generates asynchronous events in several situations. In order to catch these events you have to provide handler routines
- Callbacks:
 - 1. sl_GeneralEvtHdlr
 - 2. sl_WlanEvtHdlr
 - 3. sl_NetAppEvtHdlr
 - sl_SockEvtHdlr 4.

TEXAS INSTRUMENTS

Using SimpleLink Wi-Fi with an RTOS

- If you choose to work in multi-threaded environment under operating system you will have to provide some basic adaptation routines to allow the driver to protect access to resources for different threads (lock object): Thread B
 - 1. osi LockObjCreate
 - 2. osi_LockObjDelete
 - osi_LockObjLock 3.
 - osi LockObjUnLock 4.
- In addition, synchronization functions between threads (sync objects):
 - osi_SyncObjCreate 1.
 - 2. osi_SyncObjDelete
 - 3. osi_SyncObjSignal
 - osi SyncObjWait 4.
 - 5. osi_SyncObjClear

Active

- The SimpleLink driver supports running without dedicated thread allocated solely to the SimpleLink driver. If you choose to work • in this mode, you should also supply a spawn method that will enable to run function on a temporary context:
 - osi_Spawn 1.
 - osi_Execute 2.

34

Energia

- Based on the popular Arduino framework
 - Same IDE, look, feel, and functionality, only in TI Red
- Supports:
 - CC3200 platforms:
 - CC3200 WiFi LaunchPad (CC3200-LAUNCHXL)
 - <u>RedBearLab CC3200</u>
 - <u>RedBearLab WiFi Mini</u>
 - CC3100 Ported Platforms:
 - <u>MSP430F5529 LaunchPad</u> (MSP-EXP430F5529LP)
 - <u>MSP430FR5969 LaunchPad</u> (MSP-EXP430FR5969)
 - MSP432P401R LaunchPad (MSP-EXP432P401R)
 - TM4C123 LaunchPad (EK-TM4C123GXL)
 - <u>TM4C129 Connected LaunchPad</u> (EK-TM4C1294XL)

Texas Instruments

SimpleLink + Energia

- Audience
 - Engineers from disciplines other than Computer Science who may not be as familiar with the networking needs (Electrical Engineering, Mechanical, BioMedical etc.)
 - Those who are looking to try out a wireless solution for the first time in their application and need to try a prototype before investing in the resources to do it correctly
- Means
 - To have a low-cost hardware option with an out of box demo that is under <\$50 (BoosterPack and LaunchPad)
 - To make sure that the drivers and the interfacing with this board is Energia compatible.

Texas Instruments

Accelerated CC3100 Development: SimpleLink Studio

- SimpleLink Studio is a *PC-based* software that can act as a host controller for the *CC3100*.
- The software communicates with the device over an external USB-SPI bridge using the device's host SPI interface.
- PC-based development offers the following benefits:
 - Fast integration with off-the-shelf examples
 - Friendly environment with good debug capabilities and GUI output
 - The same CC31xx hardware, API and Host driver are used.
 - Software development can start before the MCU or hardware is ready.

TEXAS INSTRUMENTS

SimpleLink[™] Wi-Fi Modules: Radio Certified

SimpleLink Wi-Fi: Modules

Key module features

- Includes on module clocks, SPI Flash, and passives
- Connects to an external on-board antenna
- 17.5x20.5 mm Land Grid Array footprint with 1.27mm pitch for low cost PCB design
- Modular FCC, IC, CE & TELEC Certifications to save customer effort, time and money ٠
- CC3100 Wi-Fi network processor and CC3200 wireless MCU pin compatible variants •

Resources

- Hardware Design
 - <u>CC3200 module TI Design</u>
 - CC3100 module TI Design
- Software same as for QFN Device
 - CC3200 SDK & Firmware
 - CC3100 SDK & Firmware
- **Evaluation Tools and Support** •
 - Module LaunchPad CC3200MODLAUNCHXL \$59.99
 - Module BoosterPack CC3100MODBOOST \$49.99
 - CC3100MODBOOST-CC31XXEMUBOOST \$71
 - CC3100MODBOOST-CC31XXEMUBOOST-MSP-EXP430FR5969 \$86.99
 - E2E Support Forum

CC3100/3200 Module Package Layout

Bottom View

Texas Instruments

Certifications & Compliance

FC	 Certified for United States Tests reports recognized by other countries for filing 	FCC & ETSI r used with filin countries Paperwork Example
Industry Canada	 Certified for Canada Accepts FCC test reports for filing certifications 	 In-country Fe CE Radio app ETSI EN300-3
CE	 Certified for Europe ETSI testing is recognized by 40+ countries for filing 	
TELEC	Certified for Japan	
SRRC	 Certified for People's Republic of China 	

Please consult with your Telecommunication Certification Body (TCB) regarding any regulatory certifications. The information are recommended guidelines only and shall not be used as a process for regulatory Host End Product, Module or any other regulatory certifications

reports can be ig for 40+ other

xercise

es

oroval covered by 328 radio test.

Texas Instruments

FCC Certified Radio Modules & Host End Products

- The TI CC3100/CC3200MOD are FCC certified radio modules that carry a "Modular" grant
- Certified radio modules complies to the "Intentional Radiator" portion (Part 15c) for FCC certification – Part 15.247 Transmitter tests
- "Modular" certified radio modules are allowed for integration into multiple host end products by the FCC
- Host end products can use the FCC ID of the certified module as the FCC ID of the host end product
- A label displaying the module's FCC ID must be affixed and visible on the host end product for approval
- FCC IDs are required for host end products with *radio transmitters*
- The manufacturer of the host end products are still responsible for any additional testing covered by the Class of the product. Device Class A and B.
- More information can be found on the certification website for CC3100 & CC3200

Please consult with your Telecommunication Certification Body (TCB) regarding any regulatory certifications. The information are recommended guidelines only and shall not be used as a process for regulatory Host End Product, Module or any other regulatory certifications

42

CC3100/CC3200 Module Certification Summary

Save substantial costs and time using TI's FCC ID and modular certifications

TI's FCC/ETSI test reports can be used to file for certifications with 40+ other countries

No Part 15.247 radio testing required to obtain FCC/IC certifications

- Save 1-2 months of reporting and filing
- Save upfront certification (~\$30k) and RF design resources (~\$10-15K contracted)
- No risk of testing failure, which is common without RF expertise resources
- Less paperwork and simpler application process for full certification

Design has an external antenna, but is still certified

More information can be found on the certification website for CC3100 & CC3200

Please consult with your Telecommunication Certification Body (TCB) regarding any regulatory certifications. The information are recommended guidelines only and shall not be used as a process for regulatory Host End Product, Module or any other regulatory certifications

Texas Instruments

TI CC3100/CC3200MOD FCC Certification Advantages

- No Part 15 Radio tests when using the TI module
 - Specifically Part 15.247
 - Typically ~ 1-2mo and ~\$30K for testing, reporting, and filing

- Part 15.247 Tests
 - AC Power Conducted Emissions
 - Radiated Emissions
 - Band Edge Measurements
 - 6dB bandwidth
 - Conducted Power
 - Power Spectral Density
 - Meeting Antenna Requirements

Please consult with your Telecommunication Certification Body (TCB) regarding any regulatory certifications. The information are recommended guidelines only and shall not be used as a process for regulatory Host End Product, Module or any other regulatory certifications

Texas Instruments

FCC Part 15 Cert. Process/Flow

- General Provisions & Definitions
- Sub Part B
- Unintentional Radiators
- ~1k
- Sub Part C
- Intentional Radiators
- ~\$25k

DONE

- Device Class A or B
- Additional testing for intended use

- Host end product type. Additional testing may be required
 - Class A Digital Device for use in a commercial, industrial or business environment.
 - Class B Digital Device for use in a residential environment notwithstanding use in commercial, business and industrial environments.

Please consult with your Telecommunication Certification Body (TCB) regarding any regulatory certifications. The information are recommended guidelines only and shall not be used as a process for regulatory Host End Product, Module or any other regulatory certifications

TEXAS INSTRUMENTS

Evaluation Boards, Tools, Software Kits

TI Information – Selective Disclosure

Wi-Fi Starter App

TEXAS INSTRUMENTS

CC3100 and CC3200 kits

Platform

Kits & Bundles

CC3200

Industry's first single-chip Wi-Fi solution with user-dedicated programmable microcontroller (MCU) **Kits**

- NEW Module LaunchPad <u>CC3200MODLAUNCHXL</u>
- QFN Device LaunchPad <u>CC3200-LAUNCHXL</u>

Kits NEW Module BoosterPack <u>CC3100MODBOOST</u>

CC3100

Internet-on-a-chip[™] solution Connect

any MCU to the Internet of Things

- QFN Device BoosterPack <u>CC3100BOOST</u>
- BOOST required to Flash CC3100 <u>CC31XXEMUBOOST</u>

Bundles are also available on www.ti.com

Support: Software, Online Content and More

Software	 Software for <u>CC3100</u> Easy to use API Network security made easy Demos for internet of things applied 	Software for <u>CC3200</u> All capabilities of the • Examples for com sensors • Embedded RTOS (FreeRTOS, TI RT	CC3100 plu nections to support OS)
Support	Wiki Development documentation, user guides, software documents, test/validation	E2E online support TI E2E [™] community – answers at your fingertips from engineers	Ti.co Data softv
And more	Training Online videos and other resources to learn more about the parts and tools	TIDESIGNS TI reference designs online	Sili

om/simplelinkwifi

asheets, kits, sample orders, ware, product selection

licon & kit sales & samples on TI Store

SimpleLink[™] Wi-Fi[®] Key Resources

- TI Landing page <u>http://www.ti.com/simplelinkwifi</u>
 - Product information, feature/benefit, applications, getting started, tools & software, ecosystem (cloud) & support/community
- TI Wiki <u>http://processors.wiki.ti.com/index.php/CC31xx_&_CC32xx</u> Organize information for Getting started, Hardware details, Software details including porting information, Test/Certification and Support and Community
- How to Get Started
- Product Pages
 - <u>www.ti.com/product/CC3100</u> datasheet, key documents, kits, software
 - www.ti.com/product/CC3200 datasheet, key documents, kits, software
- E2E Support Forum

50