
 ATBTLC1000
 ATBTLC1000 BluSDK BLE API SW Development Guide

User's Guide

Introduction

This user guide details the functional description of Bluetooth Low Energy (BLE) Application Peripheral
Interface (API) programming model. This also provides the example code to configure an API for Generic
Access Profile (GAP), Generic Attribute (GATT) Profile, and other services using the ATBTLC1000.

© 2017 Microchip Technology Inc. User Guide DS50002642A-page 1

Table of Contents

Introduction..1

1. Overview..3
1.1. ATSAMB11 Solution Architecture ..4

2. API Programming Model... 5
2.1. General Application Flow... 5
2.2. Request Response Flow.. 5
2.3. Event Posting and Handling...7

3. API Usage Examples...8
3.1. GAP Advertising...8
3.2. GAP Scanning and Connection Creation...9
3.3. GATT Server – Service Definition ... 12
3.4. GATT Client – Service Discovery... 17
3.5. Security Example... 18

4. RTC XO 32.768kHz Clock Output... 25
4.1. Internal tuning capacitor configuration... 25

The Microchip Web Site.. 26

Customer Change Notification Service..26

Customer Support... 26

Microchip Devices Code Protection Feature... 26

Legal Notice...27

Trademarks... 27

Quality Management System Certified by DNV...28

Worldwide Sales and Service..29

 ATBTLC1000

© 2017 Microchip Technology Inc. User Guide DS50002642A-page 2

1. Overview
Figure -1. Overview of ATBTLC1000

Application

API Implementation

Platform Abstraction

External host

Application

API Implementation

Platform Abstraction

External host

ATBTLC1000

The ATBTLC1000 provides Bluetooth Smart Link Controller in a single System on a Chip (SoC) that
includes:

• Radio Frequency (RF)
• Link Layer
• Generic Access Profile (GAP)
• Generic Attribute (GATT) Profile
• Security Manager Protocol (SMP)

It provides the host microcontroller with methods to perform the following:
• Standard Bluetooth Smart
• GAP
• GATT server
• Client operations
• Security management with peer devices

The ATBTLC1000 runs firmware on chip which provides BLE 4.1 functionality. On top of the Link Layer
Firmware, is an embedded L2CAP, GAP, SMP, and GATT layer that complies with Special Interest Group
(SIG) standard 4.1.

 ATBTLC1000

© 2017 Microchip Technology Inc. User Guide DS50002642A-page 3

Figure -2. External Host

External Application Interface

Built-in Profiles

BLE
HW
Core

Bootloader/Path Agent

ARM Cortex-MO

OS

External Host

BLE Link Layer

1.1 ATSAMB11 Solution Architecture
The ATSAMB11 solution is mainly composed of three sub-systems running concurrently.

• User Internal Application running in an OS thread, communicating with BLE Stack via a messaging
interface.

• Link Controller that implements up to GATT and GAP layers running in an OS thread.
• Application Atmel Adaptation API layer that maps the GAP/GATT functionalities into their respective

messages, that is sent to the BLE stack over the messaging interface.

 ATBTLC1000

© 2017 Microchip Technology Inc. User Guide DS50002642A-page 4

2. API Programming Model
This chapter describes the programming model of the app for ATBTLC1000 using APIs. The app perform
following operations:

• Platform initialization/Link controller initialization
• Device Configuration
• Event Monitoring and handling

2.1 General Application Flow
The general app flow initializes the link controller and bus. The initialization is done by at_ble_init();
call function.

The device configuration includes setting up the device address, device name, and device advertising
data. API call functions has no event messages associated with device configuration, API call functions
are called at the start of the app and return error code to validate an operation.
Figure 1-1. General Application Flow

App entry

Initialization and
Device configuration

Get next event

Event
received?

Event handler
switch statement

Yes

No

2.2 Request Response Flow
API operation relies on a request – response mechanism. The request is sent via the dedicated API.
Calling an API triggers and returns one or more event message to the app. These messages are handled

 ATBTLC1000

© 2017 Microchip Technology Inc. User Guide DS50002642A-page 5

by the event handler loop of the user app. For example, if the user call at_ble_scan_start(), user
expects the controller must return an event with AT_BLE_SCAN_INFO for each device scanned by the
ATBTLC1000.

This code snippet below shows an example of the event loop within a valid complete.

at_ble_addr_t addr = {AT_BLE_ADDRESS_PUBLIC,
 {0x25, 0x75, 0x11, 0x6a, 0x7f, 0x7f} };
uint16_t handle;
 // init device
 at_ble_init(NULL);

 at_ble_addr_set(&addr);

 // start advertising
 at_ble_adv_data_set(adv_data, sizeof(adv_data), scan_rsp_data, sizeof(scan_rsp_data));
 at_ble_adv_start(AT_BLE_ADV_TYPE_UNDIRECTED, AT_BLE_ADV_GEN_DISCOVERABLE, NULL,
AT_BLE_ADV_FP_ANY, 100, 1000, 0);

while(at_ble_event_get(&event, params, -1) == AT_BLE_SUCCESS)
 {
 switch(event)
 {
 case AT_BLE_CONNECTED:
 {
 at_ble_connected_t* conn_params = (at_ble_connected_t*)params;
 printf("Device connected \n");
 handle = conn_params->handle;
 }
 break;

 case AT_BLE_DISCONNECTED:
 {
 printf("Device disconnected\n");
 at_ble_adv_start(AT_BLE_ADV_TYPE_UNDIRECTED,
 AT_BLE_ADV_GEN_DISCOVERABLE,
 NULL, AT_BLE_ADV_FP_ANY, 100, 1000, 0);

 }
 break;

 ATBTLC1000

© 2017 Microchip Technology Inc. User Guide DS50002642A-page 6

2.3 Event Posting and Handling
Figure 1-2. Event Posting and Handling

API Call User Event Handler loop

API implementation Event Handling Engine

Bus Wrapper/serial interface

ATBTLC1000

Each event message returned by the controller is retrieved by calling the API at_ble_event_get()
function. This is a blocking call and never returns the event message unless a new event is received from
the controller, or event time out is reached the at_ble_event_user_defined_post() API is called.
The purpose of the user defined event posting provides the flexibility to skip an iteration of the event
handling loop, by sending a user defined event. This makes the blocking call to at_ble_event_get
return with user event message ID. It is used when the user want to execute some code inside the event
loop after handling a specific message from the controller, without the need to wait for a controller event
that may occur at any time.

 ATBTLC1000

© 2017 Microchip Technology Inc. User Guide DS50002642A-page 7

3. API Usage Examples

3.1 GAP Advertising
After initialization and setting address, to run device in peripheral role, it is required to advertise and in
this case the device is called Advertiser or Peripheral.

Advertising data means that the peripheral sends unidirectional broadcast data on air to be discovered by
other devices and react according to device capabilities such as advertising type, mode, and so on.

If it is needed to response to connection request from scanner devices, it is required to advertise in
connectable mode. In addition to advertising capabilities, the advertising data can also include any
custom information to broadcast to other devices.

Before advertising, it is required to set advertising data first using at_ble_adv_data_set(), also user
can set additional user data called response data using the same function if needed, this data is sent to
the active scanning device and request for more information.

Settings of advertising data must be done before start advertising. If the advertising is running, it must be
stopped using at_ble_adv_stop() and apply settings of advertising data then start advertising again.

Example:

Device Address : 0x7f7f6a117525
Advertising data length : 0x11
AD type : Complete list of 128-bit UUIDs available (0x07)
Service UUID : 0x5730CD00DC2A11E3AA370002A5D5C51B

#define DEVICE_NAME "BLE Device"

uint8_t adv_data[] = { 0x11, 0x07, 0x1b, 0xc5, 0xd5, 0xa5, 0x02, 0x00, 0x37,
0xaa, 0xe3, 0x11, 0x2a, 0xdc, 0x00, 0xcd, 0x30, 0x57};

static at_ble_handle_t service;
static at_ble_uuid_t service_uuid = {AT_BLE_UUID_128,
 {0x1b, 0xc5, 0xd5, 0xa5, 0x02, 0x00, 0x37, 0xaa,
 0xe3, 0x11, 0x2a, 0xdc, 0x00, 0xcd, 0x30, 0x57}};

 ATBTLC1000

© 2017 Microchip Technology Inc. User Guide DS50002642A-page 8

at_ble_status_t init_peripheral_role(void)
{
 at_ble_status_t status;
 at_ble_addr_t addr = {AT_BLE_ADDRESS_PUBLIC,
 {0x25, 0x75, 0x11, 0x6a, 0x7f, 0x7f}};

 do
 {
 //Initializations of device
 status = at_ble_init(NULL);
 if(AT_BLE_SUCCESS == status)
 {
 break;
 }
 //Set device address
 if(AT_BLE_SUCCESS != at_ble_addr_set(&addr))
 {
 break;
 }
 //Set device name
 if(AT_BLE_SUCCESS != at_ble_device_name_set((uint8_t
*)DEVICE_NAME, sizeof(DEVICE_NAME)))
 {
 break;
 }
 //Establish peripheral database
 if(AT_BLE_SUCCESS != at_ble_primary_service_define(&service_uuid,
&service, NULL, 0, chars, 2))
 {
 break;
 }
 //Set advertising data, instead of NULL set scan response data if needed
 if(AT_BLE_SUCCESS != at_ble_adv_data_set(adv_data, sizeof(adv_data), NULL, 0))
 {
 break;
 }
 //Start advertising
 if(AT_BLE_SUCCESS != at_ble_adv_start(AT_BLE_ADV_TYPE_UNDIRECTED,
AT_BLE_ADV_GEN_DISCOVERABLE, NULL, AT_BLE_ADV_FP_ANY, 100, 0, false))
 {
 break;
 }
 }while(1);

 return status;
}

3.2 GAP Scanning and Connection Creation
Device that scans for unidirectional broadcast advertising data is called as Scanner or Central and it
uses at_ble_scan_start() to start scan with different configurations.

Central device request for more additional user data from the advertiser.

Application is triggered when receiving AT_BLE_SCAN_INFO event with each scan result. Also
AT_BLE_SCAN_REPORT event is received in case of using AT_BLE_SCAN_GEN_DISCOVERY or
AT_BLE_SCAN_LIM_DISCOVERY.

In AT_BLE_SCAN_OBSERVER_MODE, it is developer’s responsibility to stop scan the operation using
at_ble_scan_stop() In this mode, scanning is performed without timeout. Once a peer device is
identified, stop the scanning process and initiates the connection request.

 ATBTLC1000

© 2017 Microchip Technology Inc. User Guide DS50002642A-page 9

Figure 2-1. GAP Scanning and Connection Creation

Example: Code snippet of scanning

Device Address : 0x7f7f6a117525
Peer Address : 0x001bdc060545

#define DEVICE_NAME "BLE Device"

at_ble_addr_t addr = {AT_BLE_ADDRESS_PUBLIC,
 {0x24, 0x75, 0x11, 0x6a, 0x7f, 0x7f}};

at_ble_addr_t peer_addr = {AT_BLE_ADDRESS_PUBLIC,
 {0x45, 0x05, 0x06, 0xdc, 0x1b, 0x00}};

at_ble_status_t init_central_role(void)
{
 at_ble_status_t status = AT_BLE_SUCCESS;

 do
 {
 //Initiate device
 status = at_ble_init(NULL);
 if(AT_BLE_SUCCESS != status)
 {
 break;
 }
 //Set device name
 if(AT_BLE_SUCCESS != at_ble_device_name_set((uint8_t
*)DEVICE_NAME, sizeof(DEVICE_NAME)))
 {
 break;
 }

 ATBTLC1000

© 2017 Microchip Technology Inc. User Guide DS50002642A-page 10

 //Set address
 at_ble_addr_set(&addr);
 if(AT_BLE_SUCCESS != status)
 {
 break;
 }
 //Start scan
 if(AT_BLE_SUCCESS != at_ble_scan_start(GAP_INQ_SCAN_INTV, GAP_INQ_SCAN_WIND,
0, AT_BLE_SCAN_ACTIVE, AT_BLE_SCAN_GEN_DISCOVERY, FALSE, 1))
 {
 break;
 }

 } while (1);

 return status;
}

void main(void)
{
 at_ble_handle_t handle = -1;
 at_ble_scan_info_t* scan_params;
 at_ble_events_t at_event;
 uint8_t params[512];

 do
 {
 if(AT_BLE_SUCCESS != init_central_role())
 {
 printf("Unable to initialize\r\n");
 break;
 }
 printf("Scanning ...\r\n");

 while(AT_BLE_SUCCESS == at_ble_event_get(&at_event, params, -1))
 {
 switch(at_event)
 {
 case AT_BLE_SCAN_INFO:
 {
 scan_params = (at_ble_scan_info_t*)params;
 printf("Device Found 0x%02x%02x%02x%02x%02x%02x \n",
 scan_params->dev_addr.addr[5],
 scan_params->dev_addr.addr[4],
 scan_params->dev_addr.addr[3],
 scan_params->dev_addr.addr[2],
 scan_params->dev_addr.addr[1],
 scan_params->dev_addr.addr[0]
);
 if((scan_params->type != AT_BLE_ADV_TYPE_SCAN_RESPONSE)&&
 !memcmp(scan_params->dev_addr.addr,peer_addr.addr,AT_BLE_ADDR_LEN))
 {
 at_ble_connection_params_t conn_params;
 /* Stop Scan operation*/
 at_ble_status_t status = at_ble_scan_stop();

 if(status == AT_BLE_SUCCESS)
 {
 conn_params.ce_len_max = 0x0140;
 conn_params.ce_len_min = 0x0000;
 conn_params.con_intv_max = 0x00a0;
 conn_params.con_intv_min = 0x00a0;
 conn_params.con_latency = 0x0000;
 conn_params.superv_to = 0xC80; //0x01f4;

 /* Connect to peer device */
 if(AT_BLE_SUCCESS != at_ble_connect(&peer_addr, 1,
GAP_INQ_SCAN_INTV, GAP_INQ_SCAN_WIND, &conn_params))
 {
 printf("Unable to connect\r\n");
 }
 }
 }
 }
 break;
 case AT_BLE_CONNECTED:
 {
 at_ble_connected_t* conn_params =

 ATBTLC1000

© 2017 Microchip Technology Inc. User Guide DS50002642A-page 11

(at_ble_connected_t*)params;
 handle = conn_params->handle;
 printf("Device connected\r\n");
 at_ble_disconnect(handle, AT_BLE_TERMINATED_BY_USER);
 }
 break;
 case AT_BLE_DISCONNECTED:
 {
 printf("Device disconnected \n");
 }
 break;
 }
 }

 }while(1);
 while(1);
}

3.3 GATT Server – Service Definition

3.3.1 Introduction
Generic Attribute (GATT) Profile is an upper layer of the Bluetooth stack that defines how two connected
Bluetooth devices can exchange information. It is based on the Attribute (ATT) Protocol, which "allows a
device1 (server) to expose a set of attributes and their associated values to a device2 (peer device or
client). These attributes are exposed by the server and it is discovered, read, and written by a client and
is indicated and notified by the server" as per the standard.

Figure 2-2. GATT Server Introduction

Server B (Pressure Sensor)

Server A (Thermometer)

Client (Phone or Tablet)

Server C (Proximity Sensor)

 ATBTLC1000

© 2017 Microchip Technology Inc. User Guide DS50002642A-page 12

3.3.2 Services and Characteristics
The GATT profile defines a basic structure for data. Attributes are arranged in a hierarchal manner and
profiles are available on top of the hierarchy. A profile is composed of a service and each service is
composed of a set of characteristics. A service includes (link to) another services to encourage
reusability. A characteristic has a value and contain extra descriptors that explain the characteristic format
to the user.

 ATBTLC1000

© 2017 Microchip Technology Inc. User Guide DS50002642A-page 13

Figure 2-3. Basic GATT hierarchy

Profile

Include

Include

Properties

Value

Descpritor

Descpritor

Properties

Value

Descpritor

Descpritor

Include

Include

Properties

Value

Descpritor

Descpritor

Properties

Value

Descpritor

Descpritor

Service Service

Characteristic Characteristic

Characteristic Characteristic

3.3.3 Defining a Service
If a peer has defined a service with a set of characteristics, it implicitly gain the server role for any peer
discovering these services.

 ATBTLC1000

© 2017 Microchip Technology Inc. User Guide DS50002642A-page 14

To define a service:

• Service UUID at_ble_uuid_t* uuid and characteristics at_ble_characteristic_t*
charactristic_list structures are properly filled.

• at_ble_status_t at_ble_primary_service_define(at_ble_uuid_t* uuid,
at_ble_handle_t* service_handle, at_ble_included_service_t*
included_service_list, uint16_t included_service_count,
at_ble_characteristic_t* charactristic_list, uint16_t
charactristic_count) are called with proper arguments which returns a handle to the service
in service_handle and handle of its characteristics in the first field of the
charactristic_list structure charactristic_list[i].char_val_handle returns
handle of the first characteristic in the service, also handles to the client configuration, user
descriptor, and server configuration is returned in
charactristic_list[i].client_config_handle, charactristic_list
[i].user_desc_handle, charactristic_list[i].server_config_handle,
respectively.

Example code to define a service is given below.

 static at_ble_uuid_t service_uuid = {
 AT_BLE_UUID_128 ,
 { 0x1b, 0xc5, 0xd5, 0xa5, 0x02, 0x00, 0x37, 0xaa,
 0xe3, 0x11, 0x2a, 0xdc, 0x00, 0xcd, 0x30, 0x57}
};

 static at_ble_characteristic_t chars[] = {

 0, /* handle stored here */
 { AT_BLE_UUID_128, {0x1b, 0xc5, 0xd5, 0xa5, 0x02, 0x00, 0x3b, 0x8e,
 0xe3, 0x11, 0x2a, 0xdc, 0xa0, 0xd3, 0x20, 0x8e}}, /* UUID */
 AT_BLE_CHAR_READ | AT_BLE_CHAR_WRITE | AT_BLE_CHAR_NOTIFY, /* Properties */
 "char1", sizeof("char1"), 100, /* value */
 /*permissions */
 AT_BLE_ATTR_READABLE_NO_AUTHN_NO_AUTHR | AT_BLE_ATTR_WRITABLE_NO_AUTHN_NO_AUTHR,
 NULL, 0, 0, /* user friendly description */
 NULL, /*presentation format*/
 AT_BLE_ATTR_NO_PERMISSIONS, /*user description permissions*/
 AT_BLE_ATTR_READABLE_REQ_AUTHN_REQ_AUTHR, /*client config permissions*/
 AT_BLE_ATTR_NO_PERMISSIONS, /*server config permissions*/
 0,0,0 /*user desc, client config, and server config handles*/
 };

 static at_ble_handle_t service;
 // establish peripheral database
 at_ble_primary_service_define(&service_uuid, &service,
 NULL, 0, chars, 1);

Example code to define a service is given below.

 static at_ble_uuid_t service_uuid = {
 AT_BLE_UUID_128 ,
 { 0x1b, 0xc5, 0xd5, 0xa5, 0x02, 0x00, 0x37, 0xaa,
 0xe3, 0x11, 0x2a, 0xdc, 0x00, 0xcd, 0x30, 0x57}
};

 static at_ble_characteristic_t chars[] = {

 0, /* handle stored here */
 { AT_BLE_UUID_128, {0x1b, 0xc5, 0xd5, 0xa5, 0x02, 0x00, 0x3b, 0x8e,
 0xe3, 0x11, 0x2a, 0xdc, 0xa0, 0xd3, 0x20, 0x8e}}, /* UUID */
 AT_BLE_CHAR_READ | AT_BLE_CHAR_WRITE | AT_BLE_CHAR_NOTIFY, /* Properties */
 "char1", sizeof("char1"), 100, /* value */
 /*permissions */
 AT_BLE_ATTR_READABLE_NO_AUTHN_NO_AUTHR | AT_BLE_ATTR_WRITABLE_NO_AUTHN_NO_AUTHR,

 ATBTLC1000

© 2017 Microchip Technology Inc. User Guide DS50002642A-page 15

 NULL, 0, 0, /* user friendly description */
 NULL, /*presentation format*/
 AT_BLE_ATTR_NO_PERMISSIONS, /*user description permissions*/
 AT_BLE_ATTR_READABLE_REQ_AUTHN_REQ_AUTHR, /*client config permissions*/
 AT_BLE_ATTR_NO_PERMISSIONS, /*server config permissions*/
 0,0,0 /*user desc, client config, and server config handles*/
 };

 static at_ble_handle_t service;
 // establish peripheral database
 at_ble_primary_service_define(&service_uuid, &service,
 NULL, 0, chars, 1);

3.3.4 Writing/Reading Characteristic Value
To write the value of a characteristic from the server:

at_ble_status_t at_ble_characteristic_value_set(at_ble_handle_t handle, uint8_t* value,
uint16_t offset, uint16_t len);

To read the value of a characteristic from the server:

at_ble_status_t at_ble_characteristic_value_get(at_ble_handle_t handle, uint8_t* value,
uint16_t offset, uint16_t len, uint16_t actual_read_len);

3.3.5 Sending Notifications/Indications to Client
If a client enables notifications/indications for a server, the server receives an
AT_BLE_CHARACTERISTIC_CHANGED event , the handle returned in the characteristic changed event is
compared with the client_config_handle charactristic_list[i].client_config_handle, If it
matches then the new value returned in the characteristic changed event is checked for non zero value,
then the server starts notifying/indicating the client using at_ble_status_t
at_ble_notification_send(at_ble_handle_t conn_handle, at_ble_handle_t
attr_handle); or at_ble_status_t at_ble_indication_send(at_ble_handle_t
conn_handle, at_ble_handle_t attr_handle);
Example code of sending notifications/indications to client is given below.

case AT_BLE_CHARACTERISTIC_CHANGED:
{
 at_ble_characteristic_changed_t* change_params
 = (at_ble_characteristic_changed_t*) params;
 uint32_t i = 0;

 if (change_params->char_handle == client_config_handle)
 {

 switch (change_params->char_new_value)
 {
 case 1:
 at_ble_notification_send(handle, chars[0].char_val_handle);
 break;
 case 2:
 at_ble_indication_send(handle, chars[0].char_val_handle);
 break;
 }

 }

}
break;

 ATBTLC1000

© 2017 Microchip Technology Inc. User Guide DS50002642A-page 16

3.4 GATT Client – Service Discovery

3.4.1 Discovering a Service
To discover services in a GATT server, any one of the following methods can be used:

• discover all services from a start handle to an end handle with the following functions:
at_ble_status_t at_ble_descriptor_discover_all(at_ble_handle_t conn_handle,
at_ble_handle_t start_handle, at_ble_handle_t end_handle);

• discover a specific service using its UUID with the following functions:
at_ble_status_t at_ble_characteristic_discover_by_uuid(at_ble_handle_t conn_handle,
at_ble_handle_t start_handle, at_ble_handle_t end_handle, at_ble_uuid_t* uuid);

In both cases two events returned and handled by the developer. AT_BLE_DISCOVERY_COMPLETE
returns the status of the operation and AT_BLE_PRIMARY_SERVICE_FOUND is sent to the application
whenever a service is found.

case AT_BLE_PRIMARY_SERVICE_FOUND:
 {
 at_ble_primary_service_found_t * primary_service =
 (at_ble_primary_ser vice_found_t *) params;

 printf("Primary Service UUID: Type:%02x Value:%04x \t Start Handle:%04x \t End
Handle:%04x\n", primary_service->service_uuid.type,
 (uint16_t)((uint16_t)primary_service->service_uuid.uuid[0]
 | ((uint16_t)primary_service->service_uuid.uuid[1]<<8)),
 primary_service->start_handle, primary_service->end_handle);
 }
 break;

Once a primary service is found, based on its start and end handle, all characteristics of such primary
service is found by calling function as explained below.

at_ble_status_t at_ble_characteristic_discover_all(at_ble_handle_t conn_handle,
 at_ble_handle_t start_handle, at_ble_handle_t end_handle);
Event AT_BLE_CHARACTERISTIC_FOUND will return the characteristics found.

 case AT_BLE_CHARACTERISTIC_FOUND:
 {
 at_ble_characteristic_found_t * characteristic =
 (at_ble_ characteristic_found_t *) params;

 printf("Characteristic UUID: Type:%02x Value:%04x \t Char Handle:%04x \t Value
Handle:%04x, Properties:%02x\n", characteristic->char_uuid.type,
 (uint16_t)((uint16_t) characteristic->char_uuid.uuid[0]
 | ((uint16_t) characteristic->char_uuid.uuid[1]<<8)),
 characteristic->char_handle, characteristic->value_handle,
 characteristic->properties);
 }
 break;

3.4.2 Writing/Reading Characteristic Value
To write the value of a characteristic from the client:

at_ble_status_t at_ble_characteristic_write(at_ble_handle_t conn_handle, at_ble_handle_t
char_handle, uint16_t offset, uint16_t length, uint8_t* data, bool signed_write, bool
with_response);

Then an event AT_BLE_CHARACTERISTIC_WRITE_RESPONSE is sent to client that indicates the write
status.

 ATBTLC1000

© 2017 Microchip Technology Inc. User Guide DS50002642A-page 17

To read the value of a characteristic from the client:

at_ble_status_t at_ble_characteristic_read(at_ble_handle_t conn_handle, at_ble_handle_t
char_handle, uint16_t offset, uint16_t len);

The read data is sent to the client through an AT_BLE_CHARACTERISTIC_READ_RESPONSE event.
case AT_BLE_CHARACTERISTIC_READ_RESPONSE:
{
 at_ble_characteristic_read_response_t *read_resp =
 (at_ble_characteristic_read_response_t *)params;
 uint32_t i=0;

 printf("READ RESPONSE: Characteristic Handle:%04x \t Length:%04x Offset:%04x\n",
 read_resp->char_handle,
 read_resp->char_len,
 read_resp->char_offset);
 printf("DATA:\t");

 for(i=0;i<read_resp->char_len;i++)
 {
 printf("%02x ", read_resp->char_value[i]);
 }
 printf("\n");

}
break;

3.5 Security Example
The purpose of the bonding procedure is to create a relation between two Bluetooth devices based on a
common link key (a bond), the link key is created and exchanged during pairing procedure and is
expected to be stored by both Bluetooth device that is used during another connection to avoid repeating
pairing procedure.

Security is initiated by the device in the master role. The device in the slave role accepts the request and
act as a responding device.The slave device request the master device to initiate pairing or other security
procedures.

3.5.1 Pairing Procedure
Pairing is a three-phase process. The first two phases are used and followed by an optional transport
specific key distribution phase, to share the keys which is used to encrypt a link in future reconnections,
verify signed data, and perform random address resolution.

Phase 1: Pairing Feature Exchange

The devices first exchange IO capabilities, OOB “Out of Band” authentication data availability,
authentication requirements, key size requirements and which transport specific keys to distribute in the
pairing feature exchange.

IO Capabilities

• AT_BLE_IO_CAP_DISPLAY_ONLY – display only
• AT_BLE_IO_CAP_DISPLAY_YES_NO – can display and get a Yes/No input from user
• AT_BLE_IO_CAP_KB_ONLY – has only a keyboard
• AT_BLE_IO_CAP_NO_INPUT_NO_OUTPUT – has no input and no output
• AT_BLE_IO_CAP_KB_DISPLAY – has both a display and a keyboard

Authentication Requirements

 ATBTLC1000

© 2017 Microchip Technology Inc. User Guide DS50002642A-page 18

The authentication requirements include the type of bonding and man-in-the-middle protection (MITM)
requirements:

• Bonding – if no key is exchanged during the pairing, the bonding flag is set to zero.
• Man in the Middle protection (MITM) flag – according to the IO capabilities or Out Of Band (OOB)

property, MITM flag is set to zero, if pairing is done using PIN code or OOB data.

Note:  The link is considered authenticated by using the passkey entry pairing method (MITM) or by
using the out of band pairing method.

Security Modes

Security requirement is used to force a certain level of authentication and presence of key exchange.

• LE Security mode 1 has three security levels:

1. AT_BLE_NO_SEC (no authentication and no encryption).
2. AT_BLE_MODE1_L1_NOAUTH_PAIR_ENC (unauthenticated pairing with encryption)

Man in the middle protection is set to zero and Long Term Key (LTK) is exchanged
3. AT_BLE_MODE1_L2_AUTH_PAIR_ENC (authenticated pairing with encryption)

Man in the middle protection shall be set to 1, a LTK is exchanged

• LE Security mode 2

1. AT_BLE_MODE2_L1_NOAUTH_DATA_SGN (unauthenticated pairing with data signing)
Man in the middle protection is set to zero, a CSRK is exchanged.

2. AT_BLE_MODE2_L2_AUTH_DATA_SGN (authenticated pairing with data signing)
Man in the middle protection is set to 1, a CSRK is exchanged.

Key Distribution

The initiating device indicates that the specific keys are transporting into the responding device and vice
versa.

• AT_BLE_KEY_DIST_ENC – distribute Long Term Key (LTK), Encrypted Diversifier (EDIV), and
random number

• AT_BLE_KEY_DIST_SIGN – distribute Connection signature key (CSRK)
• AT_BLE_KEY_DIST_ID – distribute Identity Resolving Key (IRK) and identity address
• AT_BLE_KEY_DIS_ALL – distribute all keys

The IO capabilities, OOB authentication data availability, and authentication requirements are used to
determine the pairing method and it is used in Short Term Key (STK) generation in phase 2. Supported
pairing methods are as follows::

• Just Works
• Passkey Entry
• Out Of Band (OOB)

All these pairing methods use and generate 2 keys:
• Temporary Key (TK) – a 128-bit temporary key is used in the pairing process, it is a key exchanged

by out of band system such as NFC, or the pin code entered by user during Just Works pairing; this
key is set to zero.

• Short Term Key (STK) – a 128-bit temporary key is used to encrypt a connection followed by
pairing.

Phase 2: Short Term Key (STK) Generation

 ATBTLC1000

© 2017 Microchip Technology Inc. User Guide DS50002642A-page 19

Calculated according to pairing information and provided TK, it is used to encrypt the link during pairing to
exchange the following keys:

• Long Term Key (LTK) – is a 128-bit key used to encrypt the Link. In order to retrieve link key, a
random number and key diversifier has to be stored with this key.

• Encrypted Diversifier (EDIV) – a 16-bit stored value used to identify the LTK. A new EDIV is
generated each time a unique LTK is distributed.

• Random Number (Rand) – a 64-bit stored value that is used for identifying the LTK, A new Rand is
generated each time a unique LTK is distributed.

• Identity Resolving Key (IRK) – a 128-bit key is used to generate and random address.
• Connection signature key (CSRK) – when link is not encrypted, the CSRK is used by GAP to sign

and verify signature of an attribute write sign.

Phase 3: Transport Specific Key Distribution

Application APIs Interface

• at_ble_authenticate
at_ble_send_slave_sec_request APIs are used for initiating bonding and responding to
pairing request from remote device.

• AT_BLE_PAIR_KEY_REQUEST
AT_BLE_SLAVE_SEC_REQUEST events are triggered to indicate that bonding is required.

• AT_BLE_PAIR_DONE event is triggered to indicate bonding status.

 ATBTLC1000

© 2017 Microchip Technology Inc. User Guide DS50002642A-page 20

Figure 2-4. Pairing Sequence Flow

3.5.2 Encryption Procedure
The encryption procedure is used to encrypt the link using a previously bonded Long Term Key (LTK).
This procedure is initiated only by the master device.

During the encryption session setup, the master device sends a 16-bit EDIV, and a 64-bit Rand,
distributed by the slave device during pairing, to the slave device.

The master’s host provides the link layer with the LTK to use when setting up the encrypted session.

The slave’s host receives the EDIV and Rand values and provides a LTK to the slave's link layer to use
when setting up the encrypted link.

 ATBTLC1000

© 2017 Microchip Technology Inc. User Guide DS50002642A-page 21

Figure 2-5. Encryption Sequence Flow

Example of the encryption procedure code is given below.

#define PRINT(...) printf(__VA_ARGS__)
#define PRINT_LOG(...) printf("[APP]"/**/__VA_ARGS__)

at_ble_LTK_t app_bond_info;
at_ble_auth_t auth_info;

void main(void)
{
 ...
 //Init
 ...

 while(at_ble_event_get(&event, params, -1) == AT_BLE_SUCCESS)
 {
 switch(event)
 {
 case AT_BLE_PAIR_REQUEST:
 {
 at_ble_pair_features_t features;
 uint8_t loopCntr;

 PRINT_LOG("Remote device request pairing \n");
 /* Authentication requirement is bond and MITM*/
 features.desired_auth = AT_BLE_MODE1_L2_AUTH_PAIR_ENC;
 features.bond = TRUE;
 features.mitm_protection = TRUE;

 ATBTLC1000

© 2017 Microchip Technology Inc. User Guide DS50002642A-page 22

 features.oob_avaiable = FALSE;
 /* Device cababilities is display only , key will be generated
 and displayed */
 features.io_cababilities = AT_BLE_IO_CAP_DISPLAY_ONLY;
 /* Distribution of LTK is required */
 features.initiator_keys = AT_BLE_KEY_DIS_ALL;
 features.responder_keys = AT_BLE_KEY_DIS_ALL;
 features.max_key_size = 16;
 features.min_key_size = 16;

 /* Generate LTK */
 for(loopCntr=0; loopCntr<8; loopCntr++)
 {
 app_bond_info.key[loopCntr] = rand()&0x0f;
 app_bond_info.nb[loopCntr] = rand()&0x0f;

 for(loopCntr=8; loopCntr<16; loopCntr++)
 {
 app_bond_info.key[i] = rand()&0x0f;
 }

 app_bond_info.ediv = rand()&0xffff;
 app_bond_info.key_size = 16;
 /* Send pairing response */
 if(AT_BLE_SUCCESS != at_ble_authenticate(handle,
&features, &app_bond_info, NULL))
 {
 PRINT("Unable to authenticate\r\n");
 }
 }
 }
 break;
 case AT_BLE_PAIR_KEY_REQUEST:
 {
 /* Passkey has fixed ASCII value in this example MSB */
 uint8_t passkey[6]={'0','0','0','0','0','0'};
 uint8_t passkey_ascii[6];
 uint8_t loopCntr = 0;

 at_ble_pair_key_request_t* pair_key_request
= (at_ble_pair_key_request_t*)params;

 /* Passkey is required to be generated by application and displayed to
user */
 if(pair_key_request->passkey_type == AT_BLE_PAIR_PASSKEY_DISPLAY)
 {
 PRINT_LOG("Enter the following code on the other device: ");
 for(loopCntr=0; loopCntr<AT_BLE_PASSKEY_LEN; loopCntr++)
 {
 PRINT("%c",passkey_ascii[loopCntr]);
 }
 PRINT("\n");
 if(AT_BLE_SUCCESS !=
at_ble_pair_key_reply(pair_key_request->handle,
 pair_key_request->type, passkey_ascii))
 {
 PRINT("Unable to pair reply\r\n");
 }
 }
 else
 {
 PRINT_LOG("AT_BLE_PAIR_PASSKEY_ENTRY\r\n");
 }
 }
 break;
 case AT_BLE_PAIR_DONE:
 {
 at_ble_pair_done_t* pair_params = (at_ble_pair_done_t*) params;
 if(pair_params->status == AT_BLE_SUCCESS)
 {
 PRINT_LOG("Pairing procedure completed successfully\r\n");
 auth_info = pair_params->auth;
 }
 else
 {
 PRINT_LOG("Pairing failed\r\n");
 }
 }

 ATBTLC1000

© 2017 Microchip Technology Inc. User Guide DS50002642A-page 23

 break;
 case AT_BLE_ENCRYPTION_REQUEST:
 {
 bool key_found = FALSE;
 at_ble_encryption_request_t *enc_req = (at_ble_encryption_request_t*)params;
 PRINT_LOG("Encrypting the connection...\r\n");
 /* Check if bond information is stored */
 if((enc_req-> ediv == app_bond_info.ediv)
 && !memcmp(&enc_req->nb[0],&app_bond_info.nb[0],8))
 {
 key_found = TRUE;
 }
 if(AT_BLE_SUCCESS != at_ble_encryption_request_reply(handle,
auth_info, key_found, app_bond_info))
 {
 PRINT("Unable to send Encryption request\r\n");
 }
 }
 break;
 case AT_BLE_ENCRYPTION_STATUS_CHANGED:
 {
 at_ble_encryption_status_changed_t *enc_status
= (at_ble_encryption_status_changed_t *)params;
 if(enc_status->status == AT_BLE_SUCCESS)
 {
 PRINT_LOG("Encryption completed successfully\r\n");
 }
 else
 {
 PRINT_LOG("Encryption failed\r\n");
 }
 }
 break;
 }
 }
}

 ATBTLC1000

© 2017 Microchip Technology Inc. User Guide DS50002642A-page 24

4. RTC XO 32.768kHz Clock Output
This section guides the user to enable the clock output of the RTC XO 32.768 kHz.

Add the below code snippet of function definition to import the API to write to registers of ATBTLC1000.
This function definition is added to the file where the clock output is intended to be enabled.

void write_32_to_BTLC1000(uint32_t u32address, uint32_t u32value);

After a successful initialization of ATBTLC1000 through at_ble_init(), the following code snippet is
introduced to enable the clock output to pin LP_GPIO_10,

 uint32_t val;
 read_32_from_BTLC1000(0X4000F404, &val);
 val |= (0b0<<20); // Bits 20-23 control the value of internal tuning capacitors. Valid
value – 0b0000 to 0b1111
 write_32_to_BTLC1000(0X4000F404,val);

 //32.768kHz RTC XO clock output = 14
 write_32_to_BTLC1000(0x40020250, 14);

 read_32_from_BTLC1000(0x4000b048, &val);
 //MUX7(Test out 10) configured for LP_GPIO_10
 val |=0x7<<8;
 write_32_to_BTLC1000(0x4000b048, val);

 //Enable test MUX output
 write_32_to_BTLC1000(0x400201a0, 1);

 //Block BTLC1000 from entering ULP
 platform_gpio_set(AT_BLE_EXTERNAL_WAKEUP, AT_BLE_HIGH);

Based on the frequency of the clock output, either external load capacitor value is tuned or internal tuning
capacitor is tuned to achieve the 32.768kHz clock. The internal tuning capacitor value is adjusted by
writing to bits 20-23 of register with address 0X4000F404. The valid values that is written to these bits
vary from 0b0000 to 0b1111. The above code snippet writes 0b0000 by default and this must be
changed when the user needs to write a different value to these bits.

4.1 Internal tuning capacitor configuration
Internal tuning capacitor is tuned in the design, the value that is written to bits 20-23 of register with
address 0X4000F404 must be finalized. This finalized value is stored in NVM of the host MCU and this
value must be loaded to ATBTLC1000 during the application startup by the host MCU.

The below code snippet is reused for writing to bits 20-23 of register with address 0X4000F404 from the
host MCU.
uint32_t val;

 read_32_from_BTLC1000(0X4000F404, &val);
 val |= (0bXXXX<<20); // Bits 20-23 control the value of internal tuning capacitors.
Valid value – 0b0000 to 0b1111
 write_32_to_BTLC1000(0X4000F404,val);

 ATBTLC1000

© 2017 Microchip Technology Inc. User Guide DS50002642A-page 25

The Microchip Web Site

Microchip provides online support via our web site at http://www.microchip.com/. This web site is used as
a means to make files and information easily available to customers. Accessible by using your favorite
Internet browser, the web site contains the following information:

• Product Support – Data sheets and errata, application notes and sample programs, design
resources, user’s guides and hardware support documents, latest software releases and archived
software

• General Technical Support – Frequently Asked Questions (FAQ), technical support requests,
online discussion groups, Microchip consultant program member listing

• Business of Microchip – Product selector and ordering guides, latest Microchip press releases,
listing of seminars and events, listings of Microchip sales offices, distributors and factory
representatives

Customer Change Notification Service

Microchip’s customer notification service helps keep customers current on Microchip products.
Subscribers will receive e-mail notification whenever there are changes, updates, revisions or errata
related to a specified product family or development tool of interest.

To register, access the Microchip web site at http://www.microchip.com/. Under “Support”, click on
“Customer Change Notification” and follow the registration instructions.

Customer Support

Users of Microchip products can receive assistance through several channels:

• Distributor or Representative
• Local Sales Office
• Field Application Engineer (FAE)
• Technical Support

Customers should contact their distributor, representative or Field Application Engineer (FAE) for support.
Local sales offices are also available to help customers. A listing of sales offices and locations is included
in the back of this document.

Technical support is available through the web site at: http://www.microchip.com/support

Microchip Devices Code Protection Feature

Note the following details of the code protection feature on Microchip devices:

• Microchip products meet the specification contained in their particular Microchip Data Sheet.
• Microchip believes that its family of products is one of the most secure families of its kind on the

market today, when used in the intended manner and under normal conditions.
• There are dishonest and possibly illegal methods used to breach the code protection feature. All of

these methods, to our knowledge, require using the Microchip products in a manner outside the
operating specifications contained in Microchip’s Data Sheets. Most likely, the person doing so is
engaged in theft of intellectual property.

• Microchip is willing to work with the customer who is concerned about the integrity of their code.

 ATBTLC1000

© 2017 Microchip Technology Inc. User Guide DS50002642A-page 26

http://www.microchip.com/
http://www.microchip.com/
http://www.microchip.com/support

• Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their
code. Code protection does not mean that we are guaranteeing the product as “unbreakable.”

Code protection is constantly evolving. We at Microchip are committed to continuously improving the
code protection features of our products. Attempts to break Microchip’s code protection feature may be a
violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software
or other copyrighted work, you may have a right to sue for relief under that Act.

Legal Notice
Information contained in this publication regarding device applications and the like is provided only for
your convenience and may be superseded by updates. It is your responsibility to ensure that your
application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR
WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY
OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS
CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE.
Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life
support and/or safety applications is entirely at the buyer’s risk, and the buyer agrees to defend,
indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting
from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual
property rights unless otherwise stated.

Trademarks
The Microchip name and logo, the Microchip logo, AnyRate, AVR, AVR logo, AVR Freaks, BeaconThings,
BitCloud, CryptoMemory, CryptoRF, dsPIC, FlashFlex, flexPWR, Heldo, JukeBlox, KeeLoq, KeeLoq logo,
Kleer, LANCheck, LINK MD, maXStylus, maXTouch, MediaLB, megaAVR, MOST, MOST logo, MPLAB,
OptoLyzer, PIC, picoPower, PICSTART, PIC32 logo, Prochip Designer, QTouch, RightTouch, SAM-BA,
SpyNIC, SST, SST Logo, SuperFlash, tinyAVR, UNI/O, and XMEGA are registered trademarks of
Microchip Technology Incorporated in the U.S.A. and other countries.

ClockWorks, The Embedded Control Solutions Company, EtherSynch, Hyper Speed Control, HyperLight
Load, IntelliMOS, mTouch, Precision Edge, and Quiet-Wire are registered trademarks of Microchip
Technology Incorporated in the U.S.A.

Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any Capacitor, AnyIn, AnyOut, BodyCom,
chipKIT, chipKIT logo, CodeGuard, CryptoAuthentication, CryptoCompanion, CryptoController,
dsPICDEM, dsPICDEM.net, Dynamic Average Matching, DAM, ECAN, EtherGREEN, In-Circuit Serial
Programming, ICSP, Inter-Chip Connectivity, JitterBlocker, KleerNet, KleerNet logo, Mindi, MiWi,
motorBench, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient
Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, PureSilicon, QMatrix, RightTouch logo, REAL
ICE, Ripple Blocker, SAM-ICE, Serial Quad I/O, SMART-I.S., SQI, SuperSwitcher, SuperSwitcher II, Total
Endurance, TSHARC, USBCheck, VariSense, ViewSpan, WiperLock, Wireless DNA, and ZENA are
trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of
Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.
© 2017, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

 ATBTLC1000

© 2017 Microchip Technology Inc. User Guide DS50002642A-page 27

ISBN: 978-1-5224-1889-4

Quality Management System Certified by DNV

ISO/TS 16949
Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer
fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California
and India. The Company’s quality system processes and procedures are for its PIC® MCUs and dsPIC®

DSCs, KEELOQ® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and
analog products. In addition, Microchip’s quality system for the design and manufacture of development
systems is ISO 9001:2000 certified.

 ATBTLC1000

© 2017 Microchip Technology Inc. User Guide DS50002642A-page 28

AMERICAS ASIA/PACIFIC ASIA/PACIFIC EUROPE

Corporate Office
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200
Fax: 480-792-7277
Technical Support:
http://www.microchip.com/
support
Web Address:
www.microchip.com
Atlanta
Duluth, GA
Tel: 678-957-9614
Fax: 678-957-1455
Austin, TX
Tel: 512-257-3370
Boston
Westborough, MA
Tel: 774-760-0087
Fax: 774-760-0088
Chicago
Itasca, IL
Tel: 630-285-0071
Fax: 630-285-0075
Dallas
Addison, TX
Tel: 972-818-7423
Fax: 972-818-2924
Detroit
Novi, MI
Tel: 248-848-4000
Houston, TX
Tel: 281-894-5983
Indianapolis
Noblesville, IN
Tel: 317-773-8323
Fax: 317-773-5453
Tel: 317-536-2380
Los Angeles
Mission Viejo, CA
Tel: 949-462-9523
Fax: 949-462-9608
Tel: 951-273-7800
Raleigh, NC
Tel: 919-844-7510
New York, NY
Tel: 631-435-6000
San Jose, CA
Tel: 408-735-9110
Tel: 408-436-4270
Canada - Toronto
Tel: 905-695-1980
Fax: 905-695-2078

Asia Pacific Office
Suites 3707-14, 37th Floor
Tower 6, The Gateway
Harbour City, Kowloon
Hong Kong
Tel: 852-2943-5100
Fax: 852-2401-3431
Australia - Sydney
Tel: 61-2-9868-6733
Fax: 61-2-9868-6755
China - Beijing
Tel: 86-10-8569-7000
Fax: 86-10-8528-2104
China - Chengdu
Tel: 86-28-8665-5511
Fax: 86-28-8665-7889
China - Chongqing
Tel: 86-23-8980-9588
Fax: 86-23-8980-9500
China - Dongguan
Tel: 86-769-8702-9880
China - Guangzhou
Tel: 86-20-8755-8029
China - Hangzhou
Tel: 86-571-8792-8115
Fax: 86-571-8792-8116
China - Hong Kong SAR
Tel: 852-2943-5100
Fax: 852-2401-3431
China - Nanjing
Tel: 86-25-8473-2460
Fax: 86-25-8473-2470
China - Qingdao
Tel: 86-532-8502-7355
Fax: 86-532-8502-7205
China - Shanghai
Tel: 86-21-3326-8000
Fax: 86-21-3326-8021
China - Shenyang
Tel: 86-24-2334-2829
Fax: 86-24-2334-2393
China - Shenzhen
Tel: 86-755-8864-2200
Fax: 86-755-8203-1760
China - Wuhan
Tel: 86-27-5980-5300
Fax: 86-27-5980-5118
China - Xian
Tel: 86-29-8833-7252
Fax: 86-29-8833-7256

China - Xiamen
Tel: 86-592-2388138
Fax: 86-592-2388130
China - Zhuhai
Tel: 86-756-3210040
Fax: 86-756-3210049
India - Bangalore
Tel: 91-80-3090-4444
Fax: 91-80-3090-4123
India - New Delhi
Tel: 91-11-4160-8631
Fax: 91-11-4160-8632
India - Pune
Tel: 91-20-3019-1500
Japan - Osaka
Tel: 81-6-6152-7160
Fax: 81-6-6152-9310
Japan - Tokyo
Tel: 81-3-6880- 3770
Fax: 81-3-6880-3771
Korea - Daegu
Tel: 82-53-744-4301
Fax: 82-53-744-4302
Korea - Seoul
Tel: 82-2-554-7200
Fax: 82-2-558-5932 or
82-2-558-5934
Malaysia - Kuala Lumpur
Tel: 60-3-6201-9857
Fax: 60-3-6201-9859
Malaysia - Penang
Tel: 60-4-227-8870
Fax: 60-4-227-4068
Philippines - Manila
Tel: 63-2-634-9065
Fax: 63-2-634-9069
Singapore
Tel: 65-6334-8870
Fax: 65-6334-8850
Taiwan - Hsin Chu
Tel: 886-3-5778-366
Fax: 886-3-5770-955
Taiwan - Kaohsiung
Tel: 886-7-213-7830
Taiwan - Taipei
Tel: 886-2-2508-8600
Fax: 886-2-2508-0102
Thailand - Bangkok
Tel: 66-2-694-1351
Fax: 66-2-694-1350

Austria - Wels
Tel: 43-7242-2244-39
Fax: 43-7242-2244-393
Denmark - Copenhagen
Tel: 45-4450-2828
Fax: 45-4485-2829
Finland - Espoo
Tel: 358-9-4520-820
France - Paris
Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79
France - Saint Cloud
Tel: 33-1-30-60-70-00
Germany - Garching
Tel: 49-8931-9700
Germany - Haan
Tel: 49-2129-3766400
Germany - Heilbronn
Tel: 49-7131-67-3636
Germany - Karlsruhe
Tel: 49-721-625370
Germany - Munich
Tel: 49-89-627-144-0
Fax: 49-89-627-144-44
Germany - Rosenheim
Tel: 49-8031-354-560
Israel - Ra’anana
Tel: 972-9-744-7705
Italy - Milan
Tel: 39-0331-742611
Fax: 39-0331-466781
Italy - Padova
Tel: 39-049-7625286
Netherlands - Drunen
Tel: 31-416-690399
Fax: 31-416-690340
Norway - Trondheim
Tel: 47-7289-7561
Poland - Warsaw
Tel: 48-22-3325737
Romania - Bucharest
Tel: 40-21-407-87-50
Spain - Madrid
Tel: 34-91-708-08-90
Fax: 34-91-708-08-91
Sweden - Gothenberg
Tel: 46-31-704-60-40
Sweden - Stockholm
Tel: 46-8-5090-4654
UK - Wokingham
Tel: 44-118-921-5800
Fax: 44-118-921-5820

Worldwide Sales and Service

© 2017 Microchip Technology Inc. User Guide DS50002642A-page 29

	Introduction
	Table of Contents
	1. Overview
	1.1. ATSAMB11 Solution Architecture

	2. API Programming Model
	2.1. General Application Flow
	2.2. Request Response Flow
	2.3. Event Posting and Handling

	3. API Usage Examples
	3.1. GAP Advertising
	3.2. GAP Scanning and Connection Creation
	3.3. GATT Server – Service Definition
	3.3.1. Introduction
	3.3.2. Services and Characteristics
	3.3.3. Defining a Service
	3.3.4. Writing/Reading Characteristic Value
	3.3.5. Sending Notifications/Indications to Client

	3.4. GATT Client – Service Discovery
	3.4.1. Discovering a Service
	3.4.2. Writing/Reading Characteristic Value

	3.5. Security Example
	3.5.1. Pairing Procedure
	3.5.2. Encryption Procedure

	4. RTC XO 32.768kHz Clock Output
	4.1. Internal tuning capacitor configuration

	The Microchip Web Site
	Customer Change Notification Service
	Customer Support
	Microchip Devices Code Protection Feature
	Legal Notice
	Trademarks
	Quality Management System Certified by DNV
	Worldwide Sales and Service

