

## Using the Universal Timer (UTMR) Module as Legacy PIC16/PIC18 Timers

## Introduction

Author: Max Prasad, Microchip Technology Inc.

The Universal Timer (UTMR) module is a timer module introduced in the newer PIC<sup>®</sup> devices, which combines most of the operations of all the legacy timers (TMR0/1/2, SMT, CCP) into one single timer. The inbuilt capture and compare features along with customizable Start, Reset, and Stop options make the UTMR universal. Additionally, multiple UTMR modules can be chained together to form a larger size timer.

This document shows how to configure the UTMR to operate in different modes available in legacy timer peripherals (TMR0, TMR1, TMR2, SMT, CCP). In the cases where a mode in the legacy timer is not supported, suggestions are given about combining the UTMR with other peripherals to perform those functions. Features new to UTMR that are not supported in the legacy timers are beyond the scope of this document. Refer to the device specific data sheet or TB3264 for more information.

## **Table of Contents**

| Intro | oductic    | n                                                     | .1         |
|-------|------------|-------------------------------------------------------|------------|
| 1.    | Comr       | nonly Used UTMR Settings                              | 3          |
|       | 1.1.       | UTMR Size and Buffered Access                         | .4         |
| 2.    | Using      | UTMR as Timer0 (TMR0)                                 | .5         |
|       | 2.1.       | Other TMR0 Features                                   | 5          |
| 3.    | Using      | UTMR as Timer 1 (TMR1) with Gate Control              | .7         |
|       | 3.1.       | Other TMR1 Features                                   | 7          |
| 4.    | Using      | UTMR as Timer2 (TMR2) with Hardware Limit Timer (HLT) | 9          |
|       | 4.1.       | Free-Running Period Mode                              | 9          |
|       | 4.2.       | One-Shot Mode                                         | 0          |
|       | 4.3.<br>11 | Other TMR2 Features                                   | 12         |
| _     |            |                                                       |            |
| 5.    | Using      | UTMR as Signal Measurement Timer (SMT)                | 4          |
|       | 5.1.       | Other SMT Features                                    | 6          |
| 6.    | Using      | UTMR as CCP (Capture/Compare/PWM)                     | 8          |
|       | 6.1.       | Other CCP Features                                    | 9          |
| 7.    | Concl      | usion2                                                | 21         |
| 8.    | Revis      | ion History                                           | 22         |
| The   | Micro      | chip Website                                          | 23         |
| Pro   | duct C     | hange Notification Service                            | 23         |
| Cus   | stomer     | Support                                               | 23         |
| Mic   | rochip     | Devices Code Protection Feature                       | 23         |
| len   | al Noti    | ce c                                                  | 24         |
|       |            |                                                       | - '<br>    |
| Ira   | demarl     | (S                                                    | <u>'</u> 4 |
| Qua   | ality Ma   | anagement System                                      | 25         |
| Wo    | rldwide    | Sales and Service                                     | 26         |

## 1. Commonly Used UTMR Settings

As a reference, the following table describes the selections for the most commonly used settings for the UTMR configuration used throughout this document. Refer to the device specific data sheet or TB3264 for more information.

Table 1-1. Commonly Used UTMR Settings

| UTMR Bit Setting | Description                                   | Possible Selections                          |  |
|------------------|-----------------------------------------------|----------------------------------------------|--|
| START            | Start condition of the timer                  | 00 = None (ON = 1)                           |  |
|                  |                                               | 01 = Either ERS Edge                         |  |
|                  |                                               | 10 = Rising ERS Edge                         |  |
|                  |                                               | 11 = ERS Level - 1                           |  |
| RESET            | Reset condition of the timer                  | 00 <b>= None</b>                             |  |
|                  |                                               | 01 = ERS Level - 0 + PR Match                |  |
|                  |                                               | 10 = at Start + PR Match                     |  |
|                  |                                               | 11 = at PR Match                             |  |
| STOP             | Stop condition of the timer                   | 00 = None                                    |  |
|                  |                                               | 01 = Either ERS Edge                         |  |
|                  |                                               | 10 = Rising ERS Edge                         |  |
|                  |                                               | 11 = at PR Match                             |  |
| CPOL             | Clock polarity – selects the active clock     | 0 = Falling Clock Edge (default)             |  |
|                  | edge                                          | 1 = Rising Clock Edge                        |  |
| EPOL             | ERS polarity – inverts the polarity of ERS    | 0 = True ERS Levels (default)                |  |
|                  | signals                                       | 1 = Inverted ERS Levels                      |  |
| OSEN             | One-shot mode enable – stops the timer        | 0 = Disabled (default)                       |  |
|                  | and then disables it (ON = 0)                 | 1 = Enabled                                  |  |
| LIMIT            | Limit mode enable - prevents the counter      | 0 = Disabled (default)                       |  |
|                  | from exceeding the PR value                   | 1 = Enabled                                  |  |
| CAPT             | Capture command bit – captures the            | 0 = Capture is complete (or not started)     |  |
|                  | current counter value in the capture register | 1 = Counter value capture in progress        |  |
| CLR              | Clear command bit – clears the counter        | 0 = Clearing is complete (or not started)    |  |
|                  | and prescaler counter values                  | 1 = Counter/Prescaler counter value clear in |  |
|                  |                                               | progress                                     |  |
| OM               | Output mode – chooses the type of output      | 0 = Pulse Output (default)                   |  |
|                  |                                               | 1 = Level Output                             |  |
| OPOL             | Output polarity – chooses the polarity of     | 0 = Low output when idle (default)           |  |
|                  |                                               | 1 = High output when idle                    |  |

| continued        |                                                                                                           |                                                  |  |  |  |  |  |
|------------------|-----------------------------------------------------------------------------------------------------------|--------------------------------------------------|--|--|--|--|--|
| UTMR Bit Setting | Description                                                                                               | Possible Selections                              |  |  |  |  |  |
| CSYNC            | Clock synchronization – synchronizes<br>ERS and other input/output signals and<br>commands to timer clock | 0 = Disabled/Async<br>1 = Enabled/Sync (default) |  |  |  |  |  |
| TUCHAIN          | Chains two UTMR instances to form a bigger timer                                                          | Refer to device specific data sheet              |  |  |  |  |  |

#### 1.1 UTMR Size and Buffered Access

UTMR is available in different sizes: 8, 16, 24, and 32-bit. The exact size configuration is specific to the device; refer to the device data sheet for more information. Regardless of the timer size, the TUxyTMR timer/counter register is not guarded for atomic access. However, the TUxyPR period register is double-buffered.

The raw TUxyTMR timer/counter register is not double-buffered and no read/write protection is offered in hardware. The user is encouraged to access or alter the timer value only using the capture and period registers described below. The raw counter may be directly accessed, but the access is not double-buffered and may corrupt the data if the operation is performed with a running timer.

To read the timer value, use CAPT command to capture the current counter value in TUxyCR capture register. To clear the raw timer register, use CLR command. Synchronization delay may apply while using CAPT and CLR commands based on CSYNC bit setting.

The TUxyPR period register is double-buffered and hardware protection is offered to alter the value of the register while the timer is running. To change the period of the timer, it is recommended to update the TUxyPR register, rather than to change the counter value. Refer to device data sheet on more details about updating period for a running timer.



**Important:** The size of UTMR is specific to the device. To increase the size of the UTMR, two timer instances can be chained using TUCHAIN register. Refer to device data sheet for specific details.

## 2. Using UTMR as Timer0 (TMR0)

TMR0 is a basic timer module that can operate in either 8-bit or 16-bit mode. In 8-bit mode, the value in TMR0L register is compared to the value in TMR0H register. When the two values match, TMR0L is reset and timer output toggles. In 16-bit mode, TMR0H:L together forms a 16-bit counter. The timer output toggles when the timer rolls over. The following table shows the UTMR settings needed to operate in different TMR0 modes:

#### Table 2-1. UTMR Settings for Different TMR0 Modes

| TMP0 Mode | UTMR Settings |             |      |  |  |
|-----------|---------------|-------------|------|--|--|
|           | START         | RESET       | STOP |  |  |
| 8-bit     | None (ON = 1) | At PR Match | None |  |  |
| 16-bit    |               | None        |      |  |  |

#### 2.1 Other TMR0 Features

The following table shows how some of the other features of TMR0 can be applied using UTMR:

|--|

| Feature                 | TMR0                                                                                                                                                                                                                  | UTMR                                                                                                                                                                                                                                                                      |
|-------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Active Clock Edge       | TMR0 increments at every rising edge of clock.                                                                                                                                                                        | Set CPOL = Rising Clock Edge to increment UTMR at rising clock edges.                                                                                                                                                                                                     |
| Synchronization         | TMR0 can operate either synchronous<br>or asynchronous to instruction clock<br>(F <sub>osc</sub> /4) based on ASYNC bit setting.                                                                                      | UTMR always operates asynchronous to the system clock. The CSYNC bit is used to synchronize signals and commands going in and out of the UTMR module.                                                                                                                     |
| Buffered Read/<br>Write | Buffered read and write is available in 16-bit mode.                                                                                                                                                                  | The TUxyTMR timer/counter register is not guarded<br>for atomic access. However, the TUxyPR period<br>register is double-buffered. Refer to section 1.1<br>UTMR Size and Buffered Access for details on<br>UTMR buffered access to registers.                             |
| Prescaler               | TMR0 has 16 programmable input<br>prescaler options ranging from 1:1 to<br>1:32768, which can be selected using<br>CKPS bits.                                                                                         | UTMR has 256 programmable clock prescaler options ranging from 1:1 to 1:256, which can be selected using TUxyPS register.                                                                                                                                                 |
| Postscaler              | TMR0 has a programmable postscaler ranging from 1:1 to 1:16, which can be selected using OUTPS bits.                                                                                                                  | UTMR does not has any postscaler because the module is not supposed to be used as a time base for PWM.                                                                                                                                                                    |
| Output                  | TMR0 output toggles on every match<br>between TMR0L and TMR0H in 8-bit<br>mode, or when TMR0H:TMR0L rolls<br>over in 16-bit mode. If the output<br>postscaler is used, the output is scaled<br>by the ratio selected. | Use OM = Pulse output to pulse the output at every<br>PR match for one timer clock period. To pulse the<br>output at timer overflow (for 16-bit TMR0 mode), set<br>TUxyPR to the maximum value. Toggle output<br>feature is not available in UTMR.                        |
| Interrupt               | TMR0IF interrupt occurs every time<br>TMR0 output toggles.                                                                                                                                                            | ZIF zero interrupt can be used to identify when the timer resets or rolls-over to zero. Alternatively, PRIF period interrupt can be used to identify a PR match (as in 8-bit TMR0 mode) and a roll-over (as in 16-bit TMR0 mode) when TUxyPR is set to the maximum value. |

| continued               |                                                                                                                                                                                     |                                                                                                           |  |  |  |  |
|-------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|--|--|--|--|
| Feature                 | TMR0                                                                                                                                                                                | UTMR                                                                                                      |  |  |  |  |
| Sleep Mode<br>Operation | TMR0 halts when operating<br>synchronously. In Asynchronous mode,<br>TMR0 continues operating as long as<br>the clock is active, and wakes up the<br>CPU if interrupts are enabled. | UTMR continues to operate as long as the clock is active, and wakes up the CPU if interrupts are enabled. |  |  |  |  |

## 3. Using UTMR as Timer 1 (TMR1) with Gate Control

TMR1 is a 16-bit timer which adds gate control features to the timer functionality. To implement the same gate control features in UTMR, the ERS signal acts as the gate. The Start and Stop conditions are tied to specific ERS events which signify the gate start and completion events, respectively. At every gate completion event (Stop condition), the current timer value is captured into the TUxyCR capture register and CIF capture interrupt occurs. The following table shows UTMR settings in different TMR1 modes:

| TMP1 Mode                        | UTMR Settings      |       |                    |                    | Commonte                                                                                |  |  |
|----------------------------------|--------------------|-------|--------------------|--------------------|-----------------------------------------------------------------------------------------|--|--|
|                                  | START              | RESET | STOP               | Other              | comments                                                                                |  |  |
| GE - Gate Enable                 | Rising ERS<br>Edge | None  | Either ERS<br>Edge |                    |                                                                                         |  |  |
| GPOL - Gate<br>Polarity          | Rising ERS<br>Edge | None  | Either ERS<br>Edge | EPOL =<br>Inverted | _                                                                                       |  |  |
| GTM - Gate Toggle<br>Mode        | Rising ERS<br>Edge | None  | Rising ERS<br>Edge |                    | The CLC or NCO is used as a 1:2 frequency divider, which feeds into UTMR as ERS source. |  |  |
| GSPM - Gate<br>Single Pulse Mode | Rising ERS<br>Edge | None  | Either ERS<br>Edge | OSEN =<br>Enabled  | _                                                                                       |  |  |
| GSPM + GTM                       | Rising ERS<br>Edge | None  | Rising ERS<br>Edge | OSEN =<br>Enabled  |                                                                                         |  |  |

Table 3-1. UTMR Settings for Different TMR1 Modes

#### 3.1 Other TMR1 Features

The following table shows how some of the other features of TMR1 can be applied using UTMR:

| Table 3-2. Features comp | arison between TM | R1 and UTMR |
|--------------------------|-------------------|-------------|
|--------------------------|-------------------|-------------|

| Feature                     | TMR1                                                                                                                                  | UTMR                                                                                                                                                                                                                                          |
|-----------------------------|---------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Active Clock Edge           | TMR1 increments at every rising edge of clock. In some cases, a falling edge must be registered before the timer starts incrementing. | Set CPOL = Rising Clock Edge to increment<br>UTMR at rising clock edges.                                                                                                                                                                      |
| Synchronization             | TMR1 can operate either synchronous or<br>asynchronous to the system clock based<br>on SYNC bit setting.                              | UTMR always operates asynchronous to the<br>system clock. The CSYNC bit is used to<br>synchronize signals and commands going in and<br>out of the UTMR module.                                                                                |
| Buffered Read/<br>Write     | RD16 bit can be used to read/write 16-<br>bits of TMRxH:L register in one atomic<br>operation.                                        | The TUxyTMR timer/counter register is not<br>guarded for atomic access. However, the TUxyPR<br>period register is double-buffered. Refer to section<br>1.1 UTMR Size and Buffered Access for details on<br>UTMR buffered access to registers. |
| Prescaler                   | TMR1 has 4 programmable input<br>prescaler options ranging from 1:1 to 1:8,<br>which can be selected using CKPS bits.                 | UTMR has 256 programmable clock prescaler options ranging from 1:1 to 1:256, which can be selected using TUxyPS register.                                                                                                                     |
| Gate Source and<br>Polarity | The gate source is selected using GSS bits and the polarity of the gate source is selected using GPOL bit.                            | The ERS signal acts as the gate source and can<br>be selected using TUxyERS register. The ERS<br>polarity can be selected using EPOL bit.                                                                                                     |

| continued               | continued                                                                                                                                                                           |                                                                                                                                                                                               |  |  |  |  |  |  |
|-------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| Feature                 | TMR1                                                                                                                                                                                | UTMR                                                                                                                                                                                          |  |  |  |  |  |  |
| Gate Value Status       | The most current value of gate level can be read using GVAL bit.                                                                                                                    | Use OM = Level output to represent the current<br>run/stop state of UTMR, i.e. when the gate is<br>activated and when it is not active. This is also<br>represented using the RUN status bit. |  |  |  |  |  |  |
| Output                  | TMR1 output pulses every roll-over for<br>one instruction clock.                                                                                                                    | Set TUxyPR to the maximum value and set OM =<br>Pulse Output mode. This will cause a pulse for<br>one timer clock period when the timer rolls over.                                           |  |  |  |  |  |  |
| Interrupts              | The TMRxGIF gate event interrupt occurs<br>at the completion of a gate event. The<br>TMRxIF timer interrupt occurs when the<br>counter rolls-over to zero.                          | CIF capture interrupt can be used to signify<br>completion of a gate event. ZIF zero interrupt can<br>be used to signify a counter roll-over.                                                 |  |  |  |  |  |  |
| Sleep Mode<br>Operation | TMR1 halts when operating<br>synchronously. In asynchronous mode,<br>TMR1 continues operating as long as the<br>clock is active, and wakes up the CPU if<br>interrupts are enabled. | UTMR continues to operate as long as the clock is active, and wakes up the CPU if interrupts are enabled.                                                                                     |  |  |  |  |  |  |

#### 4. Using UTMR as Timer2 (TMR2) with Hardware Limit Timer (HLT)

TMR2 is an 8-bit timer with separate counter and period registers. It has Hardware Limit Timer (HLT) capabilities based on an External Reset Source (ERS) input. TMR2 can operate in three different modes:

- Free-Running Period mode
- One-Shot mode
- Monostable mode

The following sections describe how the UTMR can be used as a TMR2 in each of the three modes.

#### 4.1 Free-Running Period Mode

In the Free-Running Period mode of TMR2, the value of the T2TMR timer register is compared to the T2PR period register on each clock cycle. Upon a period match, the T2TMR timer register is reset in the next clock cycle, and continues counting. The UTMR operates in a similar way: the TUxyTMR timer/counter register is compared to the TUxyPR period register on each timer clock cycle. The RESET bits can be set to reset the counter upon a period register match (PR match). The following table shows UTMR settings in different TMR2 Free-Running Period modes:

| Table 4-1. | UTMR | Settings | for | Different | TMR2 | Free | -Running | Period | Modes |
|------------|------|----------|-----|-----------|------|------|----------|--------|-------|
|------------|------|----------|-----|-----------|------|------|----------|--------|-------|

| TMR2      | TMR2 Mode       |                                  |                                  |       |                              | UTMR Settings       |                |                       |                    | Commonto |
|-----------|-----------------|----------------------------------|----------------------------------|-------|------------------------------|---------------------|----------------|-----------------------|--------------------|----------|
| MODE[4:0] | Output          | Operation                        | Start                            | Reset | Stop                         | START               | RESET          | STOP                  | Other              | Comments |
| 00000     | Period<br>Pulse | Software<br>gate                 | <b>ON =</b><br>1                 |       | <b>ON =</b><br>0             | None<br>(ON =<br>1) | At PR<br>Match | None                  |                    |          |
| 00001     |                 | Hardware<br>gate,<br>active-high | ON =<br>1<br>(and)<br>ERS<br>= 1 |       | ON =<br>0 (or)<br>ERS<br>= 0 | ERS<br>Level -<br>1 |                | Either<br>ERS<br>Edge |                    | -        |
| 00010     |                 | Hardware<br>gate,<br>active-low  | ON =<br>1<br>(and)<br>ERS<br>= 0 |       | ON =<br>0 (or)<br>ERS<br>= 1 |                     |                |                       | EPOL =<br>Inverted | _        |

| Using UTMR as | Timer2 | (TMR2) | with | Hardware |  |
|---------------|--------|--------|------|----------|--|
| <b>U</b>      |        | • •    |      |          |  |

| contin    | ued                                       |                                       |                  |                        |                              |                       |                                   |               |                    |                                                      |  |
|-----------|-------------------------------------------|---------------------------------------|------------------|------------------------|------------------------------|-----------------------|-----------------------------------|---------------|--------------------|------------------------------------------------------|--|
| TMR2      | TMR2 Mod                                  | TMR2 Mode                             |                  |                        |                              |                       |                                   | UTMR Settings |                    |                                                      |  |
| MODE[4:0] | Output                                    | Operation                             | Start            | Reset                  | Stop                         | START                 | RESET                             | STOP          | Other              | Comments                                             |  |
| 00011     | Period<br>Pulse with<br>Hardware<br>Reset | Rising or<br>falling<br>edge<br>Reset | <b>ON =</b><br>1 | Either<br>ERS<br>Edge  | <b>ON =</b><br>0             | Either<br>ERS<br>Edge | At Start<br>+ PR<br>Match         | None          |                    | UTMR<br>requires an<br>edge to start<br>for the very |  |
| 00100     |                                           | Rising<br>edge<br>Reset               |                  | Rising<br>ERS<br>Edge  | R<br>E<br>E                  | Rising<br>ERS<br>Edge | Rising<br>ERS<br>Edge             |               | _                  | first time.                                          |  |
| 00101     |                                           | Falling<br>edge<br>Reset              |                  | Falling<br>ERS<br>Edge |                              |                       |                                   |               | EPOL =<br>Inverted |                                                      |  |
| 00110     |                                           | Low level<br>Reset                    |                  | <b>ERS =</b><br>0      | ON =<br>0 (or)<br>ERS<br>= 0 | None<br>(ON =<br>1)   | ERS<br>Level - 0<br>+ PR<br>Match | None          | —                  |                                                      |  |
| 00111     |                                           | High level<br>Reset                   |                  | <b>ERS =</b> 1         | ON =<br>0 (or)<br>ERS<br>= 1 |                       |                                   |               | EPOL =<br>Inverted |                                                      |  |

#### 4.2 One-Shot Mode

In TMR2, the One-Shot mode is identical to the Free-Running Period mode except that the ON bit is cleared and the timer is stopped when T2TMR matches T2PR and will not restart until the ON bit is cycled off and on. This can easily be achieved in UTMR using the One-Shot Enable (OSEN) bit. The following table shows UTMR settings in different TMR2 One-Shot modes:

| TMR2      | TMR2 Mode                                            |                                                    |                                                                   |                                 | UTMR Settings                                  |                                                  |                                   |                |                                                  |
|-----------|------------------------------------------------------|----------------------------------------------------|-------------------------------------------------------------------|---------------------------------|------------------------------------------------|--------------------------------------------------|-----------------------------------|----------------|--------------------------------------------------|
| MODE[4:0] | Output                                               | Operation                                          | Start                                                             | Reset                           | Stop                                           | START                                            | RESET                             | STOP           | Other                                            |
| 01000     | One-shot                                             | Software<br>start                                  | <b>ON =</b> 1                                                     | _                               | ON = 0<br>(or) Next                            | None<br>(ON = 1)                                 | At PR<br>Match                    | At PR<br>Match | OSEN =<br>Enabled                                |
| 01001     | Edge-<br>Triggered<br>Start                          | Rising edge<br>start                               | ON = 1<br>(and)<br>Rising<br>ERS<br>Edge                          | _                               | CIOCK after<br>PR match                        | Rising<br>ERS<br>Edge                            |                                   |                |                                                  |
| 01010     |                                                      | Falling edge<br>start                              | ON = 1—(and)FallingFallingFallingERSEdgeON = 1—(and)EitherERSEdge |                                 |                                                | OSEN =<br>Enabled<br>(and)<br>EPOL =<br>Inverted |                                   |                |                                                  |
| 01011     |                                                      | Any edge<br>start                                  |                                                                   | Either<br>ERS<br>Edge           |                                                | At PR<br>Match                                   | OSEN =<br>Enabled                 |                |                                                  |
| 01100     | Edge-<br>Triggered<br>Start and<br>Hardware<br>Reset | Rising edge<br>start and<br>Rising edge<br>Reset   | ON = 1<br>(and)<br>Rising<br>ERS<br>Edge                          | ERS =<br>Rising<br>ERS<br>Edge  | ON = 0<br>(or) Next<br>clock after<br>PR match | Rising<br>ERS<br>Edge                            | At Start +<br>PR<br>Match         | At PR<br>Match | OSEN =<br>Enabled                                |
| 01101     |                                                      | Falling edge<br>start and<br>Falling edge<br>Reset | ON = 1<br>(and)<br>Falling<br>ERS<br>Edge                         | ERS =<br>Falling<br>ERS<br>Edge |                                                |                                                  |                                   | At PR<br>Match | OSEN =<br>Enabled<br>(and)<br>EPOL =<br>Inverted |
| 01110     |                                                      | Rising edge<br>start and<br>Low-level<br>Reset     | ON = 1<br>(and)<br>Rising<br>ERS<br>Edge                          | <b>ERS =</b><br>0               |                                                |                                                  | ERS<br>Level - 0<br>+ PR<br>Match |                | OSEN =<br>Enabled                                |
| 01111     |                                                      | Falling edge<br>start and<br>High-level<br>Reset   | ON = 1<br>(and)<br>Falling<br>ERS<br>Edge                         | <b>ERS =</b><br>1               |                                                |                                                  |                                   |                | OSEN =<br>Enabled<br>(and)<br>EPOL =<br>Inverted |

| Table 4-2. | <b>UTMR Settings</b>            | for Different | TMR2 C | One-Shot | Modes |
|------------|---------------------------------|---------------|--------|----------|-------|
|            | • · · · · · • • • · · · · · g • |               |        |          |       |

#### Using UTMR as Timer2 (TMR2) with Hardware ...

| contir    | continued                                   |                                               |               |                   |                                                |                  |                                   |                |                                                  |  |
|-----------|---------------------------------------------|-----------------------------------------------|---------------|-------------------|------------------------------------------------|------------------|-----------------------------------|----------------|--------------------------------------------------|--|
| TMR2      | TMR2 Mode                                   |                                               |               | UTMR Settings     |                                                |                  |                                   |                |                                                  |  |
| MODE[4:0] | Output                                      | Operation                                     | Start         | Reset             | Stop                                           | START            | RESET                             | STOP           | Other                                            |  |
| 10110     | Level<br>Triggered<br>Start and<br>Hardware | High-level<br>start and<br>Low-level<br>Reset | ON = 1        | <b>ERS =</b><br>0 | ON = 0<br>(or) Next<br>clock after<br>PR match | ERS<br>Level - 1 | ERS<br>Level - 0<br>+ PR<br>Match | At PR<br>Match | OSEN =<br>Enabled                                |  |
| 10111     | Keset                                       | Low-level<br>start and<br>High-level<br>Reset | <b>ON =</b> 1 | <b>ERS =</b> 1    | (or) Held<br>in Reset                          |                  |                                   |                | OSEN =<br>Enabled<br>(and)<br>EPOL =<br>Inverted |  |

#### 4.3 Monostable Mode

In TMR2, Monostable modes are similar to One-Shot modes except that the ON bit is not cleared and the timer can be restarted by an external Reset event. This can be achieved in UTMR by stopping the counter at every PR match. The following table shows UTMR settings in different TMR2 Monostable modes:

| TMR2      | TMR2 Mode                   |                       |                                        |       |                                                |                       | UTMR Settings  |                |                    |  |
|-----------|-----------------------------|-----------------------|----------------------------------------|-------|------------------------------------------------|-----------------------|----------------|----------------|--------------------|--|
| MODE[4:0] | Output                      | Operation             | Start                                  | Reset | Stop                                           | START                 | RESET          | STOP           | Other              |  |
| 10001     | Edge-<br>Triggered<br>Start | Rising edge<br>start  | ON = 1<br>(and)<br>Rising<br>ERS Edge  |       | ON = 0<br>(or) Next<br>clock after<br>PR match | Rising<br>ERS<br>Edge | At PR<br>Match | At PR<br>Match | _                  |  |
| 10010     | _                           | Falling edge<br>start | ON = 1<br>(and)<br>Falling<br>ERS Edge |       |                                                |                       |                |                | EPOL =<br>Inverted |  |
| 10011     |                             | Any edge<br>start     | ON = 1<br>(and)<br>Either<br>ERS Edge  |       |                                                | Either<br>ERS<br>Edge |                |                |                    |  |

Table 4-3. UTMR Settings for Different TMR2 Monostable Modes

#### 4.4 Other TMR2 Features

The following table shows how some of the other features of TMR2 can be applied using UTMR:

#### Table 4-4. Features Comparison between TMR2 and UTMR

| Feature           | TMR2                                                                                                                 | UTMR                                                                                       |
|-------------------|----------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|
| Active Clock Edge | TMR2 increments at every rising edge of clock by default. The CPOL bit can use used to change the active clock edge. | Use CPOL bit to select the active clock<br>edge. By default, CPOL = Falling Clock<br>Edge. |

| continued               |                                                                                                                                                                                     |                                                                                                                                                                                                                                         |
|-------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Feature                 | TMR2                                                                                                                                                                                | UTMR                                                                                                                                                                                                                                    |
| Synchronization         | The prescaler output can be synchronized to Fosc/4 by setting the PSYNC bit. The ON bit can be synchronized to Fosc/4 by setting the CSYNC bit.                                     | Synchronizing prescaler output is not<br>required for UTMR because the timer is<br>completely asynchronous to the system<br>clock. The CSYNC bit is used to<br>synchronize signals and commands going<br>in and out of the UTMR module. |
| Prescaler               | TMR2 has 8 programmable input prescaler options ranging from 1:1 to 1:128, which can be selected using CKPS bits.                                                                   | UTMR has 256 programmable clock<br>prescaler options ranging from 1:1 to<br>1:256, which can be selected using<br>TUxyPS register.                                                                                                      |
| Postscaler              | TMR2 has a programmable postscaler ranging<br>from 1:1 to 1:16, which can be selected using<br>OUTPS bits. The internal postscaler counter is<br>incremented at every period match. | UTMR does not has any postscaler<br>because the module is not supposed to be<br>used as a time base for PWM.                                                                                                                            |
| Output                  | The TMR2 output pulses for a single timer clock<br>period upon each time the internal postscaler<br>counter matches with the OUTPS bits postscaler<br>selection.                    | Use OM = Pulse mode to pulse the output<br>for one single timer clock period upon each<br>PR match.                                                                                                                                     |
| Interrupts              | The TMR2IF interrupt is generated every time an output pulse is generated, i.e. when the internal postscaler counter matches with the OUTPS bits postscaler selection.              | PRIF period interrupt can be used to signify when a PR match happens.                                                                                                                                                                   |
| Sleep Mode<br>Operation | TMR2 halts when PSYNC = 1. When PSYNC = 0, TMR2 continues operating, as long as the clock is active, and wakes up the CPU if interrupts are enabled.                                | UTMR continues to operate as long as the clock is active, and wakes up the CPU if interrupts are enabled.                                                                                                                               |

## 5. Using UTMR as Signal Measurement Timer (SMT)

SMT is a 24-bit counter with advanced clock and gating logic, which can be configured for measuring a variety of digital signal parameters, such as pulse width, frequency and duty cycle, and the time difference between edges on two signals. A key feature that differentiates SMT from UTMR is the presence of two input signals (SMT signal and window) and two capture registers (SMTxCPW and SMTxCPR). UTMR has only one input signal (ERS) and one capture register. Thus, the UTMR might need to be reconfigured multiple times to measure different attributes in the same application. The following table shows UTMR settings in different SMT modes:

| SMT       | SMT Modo                                | UTMR Set              | ttings                 | Commonte                                                                        |                                                                                      |                                                                                                                                                                                                      |
|-----------|-----------------------------------------|-----------------------|------------------------|---------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| MODE[3:0] | SWIT MODE                               | START                 | RESET                  | STOP                                                                            | Other                                                                                | Comments                                                                                                                                                                                             |
| 0000      | Timer                                   | None<br>(ON = 1)      | At PR<br>Match         | None                                                                            | —                                                                                    | —                                                                                                                                                                                                    |
| 0001      | Gated Timer                             | Rising<br>ERS<br>Edge | At PR<br>Match         | Either ERS<br>Edge                                                              | —                                                                                    | Use SMT signal as ERS input.                                                                                                                                                                         |
| 0010      | Period and<br>Duty Cycle<br>Measurement | Rising<br>ERS<br>Edge | At Start +<br>PR Match | None<br>(measures<br>pulse-width)<br>Rising ERS<br>Edge<br>(measures<br>period) |                                                                                      | Use SMT signal as ERS input.<br>TUxyCR capture register will<br>capture either pulse-width or<br>period based on the Stop<br>condition, but not both<br>simultaneously.                              |
| 0011      | High and low<br>time<br>Measurement     | Either<br>ERS<br>Edge | At Start +<br>PR Match | Either ERS<br>Edge                                                              |                                                                                      | Use SMT signal as ERS input.<br>TUxyCR capture register will<br>capture high time, then low<br>time, then high time, and so<br>on. TUxyCR must be read<br>before it is overwritten with<br>new data. |
|           |                                         | Rising<br>ERS<br>Edge | At Start +<br>PR Match | Either ERS<br>Edge                                                              | EPOL =<br>True level<br>for high time<br>EPOL =<br>Inverted<br>level for low<br>time | Use SMT signal as ERS input.<br>TUxyCR capture register will<br>capture either high time or low<br>time based on EPOL bit<br>setting.                                                                |
| 0100      | Windowed<br>Measurement                 | Rising<br>ERS<br>Edge | At Start +<br>PR Match | Rising ERS<br>Edge                                                              |                                                                                      | Use SMT window as ERS<br>input.TUxyCR capture register<br>will capture period of the<br>window signal.                                                                                               |

Table 5-1. UTMR Settings for Different SMT Modes

## TB3283 Using UTMR as Signal Measurement Timer (SM...

| contin    | ued                              |                       |                        |                                                                                 |                                                                                                                              |                                                                                                                                                                                                                                                                                           |
|-----------|----------------------------------|-----------------------|------------------------|---------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SMT       |                                  | UTMR Set              | ttings                 |                                                                                 |                                                                                                                              | Commonto                                                                                                                                                                                                                                                                                  |
| MODE[3:0] | SWIT WODE                        | START                 | RESET                  | STOP                                                                            | Other                                                                                                                        | Comments                                                                                                                                                                                                                                                                                  |
| 0101      | Gated<br>Windowed<br>Measurement | Rising<br>ERS<br>Edge | At PR<br>Match         | Either ERS<br>Edge                                                              |                                                                                                                              | Use SMT signal as ERS input.<br>Use software to poll SMT<br>window signal and reset<br>counter manually using CLR<br>command at every rising edge.<br>Alternatively, interrupt-on-<br>change can be used to<br>monitor SMT window signal in<br>software.                                  |
| 0110      | Time of Flight<br>Measurement    | Rising<br>ERS<br>Edge | At Start +<br>PR Match | Either ERS<br>Edge                                                              | -                                                                                                                            | Use CLC to send an XOR of<br>SMT window and SMT signal<br>via ERS. TUxyCR capture<br>register captures the time of<br>flight measurement.                                                                                                                                                 |
| 0111      | Capture                          | None                  | At PR<br>Match         | Either ERS<br>Edge                                                              |                                                                                                                              | Use SMT signal as ERS input.<br>TUxyCR capture register will<br>first capture rising edge of<br>ERS, then the falling edge of<br>ERS, then the rising edge, and<br>so on. TUxyCR must be read<br>before it is overwritten with<br>new data. PRAIF and PWAIF<br>are both captured via CIF. |
| 1000      | Counter                          | None<br>(ON = 1)      | At PR<br>Match         | None                                                                            | CSYNC =<br>Async for<br>using<br>external<br>clock source<br>EPOL =<br>Inverted for<br>capturing at<br>rising edge<br>of ERS | Use SMT signal as UTMR<br>clock input. Use SMT window<br>as ERS input. TUxyCR<br>capture register will capture<br>counter value at falling edge of<br>ERS (or rising edge when<br>EPOL = Inverted).                                                                                       |
| 1001      | Gated Counter                    | Rising<br>ERS<br>Edge | At PR<br>Match         | Either ERS<br>Edge                                                              | CSYNC =<br>Async for<br>using<br>external<br>clock source                                                                    | Use SMT signal as UTMR<br>clock input. Use SMT window<br>as ERS input. TUxyCR<br>capture register will capture<br>counter value at falling edge of<br>ERS. PWAIF is equivalent to<br>CIF.                                                                                                 |
| 1010      | Windowed<br>Counter              | Rising<br>ERS<br>Edge | At Start +<br>PR Match | None<br>(measures<br>pulse-width)<br>Rising ERS<br>Edge<br>(measures<br>period) | CSYNC =<br>Async for<br>using<br>external<br>clock source                                                                    | Use SMT signal as UTMR<br>clock input. Use SMT window<br>as ERS input. TUxyCR<br>capture register will capture<br>either pulse-width or period<br>based on the Stop condition,<br>but not both simultaneously.                                                                            |

#### 5.1 **Other SMT Features**

The following table shows how some of the other features of SMT can be applied using UTMR:

|                              | •                                                                                                                         |                                                                                                                                                         |
|------------------------------|---------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|
| Feature                      | SMT                                                                                                                       | UTMR                                                                                                                                                    |
| Active Clock Edge            | SMT increments at every rising edge of clock<br>by default. The CPOL bit can use used to<br>change the active clock edge. | Use CPOL bit to select the active clock edge.<br>By default, CPOL = Falling Clock Edge.                                                                 |
| Synchronization              | SMT operates asynchronous to the system clock. All input and output signals are synchronized to the SMT clock.            | UTMR also operates asynchronous to the<br>system clock. Set CSYNC = Sync to<br>synchronize signals and commands going in<br>and out of the UTMR module. |
| Prescaler                    | TMR2 has 4 programmable input prescaler options ranging from 1:1 to 1:8, which can be selected using PS bits.             | UTMR has 256 programmable clock prescaler options ranging from 1:1 to 1:256, which can be selected using TUxyPS register.                               |
| Input Source and<br>Polarity | SMT signal and window sources are<br>selected using SSEL and WSEL bits. The<br>polarity is selected using SPOL and WPOL   | UTMR has only one ERS input selectable using<br>TUxyERS register and polarity controlled using<br>EPOL bit. Refer to Table 5-1 UTMR Settings for        |

Table 5-2. Features Comparison between SMT and UTMR

|                              | selected using PS bits.                                                                                                                                                                                                                                          | selected using TUxyPS register.                                                                                                                                                                                                                                                                                                   |
|------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Input Source and<br>Polarity | SMT signal and window sources are<br>selected using SSEL and WSEL bits. The<br>polarity is selected using SPOL and WPOL<br>bits.                                                                                                                                 | UTMR has only one ERS input selectable using<br>TUxyERS register and polarity controlled using<br>EPOL bit. Refer to Table 5-1 UTMR Settings for<br>Different STM Modes for details on how the<br>SMT signal and window inputs are mapped to<br>ERS and/or UTMR clock.                                                            |
| Buffered Read/<br>Write      | The 24-bit SMTxTMR timer/counter register<br>is not guarded for atomic access and should<br>not be accessed when GO = 1.                                                                                                                                         | The TUxyTMR timer/counter register is not<br>guarded for atomic access. However, the<br>TUxyPR period register is double-buffered.<br>Refer to section 1.1 UTMR Size and Buffered<br>Access for details on UTMR buffered access to<br>registers.                                                                                  |
| Manual Reset                 | Setting RST bit clears the timer atomically.                                                                                                                                                                                                                     | Setting CLR command bit clears the timer atomically.                                                                                                                                                                                                                                                                              |
| Limit Mode                   | The counter can be prevented from resetting<br>at the end of the timer period by using the<br>STP bit. When STP = 1, the SMTxTMR will<br>stop and remain equal to the SMTxPR<br>register. When STP = 0, the SMTxTMR<br>register resets at the end of the period. | Set RESET = None and LIMIT = Enabled to<br>prevent the TUxyTMR counter from advancing<br>beyond PR. Even though the counter does not<br>advance, the timer is still "running" (RUN status<br>bit and Level Output remain asserted) unless a<br>Stop event occurs.                                                                 |
| Capture Registers            | The SMTxCPW and SMTxCPR capture<br>registers capture the value of the SMTxTMR<br>register based on the SMT mode of<br>operation. These registers can also be<br>updated with the current SMTxTMR value by<br>setting the CPWUP and CPRUP bits<br>respectively.   | UTMR has only one TUxyCR capture register.<br>Refer to Table 5-1 UTMR Settings for Different<br>STM Modes for details on how this capture<br>register can be used in different modes. The<br>TUxyCR capture register can be updated with<br>the current value of the TUxyTMR counter<br>register by setting the CAPT command bit. |
| Status Information           | Timer run status is indicated by TS bit.                                                                                                                                                                                                                         | Timer run status is indicated by RUN bit.                                                                                                                                                                                                                                                                                         |
|                              | Signal status is indicated by AS bit.                                                                                                                                                                                                                            | CLC can be configured as a latch to indicate                                                                                                                                                                                                                                                                                      |
|                              | Window status is indicated by WS bit.                                                                                                                                                                                                                            | signal and window status.                                                                                                                                                                                                                                                                                                         |
|                              | All status bits are subject to synchronization delays.                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                   |
|                              |                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                   |

| continued               |                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                         |  |  |
|-------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Feature                 | ѕмт                                                                                                                                                                                                                                                                                                                                      | UTMR                                                                                                                                                                                                                                                                    |  |  |
| Acquisition Mode        | When REPEAT = $0$ , SMT operates in single acquisition mode, timer stops incrementing and GO bit is cleared after each acquisition.<br>Set REPEAT = $1$ to operate continuously.                                                                                                                                                         | Enable One-Shot mode (OSEN = Enabled) to<br>operate in single acquisition mode, the timer<br>stops and ON bit is cleared. Disable One-Shot<br>mode to operate continuously.                                                                                             |  |  |
| Output                  | SMT output pulses every period match for one instruction clock.                                                                                                                                                                                                                                                                          | Use OM = Pulse mode to pulse the output for<br>one single timer clock period upon each PR<br>match.                                                                                                                                                                     |  |  |
| Interrupts              | SMTxPWAIF pulse-width acquisition<br>interrupt triggers when SMTxCPW register is<br>updated with SMTxTMR register value.<br>SMTxPRAIF period acquisition interrupt<br>triggers when SMTxCPR register is updated<br>with SMTxTMR register value.<br>SMTxIF period match interrupt occurs when<br>SMTxTMR register equals SMTxPR register. | SMTxPWAIF and SMTxPRAIF interrupts are<br>represented as CIF capture interrupt in UTMR,<br>which is triggered any time a capture event<br>happens.<br>SMTxIF interrupt can be represented as PRIF<br>period interrupt in UTMR, which is triggered at<br>every PR match. |  |  |
| Sleep Mode<br>Operation | SMT continues to operate as long as the clock is active, and wakes up the CPU if interrupts are enabled.                                                                                                                                                                                                                                 | UTMR continues to operate as long as the clock is active, and wakes up the CPU if interrupts are enabled.                                                                                                                                                               |  |  |

## 6. Using UTMR as CCP (Capture/Compare/PWM)

The CCP (Capture/Compare) module is a peripheral which uses TMR1/TMR2 as the time base to perform Capture/ Compare/PWM operations. The Capture/Compare modes use TMR1 as time base, whereas PWM mode uses TMR2 as time base. The following table shows UTMR settings in different CCP modes:

| CCP<br>MODE[3:0] | CCP<br>Mode | CCP<br>Operation                           | UTMR Settings<br>If START/RESET/STOP = <blank>, set based<br/>on use case</blank> |                        |                       | Comments                                                                                                    |                                                                                                                         |
|------------------|-------------|--------------------------------------------|-----------------------------------------------------------------------------------|------------------------|-----------------------|-------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|
|                  |             |                                            | START                                                                             | RESET                  | STOP                  | Other                                                                                                       |                                                                                                                         |
| 0001             | Compare     | Toggle output;<br>clear TMR1               | _                                                                                 | At PR<br>Match         | —                     | _                                                                                                           | Use OM = Pulse<br>mode and OPOL to                                                                                      |
| 0010             |             | Toggle output                              | —                                                                                 | —                      | —                     | —                                                                                                           | output. Set/Clear/<br>Toggle output<br>features are not<br>available in UTMR.                                           |
| 1000             |             | Set output                                 | _                                                                                 | _                      |                       | _                                                                                                           |                                                                                                                         |
| 1001             |             | Clear output                               | —                                                                                 | —                      | —                     | —                                                                                                           |                                                                                                                         |
| 1010             |             | Pulse output                               | —                                                                                 | —                      | —                     | OM = Pulse<br>output                                                                                        | —                                                                                                                       |
| 1011             |             | Pulse output;<br>clear TMR1                | —                                                                                 | At PR<br>Match         | —                     | OM = Pulse<br>output                                                                                        | —                                                                                                                       |
| 0011             | Capture     | Every edge of<br>CCPx input                | _                                                                                 | _                      | Either<br>ERS<br>Edge | -                                                                                                           | _                                                                                                                       |
| 0100             |             | Every falling<br>edge of CCPx<br>input     | _                                                                                 | _                      | Rising<br>ERS<br>Edge | EPOL =<br>Inverted                                                                                          | —                                                                                                                       |
| 0101             |             | Every rising<br>edge of CCPx<br>input      | _                                                                                 | _                      | -                     | _                                                                                                           | _                                                                                                                       |
| 0110             |             | Every 4th<br>rising edge of<br>CCPx input  | _                                                                                 | -                      |                       | -                                                                                                           | Use CLC or NCO as<br>a frequency divider<br>and use that as ERS                                                         |
| 0111             |             | Every 16th<br>rising edge of<br>CCPx input | _                                                                                 | _                      |                       | -                                                                                                           | input.                                                                                                                  |
| 11xx             | PWM         | PWM<br>operation                           | Rising<br>ERS<br>Edge                                                             | At Start +<br>PR Match | At PR<br>Match        | OM = Level<br>output<br>OPOL = 0<br>for left-<br>aligned<br>PWM<br>OPOL = 1<br>for right-<br>aligned<br>PWM | UTMR requires a<br>periodic ERS input to<br>act as the PWM<br>period. The PR value<br>determines the PWM<br>duty cycle. |

Table 6-1. UTMR Settings for Different CCP Modes

#### 6.1 Other CCP Features

The following table shows how some of the other features of CCP modes can be applied using UTMR:

#### Table 6-2. Features Comparison between CCP (Capture/Compare Modes) and UTMR

| Feature<br>(Capture/<br>Compare<br>modes) | ССР                                                                                                                                          | UTMR                                                                                                                                                                                     |
|-------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Capture<br>Sources                        | The capture source can be selected using CTS bits.                                                                                           | The ERS input is used as a capture trigger and can be selected using TUxyERS register.                                                                                                   |
| Timer Mode                                | TMR1 must be running in Timer mode or<br>Synchronized counter mode. The Capture/<br>Compare may not work in Asynchronous<br>Counter mode.    | UTMR can operate in any mode for Capture/<br>Compare operation to happen.                                                                                                                |
| Prescaler                                 | Outside of the prescalers associated with the different time bases, the CCPx input has 4 prescaler settings available for Capture operation. | UTMR has 256 programmable clock prescaler<br>options ranging from 1:1 to 1:256, which can be<br>selected using TUxyPS register. CLC and/or NCO<br>can be used to prescale the ERS input. |
| Output                                    | CCP output can be set, cleared, toggled, or pulsed based on the mode of operation.                                                           | Use OM = Pulse mode to pulse the output for one single timer clock period upon each PR match.                                                                                            |
| Interrupts                                | CCPxIF interrupt is triggered when either a capture event occurs, or a compare match occurs.                                                 | CIF capture interrupt represents a captured event.<br>PRIF period interrupt represents a compare match<br>event.                                                                         |
| Sleep Mode<br>Operation                   | CCP module operates as long as the underlying time base is active.                                                                           | UTMR continues to operate as long as the clock is active, and wakes up the CPU if interrupts are enabled.                                                                                |

#### Table 6-3. Features Comparison between CCP (PWM mode) and UTMR

| Feature (PWM mode) | ССР                                                                                                                                                                                                                                                                            | UTMR                                                                                                                                                                                                |
|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Timer Mode         | TMR2 must be running at F <sub>OSC</sub> /4 clock for correct operation.                                                                                                                                                                                                       | UTMR requires a periodic ERS input<br>of the desired PWM period as the<br>time base. The UTMR rollover period<br>must be greater than or equal to the<br>ERS input period for correct<br>operation. |
| PWM Period         | The PWM period is specified by the T2PR register of TMR2 resource.                                                                                                                                                                                                             | The PWM period is the period of the ERS input signal.                                                                                                                                               |
| PWM Duty Cycle     | The PWM duty cycle is determined<br>by the 10-bit value in the CCPRx<br>register. FMT bit controls the<br>alignment of the 10-bit data in the<br>CCPRx register. The CCPRx register<br>double buffers the PWM duty cycle to<br>avoid glitches when changing the<br>duty cycle. | The PWM duty cycle is determined<br>by the PR value in the TUxyPR<br>period register. The TUxyPR period<br>register is also double-buffered to<br>avoid glitches when changing the<br>duty cycle.   |
| PWM Resolution     | The maximum PWM resolution is 10 bits when T2PR = 0xFF.                                                                                                                                                                                                                        | The maximum PWM resolution is the size of the UTMR when the UTMR rollover period matches the ERS input period.                                                                                      |

| continued            |                                                                                                  |                                                                                                                                                                                                                                                                       |  |  |  |
|----------------------|--------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Feature (PWM mode)   | ССР                                                                                              | UTMR                                                                                                                                                                                                                                                                  |  |  |  |
| PWM Output           | The CCPx output is a left-aligned PWM signal.                                                    | Use OM = Level mode to generate a<br>PWM output. Set OPOL = 0 to<br>generate a left-aligned PWM signal<br>and OPOL = 1 to generate a right-<br>aligned PWM signal.<br><b>Note:</b> The PR value might differ<br>based on left-aligned or right-aligned<br>PWM signal. |  |  |  |
| Sleep Mode Operation | PWM is not functional in Sleep mode because TMR2 is derived from $\ensuremath{F_{\text{OSC}}}$ . | UTMR continues to operate in Sleep<br>mode as long as the periodic ERS<br>input is available and the UTMR<br>clocks are active.                                                                                                                                       |  |  |  |

The period of the PWM is dependent on the period of the ERS input signal:

*PWM Period* = *ERS Input Period* 

When OPOL = 0 (left-aligned PWM), the PR value determines the ON time. Hence, the pulse width of the signal is:

 $Pulse Width = (PR value + 1) \times TUCLK period$ 

When OPOL = 1 (right-aligned PWM), the PR value determines the OFF time. Hence, the pulse width of the signal is:

 $Pulse Width = PWM Period - ((PR value + 1) \times TUCLK period)$ 

The duty cycle ratio is a function of the pulse width and period of the PWM signal:

 $Duty Cycle Ratio = \frac{Pulse Width}{PWM Period}$ 

The resolution of the PWM is a function of the PWM period, UTMR rollover period, and UTMR size. The maximum PWM resolution is the size of the UTMR, when the UTMR rollover period matches the PWM period.

 $PWM Resolution = \left[ \log_2 \left( \frac{PWM Period}{UTMR Rollover Period} \times 2^{UTMR Size} \right) \right] bits$ 



**Important:** The UTMR rollover period must be greater than or equal to the ERS input period for proper PWM operation.

### 7. Conclusion

The UTMR module can be configured in multiple ways and be customized to operate in a variety of applications, such as periodic operation, external clock gating, hardware limit timer, and external clock operation. The inbuilt capture, compare features and customizable Start, Reset, Stop conditions make the Universal Timer is quite versatile.

# 8. Revision History

| Revision | Date    | Description              |
|----------|---------|--------------------------|
| A        | 09/2020 | Initial document release |

## The Microchip Website

Microchip provides online support via our website at www.microchip.com/. This website is used to make files and information easily available to customers. Some of the content available includes:

- **Product Support** Data sheets and errata, application notes and sample programs, design resources, user's guides and hardware support documents, latest software releases and archived software
- **General Technical Support** Frequently Asked Questions (FAQs), technical support requests, online discussion groups, Microchip design partner program member listing
- **Business of Microchip** Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

## **Product Change Notification Service**

Microchip's product change notification service helps keep customers current on Microchip products. Subscribers will receive email notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.

To register, go to www.microchip.com/pcn and follow the registration instructions.

## **Customer Support**

Users of Microchip products can receive assistance through several channels:

- Distributor or Representative
- Local Sales Office
- Embedded Solutions Engineer (ESE)
- · Technical Support

Customers should contact their distributor, representative or ESE for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in this document.

Technical support is available through the website at: www.microchip.com/support

#### **Microchip Devices Code Protection Feature**

Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specifications contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is secure when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods being used in attempts to breach the code protection features of the Microchip devices. We believe that these methods require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Attempts to breach these code protection features, most likely, cannot be accomplished without violating Microchip's intellectual property rights.
- · Microchip is willing to work with any customer who is concerned about the integrity of its code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of its code. Code
  protection does not mean that we are guaranteeing the product is "unbreakable." Code protection is constantly
  evolving. We at Microchip are committed to continuously improving the code protection features of our products.
  Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act.
  If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue
  for relief under that Act.

### Legal Notice

Information contained in this publication is provided for the sole purpose of designing with and using Microchip products. Information regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications.

THIS INFORMATION IS PROVIDED BY MICROCHIP "AS IS". MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION INCLUDING BUT NOT LIMITED TO ANY IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE OR WARRANTIES RELATED TO ITS CONDITION, QUALITY, OR PERFORMANCE.

IN NO EVENT WILL MICROCHIP BE LIABLE FOR ANY INDIRECT, SPECIAL, PUNITIVE, INCIDENTAL OR CONSEQUENTIAL LOSS, DAMAGE, COST OR EXPENSE OF ANY KIND WHATSOEVER RELATED TO THE INFORMATION OR ITS USE, HOWEVER CAUSED, EVEN IF MICROCHIP HAS BEEN ADVISED OF THE POSSIBILITY OR THE DAMAGES ARE FORESEEABLE. TO THE FULLEST EXTENT ALLOWED BY LAW, MICROCHIP'S TOTAL LIABILITY ON ALL CLAIMS IN ANY WAY RELATED TO THE INFORMATION OR ITS USE WILL NOT EXCEED THE AMOUNT OF FEES, IF ANY, THAT YOU HAVE PAID DIRECTLY TO MICROCHIP FOR THE INFORMATION. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless otherwise stated.

## Trademarks

The Microchip name and logo, the Microchip logo, Adaptec, AnyRate, AVR, AVR logo, AVR Freaks, BesTime, BitCloud, chipKIT, chipKIT logo, CryptoMemory, CryptoRF, dsPIC, FlashFlex, flexPWR, HELDO, IGLOO, JukeBlox, KeeLoq, Kleer, LANCheck, LinkMD, maXStylus, maXTouch, MediaLB, megaAVR, Microsemi, Microsemi logo, MOST, MOST logo, MPLAB, OptoLyzer, PackeTime, PIC, picoPower, PICSTART, PIC32 logo, PolarFire, Prochip Designer, QTouch, SAM-BA, SenGenuity, SpyNIC, SST, SST Logo, SuperFlash, Symmetricom, SyncServer, Tachyon, TempTrackr, TimeSource, tinyAVR, UNI/O, Vectron, and XMEGA are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

APT, ClockWorks, The Embedded Control Solutions Company, EtherSynch, FlashTec, Hyper Speed Control, HyperLight Load, IntelliMOS, Libero, motorBench, mTouch, Powermite 3, Precision Edge, ProASIC, ProASIC Plus, ProASIC Plus logo, Quiet-Wire, SmartFusion, SyncWorld, Temux, TimeCesium, TimeHub, TimePictra, TimeProvider, Vite, WinPath, and ZL are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any Capacitor, AnyIn, AnyOut, BlueSky, BodyCom, CodeGuard, CryptoAuthentication, CryptoAutomotive, CryptoCompanion, CryptoController, dsPICDEM, dsPICDEM.net, Dynamic Average Matching, DAM, ECAN, EtherGREEN, In-Circuit Serial Programming, ICSP, INICnet, Inter-Chip Connectivity, JitterBlocker, KleerNet, KleerNet logo, memBrain, Mindi, MiWi, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, PowerSmart, PureSilicon, QMatrix, REAL ICE, Ripple Blocker, SAM-ICE, Serial Quad I/O, SMART-I.S., SQI, SuperSwitcher, SuperSwitcher II, Total Endurance, TSHARC, USBCheck, VariSense, ViewSpan, WiperLock, Wireless DNA, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

The Adaptec logo, Frequency on Demand, Silicon Storage Technology, and Symmcom are registered trademarks of Microchip Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

<sup>©</sup> 2020, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

ISBN: 978-1-5224-6855-4

# Quality Management System

For information regarding Microchip's Quality Management Systems, please visit www.microchip.com/quality.



# **Worldwide Sales and Service**

| AMERICAS                  | ASIA/PACIFIC          | ASIA/PACIFIC            | EUROPE                |
|---------------------------|-----------------------|-------------------------|-----------------------|
| Corporate Office          | Australia - Sydney    | India - Bangalore       | Austria - Wels        |
| 2355 West Chandler Blvd.  | Tel: 61-2-9868-6733   | Tel: 91-80-3090-4444    | Tel: 43-7242-2244-39  |
| Chandler, AZ 85224-6199   | China - Beijing       | India - New Delhi       | Fax: 43-7242-2244-393 |
| Tel: 480-792-7200         | Tel: 86-10-8569-7000  | Tel: 91-11-4160-8631    | Denmark - Copenhagen  |
| Fax: 480-792-7277         | China - Chengdu       | India - Pune            | Tel: 45-4485-5910     |
| Technical Support:        | Tel: 86-28-8665-5511  | Tel: 91-20-4121-0141    | Fax: 45-4485-2829     |
| www.microchip.com/support | China - Chongging     | Japan - Osaka           | Finland - Espoo       |
| Web Address:              | Tel: 86-23-8980-9588  | Tel: 81-6-6152-7160     | Tel: 358-9-4520-820   |
| www.microchip.com         | China - Dongguan      | Japan - Tokvo           | France - Paris        |
| Atlanta                   | Tel: 86-769-8702-9880 | Tel: 81-3-6880- 3770    | Tel: 33-1-69-53-63-20 |
| Duluth. GA                | China - Guangzhou     | Korea - Daegu           | Fax: 33-1-69-30-90-79 |
| Tel: 678-957-9614         | Tel: 86-20-8755-8029  | Tel: 82-53-744-4301     | Germany - Garching    |
| Fax: 678-957-1455         | China - Hangzhou      | Korea - Seoul           | Tel: 49-8931-9700     |
| Austin. TX                | Tel: 86-571-8792-8115 | Tel: 82-2-554-7200      | Germany - Haan        |
| Tel: 512-257-3370         | China - Hong Kong SAR | Malaysia - Kuala Lumpur | Tel: 49-2129-3766400  |
| Boston                    | Tel: 852-2943-5100    | Tel: 60-3-7651-7906     | Germany - Heilbronn   |
| Westborough MA            | China - Nanjing       | Malaysia - Penang       | Tel: 49-7131-72400    |
| Tel: 774-760-0087         | Tel: 86-25-8473-2460  | Tel: 60-4-227-8870      | Germany - Karlsruhe   |
| Eax: 774-760-0088         | China - Qingdao       | Philippines - Manila    | Tel: 49-721-625370    |
| Chicago                   | Tel: 86-532-8502-7355 | Tel: 63-2-634-9065      | Germany - Munich      |
| Itasca II                 | China - Shanghai      | Singapore               | Tel: 49-89-627-144-0  |
| Tel: 630-285-0071         | Tel: 86-21-3326-8000  | Tel: 65-6334-8870       | Fax: 49-89-627-144-44 |
| Eax: 630-285-0075         | China - Shenyang      | Taiwan - Hsin Chu       | Germany - Rosenheim   |
| Dallas                    | Tel: 86-24-2334-2829  | Tel: 886-3-577-8366     | Tel: 49-8031-354-560  |
| Addison TX                | China - Shenzhen      | Taiwan - Kaobsiung      | Israel - Ba'anana     |
| Tel: 972-818-7423         | Tel: 86-755-8864-2200 | Tel: 886-7-213-7830     | Tel: 972-9-744-7705   |
| Fax: 072-818-2024         | China - Suzhou        | Taiwan - Tainei         | Italy - Milan         |
| Detroit                   | Tel: 86-186-6233-1526 | Tel: 886-2-2508-8600    | Tel: 39-0331-742611   |
| Novi MI                   | China - Wuhan         | Thailand - Bangkok      | Eax: 39-0331-466781   |
| Tel: 248-848-4000         | Tel: 86-27-5980-5300  | Tel: 66-2-604-1351      | Italy - Padoya        |
| Houston TX                | China - Xian          | Vietnam - Ho Chi Minh   | Tel: 30-040-7625286   |
| Tel: 281_894_5983         | Tel: 86-29-8833-7252  | Tel: 84-28-5448-2100    | Netherlands - Drunen  |
| Indianapolis              | China - Xiamen        | 101. 04-20-0440-2100    | Tel: 31-416-690399    |
| Noblesville IN            | Tel: 86-592-2388138   |                         | Eax: 31-416-690340    |
| Tel: 317-773-8323         | China - Zhuhai        |                         | Norway - Trondheim    |
| Fax: 317-773-5453         | Tel: 86-756-3210040   |                         | Tel: 17-72881388      |
| Tel: 317-536-2380         | 101. 00-7 00-02 10040 |                         | Poland - Warsaw       |
| l os Angeles              |                       |                         | Tel: 48-22-3325737    |
| Mission Vieio CA          |                       |                         | Romania - Bucharest   |
| Tel: 949-462-9523         |                       |                         | Tel: 40-21-407-87-50  |
| Fax. 010-162-0608         |                       |                         | Spain - Madrid        |
| Tal. 243-402-3000         |                       |                         | Tel: 34-01-708-08 00  |
| Raleigh NC                |                       |                         | Fax: 34-91-708-08-01  |
| Tel: 919-844-7510         |                       |                         | Sweden - Gotherberg   |
|                           |                       |                         | Tel: 46-31-704-60 40  |
| Tel: 631-435-6000         |                       |                         | Sweden - Stockholm    |
| San loso CA               |                       |                         | Tel: 46-8-5000-4654   |
| Tal: 408 735 0110         |                       |                         | IK Wokingham          |
| Tal: 400-733-9110         |                       |                         |                       |
| Canada Taranta            |                       |                         | ICI. 44-110-921-0000  |
|                           |                       |                         | Fax: 44-118-921-5820  |
| 101: 905-695-1980         |                       |                         |                       |
| Fax. 900-090-2010         |                       |                         |                       |