
S32K3 Memories Guide

1. Introduction

The purpose of this application note is to provide a

guideline to the readers about the memory features

included in the S32K3 Product Family. This document

details the available functions and best practices for

running applications considering performance

improvements.

You can find four kinds of memories inside S32K3

Product Family, the Flash memory, the SRAM, the

Tightly Coupled Memory (TCM) and the Cache

Memory. The S32K3 Product Family also have some

modules with dedicated memory such like EMAC and

CAN. This document will mainly focus on Flash

Memory, TCM and SRAM.

The Flash memory is dedicated for program code and

store data. Also, all devices in the family has a UTEST

sector of 8 KB for store important configurations or to

reserve information for the application. The S32K3

Product Family has devices from 512 KB to 8 MB of

Flash program memory.

The RAM is integrated by the SRAM memory and the

TCM. Part of the SRAM memory is available in standby

mode. This means that the content of this memory are

retained after setting the MCU in standby mode. The

S32K3 product family leverages the TCM feature of

ARM Cortex M7 architecture, whose main purpose is to

provide a deterministic access time to the cores to some

important data avoiding any delay in the access. This

feature can be exploited in Real Time Operating

Systems.

NXP Semiconductors

Application Notes

Document Number:AN13388

Rev. 0, 11/2021

Contents

1. Introduction .. 1

2. Features .. 2

3. Flash memory .. 3

3.1. Read .. 4

3.2. Write or Program .. 4

3.3. Erase ... 5

3.4. Locking and unlocking sector or super sector 8

3.5. UTEST sector ... 9

4. Tightly Coupled Memory ... 10

5. SRAM .. 12

5.1. Read .. 14

5.2. Write ... 14

6. Use Cases ... 15

6.1. Flash vs TCM vs SRAM 15

6.2. SRAM standby .. 21

7. SW recommendations and conclusions 26

8. References .. 26

Features

S32K3 Memories Guide, Rev. 0, 11/2021

2 NXP Semiconductors

The Cache memory is a dedicated memory for the cores. This memory is not part of the system memory

and doesn’t have a physical address available for the programmer. This memory serves as an

intermediate buffer between the processor and the main memory to reduce memory access time for the

cores.

2. Features

S32K3 family devices memory features can be found in the Table 1 and 2.

Table 1. S32K3 Memory features

Feature S32K310 S32K311 S32K341 S32K312 S32K322 S32K342

Core qty 1 x Cortex-M7 1 x Cortex-M7
1 x Cortex-M7

LS
1 x Cortex-M7 2 x Cortex-M7

1 x Cortex-M7
LS

Program flash
memory (MB)

512 KB 1 2

Data flash
memory (KB)1 64 128

Cache
I Cache 8 KB
D Cache 8 KB

Total RAM
(KB)

128 KB (including 96 KB TCM)
256 KB

(including 192
KB TCM)

192 KB
(including 96

KB TCM)
256 KB (including 192 KB TCM)

Standby RAM2 32 KB

Table 2. S32K3 Memory features

Feature S32K314 S32K324 S32K344 S32K328 S32K348 S32K338 S32K358

Core qty
1 x Cortex-

M7
2 x Cortex-

M7
1 x Cortex-

M7 LS
2 x Cortex-

M7
1 x Cortex-

M7 LS
3 x Cortex-

M7
1 x Cortex-M7 LS +

1 x Cortex-M7

Program flash
memory (MB)

4 8

Data flash
memory (KB)1

128

Cache
I Cache 8 KB
D Cache 8 KB

TBD

Total RAM
(KB)

512 KB
(including

96 KB
TCM)

512 KB (including
192 KB TCM)

1152 KB (including 192 KB
TCM)

1152 KB (including 384 KB TCM)

Standby RAM2 32 KB 64 KB

1. This represents the maximum available Data Flash memory. Refer to the S32K3 Reference Manual for limitations
applying when HSE security firmware is installed

2. The Standby RAM is also included in the Total RAM

An important feature to remark is that all memories inside the S32K3 Product Family has Error

Detection and Error Correction Code.

Flash memory

NXP Semiconductors 3

3. Flash memory

The flash memory on S32K3 devices is integrated by blocks. There are five blocks as maximum and two

blocks as minimum. Detailed information is provided in the following table.

Table 3. Flash memory architecture for S32K3

Flash Blocks S32K310
S32K311
S32K341

S32K312
S32K322
S32K342

S32K314
S32K324
S32K344

S32K328
S32K338
S32K348
S32K358

End
Address

UTEST
 Start Address

0x1B00_1FFF

 8 KB

0x1B00_0000

0x1B00_1FFF

 8 KB

0x1B00_0000

0x1B00_1FFF

 8 KB

0x1B00_0000

0x1B00_1FFF

 8 KB

0x1B00_0000

0x1B00_1FFF

 8 KB

0x1B00_0000

End
Address

Block4
Data Flash Memory

 Start Address

0x1000_FFFF

 64 KB

0x1000_0000

0x1000_FFFF

 64 KB

0x1000_0000

0x1001_FFFF

 128 KB

0x1000_0000

0x1001_FFFF

 128 KB

0x1000_0000

0x1001_FFFF

 128 KB

0x1000_0000

End
Address

Block3
Code Flash Memory 3

 Start Address

Not
Available

Not
Available

Not
Available

0x007F_FFFF

 1 MB

0x0070_0000

0x00BF_FFFF

 2 MB

0x00A0_0000

End
Address

Block2
Code Flash Memory 2

 Start Address

Not
Available

Not
Available

Not
Available

0x006F_FFFF

 1 MB

0x0060_0000

0x009F_FFFF

 2 MB

0x0080_0000

End
Address

Block1
Code Flash Memory 1

 Start Address

Not
Available

0x004F_FFFF

 512 KB

0x0048_0000

0x005F_FFFF

 1 MB

0x0050_0000

0x005F_FFFF

 1 MB

0x0050_0000

0x007F_FFFF

 2 MB

0x0060_0000

End
Address

Block0
Code Flash Memory 0

 Start Address

0x0047_FFFF

 512 KB

0x0040_0000

0x0047_FFFF

 512 KB

0x0040_0000

0x004F_FFFF

 1 MB

0x0040_0000

0x004F_FFFF

 1 MB

0x0040_0000

0x005F_FFFF

 2 MB

0x0040_0000

In the S32K3 Product Family the devices are available from 512 KB to 8 MB of Flash memory. The

Table 3 classifies the S32K3 Product Family devices by Flash memory size.

There are some regions inside the Flash memory that are protected to be used by the application cores.

These are only available for HSE_B core. For more information about HSE_B refer to S32K3 Reference

Manual.

There are three operations modes for the Flash memory. When the device is working in User mode the

Flash memory array is accessible to execute a read, program or erase operation. The User mode is the

default operating mode of the Flash memory. All the registers have read and write access. In low power

mode the Flash memory is not accessible because its power source is turned off, so operations are not

allowed in this mode. Finally the Utest mode is a test mode where the integrity of the Flash memory can

be verified.

S32K3 Memories Guide, Rev. 0, 11/2021

Flash memory

4 NXP Semiconductors

The Flash memory can perform multiple reads between different blocks by a single, dual or quad read

feature, where in a multi-core scenario, if there are multiple threads running in parallel (on different

sections/blocks of memory) those threads can occur simultaneously by a dual or quad read, this feature

is controlled internally and not by the user. It also has the “Read-While-Write” (RWW) feature to be

able to perform a read and a write simultaneously (applies only when operations are in different blocks);

for example, in the S32K324, if the Core 0 application is performing a write process in block 0, then the

Core 1 at the same time can read a data stored in the data flash block.

There are four important operations that we need to consider when we are working with the Flash

memory:

• Read Flash memory

• Lock and Unlock sector or super sector

• Program Flash memory

• Erase Flash memory

3.1. Read

After reset, the Flash memory is in a default state which have the arrays and register available to be read

by the controller. A read operation from Flash memory return a 256 bits of data length and register reads

return 32 bits. For this operation is not necessary to consider a Lock or Unlock sector. The read

operation is performed by the PFlash controller which is the interface between the system bus and the

embedded Flash memory.

3.2. Write or Program

The minimum program size is 2 words (64 bits) and data must be 64 bit aligned. A maximum of 4 pages

can be programmed at the same time, where 1 page are 8 words (256 bits). This mean that up to 1024

bits can be altered in a single program operation. When a program operation or write operation is made

the ECC bits are calculated and stored. The ECC is handled on 64 bits doubleword. Eight bits of ECC

are needed.

A program operation changes the logic value of a bit from 1 to 0, this means that a program operation

from 0 to 1 is not allowed and the Flash memory needs to be erased before any program operation.

When data Flash is used for EEPROM emulation, approved drivers by NXP can do an over-

programming in a 64 bit ECC segment, this allows to over-program the same location up to 3 times

without performing an erase operation in the sector. This feature can be used to change the record status

of a data record without a previous erase which is frequently used in some EEPROM emulation

techniques. It’s important to remark that it is only available and usable for approved drivers by NXP,

please consult the RTD software for S32K3 devices for available FEE drivers.

Before a program operations occurs the sector that contains the specified address must be unlocked. If a

locked sector or super sector is attempted to be programmed, program operation will fail and an error

will be reported in the MCRS[PEP] bit.

The flow diagram for the program operation is explained in the Figure 1.

S32K3 Memories Guide, Rev. 0, 11/2021

Flash memory

NXP Semiconductors 5

Figure 1. Program sequence flow diagram

3.3. Erase

The erase operation is the process to set all bits from a sector or block to 1. The minimum erase size can

be performed in a sector, where a sector size is 8 KB. To erase a sector or block it must be unlocked

previously to the erase operation. The erase process also clean the ECC bits.

The following flow diagram show the erase sequence.

S32K3 Memories Guide, Rev. 0, 11/2021

This is the Master that start a Program
operation.

The address to be programed. It represent
the start address when many data have been
programmed in a single process.

DATA contains the data to be programmed. A
write to Data register is referred to as
interlock write. It must be performed before
MCR[PGM] is set to 1.

A program sequence will be executed into the
Flash memory.

The Enable High Voltage (EHV) bit is turned
on to perform the program operation. If EHV
is cleared before DONE bit goes High then
the operation is aborted and PEG is cleared
indicating a failed program.

MCRS[DONE] is 0 when a program or erase
operation is on execution.

When the MCRS[PEG] is set to 1 then it
indicates that the program process was
successful. In other case its value will be 0,
indicating that the sequence failed.

The EHV must be turned off when the
program operation has finished.

The program sequence is finished. The flash
memory has performed a program sequence
and another operation can be initiated after it.

PGM Start domain ID=1

Write the address to the PFCPGM_PEADR_L register

Wait until the
MCRS[DONE]

goes high

Data to be programmed must be written in the
appropriate Program DATAx [Data0 – Data31] register

Change the value in the MCR[PGM] bit from 0 to 1

Write a logic 1 to the MCR[EHV] bit to start the internal
program sequence

Confirm MCRS[PEG] = 1

Write a logic 0 to the MCR[EHV] bit

Write a logic 0 to the MCR[PGM] bit to terminate the
program sequence

PGM End

Flash memory

6 NXP Semiconductors

Figure 2. Erase sequence flow diagram

The following bare metal code shows the implementation of the write and erase operation, we can note

that some functions are shared for both operations in the Example 3

S32K3 Memories Guide, Rev. 0, 11/2021

The Enable High Voltage is turned on to
perform the erase operation. If EHV is
cleared before DONE goes High the
operation is aborted and PEG is cleared
indicating a failed erase.

This is the Master that start an Erase operation

Address to be erase. The sector or block that
contains the specified address will be erased.
The address could be any one within the
sector.

A write to Data register is referred to as an
erase interlock write. It must be performed
before MCR[ERS] is set to 1 .

Set the MCR[ERS] bit to 1 to indicate that an
erase sequence will be executed into the
Flash memory. At the same time the ESS
must be selected to define if the erase will be
on a sector or block size.

MCRS[DONE] is 0 when a program or erase
operation is on execution.

When the MCRS[PEG] is set to 1 then it
indicates that the erase process was
successful. In other case its value will be 0,
indicating that the sequence failed.

The EHV must be turned off when the erase
operation has finished.

The erase sequence is finished. The flash
memory has performed an erase sequence
and another operation can be initiated after it.

ERS Start domain ID=1

Write the address to the PFCPGM_PEADR_L
register

Wait until the
MCRS[DONE]

goes high

A Data must be written in one of the Program
DATAx [Data0 – Data31] register

Change the value in the MCR[ERS] bit from 0 to 1
and selecta at the same time the size of erase using

MCR[ESS]

Write a logic 1 to the MCR[EHV] bit to start the
internal erase sequence

Confirm MCRS[PEG] = 1

Write a logic 0 to the MCR[EHV] bit

Write a logic 0 to the MCR[ERS] bit to terminate
the program sequence

ERS End

Flash memory

S32K3 Memories Guide, Rev. 0, 11/2021

NXP Semiconductors 7

Example 1. Erase flash function
tFLASH_STATUS FLASH_ErsSector (const void *dst)
{
 FLASH_InitSeq(dst);
 FLASH->DATA[0] = 0UL; /* one and only one DATA register written */
 return FLASH_ExecSeq(FLASH_MCR_ERS_MASK);
}

Example 2. Write flash function
{
 register tFLASH_STATUS status = FLASH_PEG_ST;
 register uint8_t *pDst = (uint8_t*)dst, *pSrc = (uint8_t*)src, *pTmp;
 register uint32_t *pData;
 uint32_t tmp;

 while ((nbytes > 0L) && (status & FLASH_PEG_ST))
 {
 pData = (uint32_t*)((uint32_t)&FLASH->DATA[0] + ((uint32_t)pDst & FLASH_DATAX_MASK));
 FLASH_InitSeq (pDst);
 do {

 tmp = 0xffffffffUL;
 pTmp = (uint8_t*)((uint32_t)&tmp + ((uint32_t)pDst & FLASH_BYTES_MASK));
 do {

 *pTmp++ = *pSrc++; pDst++;
 } while ((nbytes-- > 0L) && ((uint32_t)pTmp & FLASH_BYTES_MASK));

*pData++ = tmp;
 } while ((nbytes > 0L) && ((uint32_t)pData & FLASH_DATAX_MASK));
 status = FLASH_ExecSeq (FLASH_MCR_PGM_MASK);
 }
 return status;
}

Example 3. Common Erase/Write functions
#define FLASH_WritePEADR(dst) do{ PFLASH->PFCPGM_PEADR_L=(uint32_t)dst; }while(0)
#define FLASH_GetPEID() ((FLASH->MCR&FLASH_MCR_PEID_MASK)>>FLASH_MCR_PEID_SHIFT)
#define FLASH_ClrStatus(mask) do{ FLASH->MCRS=mask; }while(0)
#define FLASH_GetStatus() (tFLASH_STATUS)FLASH->MCRS

#define FLASH_InitSeq(addr) \
do{ \
 register uint8_t domain_id = XRDC->HWCFG1; \
 /* entry semaphore loop */ \
 do{ FLASH_WritePEADR (addr); } while(FLASH_GetPEID () != domain_id); \
 /* clear any pending program & erase errors */ \
 FLASH_ClrStatus (FLASH_PES_ERR|FLASH_PEP_ERR); \
 }while(0)
tFLASH_STATUS FLASH_ExecSeq (register uint32_t mask)
{
register tFLASH_STATUS status;

 FLASH->MCR |= mask; /* initiate sequence */
 FLASH->MCR |= FLASH_MCR_EHV_MASK; /* enable high voltage */
 while(!(FLASH->MCRS&FLASH_MCRS_DONE_MASK)); /* wait until MCRS[DONE]=1 */
 FLASH->MCR &=~FLASH_MCR_EHV_MASK; /* disable high voltage */
 status = FLASH_GetStatus(); /* read main interface status */
 FLASH->MCR &=~mask; /* close sequence */

 return status;
}

Flash memory

S32K3 Memories Guide, Rev. 0, 11/2021

8 NXP Semiconductors

3.4. Locking and unlocking sector or super sector

A block is integrated by sectors and super sectors with sizes of 8 KB and 64 KB respectively. These

sectors can be protected from write or erase operations by using the locking feature. The last 256 KB of

the block has sector protection feature, while the rest has the Super Sector protection feature. The data

flash has sector protection feature and the UTEST sector has an independent sector program protection.

The S32K3 Product Family has some devices where Super Sector protection is not available due to the

memory size, for more information about these devices, please review the S32K3 Product Family

Reference Manual.

The following figure shows the sector and super sector distribution for a 1 MB block.

Figure 3. Sector distribution inside 1MB block

The lock and unlock process is controlled by the PFCBLKn_SSPELOCKn registers for super sectors

and PFCBLKn_SPELOCKn registers for sectors. The PFCBLKn_SSPELOCKn register has 12

available bits, where each bit corresponds to each super sector, similarly, the PFCBLKn_SPELOCKn

register has 32 available bits for 32 available sectors. If an unlock process is desired to allow a program

or erase operation, then the corresponding register PFCBLKn_SSPELOCKn or PFCBLKn_SPELOCKn

must be changed from 1 to 0. Writing 1 to any bit of PFCBLKn_SPELOCKn or

PFCBLKn_SSPELOCKn will lock the sector or super sector against programming and erasing

operations.

The PFCBLKn_SSPELOCKn and PFCBLKn_SPELOCKn registers values out of reset is 1 for all the

bits, this means that all sectors are protected from program and erase operations after reset.

The Figure 4 shows the steps to unlock a sector or super sector.

8 x 32 KB = 256 KB

Sector Protection

12 x 64 KB = 768 KB
Super Sector protection

Flash memory

NXP Semiconductors 9

Figure 4. Unlock process for Sector or Super Sector

3.5. UTEST sector

The 8 KB UTEST sector is available in all devices from the S32K3 Product Family. In this sector is

possible to store important information about the application, for example, version number, permanent

parameters, configurations (boot or applications), etc. Inside the UTEST Sector there are some regions

that are reserved for the SoC and its use is reserved for NXP. For more detail about available regions

please consult the S32K3xx_DCF_client.xlsx attached in the S32K3 Product Family Reference Manual.

The UTEST Sector is an OTP (One Time Programmable) space when the Test mode seal is written. The

Test mode seal is allocated in the UTEST Sector, for security it is programmed with the value

0x5A4B3C2D, this means that only new data or configuration could be appended in the UTEST sector

and erase is not allowed.

The process to write a data in the UTEST Sector is the same process used to program a data in other

blocks. The unlocking process is also the same but with the difference that the UTEST sector has its

own register PFCBLKU_SPELOCK[SLCK] to lock or unlock the sector from program operations. As

mentioned before, UTEST sector is an 8KB sector so there is only 1 bit to change in the

PFCBLKU_SPELOCK register. Following the sector protection logic, if the SLCK bit is set to 0 then

the UTEST sector is available for program operations.

The following example is part of a baremetal code that depict how to unlock the UTEST sector, this

example can be used for other blocks.

S32K3 Memories Guide, Rev. 0, 11/2021

Select Block Number

Unlock Super
Sector?

Sector or Super Sector is unlocked

PFCBLKn_SSPELOCKn = 0 PFCBLKn_SPELOCKn = 0

Yes No

Super Sector Number [1- 12] Sector Number [1- 32]

Tightly Coupled Memory

10 NXP Semiconductors

Example 4. Unlocking UTEST sector
#define PFLASH_U_PFCBLKI_SPELOCK_COUNT 1u
typedef struct {
 …
__IO uint32_t PFCBLKU_SPELOCK[PFLASH_U_PFCBLKI_SPELOCK_COUNT]; /**< Block UTEST Sector Program Erase Lock, array
offset: 0x358, array step: 0x4 */
…
} PFLASH_Type, *PFLASH_MemMapPtr;

#define PFLASH_PFCBLK5_SPELOCK PFLASH->PFCBLKU_SPELOCK[0]

#define PFLASH_Unlock(blocks,ssectors,sectors) \
({ \
 register uint32_t __t1=blocks,__t2=ssectors,__t3=sectors; \
 if (__t1 & PFLASH_BL0) { PFLASH_PFCBLK0_SSPELOCK&=~__t2; PFLASH_PFCBLK0_SPELOCK&=~__t3; } \
 if (__t1 & PFLASH_BL1) { PFLASH_PFCBLK1_SSPELOCK&=~__t2; PFLASH_PFCBLK1_SPELOCK&=~__t3; } \
 if (__t1 & PFLASH_BL2) { PFLASH_PFCBLK2_SSPELOCK&=~__t2; PFLASH_PFCBLK2_SPELOCK&=~__t3; } \
 if (__t1 & PFLASH_BL3) { PFLASH_PFCBLK3_SSPELOCK&=~__t2; PFLASH_PFCBLK3_SPELOCK&=~__t3; } \
 if (__t1 & PFLASH_BL4) { PFLASH_PFCBLK4_SPELOCK&=~__t3; } \
 if (__t1 & PFLASH_BL5) { PFLASH_PFCBLK5_SPELOCK&=~__t3; } \
})
/* unlock UTEST data flash sector */
 PFLASH_Unlock (PFLASH_BL5, PFLASH_SS0, PFLASH_S0);

4. Tightly Coupled Memory

The Tightly Coupled Memory (TCM) is a memory implemented from the ARM(R) Cortex M7

architecture which main characteristic is to have a dedicated connection to the core. This memory is

divided in Instruction TCM (I-TCM) and Data TCM (D-TCM). In the S32K3 Product Family there are 2

dedicated connections to the Cortex M7, one for the Instruction TCM and another for the Data TCM.

Each CM7 core has an ITCM and DTCM memory available, so the sizes and addresses of the TCM

memories depends on the number of cores available on the variant and its configuration (lockstep or

decoupled), for more information please review the Table 4 RAM memory architecture for S32K3.

The TCM is memory mapped and it can be accessed by two possible buses, by the dedicated Core

connection and by a backdoor access for any other Master on the AHBS bus. Each access has a defined

start address for TCM and the end address is determinate by the size of the memory, for more

information about the addresses please consult the Table 4.

For the dedicated access for the core, the I-TCM (Instruction-TCM) has a bus interface of 64 bits and

the D-TCM (Data-TCM) a bus interface of 32 bits. The TCM memory can be accessed via 32 bits AHB

interface by any other master, such as the eDMA, a different Core (when decoupled configuration), the

EMAC and the HSE Core.

For devices in lockstep, the TCM of the secondary core is added to the Primary core so the accessible

size to the primary core is augmented. In decoupling mode, the TCM is dedicate for each core.

The TCM can be used as System Memory or dedicated memory to the cores. When the TCM is used as

System Memory on multicore devices all enabled cores and non-core masters can use the TCMs of the

disabled core. In order to allow the usage of ITCM and DTCM of the disabled core as system memory,

some register configuration is necessary. For more detail review the S32K3 Product Family reference

manual and take as reference the example code in this section.

S32K3 Memories Guide, Rev. 0, 11/2021

Tightly Coupled Memory

S32K3 Memories Guide, Rev. 0, 11/2021

NXP Semiconductors 11

The following block diagram depicts the route that other masters use to get access to the TCM memory

(S32K32x and S32K34x devices).

Figure 5. TCM memory accesses for S32K32x and S32K34x (Direct and Backdoor)

Due to the fact that the TCM is part of the memory map and it has a physical address, the user can

decide the content to be stored in the TCM at compilation time. One advantage of using the TCM is that

it has a deterministic access time (one clock cycle), so the TCM can be used to store critical data and

code, for example, frequently updated variables, interrupt handlers, data processing, etc. This data is

decided by the user and not by a control logic as the Cache memory.

As other memories, TCM has ECC protection, and after the chip's power on reset and before using it, the

user must initialized it to avoid ECC errors, this write operation is required to set up the initial ECC code

words after the chip’s power on reset phase. In the S32K3 Product Family the cores can initialize ITCM

and DTCM via the direct and Backdoor accesses. Also, the DTCM can be initialized by the DMA via

the backdoor but the DMA cannot initialize the ITCM due to the 32 bits access that the backdoor

provides (ITCM needs 64 bits writes to avoid ECC error).

As an example, the next code depicts how to use the TCM as system memory, how to initialize the

ITCM via the Core M7_0, and how to initialize the DTCM via the DMA. Important notice, to initialize

the DTCM the DMA needs to use the backdoor address in order to get access to the DTCM.

Example 5. TCM Configured as System RAM
/********************************** START TCM_Configured as System RAM *****************************/
MC_ME->PRTN2_COFB1_CLKEN |= MC_ME_PRTN2_COFB1_CLKEN_REQ62(1); /* PRTN2_COFB1_CLKEN_[REQ62] = 1 */

/* Enable clock for TCM for CM7_0 */
MC_ME->PRTN2_COFB1_CLKEN |= MC_ME_PRTN2_COFB1_CLKEN_REQ63(1); /* PRTN2_COFB1_CLKEN_[REQ63] = 1 */

/* Enable clock for TCM for CM7_1 */
DCM_GPR->DCMRWF4 |= DCM_GPR_DCMRWF4_cm7_0_cpuwait(1); /* DCMRWF4[CM7_0_CPUWAIT] = 1 */

/* Wait Mode for CM7_0 */
DCM_GPR->DCMRWF4 |= DCM_GPR_DCMRWF4_cm7_1_cpuwait(1); /* DCMRWF4[CM7_1_CPUWAIT] = 1 */

/* Wait Mode for CM7_1 */
MC_ME->PRTN0_CORE0_PCONF |= MC_ME_PRTN0_CORE0_PCONF_CCE(1); /* PRTN0_CORE0_PCONF[CCE] = 1 */

/* Enable Clock for CM7_0 */
MC_ME->PRTN0_CORE1_PCONF |= MC_ME_PRTN0_CORE1_PCONF_CCE(1); /* PRTN0_CORE1_PCONF[CCE] = 1 */

/* Enable Clock for CM7_1 */
/********************************** END TCM_Configured as System RAM *******************************/

CM7_0 I-Cache

D-Cache

AXBS_Lite

CM7_1

I-TCM

D-TCM

D-TCM

I-Cache

D-Cache

EMAC eDMA HSE

Splitter

Backdoor
accesses

M0 M4 M3 M1 M2
S3

Lockstep

I-TCM

D-TCM

D-TCM

+

+

+

SRAM

S32K3 Memories Guide, Rev. 0, 11/2021

12 NXP Semiconductors

Example 6. ITCM initialization by core
/********************************** START ITCM_Initialization by Core ******************************/
uint64_t* ITCM_begin = (uint64_t*)&__ITCM_START; /* Variable to load ITCM start address */
uint64_t* ITCM_size = (uint64_t*)&__ITCM_SIZE; /* Variable to load ITCM size */

while(ITCM_begin < ITCM_size) /* Loop to initialize ITCM region */
{

*ITCM_begin = (uint64_t)0x00;
ITCM_begin ++;

}
/************************************ END ITCM_Initialization by Core ******************************/

Example 7. DTCM initialization by eDMA
/*********************************** START DTCM_Initialization by eDMA *****************************/
/* Source Data Address */
TCD[0].TCD0_SADDR = 0x00400018;
/* Offset for the current Source Address = 0x00 (no offset applied) */
TCD[0].TCD0_SOFF = 0;
/* Source Data Transfer Size = 010b 32 bits */
TCD[0].TCD0_ATTR = DMA_TCD_TCD0_ATTR_SSIZE(2) | DMA_TCD_TCD0_ATTR_DSIZE(2);
/* Number of bytes to transfer = 128KB */
TCD[0].NBYTES0.TCD0_NBYTES_MLOFFNO = (uint32_t)(&__DTCM_SIZE);
/* Last Source Address adjustment */
TCD[0].TCD0_SLAST_SDA = 0x00000000;
/* Destination Address = DTCM Backdoor Start Address (0x2100_0000h) */
TCD[0].TCD0_DADDR = (uint32_t)(__DTCMBD_START);
/* Offset for the current Destination Address = 0x04 (4 bytes offset applied) */
TCD[0].TCD0_DOFF = DMA_TCD_TCD0_DOFF_DOFF(0x04);
/* Current Major Iteration Count = 1*/
TCD[0].CITER0.TCD0_CITER_ELINKNO = DMA_TCD_TCD0_CITER_ELINKNO_CITER(0x1);
/* Last Destination Address */
TCD[0].TCD0_DLAST_SGA = DMA_TCD_TCD0_DLAST_SGA_DLAST_SGA(-(uint32_t)(&__DTCM_SIZE));
/* Starting Major Iteration Count = 1 */
TCD[0].BITER0.TCD0_BITER_ELINKNO = DMA_TCD_TCD0_BITER_ELINKNO_BITER(0x1);
/* Channel Start transfer initiated */
TCD[0].TCD0_CSR = DMA_TCD_TCD0_CSR_START(0x1);

/* Loop waiting for Channel major loop has been completed */
while(!(TCD[0].CH0_CSR & DMA_TCD_CH0_CSR_DONE_MASK));
/* Clear DONE bit field*/
TCD[0].CH0_CSR |= DMA_TCD_CH0_CSR_DONE_MASK;
/********************************** END DTCM_Initialization by eDMA ********************************/

5. SRAM

The S32K3 Product Family devices can be integrated from 1 SRAM and up to 3 SRAM blocks. The

Table 4 shows the RAM memory blocks available for each device. Remember that the TCM memory is

considered a part of the RAM memory.

NXP Semiconductors 13

Table 4. RAM memory architecture for S32K3

RAM
S32K311
S32K310

S32K312 S32K314 S32K322 S32K324 S32K328 S32K342 S32K344 S32K348 S32K338 S32K358

 End Address

SRAM2
 Start Address

Not Available Not Available Not Available Not Available Not Available
0x204B_FFFF

 256 KB
0x2048_0000

Not Available Not Available
0x204B_FFFF

 256 KB
0x2048_0000

0x204B_FFFF

 256 KB
0x2048_0000

0x204B_FFFF

 256 KB
0x2048_0000

 End Address

SRAM1
 Start Address

Not Available Not Available
0x2044_FFFF

 160 KB
0x2042_8000

Not Available
0x2044_FFFF

 160 KB
0x2042_8000

0x2047_FFFF

 256 KB
0x2044_0000

Not Available
0x2044_FFFF

 160 KB
0x2042_8000

0x2047_FFFF

 256 KB
0x2044_0000

0x2047_FFFF

 256 KB
0x2044_0000

0x2047_FFFF

 256 KB
0x2044_0000

 End Address

SRAM0
 Start Address

0x2040_7FFF

 32 KB
0x2040_0000

0x2041_7FFF

 96 KB
0x2040_0000

0x2042_7FFF

 160 KB
0x2040_0000

0x2040_FFFF

 64 KB
0x2040_0000

0x2042_7FFF

 160 KB
0x2040_0000

0x2043_FFFF

 256 KB
0x2040_0000

0x2040_FFFF

 64 KB
0x2040_0000

0x2042_7FFF

 160 KB
0x2040_0000

0x2043_FFFF

 256 KB
0x2040_0000

0x2043_FFFF

 256 KB
0x2040_0000

0x2043_FFFF

 256 KB
0x2040_0000

 End Address

DTCM2
 Start Address

Not Available Not Available Not Available Not Available Not Available Not Available Not Available Not Available Not Available
0x2001_FFFF

 128 KB
0x2000_0000

0x2001_FFFF

 128 KB
0x2000_0000

 End Address

DTCM1
 Start Address

Not Available Not Available Not Available
0x0000_FFFF

 64 KB
0x2000_0000

0x0000_FFFF

 64 KB
0x2000_0000

0x0000_FFFF

 64 KB
0x2000_0000

Not Available Not Available Not Available
0x2000_FFFF

 64 KB
0x2000_0000

Not Available

 End Address

DTCM0
 Start Address

0x2000_FFFF

 64 KB
0x2000_0000

0x2000_FFFF

 64 KB
0x2000_0000

0x2000_FFFF

 64 KB
0x2000_0000

0x2000_FFFF

 64 KB
0x2000_0000

0x2000_FFFF

 64 KB
0x2000_0000

0x2000_FFFF

 64 KB
0x2000_0000

0x2001_FFFF

 128 KB
0x2000_0000

0x2001_FFFF

 128 KB
0x2000_0000

0x2001_FFFF

 128 KB
0x2000_0000

0x2000_FFFF

 64 KB
0x2000_0000

0x2001_FFFF

 128 KB
0x2000_0000

 End Address

ITCM2
 Start Address

Not Available Not Available Not Available Not Available Not Available Not Available Not Available Not Available Not Available
0x0000_FFFF

 64 KB
0x0000_0000

0x0000_FFFF

 64 KB
0x0000_0000

 End Address

ITCM1
 Start Address

Not Available Not Available Not Available
0x0000_7FFF

 32 KB
0x0000_0000

0x0000_7FFF

 32 KB
0x0000_0000

0x0000_7FFF

 32 KB
0x0000_0000

Not Available Not Available Not Available
0x0000_7FFF

 32 KB
0x0000_0000

Not Available

 End Address

ITCM0
 Start Address

0x000_7FFF

 32 KB
0x0000_0000

0x000_7FFF

 32 KB
0x0000_0000

0x000_7FFF

 32 KB
0x0000_0000

0x000_7FFF

 32 KB
0x0000_0000

0x000_7FFF

 32 KB
0x0000_0000

0x000_7FFF

 32 KB
0x0000_0000

0x0000_FFFF

 64 KB
0x0000_0000

0x0000_FFFF

 64 KB
0x0000_0000

0x0000_FFFF

 64 KB
0x0000_0000

0x000_7FFF

 32 KB
0x0000_0000

0x0000_FFFF

 64 KB
0x0000_0000

NXP Semiconductors S32K3 Memories Guide, Rev. 0, 11/2021

S32K3 Memories Guide, Rev. 0, 11/2021

Each SRAM block has its own SRAM Controller (PRAMC) to support fast read/write accesses to the

cores. The PRAM controller is the interface between the system bus and the integrated RAM array. The

system bus supports 64 bit of data and the RAM array supports 64 bit of data + 8 bit for ECC.

Inside the SRAM memory there is a region that is available when the microcontroller is in Standby

mode. The Standby SRAM is allocated at the first 32 KB of the SRAM memory. This region is sourced

by the Power Domain 0, so when a standby mode is performed the information that is stored in the

Standby region is retained. The rest of the SRAM memory is sourced by the Power Domain 1 and it is

only available in Run Mode.

Just like the TCM memory, all the SRAM memory must be initialized to avoid ECC errors and this can

be done by the core or the DMA as well. If the initialization is omitted then any read or write to the

SRAM memory will generate an uncorrectable ECC error event.

Example 8. SRAM initialization by DMA
/********************************** START SRAM Initialization by DMA ******************************/
TCD[0].TCD0_SADDR = 0x00400018;
TCD[0].TCD0_SOFF = 0;
TCD[0].TCD0_ATTR = DMA_TCD_TCD0_ATTR_SSIZE(3) | DMA_TCD_TCD0_ATTR_DSIZE(3);
TCD[0].NBYTES0.TCD0_NBYTES_MLOFFNO = (uint32_t)(&__RAM_SIZE);
TCD[0].TCD0_SLAST_SDA = 0x00000000;
TCD[0].TCD0_DADDR = (uint32_t)(&__RAM_START);
TCD[0].TCD0_DOFF = DMA_TCD_TCD0_DOFF_DOFF(0x8);
TCD[0].CITER0.TCD0_CITER_ELINKNO = DMA_TCD_TCD0_CITER_ELINKNO_CITER(0x1);
TCD[0].TCD0_DLAST_SGA = DMA_TCD_TCD0_DLAST_SGA_DLAST_SGA(-(uint32_t)(&__RAM_SIZE));
TCD[0].BITER0.TCD0_BITER_ELINKNO = DMA_TCD_TCD0_BITER_ELINKNO_BITER(0x1);
TCD[0].TCD0_CSR = DMA_TCD_TCD0_CSR_START(0x1);

while(!(TCD[0].CH0_CSR & DMA_TCD_CH0_CSR_DONE_MASK));
TCD[0].CH0_CSR |= DMA_TCD_CH0_CSR_DONE_MASK;
/********************************** END SRAM Initialization by DMA ********************************/

5.1. Read

Read events can be configured to be completed with a zero wait state or one wait state response for any

data size. The PRAM controller register Flow Trough Disable field PRCRx[FT-DIS] insert a wait state

on read events prior to returning the data to the system bus. Insertions of wait states are important to

consider when system frequency are greater than 120MHZ. This wait state doesn’t have any effect on

write events. For more information about wait states please refer to the Gasket configurations in the

Clocking Chapter of the S32K3 Reference Manual.

5.2. Write

Write operations can be made in 64 bits or less. When an aligned 64 bits write is performed the write

operation is executed in a single phase cycle with a zero wait state. When a write less than 64 bits or

unaligned write is performed a Read-Modify-Write action is executed in order to perform the write and

recalculate the new ECC code. The RMW action will insert some cycles to the write process and this

means that aligned 64 bits writes has better performance than unaligned < 64 bits writes to the SRAM

memory.

______________________S32K3 Memories Guide, Rev 0, 11/2021__________________
14 NXP Semiconductors

Use Cases

S32K3 Memories Guide, Rev. 0, 11/2021

NXP Semiconductors 15

The Read-Modify-Write can be explained in the following sequence:

1. The PRAMC performs a Single Error Correction (SEC)/Double Error Detection (DED) in
the corresponding read data

2. The write data is merged with the previous read data and only bits of the write data are
changed

3. A new ECC code is generated according to the new 64 bits
4. The new double word and ECC is written to RAM.

6. Use Cases

6.1. Flash vs TCM vs SRAM

One of the main features of S32K3 Product Family is the implementation of TCM memory. One of the

advantages of TCM memory is a deterministic time for process task or use of data stored in this memory

in order to avoid any latency in the data transfer between core with the SRAM or with the Flash

Memory.

The following use case demonstrates the main difference between running code from Flash vs TCM and

vs RAM memory. Also, this example helps the customer to learn how to run functions or data loaded in

TCM or RAM instead of Flash memory. This use case was created for a S32K344 device and tested on

the S32K3XXEVB-Q257 evaluation board, the following guidelines in this chapter are shown for S32

Design Studio with GCC toolchain, but the procedure is similar for other IDEs and toolchains.

6.1.1. Linker file

The first step is to check if our linker file has declared the TCM, Flash and SRAM memory regions with

their corresponding size.

The memory regions on linker file should looks something like that:

Example 9. Linker memory definition and size
/************************** Linker script to configure memory regions. *****************************/
MEMORY
{
 ITCM (RWX) : ORIGIN = 0x00000000, LENGTH = 0x10000
 PFLASH (RX) : ORIGIN = 0x400000, LENGTH = 0x3f4000
 DFLASH (RX) : ORIGIN = 0x10000000, LENGTH = 0x20000
 DTCM (RW) : ORIGIN = 0x20000000, LENGTH = 0x20000
 SRAM0_STDBY (RW) : ORIGIN = 0x20400000, LENGTH = 0x8000
 SRAM (RW) : ORIGIN = 0x20408000, LENGTH = 0x48000
}

We need to define some sections inside each memory regions where we want to load the function or

data. For this example we are going to define the next sections:

• ITCM_code (0x0000_0000): section on ITCM to load and running the TCM_Function.

• DTCM_data (0x2000_0000): section on DTCM to load some arrays and variables.

• SRAM_Function will use the standard .data section from the SRAM (start address

0x2040_8000).

• Flash functions will be loaded in the .text section by default.

Use Cases

S32K3 Memories Guide, Rev. 0, 11/2021

16 NXP Semiconductors

The linker file will looks something like this:

Example 10. Sections for code and data for ITCM, DTCM and SRAM
__coderom_start__ = .;
 .ITCM_code : AT (__coderom_start__)
 {
 . = ALIGN(8);
 __coderam_start__ = .;
 (.ITCM_code)
 . = ALIGN(8);
 __coderam_end__ = .;
 } > ITCM
 . = __coderom_start__ + (__coderam_end__ - __coderam_start__);
 __coderom_end__ = .;

 __etext = ALIGN(8);

 .DTCM_data :
 {
 . = ALIGN(4);

__DTCM_data__ = .;
 } > DTCM

 .standby_ram :
 {
 *(.standby_ram)
 } > SRAM0_STDBY

 /* Due ECC initialization sequence __data_start__ and __data_end__ should be aligned on 8 bytes */
 .data : AT (__etext)
 {
 . = ALIGN(8);
 __data_start__ = .;
 *(vtable)
 *(.data)
 *(.SRAM_Function)
 (.data.)
 . = ALIGN(4);
 /* preinit data */
 PROVIDE_HIDDEN (__preinit_array_start = .);
 KEEP(*(.preinit_array))

6.1.2. Startup

To avoid ECC error ITCM, DTCM and SRAM are initialized. Also, the functions code needs to be

copied to ITCM and SRAM. This process is according to the linker file and processed by the

startup_code.

Example 11. Initialization for ITCM, DTCM and SRAM to avoid ECC errors according to the table

specified in the linker file
 /**
 \brief Early system init: ECC, TCM etc.
 \details This default implementation initializes ECC memory sections

 relying on .ecc.table properly in the used linker script.

 */
__STATIC_FORCEINLINE void __cmsis_cpu_init(void)
{
#if defined (__ECC_PRESENT) && (__ECC_PRESENT == 1U)
 typedef struct {
 uint64_t* dest;

Use Cases

S32K3 Memories Guide, Rev. 0, 11/2021

NXP Semiconductors 17

uint64_t wlen;
 } __ecc_table_t;

 extern const __ecc_table_t __ecc_table_start__;
 extern const __ecc_table_t __ecc_table_end__;

 for (__ecc_table_t const* pTable = &__ecc_table_start__; pTable < &__ecc_table_end__; ++pTable) {
 for(uint64_t i=0u; i<pTable->wlen; ++i) {

 pTable->dest[i] = 0xDEADBEEFFEEDCAFEUL;
 }
 }

The copy of code and data from flash to ITCM and SRAM is also processed on the startup

Example 12. Copy code to ITCM, DTCM and SRAM
__STATIC_FORCEINLINE __NO_RETURN void __cmsis_start(void)
{
 extern void _start(void) __NO_RETURN;

 typedef struct {
 uint32_t const* src;
 uint32_t* dest;
 uint32_t wlen;
 } __copy_table_t;

 typedef struct {
 uint32_t* dest;
 uint32_t wlen;
 } __zero_table_t;

 typedef struct {
 uint32_t const* src;
 uint32_t* dest;
 uint32_t wlen;
 } __copycode_table_t;

 extern const __copy_table_t __copy_table_start__;
 extern const __copy_table_t __copy_table_end__;
 extern const __zero_table_t __zero_table_start__;
 extern const __zero_table_t __zero_table_end__;
 extern const __copycode_table_t __copycode_table_start__;
 extern const __copycode_table_t __copycode_table_end__;

 for (__copy_table_t const* pTable = &__copy_table_start__; pTable < &__copy_table_end__; ++pTable) {
 for(uint32_t i=0u; i<pTable->wlen; ++i) {

 pTable->dest[i] = pTable->src[i];
 }
 }

 for (__zero_table_t const* pTable = &__zero_table_start__; pTable < &__zero_table_end__; ++pTable) {
 for(uint32_t i=0u; i<pTable->wlen; ++i) {

 pTable->dest[i] = 0u;
 }
 }

for (__copycode_table_t const* pTable = &__copycode_table_start__; pTable < __copycode_table_end__;
++pTable)
{

 for(uint32_t i=0u; i<pTable->wlen; ++i) {
 pTable->dest[i] = pTable->src[i];

 }
 }

 _start();
}

Use Cases

S32K3 Memories Guide, Rev. 0, 11/2021

18 NXP Semiconductors

6.1.3. Allocating code

The function attribute section needs to be used for the functions and data that needs to be allocated in

SRAM, ITCM or DTCM

__attribute__((__section__(".Section_Name")))

Where the Section_Name is the section that was previously declared in the linker file.

Use this attribute before the function or variable.

Example 13. Use of the attribute section to allocate functions on ITCM, DTCM and SRAM
__attribute__((__section__(".DTCM_data")))uint32_t ClkCycleCounter[18] = {0};
__attribute__((__section__(".DTCM_data")))static uint8_t Counter;

/**/
/* ITCM Function */
/* Function loaded from ITCM. This function clean pDest and pSrc and copy the */
/* content of the array dummy[1024] stored in flash to pDest and pSrc */
/* Inputs: *pDest = Pointer to Destination array */
/* *pSrc = Pointer to Source array */
/* size = Array size to copy */
/* Output: ClkCycleCounter Array = Store the number of cycles taken since the */
/* beginning of the function until the end. There are 18 positions */
/* to store all function results */
/**/
__attribute__((__section__(".ITCM_code")))
static void TCM_Function(uint8_t *pDest, uint8_t *pSrc, uint32_t size)
{

/* Function example content */
uint32_t i;
for(i=0u; i<size; i++)
{
 pSrc[i] = 0u;
 pDest[i] = 0u;
}
for(i=0u; i<size; i++)
{
 pSrc[i] = pBuffer[i];
}

}
__attribute__((__section__(".SRAM_Function")))
static void SRAM_Function(uint8_t *pDest, uint8_t *pSrc, uint32_t size)
{

/* Function example content */
uint32_t i;
for(i=0u; i<size; i++)
{
 pSrc[i] = 0u;
 pDest[i] = 0u;
}
for(i=0u; i<size; i++)
{
 pSrc[i] = pBuffer[i];
}

}

Use Cases

S32K3 Memories Guide, Rev. 0, 11/2021

NXP Semiconductors 19

6.1.4. Results

The Table 5 shows the number of cycles taken by functions and data on different memories. It is

important to notice that the number of cycles is smaller when running from ITCM in comparison to

running from Flash. This advantage can be used to reduce the number of cycles and timing for tasks that

require deterministic times or avoid latencies. The Table 5 also shows the use of enable Cache,

Instruction Cache and Data Cache. When the D_Cache and I_Cache are enabled the number of cycles is

reduced significantly. This is due to the fact that the Cache fetched all the code and data in its region.

Flash and SRAM can be cacheable on S32K3, the TCM memory is zero wait access so no Cache is

needed for ITCM and DTCM. This is a simple code and cache is enough to store all of it. However, in

real application it is unlikely to place the entire code in Cache so the characteristics of TCM can be used

as advantage.

20 NXP Semiconductors

Table 5. Number of cycles taken by functions and data on different memories.

SRAM DTCM

Cleaning 2
array

buffers
(size 1024

bytes)

Copying
array
from

Flash to
SRAM

Copying
array from
SRAM to

SRAM

 Total
(Cleaning +

Flash to SRAM
+ SRAM to

SRAM)

Cleaning 2
array

buffers
(size 1024

bytes)

Copying
array
from

Flash to
DTCM

Copying
array from
DTCM to

DTCM

Total
(Cleaning +

Flash to DTCM
+ DTCM to

DTCM)

Copying 1024 Bytes - Disable Cache and no optimizations

Running Function from
Flash 28780 36829 30366 95975 27510 36794 24351 88655

Running Function from
SRAM 28956 36682 32398 98036 27505 36746 27718 91969

Running Function from
ITCM 28838 33793 29687 92318 27492 33817 24300 85609

Copying 1024 Bytes - Enable I Cache and no optimizations

Code is fetched to I-
Cache

28930 38602 29720 97252 27496 36708 24321 88525

28911 38581 29709 97201 27500 36708 24322 88530

28902 33806 29687 92395 27492 33817 24300 85609

Copying 1024 Bytes - Enable I Cache and D Cache and no optimizations

Code and Data is
fetched to I-Cache and
D-Cache

13428 14792 11315 39535 13329 14392 11314 39035

13458 14392 11314 39164 13330 14392 11314 39036

13458 14392 11314 39164 13330 14392 11313 39035

It can be noticed that while running code from ITCM and transferring data to DTCM we have the same result similar to the I-Cache

run. This is because the TCM and core spend the same number of cycles as Cache.

S32K3 Memories Guide, Rev. 0, 11/2021 S32K3 Memories Guide, Rev. 0, 11/2021

S32K3 Memories Guide, Rev. 0, 11/2021

NXP Semiconductors 21

6.2. SRAM standby

There are 32 KB of SRAM memory that are available when the MCU is in standby mode. This memory

region allows to store critical data or important code that needs to be available when the MCU wakes

from the standby mode. The MCU operates in two modes: Run mode and Standby mode. When it

operates in run mode the MCU has available all the peripherals and modules. In Standby mode the MCU

has available only a few of them because some of the power domains are disconnected from the power

supply inside the chip. The purpose of this is to achieve a low power mode in order to save power

consumption and wake up with an event, power on reset, destructive reset or a functional reset.

The next use case is a simple exercise that shows the Standby SRAM memory feature.

6.2.1. Linker file

First at all, in the linker file the SRAM Standby region need to be declared, please refer to the Example

9. Linker memory definition and size

As noted, the Standby SRAM is allocated at the first 32 KB of the SRAM Memory.

6.2.2. Main file

For the purpose of this example we are going to use three buffers:

• dummy_array[1024]: this is an array located in Flash, its size is 1024 bytes.

const uint8_t dummy_array[1024UL] =
{

0x00,0x01,0x02,0x03,…

}

• SRAM_buffer[BUFFER_SIZE]: this is an array that will be located in the SRAM memory
in any region after 0x20408000 address.

uint8_t SRAM_buffer [BUFFER_SIZE];

• SRAM_SB_buffer[BUFFER_SIZE]: this is an array that will be located in the Standby
memory

__attribute((section(".standby_ram"))) uint8_t SRAM_SB_buffer [BUFFER_SIZE];

Where BUFFER_SIZE has been defined as 1024

#define BUFFER_SIZE 1024

In the main file array buffers are cleared and dummy array bytes are copied to SRAM_buffer[] and

SRAM_SB_buffer[].

S32K3 Memories Guide, Rev. 0, 11/2021

Use Cases

S32K3 Memories Guide, Rev. 0, 11/2021

22 NXP Semiconductors

Example 14. Clear and copy data to Standby SRAM array and SRAM array

Uint32_t *pDest_SRAM_SB;
pDest_SRAM_SB = &SRAM_SB_buffer;

/* Clear buffer */
 for(i=0; i<BUFFER_SIZE; i++)
 {

SRAM_SB_buffer[i] = 0;
SRAM_buffer[i] = 0;

 }
 /* Copy dummy array into SRAM_buffer and SRAM_SB_buffer*/
 for(i=0u; i<BUFFER_SIZE; i++)
 {

pDest_SRAM_SB[i] = dummy_array[i];
SRAM_buffer[i] = dummy_array[i];

 }

SRAM_SB_buffer[]

Figure 6. Standby SRAM map memory

SRAM_buffer[]

Figure 7. SRAM map memory

After that a dummy read is performed in order to validate that the data is available from Standby SRAM

and SRAM memory.

Example 15. Dummy read to Standby SRAM array and SRAM array
read_SRAM_SB = *(uint32_t*) 0x20400000;
read_SRAM = *(uint32_t*) 0x20408830;

Use Cases

S32K3 Memories Guide, Rev. 0, 11/2021

NXP Semiconductors 23

Figure 8. Data read by dummy read

The Standby entry sequence is performed by pressing SW4 in the interrupt handler.

Example 16. SW4 configuration to generate an interrupt to enter to Standby
/* Pin Configuration for PTB26 (SW4) */
 SIUL2->IREER0 &= ~SIUL2_IREER0_IREE13_MASK; /* Disable Rising Edge event */
 SIUL2->IFEER0 |= SIUL2_IFEER0_IFEE13_MASK; /* Enable Falling Edge event */
 SIUL2->IMCR[541-512] |= SIUL2_IMCR_SSS(0b010); /* Enable Source Signal EIRQ[13] */
 SIUL2->MSCR[58] |= SIUL2_MSCR_IBE_MASK; /* IBE=1: Input Buffer Enabled */
 SIUL2->DIRSR0 &= ~SIUL2_DIRSR0_DIRSR13_MASK; /* Select Interrupt Request for PTB26 */
 SIUL2->DISR0 = 0xFFFFFFFFU; /* Clear Status Flag Interrupt */
 SIUL2->DIRER0 |= SIUL2_DIRER0_EIRE13_MASK; /* External Interrupt enable for EIRQ[13] */

Example 17. Interrupt routine to entry to Standby
void SIUL_1_Handler (void)
{

/* Wait until SW4 (PTB26) release */
while ((SIUL2->GPDI58 & SIUL2_GPDI58_PDI_n_MASK) == 1) { }
/* Drive low on PTB30 to turn-off LED D32 */
SIUL2->GPDO30 &= ~SIUL2_GPDO30_PDO_n_MASK;
Standby_Entry_Sequence();

}

Once Standby_Entry_Sequence is performed the S32K3 enters into standby mode and the debugger is

disconnected.

6.2.3. Wakeup

The wakeup process is performed by pressing the SW5 which is configured to generate an interrupt.

Example 18. SW5 configuration to generate a wakeup from Standby
/* Pin Configuration for PTB19 (SW5) */
// WKPU[38]
SIUL2->MSCR[51] = SIUL2_MSCR_IBE_MASK /* IBE=1: Input Buffer Enabled */

 | SIUL2_MSCR_PUE_MASK;

WKPU->WIFEER_64 &= ~0x00000400; /* Disable WKPU[38] falling edge */
WKPU->WIREER_64 |= 0x00000400; /* Enable WKPU[38] rising edge */
WKPU->WIFER_64 |= 0x00000400; /* WKPU[38] glitch filter enabled */
WKPU->WISR_64 = 0x00000400; /* Write 1 to Clear WKPU[38] flag */
WKPU->IRER_64 |= 0x00000400; /* Write 1 to Interrupt request WKPU[38] flag */
WKPU->NCR &= ~(WKPU_NCR_NDSS0_MASK | WKPU_NCR_NDSS1_MASK); /* NMI Destination Source Select */
WKPU->NCR |= WKPU_NCR_NWRE0_MASK | WKPU_NCR_NWRE1_MASK; /* NMI Wakeup Request Enable */
WKPU->WRER_64 |= 0x0000400; /* Enable WKPU[38] input */

After wakeup the MCU can be reconnected to the Debugger selecting the following remarked option in

the S32DS.

Use Cases

S32K3 Memories Guide, Rev. 0, 11/2021

24 NXP Semiconductors

Figure 9. Option to reconnect the debugger to the current code position

The interrupt handler is shown in the Example 19.

Example 19. Interrupt routine is attended after wakeup
void WKPU_Handler (void)
{

for(uint32_t i=0; i<0x02FFFFFF; i++)
{

__NOP();
}
read_SRAM_SB = *(uint32_t*) 0x20400000;
read_SRAM = *(uint32_t*) 0x20408830;
while(1);

}

Where

Figure 10. Data read by dummy read

SRAM_SB_buffer[]

Use Cases

S32K3 Memories Guide, Rev. 0, 11/2021

NXP Semiconductors 25

Figure 11. Standby SRAM map memory

SRAM_buffer[]

Figure 12. SRAM map memory

6.2.4. Results

As noted, the data stored in the Standby SRAM memory sourced by Standby domain is retained when

the MCU is in standby mode and available after the wakeup. But the data in SRAM sourced by Run

domain is not available and it needs to be initialized after the wakeup to avoid ECC errors. Is important

to remark that after wakeup, the Standby SRAM doesn't need to be initialized to avoid ECC error, but

the rest of the SRAM does need it, so a proper distinction should be performed in the Startup code. An

example to make this distinction is depicted in the following code.

Example 20. Standby RAM initialization only after POR
/* Initialize STANDBY RAM if chip comes from POR */
 if (MC_RGM->DES & MC_RGM_DES_F_POR_MASK)
 {
 /* Initialize STANDBY RAM */
 cnt = ((uint32_t)(&__STDBYRAM_SIZE)) / 8U;
 pDest = (uint64_t *)(&__STDBYRAM_START);
 while (cnt--)

{
 *pDest = (uint64_t)0xDEADBEEFCAFEFEEDULL;
 pDest++;

 }
 MC_RGM->DES = MC_RGM_DES_F_POR_MASK; /* Write 1 to clear F_POR */
 }

S32K3 Memories Guide, Rev. 0, 11/2021

26 NXP Semiconductors

7. SW recommendations and conclusions

A correct use of different memories available in the S32K3 Product Family can represent a better

performance of our application. The user needs to evaluate what functions and data of the application

will be stored in the different memories in order to have the best performance.

The three important recommendation to get a good performance in applications are:

• Deterministic task should be considered to be inside the ITCM and DTCM because cores can

avoid significant access time to other memories.

• Enable Caches has a great advantage for the applications due to it fetched code and data that

cores need in a quickly time, Cache can be enabled and disabled in certain location of the code in

order to have a better control of what code or data need to be fetched, is important to note that

Cache needs to be invalidated before fetch new code or data, unfortunately the Cache size is

small but we can use Tightly Coupled Memory to support the lack of Cache’s space.

• The Standby SRAM is another advantage that can be explored in different applications because

after our application wakes up from standby mode the data stored in Standby SRAM can be used

without doing any other operation. A good example is sending the stored data when an external

communication wakes up the MCU from standby mode.

8. References

• S32K3xx Reference Manual

• S32K3xx Data Sheet

• Customer Evaluation Board S32K3XXEVB-Q257

• Automotive SW - S32K3 - Real-Time Drivers for Cortex-M

• S32 Design Studio IDE

Document Number: AN13388
Rev. 0

11/2021

How to Reach Us:

Home Page:

nxp.com

Web Support:

nxp.com/support

Information in this document is provided solely to enable system and software implementers to
use NXP products. There are no express or implied copyright licenses granted hereunder to
design or fabricate any integrated circuits based on the information in this document. NXP
reserves the right to make changes without further notice to any products herein.
NXP makes no warranty, representation, or guarantee regarding the suitability of its products for
any particular purpose, nor does NXP assume any liability arising out of the application or use
of any product or circuit, and specifically disclaims any and all liability, including without
limitation consequential or incidental damages. “Typical” parameters that may be provided in
NXP data sheets and/or specifications can and do vary in different applications, and actual
performance may vary over time. All operating parameters, including “typicals,” must be
validated for each customer application by customer’s technical experts. NXP does not convey
any license under its patent rights nor the rights of others. NXP sells products pursuant to
standard terms and conditions of sale, which can be found at the following address:
nxp.com/SalesTermsandConditions.
While NXP has implemented advanced security features, all products may be subject to
unidentified vulnerabilities. Customers are responsible for the design and operation of their
applications and products to reduce the effect of these vulnerabilities on customer’s applications
and products, and NXP accepts no liability for any vulnerability that is discovered. Customers
should implement appropriate design and operating safeguards to minimize the risks associated
with their applications and products.
NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER WORLD,
COOLFLUX, EMBRACE, GREENCHIP, HITAG, I2C BUS, ICODE, JCOP, LIFE VIBES,
MIFARE, MIFARE CLASSIC, MIFARE DESFire, MIFARE PLUS, MIFARE FLEX, MANTIS,
MIFARE ULTRALIGHT, MIFARE4MOBILE, MIGLO, NTAG, ROADLINK, SMARTLX,
SMARTMX, STARPLUG, TOPFET, TRENCHMOS, UCODE, Freescale, the Freescale logo,
AltiVec, C 5, CodeTEST, CodeWarrior, ColdFire, ColdFire+, C Ware, the Energy Efficient
Solutions logo, Kinetis, Layerscape, MagniV, mobileGT, PEG, PowerQUICC, Processor Expert,
QorIQ, QorIQ Qonverge, Ready Play, SafeAssure, the SafeAssure logo, StarCore, Symphony,
VortiQa, Vybrid, Airfast, BeeKit, BeeStack, CoreNet, Flexis, MXC, Platform in a Package,
QUICC Engine, SMARTMOS, Tower, TurboLink, and UMEMS are trademarks of NXP B.V.
All other product or service names are the property of their respective owners. Arm, AMBA,
Arm Powered, Artisan, Cortex, Jazelle, Keil, SecurCore, Thumb, TrustZone, and μVision are
registered trademarks of Arm Limited (or its subsidiaries) in the EU and/or elsewhere. Arm7,
Arm9, Arm11,
big.LITTLE, CoreLink, CoreSight, DesignStart, Mali, Mbed, NEON, POP, Sensinode, Socrates,
ULINK and Versatile are trademarks of Arm Limited (or its subsidiaries) in the EU and/or
elsewhere. All rights reserved. Oracle and Java are registered trademarks of Oracle and/or its
affiliates. The Power Architecture and Power.org word marks and the Power and Power.org
logos and related marks are trademarks and service marks licensed by Power.org.
© 2021 NXP B.V.

http://www.freescale.com/
http://www.freescale.com/support
http://www.freescale.com/SalesTermsandConditions
http://www.freescale.com/SalesTermsandConditions

	1. Introduction
	2. Features
	3. Flash memory
	3.1. Read
	3.2. Write or Program
	3.3. Erase
	3.4. Locking and unlocking sector or super sector
	3.5. UTEST sector

	4. Tightly Coupled Memory
	5. SRAM
	5.1. Read
	5.2. Write

	6. Use Cases
	6.1. Flash vs TCM vs SRAM
	6.1.1. Linker file
	6.1.2. Startup
	6.1.3. Allocating code
	6.1.4. Results

	6.2. SRAM standby
	6.2.1. Linker file
	6.2.2. Main file
	6.2.3. Wakeup
	6.2.4. Results

	7. SW recommendations and conclusions
	8. References

