

User Manual

PTX130R NCI-Reader API Stack Integration (SDK v2.0.0)

R35US0004EE0170 Rev.1.70
Oct 16, 2023

 Page 1
© 2020-2023 Renesas Electronics

This document describes the “PTX NCI-Reader API” software stack (further referenced as “NCIRD API”) for the
PTX130R [1] and the steps needed to build and integrate it into a target platform.

Contents
1. Introduction .. 3

1.1 Audience .. 3
1.2 Requirements .. 3

1.2.1. Building the NCIRD API Library .. 3
1.2.2. Running the NCIRD API Library ... 3

1.3 Terminology and Abbreviations ... 3

2. NCIRD API Software Architecture .. 4
2.1 Layer Description ... 4

2.1.1. Application Layer ... 4
2.1.2. Integration Layer ... 5
2.1.3. Core Component Layer ... 5
2.1.4. Supported Features / Limitations of the NCI-Reader Stack .. 5

3. NCIRD API Description .. 10
3.1 ptxNCIRD_Allocate_Stack ... 10
3.2 ptxNCIRD_Init_Stack ... 10
3.3 ptxNCIRD_Write .. 10
3.4 ptxNCIRD_Close_Stack .. 11

4. NCIRD API States ... 11

5. NCIRD API SDK Deliverable .. 13

6. NCIRD API Target System Integration ... 14
6.1 Introduction .. 14
6.2 Build System .. 15
6.3 Integration Flow – NCIRD API (Stand-alone) .. 16
6.4 Integration Flow – NCIRD API (Component) ... 17
6.5 Target Platform Abstraction Layers ... 17

6.5.1. Hardware Abstraction Layer (HAL) ... 18
6.5.2. Operating System Abstraction Layer (OSAL) ... 19

7. RF Interface Extensions .. 20
7.1 Startup and Stop Conditions .. 20
7.2 Functionality ... 20
7.3 External Dependencies ... 22

8. Logging System ... 23

9. RF- and System-Config Updates .. 23
9.1 RF Configuration .. 23

PTX130R NCI-Reader API Stack Integration (SDK v2.0.0) User Manual

R35US0004EE0170 Rev.1.70
Oct 16, 2023

 Page 2

9.2 System Configuration .. 24

10. Proprietary Actions ... 25
10.1 Temperature Sensor Calibration ... 25

11. References .. 27

12. Revision History .. 27

Figures
Figure 1. NCIRD API and PTX Software Stack Architecture .. 4
Figure 2. NCIRD API Flow Example ... 11
Figure 3. NCI RF State Machine [2] ... 12
Figure 4. NCIRD API SDK Folder Structure ... 13
Figure 5. NCIRD API Integration Flow: Stand-alone System ... 16
Figure 6. NCIRD API Integration Flow: (sub-)Component within Existing Application ... 17
Figure 7. ExtMode RF Interface Data Messages Structure .. 20
Figure 8. Third-Party Crypto-1 Implementation Files ... 22
Figure 9. PTX1xxR IOT Config Tool ... 23

Tables
Table 1. ExtMode Commands .. 21
Table 2. ExtMode Responses ... 21
Table 3. EXTM_AUTH_KEYA/B Command ... 21
Table 4. Response to EXTM_AUTH_KEY Command .. 21
Table 5. EXTM_AUTH_READ Command .. 21
Table 6. Response to EXTM_AUTH_READ Command ... 22
Table 7. EXTM_AUTH_WRITE Command ... 22
Table 8. Response to EXTM_AUTH_WRITE Command ... 22
Table 9. Proprietary Control Messages .. 25

PTX130R NCI-Reader API Stack Integration (SDK v2.0.0) User Manual

R35US0004EE0170 Rev.1.70
Oct 16, 2023

 Page 3

1. Introduction
This document describes the “PTX NCI-Reader API” software stack (further referenced as “NCIRD API”) for the
PTX130R [1] and the steps needed to build and integrate it into a target platform.

The NCIRD API implements the “NFC Controller Interface (NCI)” protocol version 2.0 as specified by the NFC
Forum [2]. The API represents a set of library functions which allows to implement generic NFC Forum reader
applications or to integrate it into a mobile platform hosting a mobile OS such as Android or iOS.

In addition to the NCIRD API, the delivery also contains a demo implementation which shows the correct usage
of the API and some typical examples like starting the RF discovery, perform RF data exchanges etc.

1.1 Audience
This document is intended to be used by:
■ Software architects
■ Software engineers
■ Software integrator

1.2 Requirements

1.2.1. Building the NCIRD API Library
For building the NCIRD API stand-alone and / or the demo, the following tools are required:
■ CMake 3.15 or higher (see cmake.org)
■ Any C-compiler (depending on target platform) (*)

(*) tested with gcc (Raspbian 8.3.0-6+rpi1) 8.3.0
■ PTX1xxR IOT Config Tool

(to build RF- and System-configuration)

1.2.2. Running the NCIRD API Library
To use the NCIRD API and / or execute the demo, the target platform must fulfill the following requirements:
■ A general-purpose or real-time Operating System like Windows, (embedded) Linux, FreeRTOS, ...
■ Permission to access the file system of the Operating System to:

● Read configuration file(s) for the PTX130R
● Read / write general configuration parameters from / to files

■ Driver access to physical host interfaces

1.3 Terminology and Abbreviations

Term Abbreviation

HW Hardware

Integrator Developer who builds and / or integrates the NCI-Reader API into a target
application

NCI NFC Controller Interface

NFC Near Field Communication

NSC NFC Soft Controller

https://cmake.org/download/

PTX130R NCI-Reader API Stack Integration (SDK v2.0.0) User Manual

R35US0004EE0170 Rev.1.70
Oct 16, 2023

 Page 4

Term Abbreviation

RF Radio Frequency

RTOS Real-time Operating System

SDK Software Development Kit

SW Software

2. NCIRD API Software Architecture
The NCIRD API is based on the generic “PTX NSC Software Stack” and the generic “PTX NCI Software Stack”
(both components are further referenced as “Core Stack”) which consists of multiple layers and (sub-)
components.

The NCIRD API and the Core Stack are implemented in ANSI C and are therefore independent of the
underlaying target platform.

Figure 1. NCIRD API and PTX Software Stack Architecture

2.1 Layer Description

2.1.1. Application Layer

2.1.1.1. Standard Application
This layer implements the actual NCIRD API which is the main interface to the target application as shown in
Figure 1.

The NCIRD API provides a “NCI-Write”-function which allows to send NCI CMD- and (Tx-)DATA-packets as
specified in [2]. A user-defined callback-routine handles all the synchronous events (NCI RSP-packets) and
asynchronous events (NCI NTF- and (Rx-)DATA-packets).

The NCIRD API itself is described in detail in NCIRD API Description and an example flow is described in
NCIRD API States.

CORE

NFC Soft Controller API
(NSC)

IORQNVM

INT / INT-NCI

NCI-Reader API

Hardware / Platform
independent

Hardware / Platform
dependent

LOG

Integration Layer

Core
Component

Layer

Hardware- and
Operating System
Abstraction Layer

FACTORY

HAL_SPI
Impl.

HAL_I2C
Impl.

HAL_UART
Impl.

HAL OSAL

OSAL
Impl.

NSC
Stack

mobile OS (Android / iOS)

e.g. \hardware\nfc.h on Android

NCI-Reader Demo Application
Application Layer

NFC Controller Interface
(NCI)

PTX130R NCI-Reader API Stack Integration (SDK v2.0.0) User Manual

R35US0004EE0170 Rev.1.70
Oct 16, 2023

 Page 5

2.1.1.2. Mobile Application / Integration
To integrate the “PTX NCI Software Stack” into a mobile OS, the integrator can either use the NCIRD API or can
directly access the functions from the “Integration Layer” (see section 2.1.2). The implementation of the NCIRD
API is an actual wrapper for a specific set of functions from the “Integration Layer”.

2.1.2. Integration Layer
This layer implements a collection of all APIs of the Core Stack including its sub-components. The APIs from this
layer can be used directly for the integration into a target application.

2.1.3. Core Component Layer
This layer represents the actual core of the Renesas (formerly Panthronics) NSC Stack including the NCI-
component. It provides the following functionalities:
■ PTX130R chip configuration and initialization
■ RF- and SYSTEM configuration
■ RF-communication including call-back functions for asynchronous events and error handling
■ Simplified NSC Stack initialization and parametrization via Factory sub-component
■ Extensive Logging-capabilities to ease system integration and debug support
■ Internal HW access dispatcher (“IORQ”)
■ Abstracted file access (“NVM”), etc.

All these functionalities can either be accessed via the APIs of the “Integration Layer” or are encapsulated within
an NCI-command.

2.1.4. Supported Features / Limitations of the NCI-Reader Stack

2.1.4.1. NCI Control Packets

Control Packet Type Status Comment

CORE_RESET_CMD

CORE_RESET_RSP

CORE_RESET_NTF

CORE_INIT_CMD

CORE_INIT_RSP

CORE_GET_CONFIG_CMD

CORE_GET_CONFIG_RSP

CORE_SET_CONFIG_CMD

CORE_SET_CONFIG_RSP

CORE_CONN_CREATE_CMD

CORE_CONN_CREATE_RSP

CORE_CONN_CLOSE_CMD

CORE_CONN_CLOSE_RSP

CORE_CONN_CREDITS_NTF

CORE_GENERIC_ERROR_NTF

PTX130R NCI-Reader API Stack Integration (SDK v2.0.0) User Manual

R35US0004EE0170 Rev.1.70
Oct 16, 2023

 Page 6

Control Packet Type Status Comment

CORE_INTERFACE_ERROR_NTF

CORE_SET_POWER_SUB_STATE_CMD

CORE_SET_POWER_SUB_STATE_RSP

RF_DISCOVER_MAP_CMD

RF_DISCOVER_MAP_RSP

RF_SET_LISTEN_MODE_ROUTING_CMD Implemented but disabled for NCI-Reader stack (answered
with “STATUS_REJECTED”)

RF_SET_LISTEN_MODE_ROUTING_RSP See RF_SET_LISTEN_MODE_ROUTING_CMD

RF_GET_LISTEN_MODE_ROUTING_CMD Implemented but disabled for NCI-Reader stack (answered
with “STATUS_REJECTED”)

RF_GET_LISTEN_MODE_ROUTING_RSP See RF_GET_LISTEN_MODE_ROUTING_CMD

RF_GET_LISTEN_MODE_ROUTING_NTF See RF_GET_LISTEN_MODE_ROUTING_CMD

RF_DISCOVER_CMD Listen-Mode parameters ignored

RF_DISCOVER_RSP

RF_DISCOVER_NTF

RF_DISCOVER_SELECT_CMD

RF_DISCOVER_SELECT_RSP

RF_INTF_ACTIVATED_NTF

RF_DEACTIVATE_CMD

RF_DEACTIVATE_RSP

RF_DEACTIVATE_NTF

RF_FIELD_INFO_NTF Implemented but disabled for NCI-Reader stack

TF_T3T_POLLING_CMD

TF_T3T_POLLING_RSP

TF_T3T_POLLING_NTF

RF_NFCEE_ACTION_NTF Implemented but disabled for NCI-Reader stack (not sent)

RF_NFCEE_DISCOVERY_REQ_NTF Implemented but disabled for NCI-Reader stack (not sent)

RF_PARAMETER_UPDATE_CMD Optional feature

RF_PARAMETER_UPDATE_RSP Optional feature

RF_INTF_EXT_START_CMD Optional feature

RF_INTF_EXT_START_RSP Optional feature

RF_INTF_EXT_STOP_CMD Optional feature

RF_INTF_EXT_STOP_RSP Optional feature

PTX130R NCI-Reader API Stack Integration (SDK v2.0.0) User Manual

R35US0004EE0170 Rev.1.70
Oct 16, 2023

 Page 7

Control Packet Type Status Comment

RF_EXT_AGG_ABORT_CMD Optional feature

RF_EXT_AGG_ABORT_RSP Optional feature

RF_NDEF_ABORT_CMD Optional feature

RF_NDEF_ABORT_RSP Optional feature

RF_ISO_DEP_NAK_PRESENCE_CMD

RF_ISO_DEP_NAK_PRESENCE_RSP

RF_ISO_DEP_NAK_PRESENCE_NTF

RF_SET_FORCED_NFCEE_ROUTING_CMD Implemented but disabled for NCI-Reader stack (answered
with “STATUS_REJECTED”)

RF_SET_FORCED_NFCEE_ROUTING_RSP See RF_SET_FORCED_NFCEE_ROUTING_CMD

NFCEE_DISCOVER_CMD Implemented but disabled for NCI-Reader stack (answered
with “STATUS_REJECTED”)

NFCEE_DISCOVER_RSP See NFCEE_DISCOVER_CMD

NFCEE_DISCOVER_NTF See NFCEE_DISCOVER_CMD

NFCEE_MODE_SET_CMD Implemented but disabled for NCI-Reader stack (answered
with “STATUS_REJECTED”)

NFCEE_MODE_SET_RSP See NFCEE_MODE_SET_CMD

NFCEE_MODE_SET_NTF See NFCEE_MODE_SET_CMD

NFCEE_STATUS_NTF Implemented but disabled for NCI-Reader stack (not sent)

NFCEE_POWER_AND_LINK_CNTRL_CMD Implemented but disabled for NCI-Reader stack (answered
with “STATUS_REJECTED”)

NFCEE_POWER_AND_LINK_CNTRL_RSP See NFCEE_POWER_AND_LINK_CNTRL_CMD

PROPR_RUN_SYSTEM_CMD_CMD Proprietary command – implemented and enabled in the
stack. Starts specific system actions.

PROPR_RUN_SYSTEM_CMD_RSP See PROPR_RUN_SYSTEM_CMD

PROPR_RUN_SYSTEM_CMD_NTF See PROPR_RUN_SYSTEM_CMD

2.1.4.2. RF Technologies and Modes

RF-Technology & Mode Status Comment

NFC_A_PASSIVE_POLL_MODE

NFC_B_PASSIVE_POLL_MODE

NFC_F_PASSIVE_POLL_MODE

NFC_V_PASSIVE_POLL_MODE

NFC_ACTIVE_POLL_MODE Optional feature

NFC_A_PASSIVE_LISTEN_MODE Implemented but disabled for NCI-Reader stack

PTX130R NCI-Reader API Stack Integration (SDK v2.0.0) User Manual

R35US0004EE0170 Rev.1.70
Oct 16, 2023

 Page 8

RF-Technology & Mode Status Comment

NFC_B_PASSIVE_LISTEN_MODE Implemented but disabled for NCI-Reader stack

NFC_F_PASSIVE_LISTEN_MODE Implemented but disabled for NCI-Reader stack

NFC_ACTIVE_LISTEN_MODE Optional feature

2.1.4.3. RF Interfaces

RF-Interface Status Comment

NFCEE Direct RF Interface Optional feature

Frame RF Interface

ISO-DEP RF Interface Optional feature

NFC-DEP RF Interface Optional feature

NDEF RF Interface Optional feature

ExtMode RF Interface Optional feature (proprietary)

2.1.4.4. RF Interface Extensions

RF-Interface Extension Status Comment

Frame Aggregated RF Interface Extension Optional feature

LLCP Symmetry RF Interface Extension Optional feature

2.1.4.5. RF Protocols

RF-Protocol Status Comment

PROTOCOL_UNDETERMINED

PROTOCOL_T1T Support dropped by NFC Forum

PROTOCOL_T2T

PROTOCOL_T3T

PROTOCOL_ISO_DEP

PROTOCOL_NFC_DEP

PROTOCOL_T5T

PROTOCOL_NDEF Optional feature

PROTOCOL_EXTMODE Optional feature (proprietary)

PTX130R NCI-Reader API Stack Integration (SDK v2.0.0) User Manual

R35US0004EE0170 Rev.1.70
Oct 16, 2023

 Page 9

2.1.4.6. NCI Data Messages
Data messages are used to exchange data over Logical Connections between a Device Host and NFCC target
(NFCEE or Remote NFC Endpoint) [2]. The NCI-Reader Stack supports full-set of features defined by the NCI
standard and related to data message exchange (e.g., chaining, credit-based flow control, payload sizes, etc).

Specific case are empty NCI data messages (with the payload length 0).

If an empty NCI data message is received by the host and the underlying RF interface and protocol is ISO-DEP,
the Empty I-Block Presence Check will be started and the response will be sent to the host, as is done for any
other data message.

If an empty NCI data message is received by the host and the underlying RF interface and protocol is NFC-DEP,
the Attention command will be sent to the tag and the response will sent to the host.

For other interfaces and protocols, an empty NCI data message will issue sending an empty data message back
to the host and nothing will be sent to NFC endpoint via transport layer.

2.1.4.7. Hardware Abstraction Layer
This component is dependent on the used physical HW interface (SPI, I2C or UART) between the application
processor of the target platform and the PTX130R chip.

The Software interface requires function implementations to
■ Open / close an HW interface
■ Configure an HW interface (e.g. speed, timeouts etc.)
■ Exchange data via the HW interface
■ Cancel operations / access

Attention: The delivered SDK contains a reference implementation for SPI for the Linux OS. If an implementation
for a different target platform is required, the reference implementation needs to be adapted (see “NCIRD API
Target System Integration” or refer to Renesas.com to check for available reference implementations for other
target platforms).

2.1.4.8. Operating System Abstraction Layer
This component is dependent on the Operating System of target platform. The SW interface requires function
implementations to
■ Create / close / suspend threads
■ Allocate / free dynamic memory
■ Initialize / destroy / lock / unlock Mutexes
■ Initialize / close / post / wait Semaphores
■ Create / close / start / stop / measure timers

Attention: The delivered SDK contains a reference implementation for the Linux OS. If an implementation for a
different target platform is required, the reference implementation needs to be adapted (see “NCIRD API Target
System Integration” or refer to Renesas.com to check for available reference implementations for other target
platforms).

PTX130R NCI-Reader API Stack Integration (SDK v2.0.0) User Manual

R35US0004EE0170 Rev.1.70
Oct 16, 2023

 Page 10

3. NCIRD API Description
This chapter contains an overview of the functions provided by the NCIRD API.

Note: A detailed description of all functions including parameters and types can be found in the “DOCS”-folder of
the delivery (see \DOCS\index.html).

3.1 ptxNCIRD_Allocate_Stack

Declaration void *ptxNCIRD_Allocate_Stack (void);

Description Allocates the main NCIRD API stack component

Input Parameters -

Return Value Pointer to stack component

3.2 ptxNCIRD_Init_Stack

Declaration

uint16_t ptxNCIRD_Init_Stack (
 void *stackComp,
 ptxNCIRd_InitStack_Params_t *initParams);

Description Initializes the NCIRD API stack component with given parameters

Input Parameters

stackComp Pointer to stack component

initParams

Initialization parameters (host-interface
type, host-interface name, path to RF-
and SYS-config, user-defined callback-
function etc.)

Return Value Status of operation

3.3 ptxNCIRD_Write

Declaration

uint16_t ptxNCIRD_Write (
 void *stackComp,
 uint8_t *nciTxData,
 size_t nciTxDataLen);

Description Writes / Sends an NCI-Control or Data-packet

Input Parameters

stackComp Pointer to stack component

nciTxData Buffer containing NCI CMD- or DATA-
packet

nciTxDataLen Length of NCI CMD- or DATA-packet

Return Value Status of operation

PTX130R NCI-Reader API Stack Integration (SDK v2.0.0) User Manual

R35US0004EE0170 Rev.1.70
Oct 16, 2023

 Page 11

3.4 ptxNCIRD_Close_Stack

Declaration

uint16_t ptxNCIRD_Close_Stack (
 void *stackComp,
 char *logFile);

Description Uninitializes the NCIRD API stack and provides an optional log-file

Input Parameters
stackComp Pointer to stack component

logFile Name of log file

Return Value Status of operation

4. NCIRD API States
Figure 2 below shows an example flow of how the NCIRD API should be used.

The NCIRD API itself follows an object-oriented approach where a so called “Stack Component” needs to be
allocated first. This “Stack Component” serves as the main object which is used for every further call to any of
the NCIRD API functions.

Figure 2 shows a typical example flow of how to use the NCIRD API assuming all functions return successfully. If
an error occurs, the system remains in the current state.

Figure 2. NCIRD API Flow Example

START

NCI RF
STATE

HANDLER

FINISHED

ptxNCIRd_Init_Stack()

RESET

ptxNCIRd_Allocate_Stack()

ptxNCIRd_Close_Stack()

ptxNCIRd_Write()

(A)SYNC
HANDLER

TX CMD/DATA from Application to NCI

Application_Callback()

RX RSP/NTF/DATA
 from NCI to Application

PTX130R NCI-Reader API Stack Integration (SDK v2.0.0) User Manual

R35US0004EE0170 Rev.1.70
Oct 16, 2023

 Page 12

Attention: With exception of function “ptxNCIRD_Allocate_Stack”, all NCIRD API functions return a 16-bit status
word indicating the status of the requested operation.

If an operation succeeded, the status word is set to 0x0000 (= SUCCESS). In any other case the upper 8 bit of
the status word indicate the (sub-)component identifier of where the error occurred and the lower 8 bit indicate
the exact error code.

Details of the status word definition can be found in the API-documentation (see chapter 5) or directly in the
source file “\SRC\COMPS\ptx_Status.h”.

Figure 3. NCI RF State Machine [2]

State Descriptions:
■ State: START – The "Stack Component" object needs to be allocated first via a call to

"ptxNCIRD_Allocate_Stack".
■ State: RESET – Initializes the NCIRD API and the internal NSC- and NCI components via a call to

"ptxNCIRD_Init_Stack". This call takes parameters to initialize:
● the intended host-interface including characteristics,

PTX130R NCI-Reader API Stack Integration (SDK v2.0.0) User Manual

R35US0004EE0170 Rev.1.70
Oct 16, 2023

 Page 13

● the file path to the mandatory RF-configuration files "NSC_RF_CONFIG.dat" and
"NSC_SYS_CONFIG.dat",

● the user-defined callback-application and context parameter structure.
■ State: NCI RF STATE HANDLER – After the Stack-initialization, the NCIRD API is ready to process the Poll-

mode related “RF Communication State Machine” as defined in [2] and shown in Figure 3 below.
NCI CMD- and Data-packets can be continuously exchanged via calls to “ptxNCIRd_Write()”.

■ State: (A)SYNC HANDLER – This state is entered when synchronous or asynchronous events i.e. NCI RSP-,
NTF- or Data-packet get received from the NCI-stack. When a packet arrives, the user-defined callback-
routine gets called and the complete packet content is passed as input parameter via the application context
parameter structure for further processing.

■ State: FINISHED – Once the complete application shall be stopped or shut-down, it is required to call function
"ptxNCIRD_Close_Stack" to free previously allocated system resources like memory, drivers etc.

5. NCIRD API SDK Deliverable
The NCIRD API SDK delivery contains the source code and API documentation for the NCIRD API, the NSC
Stack and a demo example implementation.

The SDK also contains configuration file(s) for RF-settings a as well as build scripts to build the APIs and
examples for the Linux OS based on a HAL reference implementation for a specific host interface.

The SDK is structured as shown in the following figure.

Root Folder “SRC” Folder

Figure 4. NCIRD API SDK Folder Structure

Note: If not otherwise stated, folders containing source code includes the corresponding .c and .h files.
■ \BUILD

Output folder of the build process containing NCIRD API as shared library and / or the demo application as
executable.

■ \CONFIG
Configuration-files and -scripts for RF- and System-configuration for PTX130R chip.

■ \DOCS
HTML-based description of the NCIRD API.
Note: The landing page for the description is “\DOCS\html\index.html”.

■ \FILE_SYSTEM
Contains the various configuration files for NSC Stack and PTX130R chip.
Content:
\NSC_RF_CONFIG.dat RF-configuration for PTX130R chip
\NSC_SYS_CONFIG.dat System-configuration for PTX130R chip

■ \SRC\APIs
Contains the source code for the NCIRD API.

PTX130R NCI-Reader API Stack Integration (SDK v2.0.0) User Manual

R35US0004EE0170 Rev.1.70
Oct 16, 2023

 Page 14

Content:
\NCI_READER\ptxNCI_READER.* NCIRD API

■ \SRC\COMPS
Source code of NSC Stack including (sub-)components and HAL and OSAL.

Content:
\FACTORY*.* Factory component
\HAL*.* Hardware Abstraction Layer (HAL) including a reference
 implementation based on either UART, I2C or SPI for Linux
\INT*.* Integration Layer
\IORQ*.* Hardware access dispatcher for PTX130R
\LOG\ Logging component
\NSC\ NSC Stack Core component
\NCI\ NCI Stack Core component
\NVM\ NVM access component (file access)
\OSAL\ Operating System Abstraction Layer (OSAL) including reference
 implementation for Linux
*.h Generic headers (status information, compile switches etc.)

■ \SRC\EXAMPLE
Contains a demo example implementation how to use the NCIRD API.
Content:
\ptxNCI_READER_Demo.* Demo application
\ptxNCI_READER_Demo_Support.* Support functions for demo application

■ \SRC\CMake*.txt
CMake-based scripts to build the NCIRD API and the demo application.

6. NCIRD API Target System Integration
This chapter describes the required steps for an SW integrator to
■ compile the NCIRD API together with an example application as binary to work stand-alone
■ integrate the source code of the NCIRD API as (sub-)component into an existing application
■ implement the abstraction layers for HAL and OSAL
■ use the CMake build system
■ enable/disable logging

6.1 Introduction
As described in chapter 5, the NCIRD API and all the other components are available as source code of the
delivered SDK.

Attention: The SDK contains a reference implementation for the target platform dependent abstraction layers
HAL and OSAL based on the Linux OS and a specific host interface.
If another target platform and / or host interface is used, HAL and OSAL need to be adapted accordingly as
described in section 6.5.

While the source code of the NCIRD API can be directly integrated into existing applications (see section 6.4),
the SDK contains ready-to-use build-scripts based on CMake which supports quick creation of the following in
order to allow fast prototyping and integration:
■ The NCIRD API as stand-alone shared library or
■ Combined with the demo application as executable binary

PTX130R NCI-Reader API Stack Integration (SDK v2.0.0) User Manual

R35US0004EE0170 Rev.1.70
Oct 16, 2023

 Page 15

6.2 Build System
The build system which is delivered with the SDK is based on CMake, a cross-platform independent tool to build
software.

CMake-based projects have the advantage that they can be imported into a variety of well-known development
tools like Eclipse, Visual Studio, Visual Studio Code and many others. In addition, CMake supports automatic
compiler detection by searching for typical executables like “cc”, “gcc”, “clang” etc. (as defined and available in
PATH-variable). Automatic compiler detection is an optional feature and can be overwritten by a manual choice.
For more details on how to set up specific generators for compilers, see CMake or invoke “cmake /?” (*) from
the command line.

(*) If CMake is not registered in a system-wide environment variable, please invoke command directly from the
installation folder of CMake.

The SDK for the NCIRD API provides the following configuration CMake-scripts:
■ 1_CMake_TB.txt

- Main entry script file defining build-targets
■ 1_CMakeLists.Aux.txt

- Defines which source files are included in the build

Attention: If the existing CMake-scripts are used and new files get added to the application or existing files get
renamed, these changes must be added / changed in this file!
■ CMakeLists.txt

- Defines which source files / lists (see 1_CMakeLists.Aux.txt) belong to which build-target.

Currently the following build targets are defined:
■ “NCIRD_EXAMPLE_EXE”

This target builds the NCIRD API together with the demo application as executable binary. The resulting
executable is named “NCIRDExample” and uses the corresponding file extension of the target platform
(e.g. .exe on Windows, .a on Linux etc.).
Build-steps:
1. “cmake -g .”
2.“cmake –-build . –-target NCIRD_EXAMPLE_EXE -–config BUILD_TYPE”

■ “NCIRD_LIB”
This target builds the NCIRD API stand-alone as dynamic library (*). The resulting library is named
“libTestBench” and uses the corresponding file extension of the target platform (e.g. .dll on Windows, .so on
Linux etc.)

Build-steps:
1. “cmake -g .”
2.“cmake –-build . –-target NCIRD_LIB -–config BUILD_TYPE”

Attention: Build-step 1 of each target is only needed once after installation of SDK or once every time one of the
CMake-scripts get changed!

Note: “BUILD_TYPE” is an optional parameter and defines whether the executable is a release version
(BUILD_TYPE to be replaced with “Release”) or a debug version (BUILD_TYPE to be replaced with “Debug”).

https://cmake.org/download/
https://cmake.org/download/

PTX130R NCI-Reader API Stack Integration (SDK v2.0.0) User Manual

R35US0004EE0170 Rev.1.70
Oct 16, 2023

 Page 16

6.3 Integration Flow – NCIRD API (Stand-alone)
Figure 5 shows the integration flow for the NCIRD API as stand-alone library (Path 1) and the NCIRD API
combined with the demo application as executable (Path 2) based on the CMake-build process.

Figure 5. NCIRD API Integration Flow: Stand-alone System

Common for both paths are the implementation and / or adaptions for HAL and OSAL which need to be done by
the integrator at the very beginning. The remaining components like the actual NCIRD API and the NSC Stack
can be used “as-is”.

The provided CMake-scripts already use the correct list of source-files. If there are any modifications necessary
(e.g., renamed files or added / deleted files), they must be added to the file “1_CMakeLists_Aux.txt” in the root
folder of the SDK.

\1_CMake_TB.txt
\1_CMakeLists_Aux.txt
\CMakeLists.txt

CMake Build Scripts

\APIs\NCI_READER\ptxNCI_READER.c
\APIs\NCI_READER\ptxNCI_READER.h

NCI-Reader API

\APIs\COMPS*.c
\APIs\COMPS*.h

NSC Stack

\COMPS\HAL\ptxHal_xxxx.h
\COMPS\HAL\ptxHal_xxxx_Ext.h
\COMPS\HAL\ptxHal_xxxx.c

HAL
\COMPS\OSAL\ptxOsal.h
\COMPS\OSAL\ptxOsal_Ext.h
\COMPS\OSAL\ptxOsal.c

OSAL

implements

Integrator

Note:
Reference implementation(s)
available for HAL and OSAL

additional /
renamed Files ?

\EXAMPLE\ptxNCI_READER_Demo.c
\EXAMPLE\ptxNCI_READER_Demo.h
Other Source Files

Target Application

 YES

modify 1_CMakeLists_Aux.txt

Target Platform Compiler

Compile / Build

NO

1 2

1

2

NCI-Reader API
Library
(Binary)

 Demo Application
(Binary)

PTX130R NCI-Reader API Stack Integration (SDK v2.0.0) User Manual

R35US0004EE0170 Rev.1.70
Oct 16, 2023

 Page 17

6.4 Integration Flow – NCIRD API (Component)
Figure 6 shows the example flow when the source code of the NCIRD API and the other components get directly
integrated into an existing system / application.

Figure 6. NCIRD API Integration Flow: (sub-)Component within Existing Application

The approach for the NCIRD API, the NSC Stack and the abstraction layers HAL and OSAL is the same as
described in chapter 6.3.

Attention: To build the NCIRD API part, the following #defines must be added to the build-environment:
■ “PTX_FEATURES_NSC_READER_ONLY”
■ “PTX_FEATURES_NCI_INCLUDED”
■ “PTX_FEATURES_HAL_YYY” (YYY = SPI, I2C or UART)

6.5 Target Platform Abstraction Layers
The NSC Stack contains the two components
■ Hardware Abstraction Layer (HAL)
■ Operating System Abstraction Layer (OSAL)

which are both split into a target platform independent - and dependent part.
The target platform independent part is directly used by the NSC Stack and should therefore not be changed.
The target platform dependent needs to be adapted for the specific platform.

\APIs\NCI_READER\ptxNCI_READER.c
\APIs\NCI_READER\ptxNCI_READER.h

NCI-Reader API

\APIs\COMPS*.c
\APIs\COMPS*.h

NSC Stack

\COMPS\HAL\ptxHal_xxxx.h
\COMPS\HAL\ptxHal_xxxx_Ext.h
\COMPS\HAL\ptxHal_xxxx.c

HAL
\COMPS\OSAL\ptxOsal.h
\COMPS\OSAL\ptxOsal_Ext.h
\COMPS\OSAL\ptxOsal.c

OSAL

implements

Integrator

Note:
Reference implementation(s)
available for HAL and OSAL

Target Application Source File(s)

Target Application

Target Platform Compiler

Compile / Build Target Application
Executable

Add PTX-specific
#defines

system-wide

Target Platform Build System

PTX130R NCI-Reader API Stack Integration (SDK v2.0.0) User Manual

R35US0004EE0170 Rev.1.70
Oct 16, 2023

 Page 18

Note: The base for a target platform specific OSAL- or HAL implementation is the reference implementation of
OSAL for the Linux OS and a reference HAL implementation for a specific host interface provided in the SDK-
package.

6.5.1. Hardware Abstraction Layer (HAL)
The HAL serves as the abstraction layer for the dedicated physical host interface between the application
processor and the PTX130R chip which can be either SPI, I2C or UART.

The source code including the SW interface for the HAL can be found in \SRC\COMPS\HAL\ and is structured
as follows:

Target platform independent Part:
■ \SRC\COMPS\HAL\ptxHal.h

HAL SW interface directly used by NSC Stack
■ \COMPS\HAL\ptxHal_Ext.h

HAL data structures and support functions for implementation
■ \SRC\COMPS\HAL\ptxHal.c

Host interface independent HAL implementation

Target platform dependent Part:

Note: “xxxx” in the following paragraphs stands for either “UART”, “I2C” or “SPI”.
■ \SRC\COMPS\HAL\ptxHal_xxxx.h

HAL SW interface defining the API functions to be implemented by the integrator.
■ \SRC\COMPS\HAL\ptxHal_xxxx_Ext.h

Customizable HAL data structure and helpers for reference implementation.
Attention: The file “ptxHal_xxxx_Ext.h” defines the data structure type “ptxHal_xxxx” which is used by the
target platform independent part.
The current definition of this structure including the content is used by the reference implementation (see below)
but can be customized depending on the requirements and / or implementation of the target platform.
■ \SRC\COMPS\HAL\ptxHal_xxxx_Linux.c

- Linux OS reference implementation for specific host interface.

Attention: When the physical host interfaces SPI or I2C are used, the PTX130R chip use the pin “IRQ” to
indicate if it wants to send data to the host application processor. When using the UART as physical host
interface, the pin “IRQ” is not used i.e. data is sent asynchronously to the host application processor.

6.5.1.1. Hardware Interface Selection
Default HAL interface of the SDK delivery is SPI. This means all the source files relevant for SPI are included in
the “1_CMakeLists_Aux.txt” in the root folder of the SDK. In addition, the file “1_CMake_TB.txt“ contains the
definition of PTX_FEATURES_HAL_SPI.

NCI SDK v2.0.0 also adds the support for HAL I2C interface – source files for SPI and I2C are present in the
SDK. Please follow the steps below to quickly set up/select the I2C target interface:

PTX130R NCI-Reader API Stack Integration (SDK v2.0.0) User Manual

R35US0004EE0170 Rev.1.70
Oct 16, 2023

 Page 19

■ Define PTX_FEATURES_HAL_I2C (replace the definition for SPI with the one for I2C) in “1_CMake_TB.txt“

■ Replace the following source files in “1_CMakeLists_Aux.txt”

Note: Default target platform of the SDK delivery is RaspberryPi. Since the SDK also contains a demo
application for the target platform, a RaspberryPi device needs to be properly configured to use SPI or I2C
interface, and to use GPIO pin as defined by the SDK. There are 2 scripts in the \BUILD folder, to configure each
of the HAL interfaces to be used by the demo application. A corresponding script should be run (twice) before
the application executable.

6.5.2. Operating System Abstraction Layer (OSAL)
The OSAL serves as the abstraction layer for the underlying Operating System.

The source code including the SW interface for the HAL can be found in SRC\COMPS\OSAL\ and is structured
as follows:

Target platform independent Part:
■ \SRC\COMPS\OSAL\ptxOsal.h

OSAL SW interface directly used by NSC Stack
■ \SRC\COMPS\OSAL\ptxOsal_Ext.h

OSAL data structures and support functions for implementation

Target platform dependent Part:
■ \SRC\COMPS\OSAL\ptxOsal_Linux.c

Linux OS reference implementation.

PTX130R NCI-Reader API Stack Integration (SDK v2.0.0) User Manual

R35US0004EE0170 Rev.1.70
Oct 16, 2023

 Page 20

7. RF Interface Extensions
RF Interface Extensions extend the functionality of an RF Interface. Beside the extensions described in chapter
9 of NCI Technical Specification [2], the “NCIRD API” implements in addition one proprietary RF interface -
Extension Mode RF Interface (further referenced as “ExtMode”). This interface provides specific features to
enable compatibility to Mifare Classic cards incl. authentication, encryption and decryption.

Attention: ExtMode support is optional and can be opted out by the means of (un)commenting the preprocessor
definition PTX_FEATURES_NCI_EXTMODE. This option is provided as a target compile definition option in the
SDK CMakeLists.txt file (-DPTX_FEATURES_NCI_EXTMODE).

If ExtMode is used in the project, it is needed to obtain the 3rd party code as explained in the chapter 6.6.3
External Dependencies.

7.1 Startup and Stop Conditions
After activation of the Frame RF Interface, the ExtMode is automatically started (activated) under the following
conditions:
■ The Frame RF Interface is activated in POLL mode (RFST_POLL_ACTIVE state).
■ The Remote NFC Endpoint is using PROTOCOL_T2T RF Protocol
■ The Remote NFC Endpoint is using a custom specific SEL_RES

ExtMode is stopped automatically after RF_DEACTIVATE_CMD. The following values have been assigned for
ExtMode RF Protocol and Interface (values are chosen from the range allocated for proprietary use in the Table
133. and 134. of NCI specification [2]):
■ EXTMODE_RF_PROTOCOL 0x80
■ EXTMODE_RF_INTERFACE 0x80

7.2 Functionality
ExtMode uses the same data mapping as Frame RF Interface in [2]. However, data messages payload has
specific, custom defined structure. All the functionality is provided/executed by using NCI data packets, with the
payload containing MFC commands or responses, as shown in Figure 7.

Commands are sent from device host (DH) to NFC Controller (NFCC). Responses are sent from NFCC to DH.

Figure 7. ExtMode RF Interface Data Messages Structure

NCI data packet

Response Frame
(RSP)

DATA

0...N bytes

Command Frame
(CMD)

CMD ID DATA/PARAMETERS

1 byte 0...N bytes

PTX130R NCI-Reader API Stack Integration (SDK v2.0.0) User Manual

R35US0004EE0170 Rev.1.70
Oct 16, 2023

 Page 21

Currently, ExtMode supports the commands and responses specified in Table 1 and 2. Their specific structures
are further described in Tables 3 to 8.

Table 1. ExtMode Commands

 ExtMode Commands

Command name CMD ID Description

EXTM_AUTH_KEYA 0x60 DH requests that NFCC starts executing authentication procedure with the
connected RF endpoint by using the KeyA.

EXTM_AUTH_KEYB 0x61 DH requests that NFCC starts executing authentication procedure with the
connected RF endpoint by using the KeyB.

EXTM_AUTH_READ 0x30 DH requests that NFCC sends encrypted read block command.

EXTM_AUTH_WRITE 0xA0 DH requests that NFCC sends encrypted write block command.

Table 2. ExtMode Responses

ExtMode Responses

Type Value Description

EXTM_RSP_ACK 0x00 NFCC sends in case of successful authentication or write command.

EXTM_RSP_NAK 0xFF NFCC sends in case of authentication fail.

Table 3. EXTM_AUTH_KEYA/B Command

EXTM_AUTH_KEY

CMD ID BLOCK NUMBER UID KEY

1 By
0x60 (KeyA)/
0x61 (KeyB)

1 By 4 By 6 By

 Table 4. Response to EXTM_AUTH_KEY Command

ExtMode Response

Value Description

0x00

Returned only in case all authentication steps complete successfully. Any other value
means error.
Length: 1By

Table 5. EXTM_AUTH_READ Command

EXTM_READ

CMD ID BLOCK NUMBER

1 By
0x30

1 By

PTX130R NCI-Reader API Stack Integration (SDK v2.0.0) User Manual

R35US0004EE0170 Rev.1.70
Oct 16, 2023

 Page 22

Table 6. Response to EXTM_AUTH_READ Command

ExtMode Response

Value Description

- In case of success: 16 By of data are returned.
Otherwise, no data returned.

Table 7. EXTM_AUTH_WRITE Command

EXTM_WRITE

CMD ID BLOCK NUMBER DATA

1 By
0xA0

1 By 1 – 16 By

 Table 8. Response to EXTM_AUTH_WRITE Command

ExtMode Response

Value Description

0x00
Write operation completed successfully. Any other value means error.
Length: 1By

Attention: After the data transfer has successfully started, it might still happen that no data is received from
NFCC, for example if a card is suddenly removed from the RF field. In such cases internal data exception
handlers will be started and appropriate NCI error notification sent to DH.

7.3 External Dependencies
The authentication procedure implemented in ExtMode is based on the proprietary “Crypto-1” cipher algorithm,
which is used as a 3rd-party SW implementation.

NCIRD API uses the publicly available “Crapto-1” implementation which is for example part of the following
projects hosted on GitHub:
■ MIFARE Classic Offline Cracker "MFOC" 1
■ MIFARE Classic Universal Toolkit "MFCUK"

The exact list of files required is given in the Figure 8.

Figure 8. Third-Party Crypto-1 Implementation Files

The files simply need to be added to build-environment of the target system / application.

1. NCIRD API SDK uses the Crypto-1 implementation from the MIFARE Classic Offline Cracker "MFOC" project, accessed on
November 6th, 2020.

https://github.com/nfc-tools/mfoc
https://github.com/nfc-tools/mfcuk

PTX130R NCI-Reader API Stack Integration (SDK v2.0.0) User Manual

R35US0004EE0170 Rev.1.70
Oct 16, 2023

 Page 23

8. Logging System
The internal stack contains a powerful logging-system which is very helpful for system integration and
debugging. The logging-system is based on a ring-buffer implementation in RAM with a configurable size. It can
be optionally written to a given file once the “ptxNCIRD_Close_Stack” API function gets called.

Even though the Logger itself uses only RAM, a lot of entries can impact the system performance. Additionally,
the size i.e., the number of logging-entries has direct impact on overall RAM-consumption.

The size itself is configurable via the define “NCIRD_LOG_DEPTH”. Configuring a size of 0 disables the Logger
completely.

9. RF- and System-Config Updates
The PTX130R allows to configure various RF- and System-configuration settings which are applied during the
initialization phase of the NCI protocol during the execution of a “NCI_CORE_INIT_CMD”.

9.1 RF Configuration
The default RF configuration is stored in a binary file called “NSC_RF_CONFIG.dat” and is stored inside the
NCIRD API SDK in the folder “FILE_SYSTEM”. The location of the files can be changed by setting the
parameter “DeviceFsPath” of the API function “ptxNCIRD_Init_Stack”.

The default RF configuration i.e., the binary file itself can be generated by using the “PTX130x IOT Config Tool”
from Renesas.

Figure 9 shows a screenshot of the “PTX1xxR IOT Config Tool”. It allows to configure the RF-configuration
parameters and to generate the required .dat-files accordingly.

Figure 9. PTX1xxR IOT Config Tool

PTX130R NCI-Reader API Stack Integration (SDK v2.0.0) User Manual

R35US0004EE0170 Rev.1.70
Oct 16, 2023

 Page 24

Attention: The folder “FILE_SYSTEM” is the default path where the NCI-stack looks up for the RF (and System)
-configuration. If a different path should be used, this can be set by adapting the initialization parameters for the
call to “ptxNCIRd_Init_Stack”.

The SDK contains default parameters for the RF configuration. These parameters need to be adapted for the
final target application as the RF configuration is dependent on various factors like actual application
requirements, antenna size / form / matching etc.

To update RF configuration of the NCIRD API SDK, click the toolbar button “Generate DAT files” and select the
folder “FILE_SYSTEM”. If a custom folder has been specified using the “DeviceFsPath” parameter select that
folder instead. Pressing the “Choose” button will replace the binary file called “NSC_RF_CONFIG.dat” in the
selected folder with one that contains the RF configuration parameters from the “PTX1xxR IOT Config Tool”.

9.2 System Configuration
The default system configuration is stored in a binary file called “NSC_SYS_CONFIG.dat” and is stored inside
the NCIRD API SDK in the folder “FILE_SYSTEM”. The location of the files can be changed by setting the
parameter “DeviceFsPath” of the API function “ptxNCIRD_Init_Stack”.

Configuring the parameters and generating the .dat-file works the same way as described in RF Configuration.

PTX130R NCI-Reader API Stack Integration (SDK v2.0.0) User Manual

R35US0004EE0170 Rev.1.70
Oct 16, 2023

 Page 25

10. Proprietary Actions
To enable access and configuration of specific PTX130R system features, there is a set of NCI proprietary
control messages provided to the user.

Those proprietary control messages (command, response, and notification) have a TLV-based parameter
structure, which defines the actual system function and parameters. Currently supported control messages are
listed in the following table.

Table 9. Proprietary Control Messages

PROPR_RUN_SYSTEM_CMD_CMD

Payload Field Length Value/Description

TLV structure
defining system
specific action

m+2
Bytes

ID 1 Byte Identification of the system specific action to be executed.

Len 1 Byte Length of the Val field

Val m Bytes Parameters/Input arguments for the system specific action.

PROPR_RUN_SYSTEM_CMD_RSP

Payload Field Length Value/Description

Status 1 Byte

PTX_STATUS_OK (0x00) if command syntax is OK and the command is supported.
Otherwise, an error code is set.
In case of PTX_STATUS_OK, the requested system action will take place and the
PTX_RUN_SYSTEM_CMD_NTF notification will follow.

PROPR_RUN_SYSTEM_CMD_NTF

Payload Field Length Value/Description

TLV structure
containing result of

the executed
system action

m+2
Bytes

ID 1 Byte Identification of the system specific action that has been executed.

Len 1 Byte Length of the Val field

Val m Bytes
Result of the system action execution.
First byte is always status (PTX_STATUS_OK or an error code).

Currently supported system actions:
■ Type / ID: 0x00 Temperature-Sensor Calibration
■ Type / ID: 0x01 Setting Temperature-Sensor Shut-down
■ Others are RFU

10.1 Temperature Sensor Calibration
PTX130R features an on-chip temperature sensor that continuously monitors the die temperature. In case the
temperature exceeds a configurable threshold, the transmitter is automatically disabled.

To get expected accuracy, temperature sensor requires calibration. This should be done once for a given
PTX130R and is available to the user via the proprietary PROPR_RUN_SYSTEM_CMD_CMD.

Along with sensor calibration, the compensated temperature threshold will be calculated, and the resulting value
returned through PROPR_RUN_SYSTEM_CMD_NTF. That value should be then used as the input parameter to
Set Temperature Sensor Shut-down proprietary action.

PTX130R NCI-Reader API Stack Integration (SDK v2.0.0) User Manual

R35US0004EE0170 Rev.1.70
Oct 16, 2023

 Page 26

Temperature compensation steps:
■ Perform core reset

● call CORE_RESET_CMD
● get CORE_RESET_RSP and NTF

■ Perform temperature calibration:
● Set ambient temperature to a desired value e.g. 25°C. Provide this value as “Tambient” input parameter.
● Set the value of expected temperature shutdown threshold in “Tshutdown” parameter (e.g. 100°C, the

value is provided in [1]).
● Call PROPR_RUN_SYSTEM_CMD_CMD (ID = 0x00) with provided parameters.
● Store the value returned in PROPR_RUN_SYSTEM_CMD_NTF for future use.

PROPR_RUN_SYSTEM_CMD_CMD
Temperature Calibration TLV

ID Length Value

0x00 0x02 [Tambient] [Tshutdown]

Set shut-down temperature:
■ Perform temperature compensation
■ Call PROPR_RUN_SYSTEM_CMD_CMD (ID=0x01) with the stored value from temperature calibration step

PROPR_RUN_SYSTEM_CMD_CMD
Set Temperature Shutdown TLV

ID Length Value

0x01 0x01 [Tshutdown]

The set value is then automatically used during system initialization procedure (CORE_INIT).

Attention: Temperature sensor calibration (temperature threshold compensation) must be executed once per
PTX130R in controlled environment conditions. Once done, it does not need to be started all over again before
NFCC initialization.

PROPR_RUN_SYSTEM_CMD_NTF
Temperature Calibration TLV

ID Length Value

0x00 0x02 STATUS [Tshutdown]

PROPR_RUN_SYSTEM_CMD_NTF
Set Temperature Shutdown TLV

ID Length Value

0x01 0x01 STATUS

PTX130R NCI-Reader API Stack Integration (SDK v2.0.0) User Manual

R35US0004EE0170 Rev.1.70
Oct 16, 2023

 Page 27

11. References
[1] Renesas (formerly Panthronics), PTX130R Datasheet.

[2] NFC Forum NFC Controller Interface (NCI) Technical Specification Version 2.1, 2018

[-] NFC Forum

12. Revision History

Revision Date Description

1.7 Oct 16, 2023  Completed minor updates; no technical changes were made.

1.6 Oct 5, 2023
 Updated the document to the latest template.
 Completed minor updates throughout; however, no technical changes were made.

1.5 May 2022
 Updated ExtMode description.
 Updated Core component description - added T3T polling command.
 Added Hal interface selection.

1.4 Feb 2022
 Added logging chapter.
 Updated RF/System configuration description.

1.3 Nov 2021
 Added RF Interface Extensions description.
 Added proprietary commands.

1.2 Sep 2021
 Added ISO-DEP Presence Check R(NAK) method.
 Added NCI Data Messages chapter.

1.1 Jul 2020  Added Linux reference version

1.0 Jan 2020  First version including API description

https://www.renesas.com/us/en/document/dst/ptx130r-datasheet?r=25426201
https://nfc-forum.org/

© 202 Renesas Electronics Corporation. All rights reserved.

IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES (“RENESAS”) PROVIDES TECHNICAL
SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING
REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND
OTHER RESOURCES “AS IS” AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED,
INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for developers skilled in the art designing with Renesas products. You are solely responsible
for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3)
ensuring your application meets applicable standards, and any other safety, security, or other requirements. These
resources are subject to change without notice. Renesas grants you permission to use these resources only for
development of an application that uses Renesas products. Other reproduction or use of these resources is strictly
prohibited. No license is granted to any other Renesas intellectual property or to any third party intellectual property.
Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims,
damages, costs, losses, or liabilities arising out of your use of these resources. Renesas' products are provided only subject
to Renesas' Terms and Conditions of Sale or other applicable terms agreed to in writing. No use o any Renesas resources
expands or otherwise alters any applicable warranties or warranty disclaimers for these products.

(Rev.1.0 Mar 2020)

Corporate Headquarters Contact Information
TOYOSU FORESIA, 3-2-24 Toyosu, For further information on a product, technology, the most
Koto-ku, Tokyo 135-0061, Japan up-to-date version of a document, or your nearest sales
www.renesas.com office, please visit:

www.renesas.com/contact/

Trademarks
Renesas and the Renesas logo are trademarks of Renesas
Electronics Corporation. All trademarks and registered
trademarks are the property of their respective owners.

	1. Introduction
	1.1 Audience
	1.2 Requirements
	1.2.1. Building the NCIRD API Library
	1.2.2. Running the NCIRD API Library

	1.3 Terminology and Abbreviations

	2. NCIRD API Software Architecture
	2.1 Layer Description
	2.1.1. Application Layer
	2.1.1.1. Standard Application
	2.1.1.2. Mobile Application / Integration

	2.1.2. Integration Layer
	2.1.3. Core Component Layer
	2.1.4. Supported Features / Limitations of the NCI-Reader Stack
	2.1.4.1. NCI Control Packets
	2.1.4.2. RF Technologies and Modes
	2.1.4.3. RF Interfaces
	2.1.4.4. RF Interface Extensions
	2.1.4.5. RF Protocols
	2.1.4.6. NCI Data Messages
	2.1.4.7. Hardware Abstraction Layer
	2.1.4.8. Operating System Abstraction Layer

	3. NCIRD API Description
	3.1 ptxNCIRD_Allocate_Stack
	3.2 ptxNCIRD_Init_Stack
	3.3 ptxNCIRD_Write
	3.4 ptxNCIRD_Close_Stack

	4. NCIRD API States
	5. NCIRD API SDK Deliverable
	6. NCIRD API Target System Integration
	6.1 Introduction
	6.2 Build System
	6.3 Integration Flow – NCIRD API (Stand-alone)
	6.4 Integration Flow – NCIRD API (Component)
	6.5 Target Platform Abstraction Layers
	6.5.1. Hardware Abstraction Layer (HAL)
	6.5.1.1. Hardware Interface Selection

	6.5.2. Operating System Abstraction Layer (OSAL)

	7. RF Interface Extensions
	7.1 Startup and Stop Conditions
	7.2 Functionality
	7.3 External Dependencies

	8. Logging System
	9. RF- and System-Config Updates
	9.1 RF Configuration
	9.2 System Configuration

	10. Proprietary Actions
	10.1 Temperature Sensor Calibration

	11. References
	12. Revision History

