

L76 and LC76 series Hardware Comparison Summary

GNSS Module Series

Version: 1.0

Date: 2022-05-13

Status: Released

Our aim is to provide customers with timely and comprehensive service. For any assistance, contact our company headquarters:

Quectel Wireless Solutions Co., Ltd.

Building 5, Shanghai Business Park Phase III (Area B), No.1016 Tianlin Road, Minhang District, Shanghai 200233, China Tel: +86 21 5108 6236 Email: info@guectel.com

Or our local office. For more information, visit: http://www.quectel.com/support/sales.htm.

For technical support, or to report documentation errors, visit: http://www.quectel.com/support/technical.htm Or send an email to: support@quectel.com.

General Notes

Quectel offers the information as a service to its customers. The information provided is based upon customers' requirements. Quectel makes every effort to ensure the quality of the information it makes available. Quectel does not make any warranty as to the information contained herein, and does not accept any liability for any injury, loss or damage of any kind incurred by the use of or reliance upon the information. All information supplied herein is subject to change without prior notice.

Disclaimer

While Quectel has made efforts to ensure that the functions and features under development are free from errors, it is possible that these functions and features could contain errors, inaccuracies, and omissions. Unless otherwise provided by valid agreement, Quectel makes no warranties of any kind, implied or express, with respect to the use of features and functions under development. To the maximum extent permitted by law, Quectel excludes all liability for any loss or damage suffered in connection with the use of the functions and features under development, regardless of whether such loss or damage may have been foreseeable.

Duty of Confidentiality

The Receiving Party shall keep confidential all documentation and information provided by Quectel, except when the specific permission has been granted by Quectel. The Receiving Party shall not access or use Quectel's documentation and information for any purpose except as expressly provided herein. Furthermore, the Receiving Party shall not disclose any of the Quectel's documentation and information to any third party without prior written consent by Quectel. Quectel reserves the right to take legal action for any noncompliance to the above requirements, unauthorized use, or other illegal or malicious use of the documentation and information.

Copyright

The information contained here is proprietary technical information of Quectel. Transmitting, reproducing, disseminating, and editing this document as well as using the content without permission are forbidden. Offenders will be held liable for payment of damages. All rights are reserved in the event of a patent grant or registration of a utility model or design.

Copyright © Quectel Wireless Solutions Co., Ltd. 2021. All rights reserved.

Safety Information

The following safety precautions must be observed during all phases of operation, such as usage, service, or repair of any terminal or mobile incorporating the module. Manufacturers of the terminal should notify users and operating personnel of the following safety information by incorporating these guidelines into all product manuals. Otherwise, Quectel assumes no liability for customers' failure to comply with these precautions.

About the Document

Document Information	
Title	L76_and_LC76_series_Hardware_Comparison_V1.0
Subtitle	GNSS Module Series
Document Type	Comparison
Document Status	Temporary

Revision History

Version	Date	Description
1.0	2022-05-15	Initial version

Contents

Saf	ety Inf	ormation	4
Ab	out the	Pocument	5
Со	ntents		6
1	Scop	e	7
2	Featu	ıre Comparison	7
3	Hard	ware Comparison	9
	3.1.	Module View	9
	3.2.	Pinning Comparison	10
	3.3.	V_BCKP Power Supply	11
	3.4.	VCC Power Supply	11
	3.5.	STANDBY versus AP_REQ	11
	3.6.	FORCE_ON versus WAKEUP	12
	3.7.	Mechanical Comparison	13
	3.8.	Electrical Compatibility	14

1 Scope

This document offers a comparison of the Quectel L76, L76L, L76LB, LC76F and LC76G GNSS modules.

2 Feature Comparison

Each of the modules present different features and correspond to different technologies. We present a brief summary of the most relevant features and characteristics of each module.

The most recent module is the LC76G, which has 2 versions. The pinning, reference design, command set and behavior is the same. Following are their differences.

- LC76GAA This module uses a DC-DC converter and a low power LNA. It's optimized for current consumption.
- LC76GAB Uses an LDO and a normal power LNA inside the module. It's a cost optimized product.

Table 1: Feature comparison

Feature		L76	L76L	L76LB	LC76F	LC76GAA/AB
Chipset		MT3333	MT3333	AG3331	GK9501	AG3352
Type GNSS Receiver		Single Band				
		GPS, QZSS,	GPS, QZSS,	GPS, QZSS,	GPS, QZSS,	GPS, QZSS,
		GLONASS,	GLONASS,	GLONASS,	GLONASS,	GLONASS,
Const	ellations	Galileo,	Galileo,	BeiDou	Galileo,	Galileo,
		BeiDou	BeiDou		BeiDou	BeiDou
Number of co	ncurrent Satellite	3	3	2	**3	4
Const	ellations					
S	BAS		WAAS	, EGNOS, MSAS	, GAGAN	
Mem	ory Type			Flash		
	Condition	GPS+GLO	GPS+GLO	GPS+GLO	GPS+GLO	G+G+G+B+Qz
	Acquisition	23mA	31mA	31mA	28mA	<mark>Tbd</mark> / 36mA
Current	Tracking	18mA	31mA	27mA	28mA	<mark>Tbd</mark> / 34mA
Consumption	Backup	7μΑ	8μΑ	8uA	30µA	<mark>Tbd</mark> / 13μA
	Acquisition	-148dBm	-149dBm	-149dBm	-148dBm	-147dBm***
	Reacquisition	-160dBm	-161dBm	-161dBm	-162dBm	-159dBm***
Sensitivity	Tracking	-165dBm	-167dBm	-167dBm	-165dBm	-165dBm***
	Cold	35s	32s	32s	30s	30s
TTFF	Warm	30s	30s	28s	2s	2s
Standalone	Hot	1s	2s	1s	2s	2s
	Cold	15s	15s	15s	6s	15s
	Warm	5s	5s	8s	2s	2s
TTFF AGNSS	Hot	1s	2s	1s	2s	2s
Ext	ra LNA	Optional	Integrated	Integrated	Integrated	Integrated
Osc	illator	Integrated	Integrated	Integrated	Integrated	Integrated
Accura	су (СЕР50)	< 2.5m	< 2.5m	< 2.5m	< 2m	< 2m
Velocity	/ Accuracy	0.1m/s	0.1m/s	0.1m/s	0.1m/s	0.1m/s
Acceleration Accuracy		0.1m/s²	0.1m/s ²	0.1m/s ²	0.1m/s²	0.1m/s ²
Operating Temperature		-45 – 85°C	-45 – 85°C	-45 – 85°C	-40 - 85°C	-40 - 85°C
Default Baudrate		9600bps	9600bps	9600bps	9600bps	115200bps
Power Supply		2.8V - 4.3V	2.8V - 4.3V	2.8V - 4.3V	3.0V - 4.3V	2.55V - 3.6V
		2.8V	2.8V	2.8V(L76LB)	2.8V	VCC
I/O Level*				1.8V(L76LBL)		
Requires External Components				No		

* The I/O Voltage is 2.8V but could handle up to 3.1V. Please check the Hardware Design Guide.

* It's suggested to use series resistors for all I/O lines.

** Under development

*** The supplier is using a different test method, the performance is the same as other versions

3 Hardware Comparison

3.1. Module View

Figure 1: Module View

The L76, L76L, L76LB, LC76F and LC76G have a compatible footprint, it's easy to replace one module for the other.

LG76G has more pins for extra features. These pins can be left non connected when replacing another module.

Figure 2: L76, L76L, L76LB, LC76F, LC76G Pinout

3.2. Pinning Comparison

Table 2: Functional pin comparison

Pin	L76	L76L	L76LB	LC76F	LC76G
1	GND	GND	GND	GND	GND
2	TXD1	TXD1	TXD1	TXD	TXD
3	RXD1	RXD1	RXD1	RXD	RXD
4	1PPS	1PPS	1PPS	1PPS	1PPS
5	STANDBY	STANDBY	STANDBY	STANDBY	AP_REQ
6	V_BCKP	V_BCKP	V_BCKP	V_BCKP	V_BCKP
7	NC	NC	NC	NC	NC
8	VCC	VCC	VCC	VCC	VCC
9	RESET	RESET	RESET	RESET	RESET
10	GND	GND	GND	GND	GND
11	RF_IN	RF_IN	RF_IN	RF_IN	RF_IN
12	GND	GND	GND	GND	GND
13	ANTON	ANTON	ANTON	ANTON	LNA_EN
14	VCC_RF	VCC_RF	VCC_RF	VCC_RF	VCC_RF
15	NC	NC	NC	NC	NC
16	NC	I2C_SDA	I2C_SDA	I2C_SDA	I2C_SDA
17	NC	I2C_SCL	I2C_SCL	I2C_SCL	I2C_SCL
18	WAKEUP	FORCE_ON	FORCE_ON	WAKEUP	NC
19					NC
20					SPI_CS
21					GEOFENCE
22					JAM_IND
23					3D_FIX
24					NC
25					SPI_CLK
26					SPI_MISO
27					SPI_MOSI
28					GND

The LC76G has more pins for SPI communication, Geofence, Jamming and 3D_Fix indication. For details please refer to the Hardware Design Documentation.

3.3. V_BCKP Power Supply

The same Backup Power Supply can be applied for all modules.

It's important that V_BCKP is applied before, or at the same time as the main voltage VCC.

3.4. VCC Power Supply

Please apply the same filtering for all GNSS modules. The Zener will protect the module input from voltage peaks and surges. The capacitors should be placed close to the module and filter out all unwanted frequencies on the supply line.

3.5. STANDBY versus AP_REQ

STANDBY and AP_REQ are different names for the same functionality. The pin is internally pulled up so it needs an external driver circuit.

To enter STANDBY mode, the pin should be low. To exit STANDBY mode, the pin should be released.

3.6. FORCE_ON versus WAKEUP

Concerning pin 18, FORCE_ON or WAKEUP, the naming and the diagrams are different, but the functionality is exactly the same. Both wake up the modules from Backup mode, see below:

Figure 3: FORCE_ON versus WAKEUP is the same function

3.7. Mechanical Comparison

The following table presents a brief comparison of the modules. For more in-depth information please refer to the hardware documents.

 Table 3: Mechanical Comparison

Table 4: Weight specification

	L76	L76L	L76LB	LC76F	LC76G
Weight [g]	0.6	0.6	0.5	0.5	0.5

3.8. Electrical Compatibility

From the table below, the proposed products are fully compatible for Voltage Levels.

LC76 series require a more narrow operating voltage.

LC76G has the IO's at the power supply level, which will simplify communication circuits and reduce an LDO in the BOM.

	L76	L76L	L76LB	L76LBL*	LC76F	LC76G
VCC	2.8V - 4.3V	2.8V - 4.3V	2.8V - 4.3V	2.8V - 4.3V	3.0V - 4.3V	2.55V – 3.6V
V_BCKP	1.5V - 4.5V	1.5V - 4.5V	1.5V - 4.5V	1.5V - 4.5V	2.3V - 4.3V	1.65 V – 3.6V
RESET	**	**	**	**	**	**
RXD1	2.8V	2.8V	2.8V	1.8V	2.8V	VCC
TXD1	2.8V	2.8V	2.8V	1.8V	2.8V	VCC
ANTON	2.8V	2.8V	2.8V	1.8V	2.8V	VCC
STANDBY	2.8V	2.8V	2.8V	1.8V	2.8V	VCC
1PPS	2.8V	2.8V	2.8V	1.8V	2.8V	VCC
FORCE_ON	2.8V	2.8V	2.8V	1.8V	2.8V	VCC
VCC_RF	VCC	VCC	VCC	VCC	VCC	VCC
SDA	n.a.	2.8V	2.8V	1.8V	2.8V	VCC
SCL	n.a.	2.8V	2.8V	1.8V	2.8V	VCC

Table 5: Voltage tolerance comparison

* The LC76LBL version has all IO's at 1.8V

** RESET_N needs an external transistor driver, it's internally pulled up.

*** The I/O Voltage is 2.8V but could handle up to 3.1V. Please check the Hardware Design Guide. We also suggest to use series resistors for all I/O lines.