
Interfacing to the Pinnacle ASIC Using SPI and I2C
Application Note
 Document Version 1.6
AUGUST 2017

 GT-AN-090620

This document provides the information necessary to interface to a Cirque Pinnacle ASIC. Important
features needed to READ, WRITE, and process data are included. Sample firmware is provided to
show how to properly communicate with the Pinnacle ASIC using SPI or I2C protocol. This document
applies to Cirque's Pinnacle 2.2, and Pinnacle AG 1.4

Document Version History

Notice
This document is the sole property of Cirque Corporation. The information contained within is proprietary to
Cirque Corporation. The holder of this document shall treat all information contained herein as confidential,
shall use the information only for its intended purpose, and shall protect the information in whole or in part from
duplication, disclosure to any other party, or dissemination in any media without written permission from Cirque
Corporation.

Note to Purchasers: All specifications subject to change without notice. Cirque shall not be liable for any
damages whether non-specified, direct, indirect, special, incidental or consequential (including downtime, loss
of profit or goodwill) regardless of the legal theory asserted. This document supersedes all previous versions.

Copyright, Trademark, and Patent Information
Copyright © 2017 Cirque Corporation. All Rights Reserved. Cirque®, the Cirque logo, GlideTouch®, GlidePoint®,
the GlidePoint logo, and GlideExtend® are trademarks of Cirque Corporation. All other brand names or
trademarks are the property of their respective owners.

Cirque's touch controller platforms and technology solutions are protected by patents and additional U.S. and
International patents pending. Contact Cirque for more information.

Date Current
Version Description

15 JULY 2011 1.0 Documentation creation.

30 JULY 2011 1.2 Modified Firmware ID, added SPI timing note

OCTOBER 2012 1.3 Corrected documentation errors.

MAY 2014 1.4 Updated formatting and edited documentation for accuracy.

JUNE 2015 1.5 Updated document for accuracy

AUGUST 2017 1.6 Added extended registers information and updated sample code.

 GT-AN-090620 – Interfacing to the Pinnacle ASIC Using SPI and I2C – Document Version 1.6 3

Table of Contents
Introduction. 4
Pinnacle Overview . 4
Pinnacle Operation . 5

Register Access Protocol (RAP) . 5
Status and Data Ready Signals . 7
Data Output . 8
Power Modes . 12
Touch Detection (Z Information) . 14
Compensation . 14

Example Start-up Sequence . 15
Serial Peripheral Interface (SPI) . 16

SPI Timing. 17
Register Access Using SPI . 19

Reading a Register Using SPI . 19
Pipelining Multiple Reads . 21
Writing to a Register Using SPI . 23

Inter Integrated Circuit (I2C) Protocol . 24
I2C Operation . 24

Register Access Protocol Using I2C. 26
Reading a Register with I2C . 26
Writing to a Register with I2C . 28

Appendix: Extended Register Access . 29
Extended Register Access Examples . 30
Example Code. 32

Contact Information . 33

Introduction
1. Introduction

This document describes how to communicate with a Cirque Pinnacle ASIC using either the SPI
or I2C protocol. Pinnacle is also capable of communication using PS/2 signals (commonly used
for computer peripherals); however, this document focuses solely on design for embedded
devices using the built-in support for SPI and I2C communication. A wide variety of
microcontrollers can be used with SPI and I2C to interact with Cirque's Pinnacle ASIC.

There are two types of Pinnacle ASICs (Pinnacle version 2.2 and Pinnacle AG version 1.4), both
types are described in this manual. Most information is the same for both versions. When
differences exist, they are identified in the tables and descriptions.

1.0.0.1 Additional Documentation
Other documents that provide information about Cirque's Pinnacle ASIC:

• AS-150408: Pinnacle ASIC Electrical and Mechanical Specification

• GT-AN-090624: Managing Sensor Compensation Application note

• GT-AN-090625: Using a Stylus with Cirque’s Pinnacle ASIC Application note

2. Pinnacle Overview

The Pinnacle ASIC monitors a capacitive touch sensor. When a finger (or a stylus) is placed on the
surface of the sensor Pinnacle will determine the location of the object (user's finger or stylus).
The position data is reported to the host as X and Y coordinates. The strength of the signal is
reported as the Z coordinate.
 GT-AN-090620 – Interfacing to the Pinnacle ASIC Using SPI and I2C – Document Version 1.6 4

Pinnacle Operation
3. Pinnacle Operation

Pinnacle has several features and options to achieve varied sensor functionality. This section
describes how to establish proper communication with Pinnacle, and how to select the preferred
features and options.

The Pinnacle ASIC uses a simple Register Access Protocol (RAP) method to READ and WRITE to
the Pinnacle's registers. The primary functions that aid communication with Pinnacle are
described in this section.

3.1 Register Access Protocol (RAP)
Pinnacle's registers are read and written to, using a Register Access Protocol (RAP). RAP has only
two functions, READ and WRITE.

Note: See the sections on SPI or I2C for examples of how to perform the READ and WRITE operations.

Registers are accessed by sending a byte in the format shown in Table 1. The Standard Registers
have five-bit addresses that range from 0x00 to 0x1F; see Table 2 on page 6 for the register map.

Follow this process to avoid accidentally replacing existing settings in a register, when performing
a WRITE sequence:

1. READ the register.

2. Modify the value using logical operators to set or clear only the intended bits.

3. WRITE the modified value to the register.

Table 1. Register Access Protocol

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

READ (0xAX) 1 0 1 Address 4 Address 3 Address 2 Address 1 Address 0

WRITE (0x8X) 1 0 0 Address 4 Address 3 Address 2 Address 1 Address 0
 GT-AN-090620 – Interfacing to the Pinnacle ASIC Using SPI and I2C – Document Version 1.6 5

Pinnacle Operation
3.1.1 RAP_WRITE and RAP_READ Sample Code

Table 2. Standard Register Set

Address Pinnacle 2.2 Pinnacle AG Description

0x00 Firmware ID Firmware ID Firmware ASIC ID.

0x01 Firmware Version Firmware Version Firmware revision number.

0x02 Status1 Status1 Contains status flags about the state of Pinnacle.

0x03 SysConfig1 SysConfig1 Contains system operation and configuration bits.

0x04 FeedConfig1 FeedConfig1 Contains feed operation and configuration bits.

0x05 FeedConfig2 FeedConfig2 Contains feed operation and configuration bits.

0x06 RESERVED RESERVED RESERVED

0x07 CalConfig1 CalConfig1 Contains calibration configuration bits.

0x08 PS/2 Aux Control PS/2 Aux Control Contains Data register for PS/2 Aux Control.

0x09 Sample Rate Sample Rate Number of samples generated per second.

0x0A ZIdle ZIdle Number of Z=0 packets sent when Z goes from >0 to 0.

0x0B Z Scaler Z Scaler Contains the pen Z_On threshold.

0x0C Sleep Interval Sleep Interval

0x0D Sleep Timer Sleep Timer

0x0E RESERVED RESERVED RESERVED

0x0F RESERVED RESERVED RESERVED

0x10 RESERVED PacketByte_0 trackpad Data (Pinnacle AG)

0x11 RESERVED PacketByte_1 trackpad Data (Pinnacle AG)

0x12 PacketByte_0 PacketByte_2 trackpad Data

0x13 PacketByte_1 PacketByte_3 trackpad Data

0x14 PacketByte_2 PacketByte_4 trackpad Data

0x15 PacketByte_3 RESERVED trackpad Data (Pinnacle)

0x16 PacketByte_4 RESERVED trackpad Data (Pinnacle)

0x17 PacketByte_5 RESERVED trackpad Data (Pinnacle)

0x18 RESERVED RESERVED RESERVED

0x19 RESERVED RESERVED RESERVED

0x1A RESERVED RESERVED RESERVED

0x1B RESERVED RESERVED RESERVED

0x1C RESERVED RESERVED RESERVED

0x1D RESERVED RESERVED RESERVED

0x1E RESERVED RESERVED RESERVED

0x1F RESERVED RESERVED RESERVED
 GT-AN-090620 – Interfacing to the Pinnacle ASIC Using SPI and I2C – Document Version 1.6 6

Pinnacle Operation
3.2 Status and Data Ready Signals

3.2.1 Hardware Data Ready

To interrupt or alert the host when data is ready, Pinnacle uses a Hardware Data Ready (HW_DR)
signal (active HIGH) that is triggered by either the Command Complete (SW_CC) flag or the
Software Data Ready (SW_DR) flag in the Status1 register address 0x02. When either software
flag is set, the HW_DR (pin 36 PA2) is also asserted. The SW_DR and SW_CC flags must be
manually cleared by the host. The HW_DR signal remains asserted while either SW_DR or SW_CC
is asserted (See Table 3 below).

3.2.2 Command Complete

The Software Command Complete (SW_CC) flag (Bit [3] of Register 0x02, Status1) is asserted
after successful completion of either power on reset (POR) or calibration. This flag triggers the
HW_DR signal, which then alerts the Host. The host must clear the SW_CC flag, by writing 0x00
to the Status1 register (0x02), in order to clear HW_DR (see Table 4).

To clear Command Complete and Software Data Ready flags simultaneously, see the code below
in ClearFlags Example Code. The RAP Write byte is explained in Writing to a Register Using SPI on
page 23.

3.2.2.1 ClearFlags Example Code

void ClearFlags(void) {
RAP_WriteByte(0x02, 0x00); // Write 0x00 to Status1 register (0x02)

}

Table 3. Data Ready and Command Complete

Signal Description

Hardware Data Ready (HW_DR) Asserted (HIGH) with either SW_DR or SW_CC flag.
Cleared when both SW_DR and SW_CC flags are cleared.

Software Data Ready (SW_DR) Asserted with new data.
Remains asserted until cleared by host.

Command Complete (SW_CC) Asserted after calibration, POR.
Remains asserted until cleared by host.
 GT-AN-090620 – Interfacing to the Pinnacle ASIC Using SPI and I2C – Document Version 1.6 7

Pinnacle Operation
3.2.3 Software Data Ready

When a touch is detected, Pinnacle loads X and Y position data into the position registers and
asserts the SW_DR flag (Bit [2] of Register 0x02, Status 1), which also triggers the HW_DR signal
(see Table 4 below). While the finger/stylus is present, the position registers are updated every
10 ms and SW_DR and HW_DR are asserted. The host must clear SW_DR, by writing a value of
0x00, to the Status1 register (0x02), which will clear HW_DR and ensure no data is missed.

Note: SW_CC and SW_CC flags may be cleared by the same write operation.

3.3 Data Output
To receive position data from Pinnacle, the data feed must be enabled by asserting the Feed
Enable flag (Bit [0] Register 0x04, FeedConfig1) (see Table 5). Once enabled, Pinnacle’s finger
tracking, sampling, and reporting begins.

Pinnacle can report position as relative data or absolute data. Relative data is identical to a
mouse or pointer where each position is reported as relative to the last position. Absolute data is
a grid with X positions and Y positions (Pinnacle range: X= 0 - 2047, Y= 0 - 1535, Pinnacle AG
range: X= 0 - 1919, Y= 0 - 1407).

The absolute data mode allows the designer a wider range of freedom to process the data and
design the preferred touch functions. In absolute mode, Y and X data can be inverted to allow
different orientations of the trackpad. The data output mode (relative or absolute) is specified
using Bit[1] in Register 0x04, FeedConfig1 (see Table 5). Advanced features for relative mode can
be set using flags in Register 0x05, FeedConfig2 (see Table 6 on page 9).

1. Y and X data count invert is only available when in absolute mode.

(Pinnacle range: X= 0 - 2047, Y= 0 - 1535, Pinnacle AG range: X= 0 - 1919, Y= 0 - 1407)

2. Disabling the Y-axis will not allow regular tracking and is not recommended for typical applications.

Table 4. Status1 - Register 0x02

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Description Command Complete
(SW_CC)

Software Data Ready
(SW_DR)

READ/WRITE R/W R/W

Values 0 = Clear 0 = Clear

Default 0 0

Table 5. FeedConfig1 (Data Output Flags) - Register 0x04

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Description Y data Invert1 X data Invert1 Y Disable2 X Disable3 Filter Disable4 Data mode Feed Enable

READ/
WRITE

R/W R/W R/W R/W R/W R/W R/W

Values 1=Y max to 0
0=0 to Y max

1=X max to 0
0=0 to Y max

1=no Y data
0=Y data

1=no X data
0=X data

1=no filter
0=filter

1=absolute
0=relative

1=feed
0=no feed

Default 0 0 0 0 0 0 0
 GT-AN-090620 – Interfacing to the Pinnacle ASIC Using SPI and I2C – Document Version 1.6 8

Pinnacle Operation
3. Disabling the X-axis will not allow regular tracking and is not recommended for typical applications.

4. The Filter disable bit controls whether the filtering algorithm is applied to generated data. By default the hardware filters are enabled.
Cirque does not recommend disabling hardware filtering.

1. GlideExtend is Cirque's patented motion extender technology that allows the user to continue the drag function when an edge is reached, by lifting
and repositioning the finger.

2. Secondary Taps allows a tap in the upper right corner (standard orientation) to simulate an activation of the secondary button.

3. Disabling all taps disables secondary taps, even if secondary tap is explicitly enabled.

4.Intellimouse enabled will change Pinnacle's relative data packet to four bytes rather than three. The fourth byte (PacketByte_3) will report scroll
data (referred to as wheel count).

3.3.1 Relative Data Mode Data Packet

Note: The data packets are reported in different registers for Pinnacle and Pinnacle AG. See Table 2,
Standard Register Set on page 6 for the appropriate register address.

Pinnacle reports a change (or delta) in current position from the previous position in relative
mode. The position deltas are stored in PacketByte_1 (X delta) and PacketByte_2 (Y delta). The X
and Y data sign (either negative (-) or Positive (+)) indicates the direction of change and is
reported in PacketByte_0.

Table 6. FeedConfig2 (Feature flags for Relative Mode Only) - Register 0x05

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Description Swap X & Y GlideExtend®
Disable 1

Scroll
Disable

Secondary
Tap Disable 2

All Taps
Disable 3

Intellimouse
Enable 4

READ/
WRITE

R/W R/W R/W R/W R/W R/W

Values 1=90° rotation
0=0° rotation

1= disable
0 = enable

1= disable
0 = enable

1= disable
0 = enable

1= disable
0 = enable

1= enable
0= disable

Default 0 0 0 0 0 0
 GT-AN-090620 – Interfacing to the Pinnacle ASIC Using SPI and I2C – Document Version 1.6 9

Pinnacle Operation
3.3.1.1 Button Data

Relative Data Mode supports three button inputs. Button data can be generated by the actual
button or by taps (if enabled) that simulate a button press. Button data is also reported in
PacketByte_0. If Intellimouse is enabled (Bit[0] of Register 0x05, FeedConfig2), scroll data (wheel
count) is reported in an additional byte, PacketByte_3 (See Table 7).

Example: To go from a positive delta to a negative would look like this:

3
2
1
0
255(sign bit is set, making -1)
254(sign bit is set, making -2)
252(sign bit is set, making -3)

Table 7. Relative Position Registers Byte Format

Address Description Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

PacketByte_0 X & Y Sign,
Button (or tap)
data

0 0 Y sign

1=(-)
0=(+)

X sign

1=(-)
0=(+)

1 BTN Auxiliary

1=pressed
0=released

BTN Secondary
(or top right
corner tap)
1=pressed
0=released

BTN Primary
(or tap)
1=pressed
0=released

PacketByte_1 X Delta X7 X6 X5 X4 X3 X2 X1 X0

PacketByte_2 Y Delta Y7 Y6 Y5 Y4 Y3 Y2 Y1 Y0

PacketByte_3 Wheel Count W7 W6 W5 W4 W3 W2 W1 W0
 GT-AN-090620 – Interfacing to the Pinnacle ASIC Using SPI and I2C – Document Version 1.6 10

Pinnacle Operation
3.3.2 Absolute Data Packet

Note: The data packets are reported in different registers for Pinnacle and Pinnacle AG. See Table 2 on
page 6 and Table 8 on page 11 for the appropriate register addresses.

Absolute mode is entered by setting Bit[1] in FeedConfig1 (Register 0x04) (see Table 5 on
page 8). The Host reads whichever registers meet the application needs. For example, if button
status is not needed, the host can read the last four packet bytes.

3.3.2.1 Example Code

Note: This code is for Pinnacle 2.2.

uint16_t calculateXPosition(uint8_t * registerVals) {
return registerVals[0x14] | ((registerVals[0x16] & 0x0F) << 8);

}

uint16_t calculateYPosition(uint8_t * registerVals) {
return registerVals[0x15] | ((registerVals[0x16] & 0xF0) << 4);

}

Table 8. Absolute Position Registers Byte Format

Pinnacle
Address

Pinnacle AG
Address Description Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

0x12 0x10 Button/Switch
Status

SW5 SW4 SW3 SW2 SW1 SW0

0x14 0x11 X-Position Low
Byte

X7 X6 X5 X4 X3 X2 X1 X0

0x15 0x12 Y-Position Low
Byte

Y7 Y6 Y5 Y4 Y3 Y2 Y1 Y0

0x16 0x13 X & Y Position
High Bits

Y11 Y10 Y9 Y8 X11 X10 X9 X8

0x17 0x14 Z-Level Z5 Z4 Z3 Z2 Z1 Z0
 GT-AN-090620 – Interfacing to the Pinnacle ASIC Using SPI and I2C – Document Version 1.6 11

Pinnacle Operation
3.4 Power Modes
Pinnacle has four power modes - Active (touch detected), Idle (no touch), Low Power/ Sleep (lower
power after ~ 5 seconds of inactivity) and Shutdown/Standby (no data reported)
(See Figure 1 below).

Figure 1. Pinnacle Power Mode State Machine

3.4.1 Active and Idle Mode

By default, Pinnacle toggles between Active and Idle mode. Pinnacle is in Active mode when a
touch is detected (that is, a finger or stylus is present and is moving or tapping on the trackpad).
The measurement system is active and data packets are being created and then sent to the host.
Active mode begins as soon as a touch is detected. Idle mode is entered when the finger has been
removed and there are no data packets to be sent. While in Idle mode, Pinnacle wakes every 10
milliseconds to check for a touch.

3.4.2 Low Power Sleep Mode

Enabling sleep mode will cause Pinnacle to go into a low power mode (around 50 µA) within 5
seconds of no touch detection. While in sleep mode, Pinnacle will wake within 300 ms to report
any detection of a finger/stylus. To enable sleep mode, assert the Sleep Enable flag, Bit [2] of
Register 0x03, SysConfig1 (see Table 9 on page 13). The bit remains asserted and Pinnacle uses
low power sleep mode until the Host clears the Sleep Enable flag.

Shutdown Bit

Asserted

Finger

 Movement?

OK to Put

Into Sleep?

Put Into

Shutdown Mode

Put Into

Active Mode

Put Into

Idle Mode

Put Into

Sleep Mode

Wake in Timeout (milliseconds)

or Wake Event (Buttons)

YES

YES

YES

NO

NO

NO
 GT-AN-090620 – Interfacing to the Pinnacle ASIC Using SPI and I2C – Document Version 1.6 12

Pinnacle Operation
3.4.3 Shutdown/Standby Mode

Shutdown/Standby mode is a very low power mode and Pinnacle does not track touch in this
mode. Shutdown/Standby is activated by the host when the Shutdown flag is asserted (Bit [1]
Register 0x03, SysConfig1) and deactivated when the bit is cleared.

1.Request additional instructions from Cirque for exiting Sleep and Shutdown modes if your application requires SPI
at 1 MHZ or greater.

Table 9. SysConfig1 (Low Power Mode) - Register 0x03

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Description Sleep Enable 1 Shutdown 1 Reset

READ/WRITE R/W R/W R

Values 1=low power mode
0=normal mode

1=Shutdown
0=Active

1 = Reset

Default 0 0 0
 GT-AN-090620 – Interfacing to the Pinnacle ASIC Using SPI and I2C – Document Version 1.6 13

Pinnacle Operation
3.5 Touch Detection (Z Information)

3.5.1 Z Level

The Z level is a measure of how much the capacitive field has changed. When no finger is near,
the Z level will be at or near zero (0). The Z level will start increasing as a finger approaches. The
Z level continues to increase as more of the surface area of the finger touches the surface of the
sensor. Position data is generated for any Z level greater than zero (0). Overlay types (glass vs.
plastic) on the sensor and application requirements are factors that the developer needs to
consider when setting Z level thresholds for a touch and a release. With absolute data mode
enabled, Z-level values are reported in Bits [0:5] of the Z-level Packet Byte (see Table 8 on
page 11).

3.5.2 Z-Idle

During Z-idle (no touch detected) and when in absolute data mode, Pinnacle will continue to send
empty packets (both X and Y data set to 0x00) every 10 ms. The number of empty packets to be
sent is stored in Register 0x0A, Z-idle (see Table 10 below). The default value is 0x1E (30
decimal). This value can be changed by writing to Register 0x0A. When set to zero (0), this register
prevents any empty packets from being sent, and the position registers will contain the last
sensed location until a new finger presence is detected.

The Z-Idle count can be a helpful design tool. For example, tap-frequency can be determined by
counting the number of Z-idle packets reported between a finger lifting off and touching back
down (cutting short the stream of Z-idle packets).

3.6 Compensation
To enhance sensor performance, Pinnacle performs a calculation to compensate for the current
operating environment. Pinnacle automatically executes compensation/calibration when
powered on and when triggered by specific events.

Table 10. Z-Idle Count - Register (0x0A)

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Description Z-Idle Count

READ/WRITE R/W

Values 0x00 through 0xFF (0 to 255 decimal)

Default 0X1E
 GT-AN-090620 – Interfacing to the Pinnacle ASIC Using SPI and I2C – Document Version 1.6 14

Example Start-up Sequence
4. Example Start-up Sequence

The following summarizes the typical sequence to use Pinnacle:

1. Power on Reset (POR); Pinnacle is in the default condition.

2. Host clears SW_CC (writes value 0x00 to Register 0x02, Status1), which clears HW_DR.

3. Host configures intended bits of registers 0x03 and 0x05.

4. Host enables the preferred output mode and enables the feed (As explained in Touch Detection
(Z Information) on page 14.).

5. Host continuously monitors HW_DR pin for Pinnacle data ready interrupt.

a. When received, host reads the appropriate packet data (Registers 0x10-0x17, depending
on ASIC and data mode).

b. Host clears SW_DR (writes value 0x00 to Register 0x02, Status1), which clears HW_DR.

c. Host uses the data received.

4.0.0.1 Example Code
void StartupSequence(void)
{

ClearFlags();
RAP_WriteByte(0x03, 0x00); // Configures SysConfig1(normal mode, active)
RAP_WriteByte(0x05, 0x1F); // Configures FeedConfig2(disable relative mode features)
RAP_WriteByte(0x04, 0x03); // Configures FeedConfig1(absolute mode, enable feed)

}

 GT-AN-090620 – Interfacing to the Pinnacle ASIC Using SPI and I2C – Document Version 1.6 15

Serial Peripheral Interface (SPI)
5. Serial Peripheral Interface (SPI)

This section describes the basic operation, timing of SPI, as well as how it is used to communicate
with Pinnacle.

SPI communication is a four-wire bus that includes a slave select line for communicating with
multiple devices on the bus. Pinnacle is designed as a slave device on the SPI bus with a select
line (SS), two data lines (MOSI and MISO), and a clock line (SCK), see Table 11 below.

SPI signal operation:

• A slave device will not communicate on the bus unless its slave select line (SS) is pulled low.

• Data sent by the master is placed on the Master Out, Slave In (MOSI) line.

• Data returned by Pinnacle is placed on the Master In, Slave Out (MISO) line.

• Both sets of data are latched on the falling edge of SCK.

• Data is presented Most Significant Byte first (MSB).

• Pinnacle supports data rates up to 13 MHz.

A basic example of interconnections between a single master and a single slave is to have the
MOSI pins connected together and the MISO pins connected together. In this way, the data is
transferred serially between master and slave (most significant bit first). The master always starts
the data exchange. When the master device transmits data to a slave device on the MOSI pin, the
slave sends data to the master on the MISO pin at the same time. This is full-duplex
communication. All the data is synchronized using the SCK pin with a clock signal from the master
device. Slave Select (SS) must be LOW in order for Pinnacle to be active and send data to the
Master.

Table 11. Pinnacle SPI Signals

Signal Description

SPI

SS SPI Select (SS=0 for slave to be active and send data to master)

SCK SPI Clock (CPOL=0=idle) (CPHA=1, latches on falling edge)

MOSI SPI Master Out Slave In

MISO SPI Master In Slave Out

Pinnacle

HW_DR Indicates Pinnacle has Data Ready (Active High) or a command is complete.

GPIO General Purpose Input/Output

GND Ground

VDD Power Supply
 GT-AN-090620 – Interfacing to the Pinnacle ASIC Using SPI and I2C – Document Version 1.6 16

Serial Peripheral Interface (SPI)
5.1 SPI Timing
Timing for the SPI data lines is shown below (see Figure 2, Figure 3 below, and Table 12 on
page 18). The data exchange is started when the master pulls the Slave Select (SS) line low. Due
to the full duplex nature of the SPI bus, Pinnacle always returns data at the same time that it is
receiving data. The returned byte may be data from the previous command or it may be a filler
byte. For both Master and Slave, data is changed on the rising edge of the clock and latched on
the falling edge.

Figure 2. SPI Signals

Figure 3. SPI Timing
 GT-AN-090620 – Interfacing to the Pinnacle ASIC Using SPI and I2C – Document Version 1.6 17

Serial Peripheral Interface (SPI)
Table 12. SPI Timing Explanation

Ref Parameter Symbol Minimum Maximum Unit

1 Period TQCYC 76 N/A

ns

2 Clock (SCK) High or Low Time TSW TQCYC/2 N/A

3 Chip Select Lag Time (last clock edge to slave select de-asserted) TLAG 30 N/A

4 Inter-Message Transfer Delay (required by slave) TTD 50 N/A

5 Chip Select Lead Time (slave select asserted to first SCK falling) TLEAD TQCYC N/A

6 Master Data Setup Time (data valid to SCK falling) TSU TQCYC/4 N/A

7 Master Data Hold time (SCK falling to data invalid) THI TQCYC/4 N/A

8 Slave Data Valid Time (SCK rising to data valid) TV N/A 30

9 Slave Data Hold Time (SCK falling to data invalid) THO TQCYC/2 N/A
 GT-AN-090620 – Interfacing to the Pinnacle ASIC Using SPI and I2C – Document Version 1.6 18

Register Access Using SPI
6. Register Access Using SPI

Communicating with Pinnacle requires RAP, which has only READ and WRITE commands. The byte
format is repeated in Table 13.

6.1 Reading a Register Using SPI
SPI requires two exchanges when reading a register.

1. The host starts by sending the READ command byte. The simultaneous response byte may be
data from the previous command or it may be a filler byte.

2. Three additional bytes (“filler bytes”) with a value of 0xFB, must be sent after the READ
command byte to allow Pinnacle to respond. The response will be sent during the transmission
of the final byte (see Table 14 below).

6.1.1 SPI Read Example

Read register 0x02 (Status1)

1. Use the OR operand to combine the READ command (0xAX) with the register address to be read.
For this example, use register 0x02.

0xA0|0x02 = 0xA2

2. Send 0xA2 followed by three-filler bytes (0xFB). The response to the third byte will be the
contents of register 0x02.

Table 13. Register Access Protocol

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

READ (0xAX) 1 0 1 Address 4 Address 3 Address 2 Address 1 Address 0

WRITE (0x8X) 1 0 0 Address 4 Address 3 Address 2 Address 1 Address 0

Table 14. Example SPI READ Sequence

Byte Command (MOSI) Response (MISO)

1 0xA2 Response to a previous command or a filler byte.

2 0xFB 0xFB

3 0xFB 0xFB

4 0xFB Content of register 0x02
 GT-AN-090620 – Interfacing to the Pinnacle ASIC Using SPI and I2C – Document Version 1.6 19

Register Access Using SPI
6.1.1.1 SPI Read Example Code

void RAP_ReadByte(uint8_t address, uint8_t * data) {
Assert_CS();
SPI_Transfer(address | 0xA0); // Send register address OR'd with read-mask (0xA0)
SPI_Transfer(0xFB); // Filler-byte
SPI_Transfer(0xFB); // Filler-byte
*data = SPI_Transfer(0xFB); // Contents are received on 3rd filler-byte
DeAssert_CS();

}

 GT-AN-090620 – Interfacing to the Pinnacle ASIC Using SPI and I2C – Document Version 1.6 20

Register Access Using SPI
6.2 Pipelining Multiple Reads
Multiple registers can be read by sending READ commands back-to-back. For greater throughput,
back-to-back READ commands can overlap the last filler byte with the next READ command.
Alternatively, an auto-increment command (0xFC) can be used in place of the filler byte (0xFB).
Examples are provided for each method below.

6.2.1 Reading SPI Back-to-Back

Read register 0x02 (Status1) and 0x17 (Z Level) (see Table 15).

1. Use OR operand to combine the READ command (0xAX) with the register addresses to be read.
For this example, use registers 0x02 and 0x17.

0xA0 | 0x02 =0xA2
0xA0 | 0x17 =0xB7

2. Send 0xA2 followed by three-filler bytes (0xFB). The response to the third byte will be the
contents of register 0x02.

3. Send 0xB7 followed by three-filler bytes (0xFB). The response to the third byte will be the
contents of register 0x17.

6.2.2 SPI Auto-Increment READ for Sequential Addresses Example

Read registers 0x14 through 0x16 (see Table 16).

1. Use OR operand to combine the READ command (0xAX) with the register addresses to be read.

0xA0 | 0x14 =0xB4
0xA0 | 0x15 =0xB5
0xA0 | 0x16 =0xB6

2. Send 0xB4 followed by four Auto-Increment bytes (0xFC) and end with a filler byte (0xFB) to read
three sequential registers. The response to the third 0xFC will be the contents of register 0x14,
the next response will be the data in register 0x15, then register 0x16 (see Table 16).

Table 15. Example of Back-to-Back SPI READ Commands

Byte Command (MOSI) Response (MISO)

1 0xA2 Response to a previous command or a filler byte.

2 0xFB 0xFB

3 0xFB 0xFB

4 0xFB Content of register 0x02

5 0xB7 0xFB

6 0xFB 0xFB

7 0xFB 0xFB

8 0xFB Contents of register 0x17
 GT-AN-090620 – Interfacing to the Pinnacle ASIC Using SPI and I2C – Document Version 1.6 21

Register Access Using SPI
6.2.2.1 SPI Auto-Increment READ for Sequential Addresses Example Code

// (note that this function can be used to read a single byte or multiple; making the
RAP_ReadByte() function redundant)
void RAP_ReadBytes(uint8_t address, uint8_t * data, uint8_t count) {
uint8_t i = 0;

Assert_CS();
SPI_Transfer(address | 0xA0); // Send register address OR'd with read-mask (0xA0)
SPI_Transfer(0xFC); // Special auto-increment filler byte
SPI_Transfer(0xFC); // Special auto-increment filler byte
for(; i < count; i++) {
data[i] = SPI_Transfer(0xFC); // Each transfer gets the next register's contents
}
DeAssert_CS();

}

// RAP_ReadBytes() example to read the entire register set into an array
uint8_t registerContents[0x17];
RAP_ReadBytes(0x00, registerContents, 0x17); // Reads 0x17 (quantity) registers, start-
ing at address 0x00

Table 16. Example of SPI Auto-Incremented READ Command Sequence

Byte Command (MOSI) Response (MISO)

1 0xB4 Response to a previous command or a filler byte.

2 0xFC 0xFB

3 0xFC 0xFB

4 0xFC Contents of register 0x14

5 0xFC Contents of register 0x15

6 0xFB Contents of register 0x16
 GT-AN-090620 – Interfacing to the Pinnacle ASIC Using SPI and I2C – Document Version 1.6 22

Register Access Using SPI
6.3 Writing to a Register Using SPI
Writing to a register requires two SPI exchanges. The host starts by sending the WRITE command
byte (0x8X) with the desired register address. The simultaneous response byte from Pinnacle may
be data from the previous command or it may be a filler byte (0xFB). The host then sends the
value to be written to the register in the next byte. The simultaneous response byte is 0xFB.
Multiple writes are sent as consecutive single writes (with a repeating sequence of command
byte/data byte).

6.3.1 SPI Write Example

WRITE the value 0x02 to register 0x03 (SysConfig1 Shutdown Bit) (see Table 17).

1. Use OR operand to combine the WRITE command (0x8X) with the register addresses to be read.

0x80 | 0x03 =0x83

2. Send 0x83. The response will be a filler byte or the response to the previous command.

3. Send the value 0x02. The value 0x02 will then be written to register 0x03. The response will be
a filler byte.

6.3.1.1 SPI Write Example Code

void RAP_WriteByte(uint8_t address, uint8_t data) {
Assert_CS();
SPI_Transfer(address | 0x80); // Send register address OR'd with write-mask (0x80)
SPI_Transfer(data); // Send data to be written
DeAssert_CS();

}

Table 17. Example of SPI WRITE Command

Byte Command (MOSI) Response (MISO)

1 0x83 Response to a previous command or a filler byte

2 0x02 0xFB (value 0x02 is written to register 0x03)
 GT-AN-090620 – Interfacing to the Pinnacle ASIC Using SPI and I2C – Document Version 1.6 23

Inter Integrated Circuit (I2C) Protocol
7. Inter Integrated Circuit (I2C) Protocol

This section provides a brief overview of the I2C protocol as well as how to communicate to
Pinnacle using I2C.

7.1 I2C Operation
I2C communication is a two-wire bus that uses module addressing for communicating with
multiple devices on the bus. The I2C bus contains a data signal (SDA) and a clock signal (SCL),
see Table 18. The clock is provided by the master and is an input to all slave devices. The data
line is both an input and an output (bidirectional).

Pinnacle is designed as a slave device on the I2C bus. As per the I2C protocol, each slave is
assigned a unique, seven-bit slave address. All slave devices on the bus receive all commands,
but only the addressed slave device can respond to communication on the bus. The default slave
address for Pinnacle is 0x2A.

I2C slave addresses are only seven bits long to allow the eighth bit to signify a READ or WRITE
command. In the first byte sent by the host, the slave address comes first, followed by the READ/
WRITE bit (at the lowest significant bit). Therefore, the hexadecimal value for the first byte is the
slave address (0x2A) shifted up one bit (0x54), plus the READ/WRITE bit. The final value is either
0x54 for WRITE or 0x55 for READ (see Figure 4).

Figure 4. I2C READ or WRITE Command with Pinnacle's Address

Table 18. Pinnacle I2C Signals

Signals Description

I2C

SDA Serial Data line for both input and output for master and slave.

SCL I2C Serial Clock Line provided by the master as an input to all slave devices.

Pinnacle

HW_DR Indicates Pinnacle has Data Ready to send

GPIO General Purpose Input/Output

GND Ground

VDD Power supply

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Address 6
0

Address 5
1

Address 4
0

Address 2
0

Address 3
1

Address 1
1

Address 0
0

READ (1)
WRITE (0)

LSB Reserved for
READ/WRITE

Command

Seven-bit Slave Address (0x2A)
In a byte with WRITE as the LSB, the Command Becomes 0x54
In a byte with READ as the LSB, the Command Becomes 0x55
 GT-AN-090620 – Interfacing to the Pinnacle ASIC Using SPI and I2C – Document Version 1.6 24

Inter Integrated Circuit (I2C) Protocol
When the bus is idle, the SDA and SCL lines are high due to pull-up resistors on each line. The
Master starts communication with a start condition, which is a high to low transition on the SDA
line while the SCL line remains high. After the start signal, Data is placed on the SDA line when
the SCL line is low. The receiving device latches the data when the SCL line is high. All 8-bits are
transmitted and a 9th bit is designated as the acknowledge bit (ACK [0] /NACK [1]). The first byte
transmitted will always be a 7-bit address of the target Slave and a READ/WRITE bit indicating the
direction of data flow. Any bytes following the Slave address byte are only for the addressed Slave.
When reading from the Slave, the Master must NACK the last byte to indicate to the Slave that it
was the last byte to be exchanged. After at least one data byte is sent or received, the Master can
cause a stop condition to free the bus. The stop condition requires SDA to transition from low to
high, while SCL is high.

I2C is half-duplex, and therefore responses must be read after a transmission rather than during
a transfer. After a READ command, the slave hardware will ACK/NACK on the 9th bit of a byte. A
NACK (9th bit asserted by slave) will denote a BUSY condition or an ERROR condition, and the
slave will follow it with a status byte to indicate the error or response. A NACK from the slave
requires the host to end the transfer and read a status byte carrying a response. When writing,
the Slave is not required to NACK the last byte because the Slave does not know how many bytes
it is to receive. A Stop Condition occurs when the SDA line rises, while the SCL line is high.

Figure 5. I2C Signals - READ

Figure 6. I2C Signals - WRITE

Note: Pinnacle is an I2C Fast-Mode device. Timing information is available in the official I2C specification
from NXP, which can be found at this link: www.nxp.com/documents/user_manual/UM10204.pdf
 GT-AN-090620 – Interfacing to the Pinnacle ASIC Using SPI and I2C – Document Version 1.6 25

http://www.nxp.com/documents/user_manual/UM10204.pdf
http://www.nxp.com/documents/user_manual/UM10204.pdf

Register Access Protocol Using I2C
8. Register Access Protocol Using I2C

To communicate with Pinnacle using I2C requires RAP, which has only READ and WRITE
commands with the byte format repeated in Table 19.

8.1 Reading a Register with I2C
Pinnacle stores a 'Current Read Address' (CRA) for I2C, which allows for efficient read operations.
With I2C, the Host sends an I2C WRITE command to Pinnacle as the slave. The host must then
send a RAP READ command to access Pinnacle registers. When the RAP READ command is
received, Pinnacle stores the address it contains as the 'Current Read Address'. The host can then
send I2C READ commands that will start at the 'Current Read Address' and then automatically
increment to the next address until a stop condition is received. When the stop condition is
received, the 'Current Read Address' is reset to the address received in the original RAP READ
command.

8.1.1 I2C READ Example

Read the contents of register 0x12 (Button Status)

1. Send the start condition.

2. Send the I2C WRITE command (7-bit slave address as top 7 bits and a 0 for WRITE). This means,
shift the address (0x2A) one bit.

0x2A << 1 = 0x54

3. Use the OR operand to combine the RAP READ command (0xAX) with the register address to be
read. For this example, 0x12 is used.

0xA0|0x12=0xB2

4. Send 0xB2.

5. Send a stop condition. Pinnacle sets the “Current Read Address” to 0x12 and is now setup to
respond with the contents.

6. Send another start condition, followed by the I2C READ command. (Pinnacle slave address
shifted, and OR'd with a 1 to read.)

0x2A << 1=0x54
0x54|0x01=0x55

7. Pinnacle will respond with the contents of register 0x12.

8. After the receiving all 8 bits, send a stop condition to end communication.

Table 19. Register Access Protocol

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

READ (0xAX) 1 0 1 Address 4 Address 3 Address 2 Address 1 Address 0

WRITE (0x8X) 1 0 0 Address 4 Address 3 Address 2 Address 1 Address 0
 GT-AN-090620 – Interfacing to the Pinnacle ASIC Using SPI and I2C – Document Version 1.6 26

Register Access Protocol Using I2C
8.1.2 I2C Multiple READ Example

Read the contents of register 0x14 through 0x16

1. Send the start condition.

2. Send the I2C WRITE command. Shift address (0x2A) one bit.

0x2A << 1 = 0x54

3. Use the OR operand to combine the RAP READ command (0xAX) with the first address to be
read. For this example, 0x14 is used.

0xA0|0x14 = 0xB4

4. Send 0xB4.

5. Send a stop condition.

Pinnacle sets the Current Read Address (CRA) to 0x14 and is now setup to respond with the con-
tents.

6. Send another start condition, followed by the I2C READ command.

(Pinnacle slave address shifted, and OR'd with a 1 to read.)

0x2A << 1 = 0x54
0x54 | 0x01 = 0x55

7. Pinnacle will respond with the contents of register 0x14 and increment CRA.

• After the receiving all 8 bits, send another I2C READ command (0x55). Pinnacle will respond
with the contents of register 0x15 and increment CRA.

• After the receiving all 8 bits, send another I2C READ command (0x55). Pinnacle will respond
with the contents of register 0x16 and increment CRA.

• Send the stop condition to end communication. Pinnacle will reset the Current Read
Address (CRA) to 0x14.

Figure 7. I2C READ Register Sequence

I2C Read Register

Single Register
Read

Multiple Register
Reads

Start
I2C Device
Address

0

W
R
I
T
E

RAP READ
Command
Byte

Stop Start
I2C Device
Address

1

R
E
A
D

“Current Read
Address”
Contents

StartStop Stop

Start
I2C Device
Address

0

W
R
I
T
E

RAP READ
Command
Byte

Stop Start
I2C Device
Address

1

R
E
A
D

“Current Read
Address”
Contents

StartStop Stop“Current Read
Address”
Contents

“Current Read Address”
set to address received
in RAP READ command

“Current Read Address”
incremented in
Pinnacle

“Current Read Address”
Reset to address received
in RAP READ command
 GT-AN-090620 – Interfacing to the Pinnacle ASIC Using SPI and I2C – Document Version 1.6 27

Register Access Protocol Using I2C
8.2 Writing to a Register with I2C
Writing to a register using I2C requires sending two bytes, the WRITE Command Byte and the
WRITE Value Byte. The master MUST NOT issue a stop condition between the WRITE Command
Byte and the WRITE Value Byte (see Figure 8).

8.2.1 I2C WRITE Example

WRITE value 0x02 to register 0x03 (SysConfig1 Shutdown Bit)

1. Send the START condition.

2. Send the I2C WRITE command (7-bit slave address as top 7 bits and a 0 for WRITE)

Shift address (0x2A) one bit.

0x2A << 1 = 0x54

3. Use the OR operand to combine the RAP WRITE command (0x80) with the address to be written.
For this example, 0x03 is used.

0x80|0x03=0x83

4. Send 0x83.

5. Send the value 0x02.

6. Send the stop condition to end communication.

Figure 8. I2C WRITE Register Sequence

I2C Write Register

Single Register
Write

Multiple Register
Writes

Invalid Use of
Stop Condition

Start

Start

Start

I2C Device
Address

0

W
R
I
T
E

I2C Device
Address

0

W
R
I
T
E

I2C Device
Address

0

W
R
I
T
E

WRITE
Command
Byte

WRITE
Command
Byte

WRITE
Command
Byte

WRITE
Value
Byte

WRITE
Value
Byte

Stop

WRITE
Command
Byte

WRITE
Value
Byte

Stop

Stop Start
I2C Device
Address

0

W
R
I
T
E

WRITE
Value
Byte

Stop
 GT-AN-090620 – Interfacing to the Pinnacle ASIC Using SPI and I2C – Document Version 1.6 28

Appendix: Extended Register Access
9. Appendix: Extended Register Access

Using four standard RAP registers, the host can gain Extended Register Access (ERA) to Pinnacle
memory. Register 0x1B is used for the value to be written or read (see Table 20). Register 0x1C
is the high byte and register 0x1D is the low byte of the address to be read or written to (see
Table 21 and Table 22). Register 0x1E, the ERA control register, specifies READ or WRITE and the
optional Auto-Incremented READ or WRITE for sequential commands, as well as a WRITE/Verify
option if both the READ and WRITE flags are set (see Table 23 on page 30). The control register
value returns to 0x00 to indicate a command is complete. Use standard Register Access Protocol
(RAP) to access these four registers.

It is important to note that accessing the extended registers will assert the command complete
(SW_CC) flag and force the hardware data ready (HW_DR) pin high. The Pinnacle data feed should
be disabled before accessing extended registers, and SW_CC should be cleared when the host is
finished accessing extended registers.

Table 20. Extended Register Access Value - (RAP register 0x1B)

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Description Value 7 Value 6 Value 5 Value 4 Value 3 Value 2 Value 1 Value 0

Read/Write R/W

Values 0x00 - 0xFF

Default 0

Table 21. Extended Register Access Address High Byte - (RAP register 0x1C)

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Description Address15 Address14 Address13 Address12 Address11 Address10 Address9 Address8

Read/Write R/W

Values 0x00 - 0xFF

Default 0

Table 22. Extended Register Access Address Low Byte - (RAP register 0x1D)

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Description Address 7 Address 6 Address 5 Address 4 Address 3 Address 2 Address 1 Address 0

Read/Write R/W

Values 0x00 - 0xFF

Default 0
 GT-AN-090620 – Interfacing to the Pinnacle ASIC Using SPI and I2C – Document Version 1.6 29

Appendix: Extended Register Access
This register value returns to 0x00 to indicate a completed command

Asserting both Bit[1] and Bit[0] indicates a WRITE/Verify

9.1 Extended Register Access Examples
Using standard RAP to send READ and WRITE commands to Pinnacle, the following examples
demonstrate the proper sequence to read and write to Pinnacle's extended registers.

Example: READ an Extended Register

1. WRITE the high byte of the 16-bit extended register address to RAP Register 0x1C (ERA High
Byte).

2. WRITE the low byte of the 16-bit extended register address to RAP Register 0x1D (ERA Low Byte).

3. WRITE 0x01 (ERA READ flag) to RAP Register 0x1E (ERA Control).

4. READ the RAP Register 0x1E (ERA Control) until it contains 0x00.

5. READ the new value in RAP Register 0x1B (ERA Value).

6. WRITE 0x00 to RAP Register 0x02 (Status1) to clear Command Complete (SW_CC).

Example: READ an Extended Register with Address Increment

1. WRITE the high byte of the 16-bit extended register address to RAP Register 0x1C (ERA High
Byte).

2. WRITE the low byte of the 16-bit extended register address to RAP Register 0x1D (ERA Low Byte).

3. WRITE 0x05 to RAP Register 0x1E (ERA Control) to specify auto-increment read.

Repeat 4, 5, and 6 as needed

4. READ the RAP Register 0x1E (ERA Control) until it contains 0x00.

5. READ the new value in RAP Register 0x1B (ERA Value).

6. WRITE 0x00 to RAP Register 0x02 (Status1) to clear Command Complete (SW_CC).

Extended Register Address is incremented. Repeat steps 4, 5, and 6 to reach the desired
address.

Table 23. Extended Register Access Control - (RAP register 0x1E)

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Description WRITE
Auto-Increment

READ
Auto-Increment

Write Read

Read/Write R/W R/W R/W R/W

Values 1=enabled
0=disabled

1=enabled
0=disabled

1 =
WRITE

1 = Read

Default 0 0 0 0
 GT-AN-090620 – Interfacing to the Pinnacle ASIC Using SPI and I2C – Document Version 1.6 30

Appendix: Extended Register Access
Example: WRITE to an Extended Register

1. WRITE the value to be written in RAP Register 0x1B (ERA Value)

2. WRITE the high byte of the 16-bit extended register address to RAP Register 0x1C (ERA High
Byte).

3. WRITE the low byte of the 16-bit extended register address to RAP Register 0x1D (ERA Low Byte).

4. WRITE 0x02 (ERA WRITE flag) to RAP Register 0x1E (ERA Control).

5. READ the RAP Register 0x1E (ERA Control) until it contains 0x00.

6. WRITE 0x00 to RAP Register 0x02 (Status1) to clear Command Complete (SW_CC).

Example: WRITE to an Extended Register with Address Increment

1. WRITE the value to be written in RAP Register 0x1B (ERA Value)

2. WRITE the high byte of the 16-bit extended register address to RAP Register 0x1C (ERA High
Byte).

3. WRITE the low byte of the 16-bit extended register address to RAP Register 0x1D (ERA Low Byte).

4. WRITE 0x0A (ERA auto-increment WRITE) to RAP Register 0x1E (ERA Control).

Repeat Steps 5 and 6 as needed

5. READ the RAP Register 0x1E (ERA Control) until it contains 0x00.

6. WRITE 0x00 to RAP Register 0x02 (Status1) to clear Command Complete (SW_CC).

Extended Register Address is incremented. Repeat steps 5 and 6 to reach the desired
address.

Example: WRITE to an Extended Register with Verification

1. WRITE the value to be written in RAP Register 0x1B (ERA Value)

2. WRITE the high byte of the 16-bit extended register address to RAP Register 0x1C (ERA High
Byte).

3. WRITE the low byte of the 16-bit extended register address to RAP Register 0x1D (ERA Low Byte).

4. WRITE 0x03 (write and read) to RAP Register 0x1E (ERA Control).

5. READ the RAP Register 0x1E (ERA Control) until it contains 0x00.

6. READ the value in RAP Register 0x1B (ERA Value) to verify.

7. WRITE 0x00 to RAP Register 0x02 (Status1) to clear Command Complete (SW_CC).
 GT-AN-090620 – Interfacing to the Pinnacle ASIC Using SPI and I2C – Document Version 1.6 31

Appendix: Extended Register Access
9.2 Example Code

Example code for reading and writing extended registers is available on Cirque's online code
repository located at GitHub. Follow the link below for access:

https://github.com/cirque-corp/Pinnacle_1CA027/blob/master/Circular_Trackpad/
TM040040/Example_Code/SPI_Demo/TM040040_SPI.ino
 GT-AN-090620 – Interfacing to the Pinnacle ASIC Using SPI and I2C – Document Version 1.6 32

 GT-AN-090620 – Interfacing to the Pinnacle ASIC Using SPI and I2C – Document Version 1.6 33

Contact Information

10. Contact Information

Contact a Cirque sales representative for a complete list of Cirque's OEM products.

THIS INFORMATION IS PROVIDED “AS IS.” CIRQUE SPECIFICALLY DISCLAIMS ALL WARRANTIES
EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO, IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE WITH RESPECT TO THE
DOCUMENTATION AND USE OF THE DOCUMENTATION IN DESIGN OF ANY PRODUCTS OR FOR ANY
PARTICULAR APPLICATION.

In United States & Canada (800) GLIDE-75 (454-3375)

Outside US & Canada (801) 467-1100

Fax (801) 467-0208

Web site http://www.cirque.com

http://www.cirque.com

