
1 Introduction
The i.MX RT series MCU is a crossover product from NXP. It includes a Flexible
Serial Peripheral Interface (FlexSPI) controller which supports HyperBus
devices (HyperFlash/HyperRAM). This application note describes how to
use the HyperRAM with the i.MX RT MCU, including hardware connections,
HyperRAM protocol, source code, and performance.

The SDK used for the example in this application note is SDK_2.3.1_EVKB-
IMXRT1050. The development environment is IAR Embedded Workbench®

8.22.1 IDE. The hardware environment is the MIMXRT1050-EVKB board. The
HyperRAM chip is S27KS0641 from Cypress®.

2 MIMXRT1050 EVK board setting
By default, the HyperFlash chip (Cypress S26KS512SDPBHI02) is connected
to the FlexSPI interface on the MIMXRT1050-EVKB board. The HyperFlash
chip (as shown in Figure 1) is replaced with the HyperRAM.

Contents

1 Introduction......................................1
2 MIMXRT1050 EVK board setting.... 1
2.1 Board re-work for HyperRAM

device...2
2.2 HyperRAM device........................3
3 FlexSPI controller and HyperBus.... 4
3.1 FlexSPI host controller.................4
3.2 HyperBus protocol....................... 5
4 Memory region and Look-Up-Table

(LUT)... 7
4.1 FlexSPI register memory region

...7
4.2 AHB access memory region........ 7
4.3 IP command access memory

region...8
4.4 LUT memory region..................... 8
5 Source code and performance........9
5.1 Running the HyperRAM example

...9
5.2 Performance and analysis......... 13
6 Validated HyperRAM devices....... 16
7 Conclusion.....................................17
8 Revision history.............................17

AN12239
How to Enable HyperRAM with i.MX RT
Rev. 2 — 7 May, 2021 Application Note

Figure 1. Replacing HyperFlash with HyperRAM

2.1 Board re-work for HyperRAM device
The Cypress S27KS0641 HyperRAM has the same package as the default on-board Cypress S26KS512SDPBHI02 HyperFlash.
The devices can be simply swapped without any other hardware changes required. Figure 2 shows the detailed PIN information
for the replacement.

NXP Semiconductors
MIMXRT1050 EVK board setting

How to Enable HyperRAM with i.MX RT, Rev. 2, 7 May, 2021
Application Note 2 / 18

Figure 2. HyperRAM device rework

2.2 HyperRAM device
The Cypress S27KS0641 HyperRAM device features:

• 64-Mb (8-MB) self-refresh DRAM.

• 3.0-V I/O, 11 bus signals (CK); 1.8-V I/O, 12 bus signals (differential clock (CK, CK#)).

• 166-MHz clock rate (333 MB/s) at 1.8-V VCC; 100-MHz clock rate (200 MB/s) at 3.0-V VCC.

• Double-Data Rate (DDR)—two data transfers per clock.

• 8-bit data bus (DQ[7:0]).

• Read-Write Data Strobe (RWDS).

• Sequential burst transactions.

• Configurable burst characteristics.

• Low-power modes.

• 24-ball FBGA package.

Table 1 shows the Cypress S27KS0641 HyperRAM signal descriptions.

Table 1. S27KS0641 HyperRAM signal descriptions

Symbol Type Description

CS#
Master Output

Slave Input

Chip Select

Bus transactions are initiated with a HIGH to LOW transition. Bus
transactions are terminated with a LOW to HIGH transition. The master
device has a seperate CS# for each slave.

Table continues on the next page...

NXP Semiconductors
MIMXRT1050 EVK board setting

How to Enable HyperRAM with i.MX RT, Rev. 2, 7 May, 2021
Application Note 3 / 18

Table 1. S27KS0641 HyperRAM signal descriptions (continued)

Symbol Type Description

CK, CK#
Master Output

Slave Input

Differential Clock

Command, address, and data information is output with respect to the
crossing of the CK and CK# signals. Differential clock is used on 1.8 V
I/O devices.

Single Ended Clock

CK# is not used on 3.0 V devices. Only a single ended CK is used.

The clock is not required to be free-running.

DQ[7:0] Input/Output Data Input/Output

Command, Address, and Data information is transferred on these
signals during Read and Write transaction.

RWDS Input/Output

Read Write Data Strobe

During the Command/Address portion of all bus transactions RWDS
is a slave output and indicates whether addistional initial latency is
required. Slave output during read data transfer, data is edge aligned
with RWDS. Slave input during data transfer in write transactions to
function as a data mask.

(HIGH = additional latency, LOW = no additional latency)

RESET#

Master Output

Slave Input

Internal Pull-up

Hardware RESET

When LOW, the slave device will self initialize and return to the Standby
state. RWDS and DQ[7:0] are placed into the HI-Z state when RESET#
is LOW. The slave RESET# input includes a weak pull-up. If RESET#
is left unconnected, it will be pulled up to the HIGH state.

Vcc Power Supply Power

VccQ Power Supply Input/Output Power

Vss Power Supply Ground

VssQ Power Supply Input/Output Ground

RFU No Connect

Reserved for Future Use

May or may not be connected internally. The signal/ball location should
be left unconnected and unused by PCB routing channel for future
compatibility. The signal/ball may be used by a signal in the future.

For more information about the Cypress S27KS0641 HyperRAM, see the Datasheet.

3 FlexSPI controller and HyperBus

3.1 FlexSPI host controller
FlexSPI is a flexible SPI host controller which supports two SPI channels and up to four external devices. Each channel supports
the single/dual/quad modes of data transfer (1/2/4 bi-directional data lines). On the i.MX RT1050, the octal mode is supported by
combining SIOA[3:0] and SIOB[3:0]. Figure 3 shows the block diagram of the FlexSPI host controller.

NXP Semiconductors
FlexSPI controller and HyperBus

How to Enable HyperRAM with i.MX RT, Rev. 2, 7 May, 2021
Application Note 4 / 18

http://www.cypress.com/file/183506/download

Figure 3. FlexSPI block

The FlexSPI host controller features:

• Flexible sequence engine (LUT table) to support various vendor devices.

• Flash access modes: single/dual/quad/octal, SDR/DDR, and individual/parallel.

• Read strobe clock sampling.

• Memory-mapped read/write access by the AHB bus:

— The AHB RX buffer is implemented to reduce read latency. The total AHB RX buffer size is 128 × 64 bits.

— The AHB TX buffer is implemented to buffer all write data from one AHB burst. The AHB TX buffer size is 8 × 64 bits.

• Software-triggered flash read/write access by the IP bus:

— The IP RX FIFO is implemented to buffer all read data from the external device. Its size is 16 × 64 bits.

— IP TX FIFO is implemented to buffer all write data to the external device. Its size is 16 × 64 bits.

3.2 HyperBus protocol
HyperBus has a low signal count and the Double Data Rate (DDR) interface, which achieves high read and write throughput while
reducing the number of device I/O connections and signal routing congestion in a system.

The HyperBus interface features:

• 3.0-V I/O, 11 bus signals, single-ended clock (CK).

• 1.8-V I/O, 12 bus signals, differential clock (CK, CK#).

• Chip Select (CS#).

• 8-bit data bus (DQ[7:0]).

• Read-Write Data Strobe (RWDS).

• Double-Data Rate (DDR)—two data transfers per clock.

• Up to 200-MHz clock rate (400 MB/s) at 1.8-V/3.0-V VCC.

• Sequential burst transactions, configurable burst characteristics.

For the HyperBus protocol, the first three clock cycles transfer three words (48 bits in total) of the command/address (CA0, CA1,
CA2) information to define the transaction characteristics. The command/address words are presented with the DDR timing, using
the first six clock edges. The characteristics are defined by the command/address information in Table 2. Figure 4 shows the clock
sequence of the command/address words.

NXP Semiconductors
FlexSPI controller and HyperBus

How to Enable HyperRAM with i.MX RT, Rev. 2, 7 May, 2021
Application Note 5 / 18

Table 2. CA bit characteristics

CA Bit# Bit Name Bit function

47 R/W#

Identifies the transaction as Read or Write.

R/W#=1 indicates a Read transaction.

R/W#=0 indicates a Write transaction.

46 Address Space (AS)

Indicates whether the read or write transaction accesses the memory or
register space.

AS=0 indicates the memory space.

AS=1 indicates the register space.

The register space is used to access device ID and
Configuration registers.

45 Burst Type

Indicates whether the burst will be linear or wrapped.

Burst Type = 0 indicates wrapped burst.

Burst Type = 1 indicates linear burst.

44-16 Row & Upper Column
Address

Row & Upper Column component of the target address: System word
address bits A31-A3.

Any upper Row address bits not used by a particular device density
should be set to 0 by the host controller master interface. The size of
Rows and therefore the address bit boundary between Row and Column
address is slave device dependent.

15-3 Reserved
Reserved for future column address expansion.

Reserved bits are not cared in current HyperBus devices but should be
set to 0 by the host controlller master interface for future compatibility.

2-0 Lower Column Address Lower Column component of the target address: System word address
bits A2-0 selecting the starting word within a half-page.

Figure 4. Command/address sequence

Figure 5 and Figure 6 show the HyperBus read/write clock sequence with the single initial latency count.

Figure 5 shows the read transactions with the single latency.

NXP Semiconductors
FlexSPI controller and HyperBus

How to Enable HyperRAM with i.MX RT, Rev. 2, 7 May, 2021
Application Note 6 / 18

Figure 5. Read transaction, single initial latency count

Figure 6 shows the write transactions with the single latency.

Figure 6. Write transaction, single initial latency count

For more information about the HyperBus protocol, see the Specifications.

4 Memory region and Look-Up-Table (LUT)
There are four key memory regions related to the FlexSPI controller and HyperRAM access in the i.MX RT1050 platform. The most
important memory region is LUT.

4.1 FlexSPI register memory region
• Base address: 0x402A_8000h

• Size: 16 KB

The FlexSPI controller register memory region includes all the configuration registers. The first step is to set the right FlexSPI
controller mode, flash parameters, AHB/IP mode, LUT block, and so on, in the controller memory region.

4.2 AHB access memory region
• Base address: 0x6000_0000h

NXP Semiconductors
Memory region and Look-Up-Table (LUT)

How to Enable HyperRAM with i.MX RT, Rev. 2, 7 May, 2021
Application Note 7 / 18

http://www.cypress.com/file/213356/download

• Size: 512 MB

The HyperBus device can be accessed by the AHB bus directly in the AHB address space of 0x60000000 - 0x80000000. This
address space is mapped in the serial flash/RAM memory in the FlexSPI. The AHB bus access to this address space triggers the
flash/RAM access command sequence as needed.

For the AHB read access to the serial flash/RAM memory, the FlexSPI fetches the data from the flash/RAM to the AHB RX buffers
and then returns the data to the AHB Bus. For the AHB write access to the serial flash/RAM memory, the FlexSPI buffers the
write data from the AHB bus to the AHB TX buffers and then transmits it to the serial flash/RAM memory. There is no software
configuration or polling needed for the AHB command except for the FlexSPI initialization.

The AHB bus access features:

• Cacheable and non-cacheable access for reading. When set to cacheable, the FlexSPI checks whether the reading
address hit the AHB TX buffer first.

• Bufferable and non-bufferable access for writing.

• Prefetch enable/disable.

• Burst size: 8/16/32/64 bits.

• All burst types: SINGLE/INCR/WRAP4/INCR4/WRAP8/INCR8/WRAP16/INCR16.

4.3 IP command access memory region
• IP RX FIFO base address is:

— 0x402A_8100h – 0x402A_817Ch (by IPS bus).

— 0x7FC0_0000h – 0x7FC0_007Ch (by AHB bus).

• Size: 128 B

The FlexSPI puts the read data from the external device into the IP RX FIFO for the IP command. The data can be read out using
either of the two above-mentioned memory spaces. MCR0[ARDFEN] defines the read memory space and method.

• IP TX FIFO base address is:

— 0x402A_8180h – 0x402A_81FCh (by IPS bus).

— 0x7F80_0000h – 0x7F80_007Ch (by AHB Bus).

• Size: 128 B

The write data should be put into the IP TX FIFO and then transmitted to the external device by the IP command. The data can
be written into either of the two above-mentioned memory spaces.

MCR0[ATDFEN] defines the write memory space and method. The IP command access consists of these key steps:

1. Fill the IP TX FIFO with the write data if it is a write command.

2. Set the flash/RAM access start address (IPCR0), read/program data size, sequence index in LUT, and sequence
number (IPCR1).

3. Trigger the flash access command by writing 1 to the register bit IPCMD[TRG].

4. Poll the IPCMDDONE register bit to wait for the IP command to finish in the FlexSPI interface.

4.4 LUT memory region
• Base address: 0x402A_8200h

• Size: 256 B

The LUT is an internal memory region to store a number of pre-programmed sequences. Each sequence consists of up to eight
instructions which are executed sequentially. When a flash/RAM access is triggered by an IP command or an AHB command,
the FlexSPI controller fetches the defined sequence from the LUT memory region according to the index/number values in the

NXP Semiconductors
Memory region and Look-Up-Table (LUT)

How to Enable HyperRAM with i.MX RT, Rev. 2, 7 May, 2021
Application Note 8 / 18

configuration register and executes it to generate a valid flash/RAM transaction on the SPI interface. shows the structure of the
LUT and the sequences and instructions.

Figure 7. LUT and sequence structure

For detailed instruction information, see chapter 30.7.8 in i.MX RT1050 Reference Manual (document IMXRT1050RM).

5 Source code and performance

5.1 Running the HyperRAM example
The HyperRAM example source code is based on the i.MX RT1050 SDK V2.3.1. Download the code package hyper_ram.zip from
NXP website.

1. Set up the hardware environment.

Rework the MIMXRT1050 EVK board, as shown in MIMXRT1050 EVK board setting, to replace the Cypress
S26KS512SDPBHI02 HyperFlash device with the Cypress S27KS0641 HyperRAM device. Then connect the OpenSDA/
UART interface to the host PC and make sure that it powers on properly.

NXP Semiconductors
Source code and performance

How to Enable HyperRAM with i.MX RT, Rev. 2, 7 May, 2021
Application Note 9 / 18

http://www.nxp.com/doc/IMXRT1050RM

Figure 8. HyperRAM test board

2. Create the HyperRAM project.

Unzip the hyper_ram.zip package and extract the source code of the HyperRAM example. Copy the hyper_ram folder into
the SDK_2.3.1_EVKB-IMXRT1050\boards\evkbimxrt1050\driver_examples\flexspi folder of the i.MX RT1050 SDK V2.3.1.

Figure 9. HyperRAM source code

3. Main blocks of the HyperRAM example code.

In this example, the FlexSPI sends data and operates the external HyperRAM device connected to the FlexSPI interface.

a. The example implements the necessary configurations of the i.MX RT1050 platform and configures the FlexSPI
controller according to the HyperRAM device.

b. The example implements the read/write operations from/to the HyperRAM device using the AHB and IP commands.

c. A simple performance test is implemented and the results are displayed over the UART terminal connection.
Double-click the flexspi_hyper_ram_polling_transfer.eww file to open the HyperRAM IAR project.

NXP Semiconductors
Source code and performance

How to Enable HyperRAM with i.MX RT, Rev. 2, 7 May, 2021
Application Note 10 / 18

Figure 10. HyperRAM IAR project

4. Build and run the example.

Find the MIMXRT1050 EVK OpenSDA-UART port on the host PC and open a serial terminal with these settings:

• 115200 baud rate.

• Eight data bits.

• No parity.

• One stop bit.

• No flow control.

Figure 11. MIMXRT1050 EVK OpenSDA-UART port

NXP Semiconductors
Source code and performance

How to Enable HyperRAM with i.MX RT, Rev. 2, 7 May, 2021
Application Note 11 / 18

5. Set the compiling optimizations level to None.

Figure 12. Setting the compiling optimization level to None

6. Make, download, and debug. The information shown in Figure 14 appears in the serial terminal.

a. Select the debug project to make sure that the test data are put into the DTCM, and the code is put into the
ITCM.

b. Make the project.

c. Download and debug.

d. Click Go to run the project.

NXP Semiconductors
Source code and performance

How to Enable HyperRAM with i.MX RT, Rev. 2, 7 May, 2021
Application Note 12 / 18

Figure 13. Building and running the HyperRAM project

Figure 14. HyperRAM demo print information

5.2 Performance and analysis
The HyperRAM project described above includes the performance test cases. Table 3 shows the software configurations for
the test.

Table 3. HyperRAM test environment

— Module Freq

Core Arm® Cortex®-M7 600 MHz

Table continues on the next page...

NXP Semiconductors
Source code and performance

How to Enable HyperRAM with i.MX RT, Rev. 2, 7 May, 2021
Application Note 13 / 18

Table 3. HyperRAM test environment (continued)

— Module Freq

AHB to FlexSPI 64-bit 150 MHz

IPS to FlexSPI 32-bit 150 MHz

HyperRAM chip S27KS0641 @ 1.8 V 166 MHz (332 MB/s)

L1 Dcache Total 32 KB/one-line 32 B —

HyperRAM space setting

MPU:

Normal memory type

Non-shareable/cacheable/wb

—

FlexSPI controller setting
Read: Enable Prefetch

Write: Enable Bufferable
—

Code

Text region in ITCM

Data region in HyperRAM

CStack region in DTCM

Disable/enable Dcache

Turn off compiling optimization

—

The test cases in the HyperRAM project interact with each other. Deactivate the other accesses, except for the
target case. For example, to test the HyperRAM read performance, deactivate the AHB access verification, IP
access verification, and write performance cases.

 NOTE

There are two types of the performance test case: Dcache disable and Dcache enable.

• The Dcache disable test case shows the pure FlexSPI and HyperRAM performance. The analysis of the results expounds
the mechanism to improve the performance and basic configurations.

• The Dcache enable test case shows how to promote the read performance via Dcache and why the performance can be
promoted so significantly.

Following the above test cases, different configurations can be selected according to a specific use case. Table 4 and Figure 15
show the performance results with Dcache disable.

Table 4. HyperRAM core read/write performance with Dcache disabled

— Byte 4 8 32 128 512 1024 16 K 32 K

Read
Time (ns) 278 338 696 2140 7896 15576 248876 497730

Perf (MB/S) 14 23 45 59 64 65 65 65

Write
Time (ns) 115 121 188 1075 4648 9401 152155 304415

Perf (MB/S) 34 66 170 119 110 108 107 107

NXP Semiconductors
Source code and performance

How to Enable HyperRAM with i.MX RT, Rev. 2, 7 May, 2021
Application Note 14 / 18

Figure 15. HyperRAM performance diagram with Dcache disabled

The analysis is based on the above-mentioned performance results.

• The HyperRAM memory space attributes defined in the MPU model:

The original SDK code sets the HyperRAM memory space type to the Device mode. This limits the AHB burst write to the
single mode and causes a very poor write performance.

Changing the HyperRAM memory space type to the Normal mode in the MPU enables the AHB write bursts to the INCR,
greatly improving the write performance.

In the board.c file:

/* Setting Memory with Normal type, not shareable, outer/inner write back. */
MPU->RBAR = ARM_MPU_RBAR(2, 0x60000000U);
MPU->RASR = ARM_MPU_RASR(0, ARM_MPU_AP_FULL, 0, 0, 1, 1, 0, ARM_MPU_REGION_SIZE_512MB);

• Enable the FlexSPI write access bufferable feature:

The FlexSPI optionally buffers the AHB writes so that the writes return the AHB bus ready when the AHB command is granted
by an arbitrator and will not wait for the AHB command to complete. The use of this feature improves the write performance.

The FlexSPI AHB TX buffer has 64 bytes, and the internal AHB can implement a write access burst with a maximum size of
32 bytes. Therefore, the result of the write access performance is higher when transferring 32 bytes.

In the flexspi_hyper_ram_polling_transfer.c file:

config.ahbConfig.enableAHBBufferable = true;

• Enable the FlexSPI read access prefetch feature:

When the FlexSPI AHB read prefetch is enabled, the FlexSPI will fetch more flash/RAM read data than what is needed for
the current AHB burst. This reduces the latency for the next AHB read access, improving the read access performance.

In the flexspi_hyper_ram_polling_transfer.c file:

config.ahbConfig.enableAHBPrefetch = true;

Even with the FlexSPI read prefetch enabled, the read access performance is not as good as it could be. The key reason is
the invalidation of the internal AHB read burst. The disabled Dcache will limit the AHB read access in the single mode. When
the Dcache is enabled, the AHB read access can be implemented in the INCR burst mode and the performance improves,
as shown in Table 5 and Figure 16.

NXP Semiconductors
Source code and performance

How to Enable HyperRAM with i.MX RT, Rev. 2, 7 May, 2021
Application Note 15 / 18

In the flexspi_hyper_ram_polling_transfer.c file:

/* SCB_DisableDCache(); */

Table 5. HyperRAM core read performance with Dcache enabled

— Byte 4 8 32 128 512 1024 16 K 32 K

Read (Disable
DCache)

Time (ns) 278 338 696 2140 7896 15576 248876 497730

Perf (MB/S) 14 23 45 59 64 65 65 65

Read (Enable
DCache)

Time (ns) 275 285 351 671 1955 3661 58248 116501

Perf (MB/S) 14 28 91 190 261 279 281 281

Figure 16. HyperRAM read performance diagram with Dcache enabled

6 Validated HyperRAM devices
HyperRAM devices from different vendors are tested to validate if they can work well with i.MX RT series.

Table 6 lists the test results of all HyperRAM devices. As shown in Table 6, some HyperRAM device, such as 7KS0641DPHI02,
cannot pass the test. Therefore, when using HyperRAM on i.MX RT series, all passed devices in Table 6 are recommended to use.

Table 6. HyperRam device test results

RT part number HyperRAM vendor HyperRAM part number Results

PIMXRT1176DVMAA Cypress 7KL0642DPHB02 (8 MB) PASS

PIMXRT1064DVL6A Cypress 7KS0642GAHI02 (8 MB) PASS

PIMXRT1052DVL6B Cypress 7KS0641DPHI02 (8 MB) FAIL

PIMXRT1064DVL6A Cypress 7KS0641DPHI02 (8 MB) FAIL

PIMXRT1064DVL6A Winbond W956x8MBYA (8 MB) PASS

PIMXRT1064DVL6A ISSI IS66WVH32M8DALL (32 MB) FAIL

PIMXRT1176DVMAA ISSI IS66WVH8M8DALL (8 MB) FAIL

NXP Semiconductors
Validated HyperRAM devices

How to Enable HyperRAM with i.MX RT, Rev. 2, 7 May, 2021
Application Note 16 / 18

7 Conclusion
This application note describes how to enable the HyperRAM device with the i.MX RT1050 FlexSPI interface, provides the
example source code for a quick reference, and also analyzes the performance of the HyperRAM access according to the test
results. For more details, see the following:

• i.MX RT1050 Reference Manual (document IMXRT1050RM)

• HyperBus TM Specification Low Signal Count High Performance DDR Bus

• S27KS0641 user manual from Cypress

8 Revision history
Table 7. Revision history

Revision number Date Substantive changes

0 August 2018 Initial release

1 August 2020 Added Validated HyperRAM devices

2 7 May, 2021 Updated Validated HyperRAM devices

NXP Semiconductors
Conclusion

How to Enable HyperRAM with i.MX RT, Rev. 2, 7 May, 2021
Application Note 17 / 18

http://www.nxp.com/doc/IMXRT1050RM
https://www.cypress.com/file/213356/download
https://www.cypress.com

How To Reach Us

Home Page:

nxp.com

Web Support:

nxp.com/support

Information in this document is provided solely to enable system and software implementers
to use NXP products. There are no express or implied copyright licenses granted hereunder
to design or fabricate any integrated circuits based on the information in this document. NXP
reserves the right to make changes without further notice to any products herein.

NXP makes no warranty, representation, or guarantee regarding the suitability of its products
for any particular purpose, nor does NXP assume any liability arising out of the application
or use of any product or circuit, and specifically disclaims any and all liability, including
without limitation consequential or incidental damages. “Typical” parameters that may be
provided in NXP data sheets and/or specifications can and do vary in different applications,
and actual performance may vary over time. All operating parameters, including “typicals,”
must be validated for each customer application by customer's technical experts. NXP does
not convey any license under its patent rights nor the rights of others. NXP sells products
pursuant to standard terms and conditions of sale, which can be found at the following address:
nxp.com/SalesTermsandConditions.

While NXP has implemented advanced security features, all products may be subject to
unidentified vulnerabilities. Customers are responsible for the design and operation of their
applications and products to reduce the effect of these vulnerabilities on customer’s applications
and products, and NXP accepts no liability for any vulnerability that is discovered. Customers
should implement appropriate design and operating safeguards to minimize the risks associated
with their applications and products.

NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER WORLD, COOLFLUX,
EMBRACE, GREENCHIP, HITAG, I2C BUS, ICODE, JCOP, LIFE VIBES, MIFARE, MIFARE
CLASSIC, MIFARE DESFire, MIFARE PLUS, MIFARE FLEX, MANTIS, MIFARE ULTRALIGHT,
MIFARE4MOBILE, MIGLO, NTAG, ROADLINK, SMARTLX, SMARTMX, STARPLUG, TOPFET,
TRENCHMOS, UCODE, Freescale, the Freescale logo, AltiVec, C‑5, CodeTEST, CodeWarrior,
ColdFire, ColdFire+, C‑Ware, the Energy Efficient Solutions logo, Kinetis, Layerscape, MagniV,
mobileGT, PEG, PowerQUICC, Processor Expert, QorIQ, QorIQ Qonverge, Ready Play,
SafeAssure, the SafeAssure logo, StarCore, Symphony, VortiQa, Vybrid, Airfast, BeeKit,
BeeStack, CoreNet, Flexis, MXC, Platform in a Package, QUICC Engine, SMARTMOS, Tower,
TurboLink, UMEMS, EdgeScale, EdgeLock, eIQ, and Immersive3D are trademarks of NXP
B.V. All other product or service names are the property of their respective owners. AMBA,
Arm, Arm7, Arm7TDMI, Arm9, Arm11, Artisan, big.LITTLE, Cordio, CoreLink, CoreSight, Cortex,
DesignStart, DynamIQ, Jazelle, Keil, Mali, Mbed, Mbed Enabled, NEON, POP, RealView,
SecurCore, Socrates, Thumb, TrustZone, ULINK, ULINK2, ULINK-ME, ULINK-PLUS, ULINKpro,
µVision, Versatile are trademarks or registered trademarks of Arm Limited (or its subsidiaries)
in the US and/or elsewhere. The related technology may be protected by any or all of patents,
copyrights, designs and trade secrets. All rights reserved. Oracle and Java are registered
trademarks of Oracle and/or its affiliates. The Power Architecture and Power.org word marks and
the Power and Power.org logos and related marks are trademarks and service marks licensed
by Power.org.

© NXP B.V. 2018-2020. All rights reserved.

For more information, please visit: http://www.nxp.com
For sales office addresses, please send an email to: salesaddresses@nxp.com

Date of release: 7 May, 2021
Document identifier: AN12239

http://www.nxp.com
http://www.nxp.com/support
http://www.nxp.com/SalesTermsandConditions

	Contents
	1 Introduction
	2 MIMXRT1050 EVK board setting
	2.1 Board re-work for HyperRAM device
	2.2 HyperRAM device

	3 FlexSPI controller and HyperBus
	3.1 FlexSPI host controller
	3.2 HyperBus protocol

	4 Memory region and Look-Up-Table (LUT)
	4.1 FlexSPI register memory region
	4.2 AHB access memory region
	4.3 IP command access memory region
	4.4 LUT memory region

	5 Source code and performance
	5.1 Running the HyperRAM example
	5.2 Performance and analysis

	6 Validated HyperRAM devices
	7 Conclusion
	8 Revision history

