
AN2591
Getting Started with ATECC608A SecureBoot

Use Case Example
INTRODUCTION

The Microchip ATECC608A device is a member of the
CryptoAuthentication™ family of high-security cryp-
tographic devices, which combine world-class
hardware-based key storage with hardware cryp-
tographic accelerators in order to implement various
authentication and encryption protocols. ATECC608A
provides a mechanism to support secure boot opera-
tions in a connected microcontroller unit (MCU) that
can help identify situations in which fraudulent code
has been installed on the host central processing unit
(CPU).

CryptoAuthLib is a software-support library for the
ATSHA204A, ATECC108A, ATECC508A and
ATECC608A CryptoAuthentication devices, written in
C. It is a portable, extensible, powerful and easy-to-use
library for working with the ATSHA and ATECC family
devices.

The SAM Boot Assistant (SAM-BA® application) allows
In-System Programming (ISP) using a USB or UART
host without any external programming interface.

This application note provides an example implementa-
tion of the ATECC608A SecureBoot feature, which
operates by using the SAM-BA application. During this
operation, the SAMD21 device becomes the Target,
which contains the SAM-BA Monitor as the Bootloader.
The Bootloader uses CryptoAuthLib to verify the user
application before executing it.

PACKAGE CONTENTS

The example application contains:

- The SAM-BA Monitor application

- An example of a user application

- A Python script used to generate the Public
Key and the Signature for the user applica-
tion

- Updated applets and binary files for the
SAM-BA software

HARDWARE AND SOFTWARE
REQUIREMENTS

In order to perform the ATECC608A SecureBoot
feature demonstration, the following hardware
(Figure 5) and software requirements must be met.

Hardware prerequisites:

- SAMD21 Xplained Pro Evaluation Board

- CryptoAuth XPRO-B Evaluation Kit or one of
the CryptoAuth-XPRO socket kits
(AT88CKSCKTUDFN-XPRO or
AT88CKSCKTSOIC-XPRO), connected to
EXT1

- OLED1 Xplained Pro, connected to EXT3

- One Micro-B to Type-B USB interface cable

Software prerequisites:

- Atmel Studio 7

- Atmel Software Framework (ASF) 3.34

- CryptoAuthLib

- SAM-BA 2.17

Note: All pieces of software listed above can be
downloaded from the Microchip website.

REFERENCES

- ATECC608A Product Details

- CryptoAuthLib

- Security ICs Overview

- SAM-BA In-system Programmer

- SAM-BA Overview and Customization Pro-
cess

- Using SAM-BA for Linux on SAM Devices

- Atmel Studio 7

- SAM-BA User’s Guide, which becomes
available in the installation directory once the
SAM-BA software has been installed.

Author: Kalyan C. Manukonda
Microchip Technology Inc.
 2017-2018 Microchip Technology Inc. DS00002591B-page 1

http://www.microchip.com/wwwproducts/en/atecc608a
http://www.microchip.com/SWLibraryWeb/product.aspx?product=CryptoAuthLib
http://www.microchip.com/design-centers/security-ics/overview
http://www.microchip.com/DevelopmentTools/ProductDetails.aspx?PartNO=Atmel%20SAM-BA%20In-system%20Programmer
http://ww1.microchip.com/downloads/en/AppNotes/Atmel-42438-SAM-BA-Overview-and-Customization-Process_ApplicationNote_AT09423.pdf
http://ww1.microchip.com/downloads/en/AppNotes/Atmel-42728-Using-SAM-BA-for-Linux-on-SMART-ARM-based-Microcontrollers_ApplicationNotes_AT15004.pdf
http://www.microchip.com/avr-support/atmel-studio-7
http://www.microchip.com/avr-support/atmel-studio-7

AN2591
ATECC608A APPLICATIONS

The ATECC608A device has a flexible command set,
which allows usage in many applications, including the
following:

- Network/IoT Node Endpoint Security
Manage, node identity-authentication,
session-key creation and management.
Supports the entire temporary session key
generation flow for multiple protocols,
including TLS 1.2 (and earlier) and TLS 1.3.

- Secure Boot, which supports the MCU host
by validating code digests and enabling com-
munication keys on a “success” signal. Vari-
ous configurations are available in order to
offer enhanced performance.

- Small Message Encryption.

- Hardware Advanced Encryption Standard
(AES) engine to encrypt and/or decrypt small
messages or data such as Personally Identifi-
able Information (PII). The ATECC608A
device directly supports the AES-ECB mode,
where other AES modes are supported with
the help of the host. Additionally,
ATECC608A has a GFM calculation function,
which supports AES-GCM.

- Key Generation for Software Download
Support: local protected key generation for
downloaded images. Both broadcasting of
one image to other systems (each with the
same decryption key), as well as point-to-
point downloading of unique images per sys-
tem are supported.

- Ecosystem Control and Anti-Counterfeiting
validates that a system or a component is
authentic and that it comes from the original
equipment manufacturer.

The ATECC608A device is also compatible with the
ATECC508A device when properly configured.

SECUREBOOT FEATURES

As mentioned previously, the ATECC608A provides a
mechanism to support secure boot operations in a con-
nected MCU. On power-up, the boot code within the
host MCU sends the code digest and the appropriate
signature to the ATECC608A device. Then,
ATECC608A validates the digest by using the public
key stored in the device.

If the code to be validated at boot is relatively small,
then the Secure Hash Algorithm (SHA) computation
engine can be used to calculate the code digest by
sending the code bytes to ATECC608A.

The ATECC608A SecureBoot feature provides options
for speed optimization and wire protection.

Speed Optimization

The ATECC608A SecureBoot feature includes the
option to store the signature and/or the digest within the
protected boundary of ATECC608A, in order to reduce
the execution time. The signature and/or digest can be
updated through a mode switch on the normal secure
boot command, which verifies the signature and stores
the signature/digest in a designated slot. Storing the
signature reduces the boot time by limiting the size of
the IO block that needs to be sent to the ATECC608A.

If the digest is stored, then the ATECC608A device
does only a digest comparison between the host code
digest in the input array and the stored digest in the
designated slot. This reduces the boot time by
eliminating the computation delay for the ECC
verification.

Wire Protection

In some applications, it may be necessary to protect
the system against an adversary who might cut the
wire(s) between the ATECC608A device and the host
MCU, in order to replace the results of the Verify oper-
ation with a fraudulent “success” signal. If this scenario
is indicated by the mode parameter of the SecureBoot
command, the input code digest can be encrypted via
an XOR of the code digest, with a digest of a nonce and
the IO protection secret.
DS00002591B-page 2  2017-2018 Microchip Technology Inc.

AN2591
Configurations and Commands

ATECC608A configuration zone controls the operation
of the SecureBoot functionality of the device. In gen-
eral, the SecureBoot command makes use of these
configuration bits to ensure that the proper sequences
are executed.

The SecureBoot feature can be configured for 3 modes
of operation:

1. Full Secure Boot: both the digest and the
signature are transferred to the ATECC608A
device.

2. Stored Secure Boot (FullSig): the signature is
stored and the digest is verified with the ECC
Verify function.

3. Stored Secure Boot (FullDig): the digest is
stored and will be compared without ECC
verification.

The SecureBoot command enables 3 modes of
operation:

1. Full: both the digest and the signature are sent
to ATECC608A. The digest is verified using the
signature and the public key.

2. FullStore: the digest will be sent to the ATEC-
C608A device. The digest is verified using the
signature OR the digest is stored in the device.

3. FullCopy: this command is identical to the Full
command, except digest/signature is copied to
the device only on successful validation.

SAM-BA MONITOR
The SAM-BA Monitor provides an easy way to program
the on-chip Flash memory. The SAM-BA Monitor sup-
ports both USB and UART communications. The SAM-
BA Monitor will continuously look for a start condition
on the UART and/or USB interfaces.

The start condition on the USB interface is enumeration
completion. When the start condition is detected, the
SAM-BA Monitor enters an infinite loop and is ready for
SAM-BA commands.

Start condition on the UART interface is indicated with
the '#' (pound sign) character. When the SAM-BA Mon-
itor receives this character, it awaits the SAM-BA
commands.

SOFTWARE IMPLEMENTATION

The example application is provided to help
demonstrate the SecureBoot feature by using the
ATECC608A device. When this application is exe-
cuted, it authenticates the user application using the
code digest and/or the signature available on the
crypto-device. It can also be used to upgrade the
current user application.

Design Considerations

The following are design considerations for this
implementation:

- Reserve 32 Kbytes (0x00000000 to
0x00008000) of Flash memory for the SAM-
BA Monitor application. This is required in
order to have ASF-based applications and
drivers, which enables smooth integration to
other family devices. It also includes full
CryptoAuthLib, which enables all the features
available in the library for further evaluation.

- The Bootloader application is protected using
BOOTPROT and the Security Bit within the
SAMD21 device, which restricts the Flash
read and write access from external interfer-
ence; the Bootloader area is also write
protected.

- Only the UART interface is enabled to inter-
act with SAM-BA GUI on the host. The USB-
CDC interface is disabled by default.

- The SAM-BA Monitor application is not fac-
tory programmed. To use this application, it is
required to follow the procedures provided in
Section “Using the SAM-BA Monitor
application”.

Figure 1 shows how the memory is split for the
example application.

FIGURE 1: Memory Map.

Write
protected
through
BOOTPROT

External Read/
Write access dis-
abled through
Security Bit
 2017-2018 Microchip Technology Inc. DS00002591B-page 3

AN2591
Secure Bootloader Flow

Figure 2 provides a high level flow chart for the
SecureBoot feature implementation with the SAM-BA
Monitor.

FIGURE 2: Secure Bootloader Flow.
DS00002591B-page 4  2017-2018 Microchip Technology Inc.

AN2591
Configurations

The example application can be customized by
applying the conditions described in Table 1.

USING THE SAM-BA MONITOR
APPLICATION

The example application is downloaded to the
SAMD21 MCU with the Atmel Studio software. The
example application has a different bootloader size and
user application start address compared to the original
application from the ASF. In order to be able to use the
SAM-BA GUI with this version of SAM-BA Monitor, it is
required to use the files provided in the package.

SAM-BA GUI Setup

In order to use the SAM-BA GUI with the SAM-BA Mon-
itor application, it is required to:

1. Merge the files from the SAM-BA installation
directory of [installation_directory]\
applets with the files in Package\
SAMBA_Files\applets.

2. Merge the files from the SAM-BA installation
directory of [installation_directory]\
tcl_lib with the files in Package\SAMBA_-
Files\tcl_lib.

Activating the SAM-BA Monitor

SAM-BA Monitor (Bootloader) activation can be
requested in one of the following ways:

1. External condition: in order to activate this
condition, the user needs to pull the Bootloader
entry pin low, while releasing the device from the
Reset condition. A common usage is to use a
push button (SW0), which can be applied as a
SAM-BA Monitor trigger. The push button must
be held while powering up or resetting the
device.

2. Internal condition: this condition can be
requested in the case of erased devices or when
the application Reset vector (at the application’s
start address add 4) is blank (0xFFFFFFFF).

RUNNING SAM-BA

This section presents the basic steps to use the SAM-
BA application on a PC running Microsoft® Windows®.
For more information, please consult the SAM-BA
User’s Guide, which becomes available upon
installation.

Connecting to the SAM-BA GUI

In order to use the SAM-BA Monitor with a UART host,
connect the target board to the PC through a debug
USB port.

When the SAM-BA application is executed on a
Windows PC, the dialogue box in Figure 3 becomes
available.

Click the Connect button to establish the connection
with the device.

FIGURE 3: Connecting the SAM-BA
Monitor dialogue box.

TABLE 1: CONFIGURATION CONDITIONS

Condition Description

CRYPTO_DEVICE_ENABLE_SECURE_BOOT This macro provides an option to enable or disable the SecureBoot
feature.

CRYPTO_DEVICE_LOAD_CONFIG_ENABLED This macro provides an option to enable or disable the crypto-
device configuration. This requires an unlocked crypto-device
attached to the Target board.
When enabling this condition, the Target board loads predefined
configuration data and a public key to the crypto-device. Then it
locks both configuration and data zones of the crypto-device.

USER_APPLICATION_START_PAGE This macro provides an option to adjust the user application start
address. Changing this address requires modifications to be made
to the user application; the SAM-BA applets adapt to reflect the
new address.

IO_PROTECTION_PAGE_ADDRESS This macro provides an option to adjust the IO protection key on
the Target board.
 2017-2018 Microchip Technology Inc. DS00002591B-page 5

AN2591
Flash Programming

After successfully connecting the device, the screen in
Figure 4 is displayed.

In order to upgrade the existing application, the SAM-
BA requires erasing the existing application files and
downloading the newest files.

The contents of the Flash are loaded using the Flash
tab (marked by “1” in Figure 4). While downloading a
program to the Flash memory, the start address
(marked by “2”) must match the configured value from
the SAM-BA Monitor and applet (in the example appli-
cation, this value is 0x08000. Otherwise, the transfer
process will be aborted.

Erase the application by selecting the “erase applica-
tion area” script from the drop-down menu (3) and
clicking Execute (4).

Once this is done, select the file you wish to download
to the device’s Flash memory, then change the Address
(2) to the 0x08000 value. Click the Send File button in
order to download the firmware image to the MCU.

SCRIPTS

Table 2 shows the predefined scripts available with the
SAM-BA host.

FIGURE 4: SAM-BA® Window.

TABLE 2: PREDEFINED SCRIPTS

Script Name Description

Erase Application Area Erases all the application
code (SAM-BA Monitor
region will not be erased).

Invalidate Application Erases the first page of the
application.

Read Fuses Returns the values of fuse
settings. For details, please
consult the ATECC608A
Summary Data Sheet.

Read Lock Fuses Reads the current lock
settings.

Read Device ID Reads the Device
Identification register.

1

43

2

DS00002591B-page 6  2017-2018 Microchip Technology Inc.

AN2591
RUNNING THE EXAMPLE APPLICATION

This section describes the basic steps to execute the
example application. These steps are divided into the
following categories:

1. Building and downloading the SAM-BA Monitor
application.

2. Building and downloading the user application.

3. Provisioning the ATECC608A device using the
target board.

4. Binding the target board to the ATECC608A
device.

5. Verifying the SecureBoot feature.

Building and Downloading the SAM-BA
Monitor Application

The SAMD21 family of devices does not include the
SAM-BA Monitor as part of its ROM. Before using the
SAM-BA GUI with the SAMD21 device, it is required to
build and download the SAM-BA Monitor application.
This can be done by using an SWD debugger.

1. Run Atmel Studio. From the top menu bar, select
the Tools tab, then click the Device Program-
ming menu selection.

2. From the Device Programming window, select
the tool (for instance EDBG) and click Apply.

3. Once the EDBG tool is running, click the Fuses
tab.

4. Set the NVMCTRL_BOOTPROT field to the
default value of 0x07.

5. Click the Memories tab and erase the chip by
clicking the Erase now button.

6. In the Flash field, fill in the path to the Bootloader
image and click the Program button.

Building and Downloading the User
Application

A sample user application is provided in the example
application package. This program is an ASF example,
customized for the SAM-BA Monitor Bootloader.

The following are customizations done on the original
ASF program:

1. Relocate the user application’s start address to
post Bootloader (for instance, starting at 32K
address)

- This example project is configured to use
only 24K of user application space.

2. Create an application footer structure. The
Bootloader validates the start address and the
size parameters in order to match the Boot-
loader expectations.
__attribute__((section(".footer_data")))
const memory_parameters
user_application_footer =
{
USER_APPLICATION_START_ADDRESS,
(USER_APPLICATION_END_ADDRESS -
USER_APPLICATION_START_ADDRESS),
0x00010001,
{0},
};

3. Relocate the application footer to the last page
of the image. This can be achieved through the
linker script. Please refer to the
samd21j18a_flash.ld file, provided with the
example user application.

4. Compile the project to generate the file:
FREERTOS_OLED1_XPRO_EXAMPLE1.bin

5. Protect the generated bin file by appending the
signature. The example application package
contains the necessary Python scripts and
key.pem files, needed to generate signatures
by using Private Key from the key.pem file. Fol-
low the next steps to append the signature to the
bin file:

a) Call sboot_sign_firmware.exe with the
key file and the user application.

- Enter Command Prompt and use the follow-
ing command:
sboot_sign_firmware.exe -kkey.pem
-bFREERTOS_OLED1_XPRO_EXAM-
PLE1.bin

- When no key file is passed to the script,
sboot_sign_firmware.exe will generate
a new key pair. This new key pair will be
available in the generated_key.pem file.

Note: When a new key pair is used by the user,
the associated Public Key should be
loaded to the crypto-device using either the
provision service or the target board.

b) FREERTOS_OLED1_XPRO_EXAMPLE1.bin will
now contain the signature appended at the last
location of the file.

6. Download the appended signature FREER-
TOS_OLED1_XPRO_EXAMPLE1.bin by using
the SAM-BA GUI (as mentioned in Section
“Using the SAM-BA Monitor application”).
 2017-2018 Microchip Technology Inc. DS00002591B-page 7

AN2591
Provisioning the ATECC608A Device
Using the Target Board

The provisioning of the ATECC608A device is very
important and necessary to secure the user
application.

As part of this demonstration, there is an option to pro-
vision the device by using the Bootloader. The Boot-
loader is provided with a macro
(CRYPTO_DEVICE_LOAD_CONFIG_ENABLED), which
enables this feature. By default, this macro is disabled.
When enabled, a fixed Public Key and other configura-
tions are loaded to the crypto-device.

1. Turn off the target board and plug-in the
CryptoAuth XPRO-B board to the SAMD21
Xplained Pro Evaluation Board.

- The ATECC608A device on the CryptoAuth
XPRO-B board should be in an unlocked
state.

2. Turn on the target board.

3. When the macro is enabled, the target board ini-
tiates the provisioning process once it identifies
an unlocked crypto-device.

- If the crypto-device is locked, then the
SAMD21 device skips the provisioning
process.

4. By this point, the ATECC608A should be config-
ured and ready to use.

Note: When a different key or different configura-
tion setting is intended to be used,
Microchip Technology Inc. offers provision-
ing services in order to make sure that the
devices are configured with the right data
through a standardized and secured
provisioning process.

Binding the Target Board to the
ATECC608A Device

This binding protection is meant to protect against an
adversary who may cut the wire(s) between the ATEC-
C608A device and the host MCU. It also helps to pre-
vent the ATECC608A device from being removed from
the board and used on another. This helps restrict the
impact to only one board if the attacker manages to
extract the IO protection secret from the MCU.

No user intervention is needed for this step. Once the
target board detects a crypto-device and that the IO
protection secret is not set on either the host MCU or
on the crypto-device, it initiates the process.

Once the binding is done with a crypto-device, the tar-
get board initiates the BOOTPROT fuse setting. This
disables all further writes from the Bootloader section
of the target board.

At the end of this process, both the SAMD21 and the
crypto-device are bound and have their unique IO
protection secret.

Note: Once the binding between the crypto-
device and the host MCU is completed, it is
not possible to rebind them after erasing
the IO protection secret of the host MCU.

Verifying the SecureBoot Feature

By this time, the target board is bound with the crypto-
device and it is loaded with the Bootloader and user
application.

Once the target board is turned on with the crypto-
device, it will validate the user application and start
executing it.

While the user application is executing, all the features
of FREERTOS_OLED1_XPRO_EXAMPLE ASF project
are available to evaluate.

SUMMARY OF
FREERTOS_OLED1_XPRO_EXAMPLE

The FREERTOS_OLED1_XPRO_EXAMPLE user
application is meant to demonstrate the basic usage of
the FreeRTOS real-time operating system on the
SAMD devices. It demonstrates the usage of tasks,
queues and mutexes (semaphores).

The application is designed to run on a SAMD Xplained
Pro Evaluation Board, with an OLED1 Xplained Pro
Wing Board connected to EXT port.

After start-up, the application displays a pseudo-ran-
dom graphic, which is continuously updated on the
OLED, along with a menu bar at the bottom. The menu
bar shows the selection of the user’s screens. By
pressing the corresponding buttons on the OLED1
Xplained Pro Wing Board, the user can select between:

• Button1 — Graph: pseudo-random graphic.

• Button 2 — Term: a text received from a terminal;
for instance, the EDBG Virtual COM Port.

To add text in the terminal window, the user must
connect a USB cable between the EDBG port of the
SAMD MCU and a PC. The USB port of the PC will act
as an EDBG Virtual COM Port. The terminal emulator
software must be set for 9600 baud, 8 bits, 1 stop bit,
no parity settings. The example application will echo
back the received characters.

Further, the LEDs on the OLED1 Xplained Pro Wing
Board are lit up for the duration of the various task
loops, simply to give a visual representation of the task
switching:

• LED1 represents the updating of the graphic and
the handling of incoming terminal characters.

• LED2 represents the printing of text to the termi-
nal window.

• LED3 represents the checking process of the user
selection, handling display buffer and menu
drawing.
DS00002591B-page 8  2017-2018 Microchip Technology Inc.

AN2591
Note: Note that several LEDs can be lit up at the
same time if one task is waiting for another
task to release a resource. In this user
application, the resources are the mutexes
for the display and terminal text buffer.

PORTING TO OTHER BOOTLOADERS
Converting a standard Bootloader to similar secure
Bootloaders can be easily achieved by following the
next steps:

1. Integrate CryptoAuthLib to the existing Boot-
loader, including app\secure_boot.

2. Integrate the crypto_device_app.c and the
.h files to the project.

- Copy and include the crypto_de-
vice_app.c and the .h files in the project.

- Call crypto_device_verify_app before
jumping to the user application.

- Jump to user application only when the
ATCA_SUCCESS message is displayed.

3. Setup the configurations by revisiting the
configurable macros.

a) secure_boot.h.

b) secure_boot_memory.h

c) crypto_device_app.h

4. Update memory interfaces:

- Secure_boot_memory.c and io_pro-
tection_key.c files contain access func-
tions for the NVM/Flash. These access
functions should be revisited based on the
device in use.

5. Memory access restriction:

- In this example application, the BOOTPROT
fuse and the SECURITY bit are used to avoid
unwanted access to the Flash memory. The
user needs to implement similar restrictions
based on the device in use.

6. User application updates:

- It is required to adjust the user application to
a new location as set in the Bootloader, along
with a footer data, so that the Bootloader can
verify its authenticity and then jump to its
execution. Section “Building and Down-
loading the User Application” provides
more details.

#define SECURE_BOOT_CONFIGURATION
#define SECURE_BOOT_DIGEST_ENCRYPT_ENABLED
#define SECURE_BOOT_UPGRADE_SUPPORT

SECURE_BOOT_CONFIG_FULL_DIG
true
true

#define USER_APPLICATION_START_PAGE
#define IO_PROTECTION_PAGE_ADDRESS
#define USER_APPLICATION_START_ADDRESS
#define USER_APPLICATION_END_ADDRESS
#define USER_APPLICATION_HEADER_SIZE
#define USER_APPLICATION_HEADER_ADDRESS

(APP_START_ADDRESS / NVMCTRL_PAGE_SIZE)
((USER_APPLICATION_START_PAGE - 1) * NVMCTRL_PAGE_-
SIZE)
(USER_APPLICATION_START_PAGE * NVMCTRL_PAGE_SIZE)
(USER_APPLICATION_START_ADDRESS + (24*1024))
(2 * NVMCTRL_PAGE_SIZE)
(USER_APPLICATION_END_ADDRESS - USER_APPLICATION_-
HEADER_SIZE)

#define CRYPTO_DEVICE_ENABLE_SECURE_BOOT
#define CRYPTO_DEVICE_LOAD_CONFIG_ENABLED
#define IO_PROTECTION_KEY_SLOT
#define SECURE_BOOT_PUBLIC_KEY_SLOT
#define SECURE_BOOT_SIGN_DIGEST_SLOT

true
false
4
11
12
 2017-2018 Microchip Technology Inc. DS00002591B-page 9

AN2591
7. As a last step, the user needs to revisit the
Python script provided in order to make sure that
it matches the memory map, generates keys
appropriately and appends the signature at the
right location.

As these steps depend on the device and the Boot-
loader architecture, the user needs to consider other
changes based on the applications.

FIGURE 5: Top View of the Example Application Setup.

EDBG Port Connection

CryptoAuth Xplained PRO Board

SAMD21 Xplained PRO Board

OLED1 Xplained PRO Board
DS00002591B-page 10  2017-2018 Microchip Technology Inc.

Note the following details of the code protection feature on Microchip devices:

• Microchip products meet the specification contained in their particular Microchip Data Sheet.

• Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the
intended manner and under normal conditions.

• There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.

• Microchip is willing to work with the customer who is concerned about the integrity of their code.

• Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not
mean that we are guaranteeing the product as “unbreakable.”

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.
Information contained in this publication regarding device
applications and the like is provided only for your convenience
and may be superseded by updates. It is your responsibility to
ensure that your application meets with your specifications.
MICROCHIP MAKES NO REPRESENTATIONS OR
WARRANTIES OF ANY KIND WHETHER EXPRESS OR
IMPLIED, WRITTEN OR ORAL, STATUTORY OR
OTHERWISE, RELATED TO THE INFORMATION,
INCLUDING BUT NOT LIMITED TO ITS CONDITION,
QUALITY, PERFORMANCE, MERCHANTABILITY OR
FITNESS FOR PURPOSE. Microchip disclaims all liability
arising from this information and its use. Use of Microchip
devices in life support and/or safety applications is entirely at
the buyer’s risk, and the buyer agrees to defend, indemnify and
hold harmless Microchip from any and all damages, claims,
suits, or expenses resulting from such use. No licenses are
conveyed, implicitly or otherwise, under any Microchip
intellectual property rights unless otherwise stated.
 2017-2018 Microchip Technology Inc.

Microchip received ISO/TS-16949:2009 certification for its worldwide
headquarters, design and wafer fabrication facilities in Chandler and
Tempe, Arizona; Gresham, Oregon and design centers in California
and India. The Company’s quality system processes and procedures
are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping
devices, Serial EEPROMs, microperipherals, nonvolatile memory and
analog products. In addition, Microchip’s quality system for the design
and manufacture of development systems is ISO 9001:2000 certified.

QUALITY MANAGEMENT SYSTEM
CERTIFIED BY DNV

== ISO/TS 16949 ==
Trademarks

The Microchip name and logo, the Microchip logo, AnyRate, AVR,
AVR logo, AVR Freaks, BitCloud, CryptoMemory, CryptoRF,
dsPIC, FlashFlex, flexPWR, Heldo, JukeBlox, KeeLoq, Kleer,
LANCheck, LINK MD, maXStylus, maXTouch, MediaLB,
megaAVR, MOST, MOST logo, MPLAB, OptoLyzer, PIC,
picoPower, PICSTART, PIC32 logo, Prochip Designer, QTouch,
SAM-BA, SpyNIC, SST, SST Logo, SuperFlash, tinyAVR, UNI/O,
and XMEGA are registered trademarks of Microchip Technology
Incorporated in the U.S.A. and other countries.

ClockWorks, The Embedded Control Solutions Company,
EtherSynch, Hyper Speed Control, HyperLight Load, IntelliMOS,
mTouch, Precision Edge, and Quiet-Wire are registered
trademarks of Microchip Technology Incorporated in the U.S.A.

Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any
Capacitor, AnyIn, AnyOut, BodyCom, chipKIT, chipKIT logo,
CodeGuard, CryptoAuthentication, CryptoAutomotive,
CryptoCompanion, CryptoController, dsPICDEM, dsPICDEM.net,
Dynamic Average Matching, DAM, ECAN, EtherGREEN, In-
Circuit Serial Programming, ICSP, INICnet, Inter-Chip
Connectivity, JitterBlocker, KleerNet, KleerNet logo, memBrain,
Mindi, MiWi, motorBench, MPASM, MPF, MPLAB Certified logo,
MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient Code
Generation, PICDEM, PICDEM.net, PICkit, PICtail, PowerSmart,
PureSilicon, QMatrix, REAL ICE, Ripple Blocker, SAM-ICE, Serial
Quad I/O, SMART-I.S., SQI, SuperSwitcher, SuperSwitcher II,
Total Endurance, TSHARC, USBCheck, VariSense, ViewSpan,
WiperLock, Wireless DNA, and ZENA are trademarks of
Microchip Technology Incorporated in the U.S.A. and other
countries.

SQTP is a service mark of Microchip Technology Incorporated in
the U.S.A.

Silicon Storage Technology is a registered trademark of Microchip
Technology Inc. in other countries.

GestIC is a registered trademarks of Microchip Technology
Germany II GmbH & Co. KG, a subsidiary of Microchip
Technology Inc., in other countries.

All other trademarks mentioned herein are property of their
respective companies.

©2018, Microchip Technology Incorporated, All Rights Reserved.

ISBN:
DS00002591B-page 11

DS00002591B-page 12  2017-2018 Microchip Technology Inc.

AMERICAS
Corporate Office
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200
Fax: 480-792-7277
Technical Support:
http://www.microchip.com/
support
Web Address:
www.microchip.com

Atlanta
Duluth, GA
Tel: 678-957-9614
Fax: 678-957-1455

Austin, TX
Tel: 512-257-3370

Boston
Westborough, MA
Tel: 774-760-0087
Fax: 774-760-0088

Chicago
Itasca, IL
Tel: 630-285-0071
Fax: 630-285-0075

Dallas
Addison, TX
Tel: 972-818-7423
Fax: 972-818-2924

Detroit
Novi, MI
Tel: 248-848-4000

Houston, TX
Tel: 281-894-5983

Indianapolis
Noblesville, IN
Tel: 317-773-8323
Fax: 317-773-5453
Tel: 317-536-2380

Los Angeles
Mission Viejo, CA
Tel: 949-462-9523
Fax: 949-462-9608
Tel: 951-273-7800

Raleigh, NC
Tel: 919-844-7510

New York, NY
Tel: 631-435-6000

San Jose, CA
Tel: 408-735-9110
Tel: 408-436-4270

Canada - Toronto
Tel: 905-695-1980
Fax: 905-695-2078

ASIA/PACIFIC
Australia - Sydney
Tel: 61-2-9868-6733

China - Beijing
Tel: 86-10-8569-7000

China - Chengdu
Tel: 86-28-8665-5511

China - Chongqing
Tel: 86-23-8980-9588

China - Dongguan
Tel: 86-769-8702-9880

China - Guangzhou
Tel: 86-20-8755-8029

China - Hangzhou
Tel: 86-571-8792-8115

China - Hong Kong SAR
Tel: 852-2943-5100

China - Nanjing
Tel: 86-25-8473-2460

China - Qingdao
Tel: 86-532-8502-7355

China - Shanghai
Tel: 86-21-3326-8000

China - Shenyang
Tel: 86-24-2334-2829

China - Shenzhen
Tel: 86-755-8864-2200

China - Suzhou
Tel: 86-186-6233-1526

China - Wuhan
Tel: 86-27-5980-5300

China - Xian
Tel: 86-29-8833-7252

China - Xiamen
Tel: 86-592-2388138

China - Zhuhai
Tel: 86-756-3210040

ASIA/PACIFIC
India - Bangalore
Tel: 91-80-3090-4444

India - New Delhi
Tel: 91-11-4160-8631

India - Pune
Tel: 91-20-4121-0141

Japan - Osaka
Tel: 81-6-6152-7160

Japan - Tokyo
Tel: 81-3-6880- 3770

Korea - Daegu
Tel: 82-53-744-4301

Korea - Seoul
Tel: 82-2-554-7200

Malaysia - Kuala Lumpur
Tel: 60-3-7651-7906

Malaysia - Penang
Tel: 60-4-227-8870

Philippines - Manila
Tel: 63-2-634-9065

Singapore
Tel: 65-6334-8870

Taiwan - Hsin Chu
Tel: 886-3-577-8366

Taiwan - Kaohsiung
Tel: 886-7-213-7830

Taiwan - Taipei
Tel: 886-2-2508-8600

Thailand - Bangkok
Tel: 66-2-694-1351

Vietnam - Ho Chi Minh
Tel: 84-28-5448-2100

EUROPE
Austria - Wels
Tel: 43-7242-2244-39
Fax: 43-7242-2244-393

Denmark - Copenhagen
Tel: 45-4450-2828
Fax: 45-4485-2829

Finland - Espoo
Tel: 358-9-4520-820

France - Paris
Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79

Germany - Garching
Tel: 49-8931-9700

Germany - Haan
Tel: 49-2129-3766400

Germany - Heilbronn
Tel: 49-7131-67-3636

Germany - Karlsruhe
Tel: 49-721-625370

Germany - Munich
Tel: 49-89-627-144-0
Fax: 49-89-627-144-44

Germany - Rosenheim
Tel: 49-8031-354-560

Israel - Ra’anana
Tel: 972-9-744-7705

Italy - Milan
Tel: 39-0331-742611
Fax: 39-0331-466781

Italy - Padova
Tel: 39-049-7625286

Netherlands - Drunen
Tel: 31-416-690399
Fax: 31-416-690340

Norway - Trondheim
Tel: 47-7289-7561

Poland - Warsaw
Tel: 48-22-3325737

Romania - Bucharest
Tel: 40-21-407-87-50

Spain - Madrid
Tel: 34-91-708-08-90
Fax: 34-91-708-08-91

Sweden - Gothenberg
Tel: 46-31-704-60-40

Sweden - Stockholm
Tel: 46-8-5090-4654

UK - Wokingham
Tel: 44-118-921-5800
Fax: 44-118-921-5820

Worldwide Sales and Service

10/25/17

http://support.microchip.com
http://www.microchip.com

	AN2591
	Introduction
	Package Contents
	Hardware and Software Requirements
	References
	ATECC608A Applications
	SecureBoot Features
	Speed Optimization
	Wire Protection
	Configurations and Commands
	1. Full Secure Boot: both the digest and the signature are transferred to the ATECC608A device.
	2. Stored Secure Boot (FullSig): the signature is stored and the digest is verified with the ECC Verify function.
	3. Stored Secure Boot (FullDig): the digest is stored and will be compared without ECC verification.
	1. Full: both the digest and the signature are sent to ATECC608A. The digest is verified using the signature and the public key.
	2. FullStore: the digest will be sent to the ATECC608A device. The digest is verified using the signature OR the digest is stored in the device.
	3. FullCopy: this command is identical to the Full command, except digest/signature is copied to the device only on successful validation.

	SAM-BA Monitor
	Software Implementation
	Design Considerations
	FIGURE 1: Memory Map.

	Secure Bootloader Flow
	FIGURE 2: Secure Bootloader Flow.

	Configurations
	TABLE 1: Configuration Conditions

	Using the SAM-BA Monitor application
	SAM-BA GUI Setup
	1. Merge the files from the SAM-BA installation directory of [installation_directory]\ applets with the files in Package\ SAMBA_Files\applets.
	2. Merge the files from the SAM-BA installation directory of [installation_directory]\ tcl_lib with the files in Package\SAMBA_Files\tcl_lib.

	Activating the SAM-BA Monitor
	1. External condition: in order to activate this condition, the user needs to pull the Bootloader entry pin low, while releasing the device from the Reset condition. A common usage is to use a push button (SW0), which can be applied as a SAM-BA Monit...
	2. Internal condition: this condition can be requested in the case of erased devices or when the application Reset vector (at the application’s start address add 4) is blank (0xFFFFFFFF).

	Running SAM-BA
	Connecting to the SAM-BA GUI
	FIGURE 3: Connecting the SAM-BA Monitor dialogue box.

	Flash Programming
	Scripts
	TABLE 2: Predefined Scripts
	FIGURE 4: SAM-BA® Window.

	Running the Example Application
	1. Building and downloading the SAM-BA Monitor application.
	2. Building and downloading the user application.
	3. Provisioning the ATECC608A device using the target board.
	4. Binding the target board to the ATECC608A device.
	5. Verifying the SecureBoot feature.
	Building and Downloading the SAM-BA Monitor Application
	1. Run Atmel Studio. From the top menu bar, select the Tools tab, then click the Device Programming menu selection.
	2. From the Device Programming window, select the tool (for instance EDBG) and click Apply.
	3. Once the EDBG tool is running, click the Fuses tab.
	4. Set the NVMCTRL_BOOTPROT field to the default value of 0x07.
	5. Click the Memories tab and erase the chip by clicking the Erase now button.
	6. In the Flash field, fill in the path to the Bootloader image and click the Program button.

	Building and Downloading the User Application
	1. Relocate the user application’s start address to post Bootloader (for instance, starting at 32K address)
	2. Create an application footer structure. The Bootloader validates the start address and the size parameters in order to match the Bootloader expectations.
	3. Relocate the application footer to the last page of the image. This can be achieved through the linker script. Please refer to the samd21j18a_flash.ld file, provided with the example user application.
	4. Compile the project to generate the file: FREERTOS_OLED1_XPRO_EXAMPLE1.bin
	5. Protect the generated bin file by appending the signature. The example application package contains the necessary Python scripts and key.pem files, needed to generate signatures by using Private Key from the key.pem file. Follow the next steps to ...
	a) Call sboot_sign_firmware.exe with the key file and the user application.
	b) FREERTOS_OLED1_XPRO_EXAMPLE1.bin will now contain the signature appended at the last location of the file.
	6. Download the appended signature FREERTOS_OLED1_XPRO_EXAMPLE1.bin by using the SAM-BA GUI (as mentioned in Section “Using the SAM-BA Monitor application”).

	Provisioning the ATECC608A Device Using the Target Board
	1. Turn off the target board and plug-in the CryptoAuth XPRO-B board to the SAMD21 Xplained Pro Evaluation Board.
	2. Turn on the target board.
	3. When the macro is enabled, the target board initiates the provisioning process once it identifies an unlocked crypto-device.
	4. By this point, the ATECC608A should be configured and ready to use.

	Binding the Target Board to the ATECC608A Device
	Verifying the SecureBoot Feature
	Summary of FREERTOS_OLED1_XPRO_EXAMPLE

	Porting to other bootloaders
	1. Integrate CryptoAuthLib to the existing Bootloader, including app\secure_boot.
	2. Integrate the crypto_device_app.c and the .h files to the project.
	3. Setup the configurations by revisiting the configurable macros.
	a) secure_boot.h.
	b) secure_boot_memory.h
	c) crypto_device_app.h
	4. Update memory interfaces:
	5. Memory access restriction:
	6. User application updates:
	7. As a last step, the user needs to revisit the Python script provided in order to make sure that it matches the memory map, generates keys appropriately and appends the signature at the right location.
	FIGURE 5: Top View of the Example Application Setup.
	Getting Started with ATECC608A SecureBoot Use Case Example
	Worldwide Sales and Service

