

Choosing the Right Polymer Capacitor

A Guide for the Perplexed

PRESENTER

DR. PHIL LESSNER

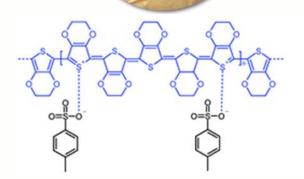
Ph.D in Chemical Engineering
33 years in Electronics Industry
25 years at KEMET
KEMET's Chief Technology Officer
Product, Material, and Process Development

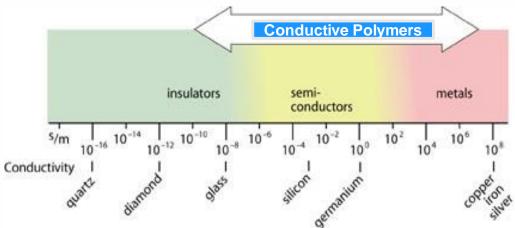
Agenda

- Introduction to Polymer Capacitors
- KEMET's Polymer Capacitor Portfolio
- Polymer Capacitor Applications and Segments
- Selecting a Polymer Capacitor
- Polymer Capacitor Roadmaps

What is Polymer?

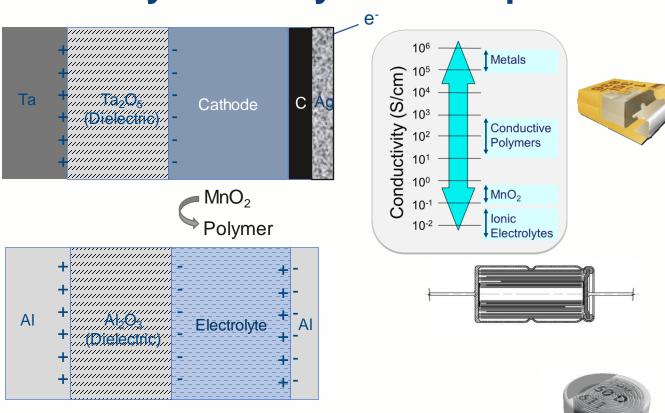
"For the Discovery and Development of Conductive Polymers"


Alan Heeger University of California at Santa Barbara


Hideki Shirakawa University of Tsukuba

Alan MacDiarmi
University of
Pennsylvania

Intrinsically conductive polymers
Were discovered in the late 1970's
Three scientists won the Nobel Prize
In 2000 for this discovery.



Intrinsically conductive polymers have Conductivities between those of Semiconductors and metals.

The primary polymer we use is PEDOT. It was invented by Bayer in the 1980's. It is a **pure organic material** that contains no metal. The polymer itself is conductive. That is why it is **intrinsically** conducting unlike silver-polymer pastes which are a mixture of a metal and polymer.

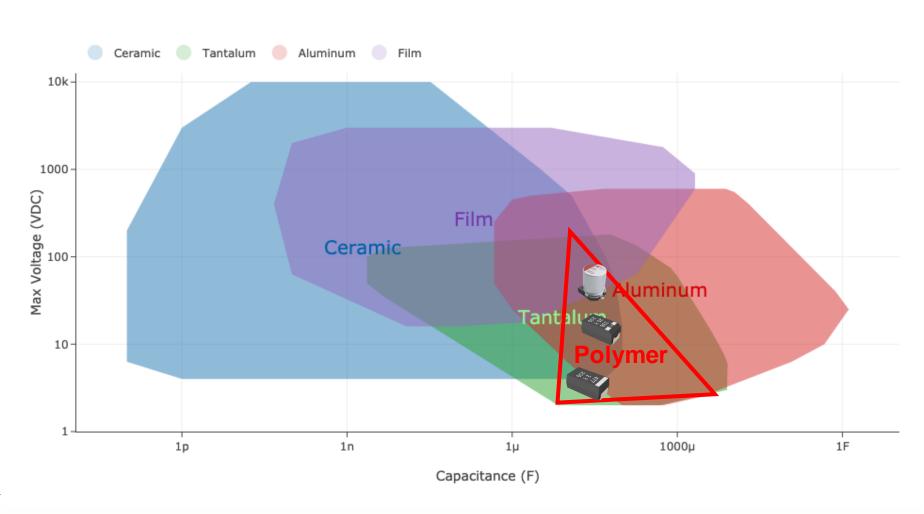
Why Use Polymer in Capacitors?

or

Polymer

Solid Tantalum Capacitors were invented in the 1950's. They used manganese dioxide (MnO₂) as the cathode because of its self-healing properties: it becomes non-conductive at defects in the dielectric and this is one of the reasons these capacitors are reliable.

Conductive polymers began to replace MnO₂ in the Mid-1990's. They are more conductive than MnO₂ and, thus, have much **lower ESR**. They also have a self-healing mechanism.



Conductive Polymers are also used in Aluminum Capacitors to replace the wet electrolyte. These Capacitors have much lower ESR and don't dry out over time.

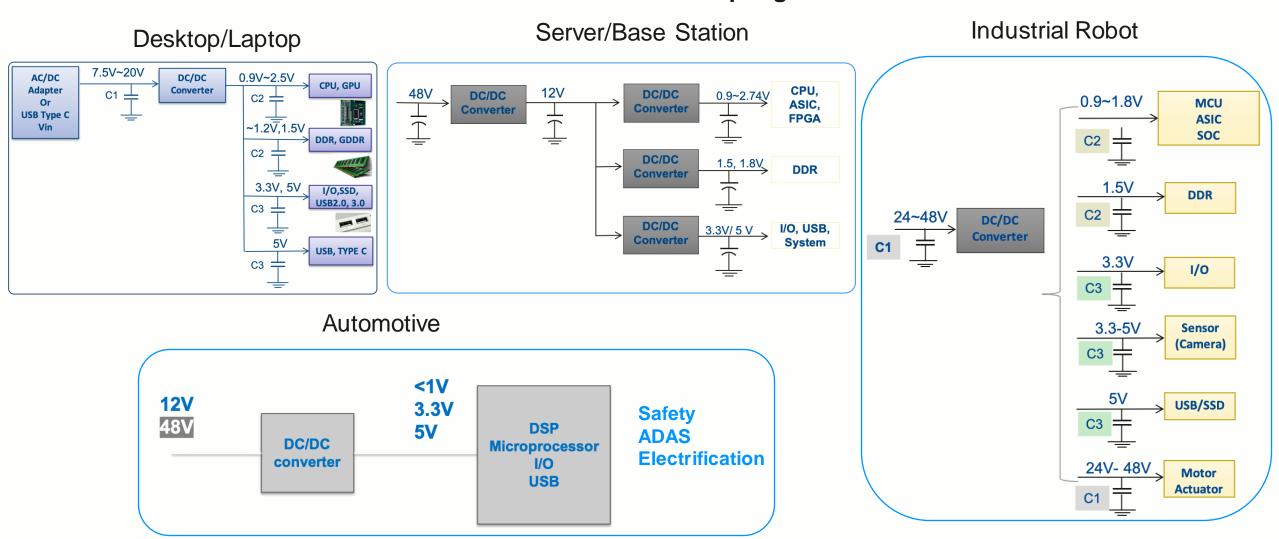
There are also hybrid Polymer-Wet capacitors that Combine the low ESR of Polymer with the low Leakage of Wets.

Polymer in the Capacitor Landscape

KEMET's Polymer Capacitor Portfolio

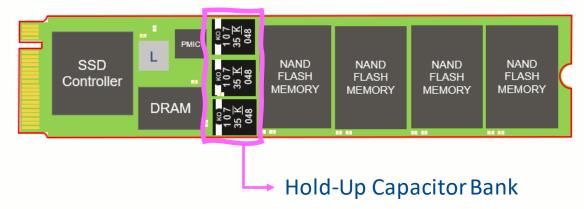
Factor	Ta Polymer KO-CAP NEOCAP	Al Polymer AO-CAP	Al Polymer EO-CAP	V-Chip Hybrid	Thru Hole Hybrid
CV/cc	Δ	©	0	©	©
Total Cap	Δ	©	Δ	Δ	Δ
VoltageRange	©	X	Δ	©	©
ESR	©	Δ	Δ	©	Δ
Ripple (heat Sink)	©	©	©	©	Δ
Height	Δ	Δ	X	X	X
Footprints Available	Δ	Х	©	©	X
Temperature Range	Δ	©	Δ	Δ	Δ
AEC-Q200	Δ	X	0	Δ	Δ
Cost	X	©	Δ	©	X
Number of Suppliers	©	©	Δ	©	©
©KEMET Corporation. All Rights Res	High Cap Low ESR Low Profile ™ ^{ed} High Cost	Med Cap Very Low ESR Low Profile Med Cost	Med-High Cap Higher Voltage Low ESR Low Cost	Med Cap Med Voltage Low ESR Low Leakage	High Cap Med Voltage Low ESR Low Leakage High Temperature

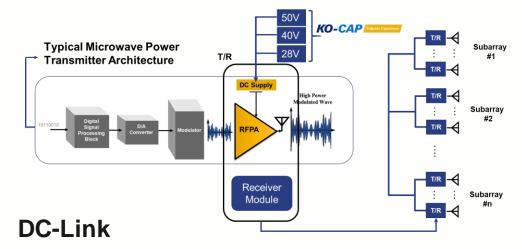
△ Excellent

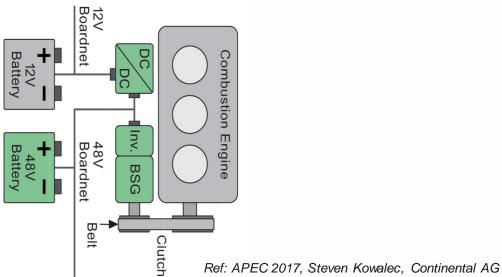

Good

X Fair/Poor

Polymer Capacitor Applications


DC-DC Conversion/Decoupling




Polymer Capacitor Applications

Power Backup in Solid State Drives

Pulse Energy

Resources

Datasheets

- Online Tools
 - Component Edge
 - o K-Sim
- Technical Papers, Blog Posts
- FAE/Sales/Technical Product Managers

Polymer Series Selection Guide General Purpose

ochorair aiposc						
	KO-CAP/NEOCAP	AO-CAP	EO-CAP			
	Surface Mount Ta	H-Chip Al	V-Chip Al	Thru Hole Al		
105°C/2000hr	T52x* PS/L 2-75V 1-1500µF	A720 2-35V 22-470µF	A765 A767 2.5-100V 10-2700µF	<u>A750</u> 2.5-63V 47-2200μF		
105°C/5000hr	*Check data sheet for temperature rating.		<u>A766</u> 4-25V 10-560µF	A755 A758 2.5-25V 10-1200µF		
125°C/1000hr	PS/H 2.5-16V 22-330µF					
125°C/2000hr	T525 2.5-16V 10-680µF	A700 2-25V 8.2-470µF		A759 6.3-250V 2.2-2200µF		
Face Down	T523 F/PS 4-35V 6.8-470µF					

Face Down Substrate

G/PS 6.3-25V 4.7-47µF

Polymer Series Selection Guide Harsh Environment and Hybrid

KO-CAP/NEOCAP AO-CAP EO-CAP

A798

470uF

Surface Mount Ta H-Chip Al V-Chip Al Axial Thru Hole Al Radial Thru Hole Al

105°C/1000hr T591 2.5-50V 1.5-470µF

150°C/1000hr T599 4-50V 10-150µF <u>A768</u>* 16-80V 18-1000µF

*Some ratings available in Anti-vibration configuration

<u>A780</u> 63V 56-100µF PHA225 40-63V 370-1100µF PHH225 40-63V 370-1100µF

Polymer Series Selection Guide Special Purpose Tantalum Polymer

KO-CAP/NEOCAP

Surface Mount

Stacks

Thru Hole

Modules

Low ESL

T528 2.-6.3V 150-470µF

Ultra Low ESR

PS/G T530 2.5-16V 150-1500µF

Low Leakage

T522 6.3V 150-470µF

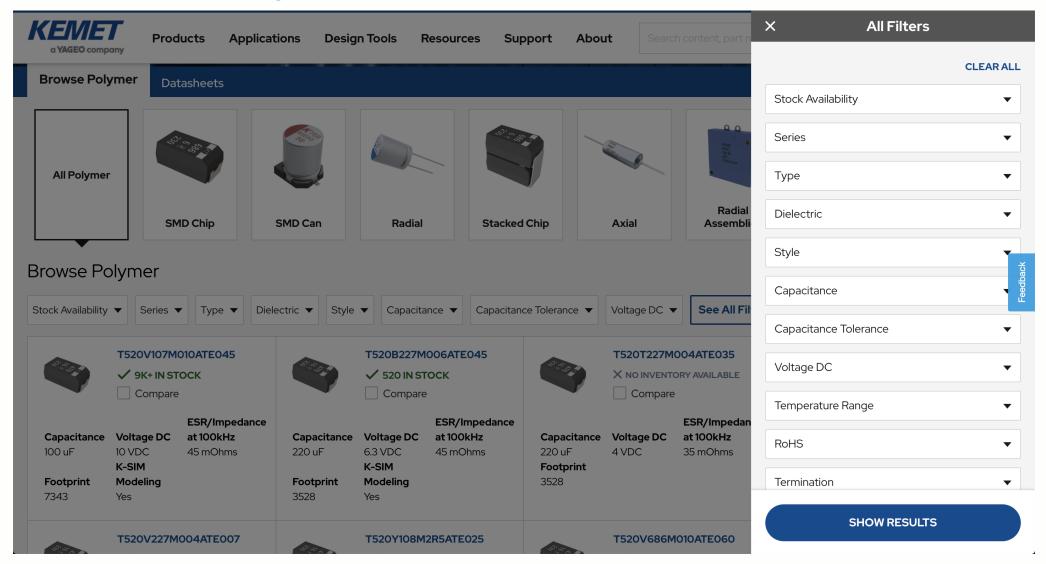
High Energy

T545/8 6.3-20V 47-1500uF TSP 3-63V 20-8000µF

HRA

Commercial

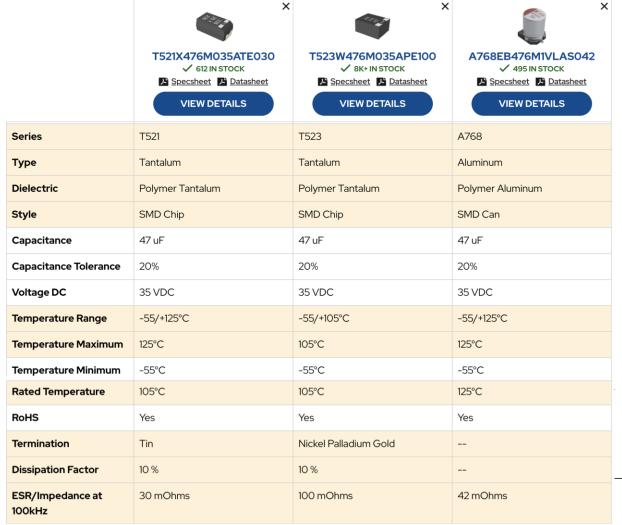
High Reliability


T540 T541 2.5-63V 4.7-1500uF T543 6.3V 150-470µF

Hermetic Seal

T555 T556 6.3-100V 20-680µF T550 T551 6.3-100V 20-680µF M55 6-180V 60-6800µF

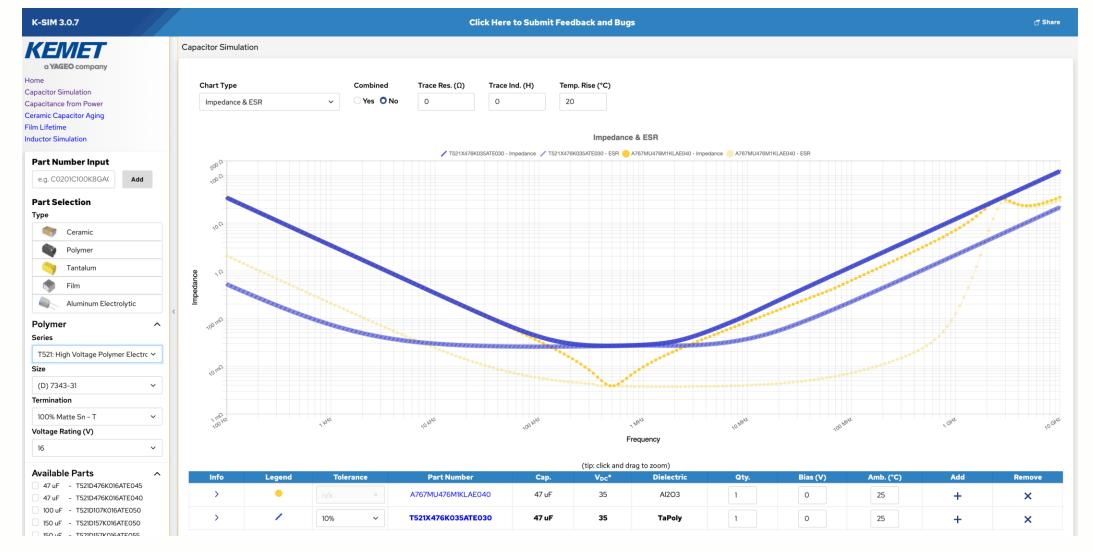
Tools For Further Exploration Component Edge




X

Tools for Further Exploration Component Edge

Compare Products



Compare Products

Tools For Further Exploration *K-Sim*

Digging Deeper

Reliability of Tantalum Polymer Capacitors

Advances in Reliability of Conducting Polymer Based Capacitors in High Humidity Environment

New Reliability Assessment Practices for Tantalum Polymer Capacitors

Solid Electrolytic Capacitors Designed for High Temperature Applications

Aluminum Hybrid Polymer Capacitors: Application Overview

Is It Hot and Humid in Your Application? A798 Aluminum Polymer Capacitor Can Solve Your Challenges

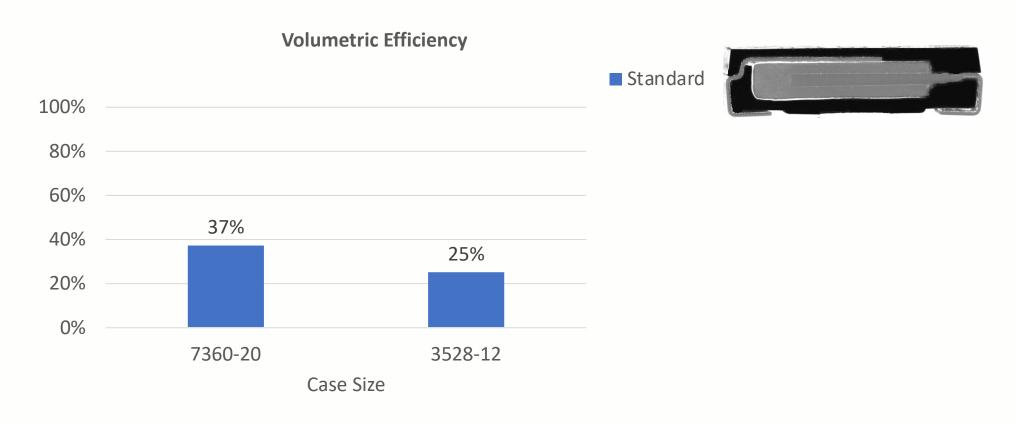
KEMET's Aluminum Hybrid Polymer SMD Capacitors

High Vibration Applications with KEMET's Solid Polymer Aluminum Capacitors

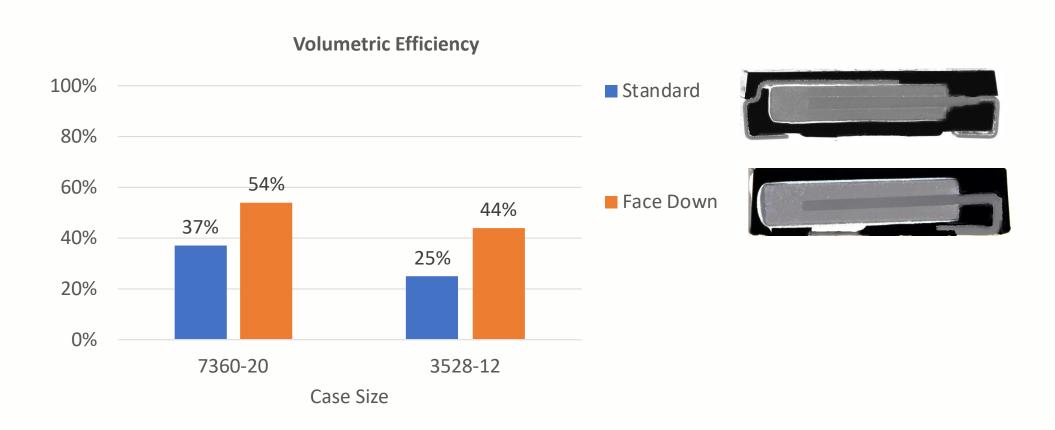
T599 Tantalum Polymer Capacitors in Automotive Designs

Polymer Capacitors Protect Data at the Last Gasp

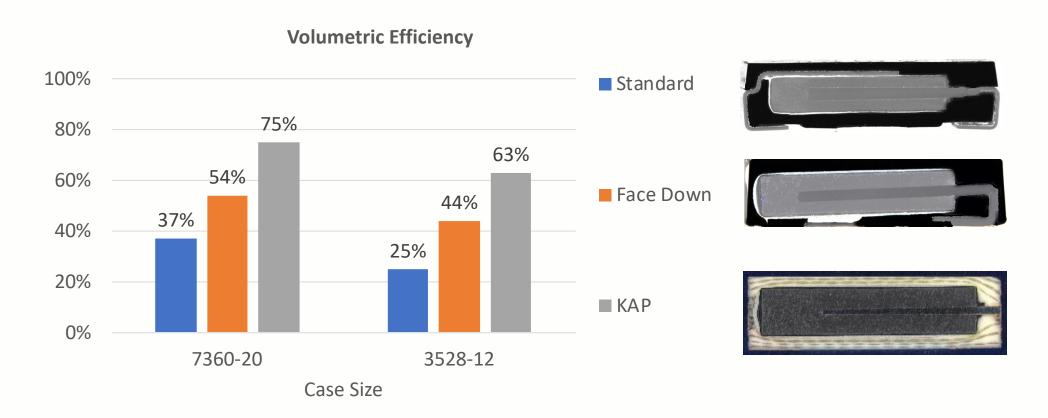
A Solution for ADAS Miniaturization and Reliability Requirements


Product Roadmap

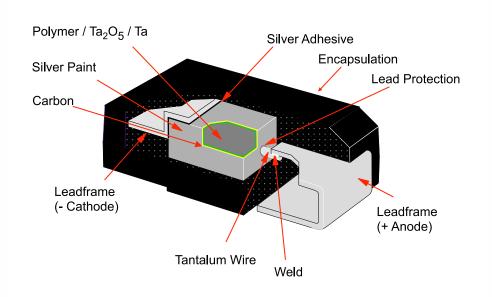
- CV Extensions
- Parasitics Reduction
 - o ESR
 - o ESL
- Reliability
 - Harsh Environment Capability
 - High Reliability Applications
- Packaging
 - New Sizes
 - Efficiency
 - New Geometries

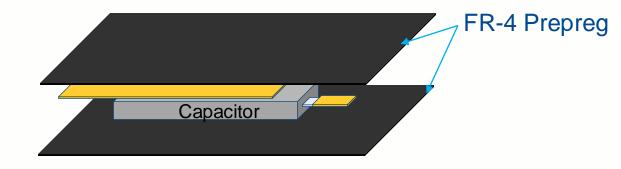

Tantalum Polymer Packaging

Trend Smaller Footprints, Lower Heights, Need for Higher Capacitances



Tantalum Polymer Packaging


Tantalum Polymer Packaging



KEMET Advanced Packaging (KAP)

Replaces

With

KAP Product Waterfall Chart

Height (mm)	Nominal Capacitance (µF)					
	7343 Footprint, 35 V _r			7360 Footprint, 35 V _r		
	Std	FD	KAP	Std	FD	KAP
1.5	33	47	68	47	68	100
2.0	47	68	100	68	100	150

Current Volume Drivers KAP Target Growth Drivers

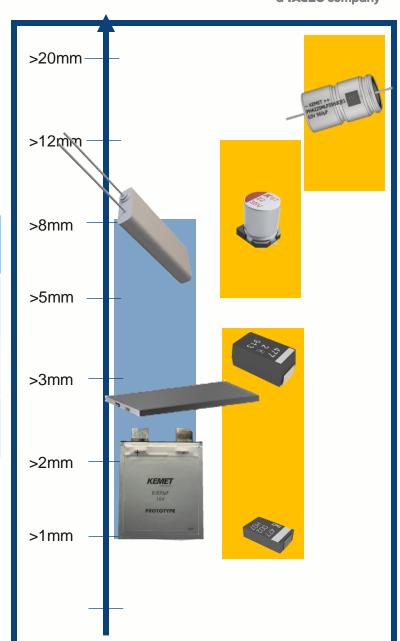
	Nominal Capacitance (µF)			
Height (mm)	3528 Footprint, 25 V _r			
()	Std	FD	KAP	
1.2			22	
1.5		22	33	
2.0	22	33	47	

Engineering Samples 1st Half CY22
Production 2nd Half CY22

Aluminum Polymer Packaging

Traditionally, Aluminum Capacitors Are Round

Multiple Placements, Wasted Space, Poor Heat Transfer


A Rectangular Form Factor Can Be The Solution

Aluminum Polymer Rectangular Roadmap

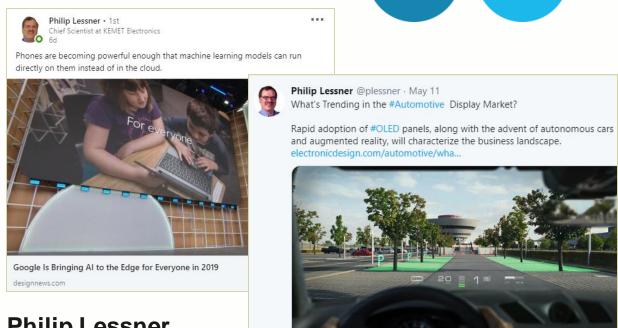
Series	Height	Cap Range	Voltage Range	Rating	Availability
ALL	8mm	120-8200µF	25-200V	105°C, 2khrs	Samples: Now Production: CY21
ULT	2mm 3mm	500-24000μF	4-63V	125°C, 2khrs	Samples: CY22 Production: CY23
PPC	1mm	700-20000μF	6.3-63V	125°C, 2khrs	Samples: Now Production: CY22

Summary

KEMET has a complete portfolio of Polymer capacitors

KO-CAP/NEOCAP Tantalum Polymer

AO-CAP Al Polymer H-Chip EO-CAP Al Polymer V-Chip/Thru Hole EO-CAP Al Polymer Hybrid


- Choosing the right Polymer capacitor depends on many technical factors and total solution cost
 - KEMET's technical collateral and tools like K-Sim and Component Edge can help with the selection
- KEMET has a robust roadmap for new products across all the Polymer product lines

Connect With Me

Philip Lessner

Chief Technology Officer philiplessner@kemet.com Mobile: +1-864-350-3563

