

DIO59121A/B/C/D USB-Compliant, Single-cell Li-lon, 2 A, Switching Charger

Features

- Fully integrated, high-efficiency charger for single-cell li-ion and li-polymer battery packs
- Faster charging than linear
- Charge voltage accuracy: ±0.5% (A: 4.2 V, B: 4.3 V, C: 4.35 V, D: 4.4 V)
- ±6% input current regulation accuracy
- ±4% charge current regulation accuracy
- 26 V absolute maximum input voltage
- 6 V maximum input operating voltage
- 2 A charge rate
- 1.5 MHz synchronous buck PWM controller with wide duty cycle range
- Small footprint 1 μH external inductor
- Dynamic input voltage control
- Low reverse leakage to prevent battery drain to VBUS
- Available in the DFN3*3-12 package

Descriptions

The DIO59121X is a highly integrated switch-mode charger that can minimize single-cell lithium-ion (Li-ion) charging time from a USB power source.

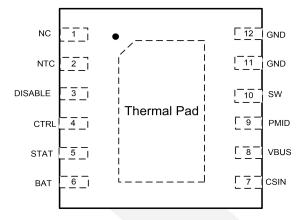
The charger regulator circuits switch at 1.5 MHz to minimize the size of external passive-components.

The DIO59121X provides battery charging in three phases: pre-charge, constant current and constant voltage.

To ensure USB compliance, the input current limit can be set at 500 mA.

The integrated circuit (IC) automatically restarts the charge cycle when the battery falls below an internal threshold. If the input source is removed, the IC enters a high-impedance mode, preventing leakage from the battery to the input. Charge current is reduced when the die temperature reaches at 120°C, protecting the device and PCB from damage.

Applications


- Cell Phones, Smart Phones, PDAs
- Tablet, Portable Media Players
- Gaming Device, Digital Cameras

Ordering Information

	Order Part Number	Top Marking	RoHS	T _A	F	Package
D	IO59121XCD12	59121X	Green	-40 to 85°C	DFN3*3-12	Tape & Reel, 5000

Pin Assignments

DFN3*3-12

Figure 1. Pin Assignment (Top View)

Pin Definitions

Name	Description
NC	Do not Connect. Suggest shorting to GND.
NTC	Monitor battery temperature input connected to the battery NTC resistor (10 k Ω).
DISABLE	Charging enable input. Charging starts when the disable pin is low.
CTRL	When CTRL = 0, the input current limit is 500 mA. When CTRL = 1, the input current has no limit.
STAT	Status. Open-drain output indicates the charge status. The IC pulls this pin LOW when charging, and pulses STAT pin when fault.
BAT	Battery voltage. Connect to the positive (+) terminal of the battery pack. Bypass with a 0.1 μF capacitor to GND if the battery is connected through long leads.
CSIN	Charging current detection input terminal.
VBUS	Charger input voltage. Bypass with a 1 µF capacitor to PGND.
PMID	Power input voltage. Power input to the charger regulator, bypass point for the input current sense, and high-voltage input switch. Bypass with a minimum of 10 μF, 6.3 V capacitor to PGND.
SW	Switching Node. Connect to output inductor.
GND	Ground.
Thermal Pad	Exposed pad beneath the IC for heat dissipation. Always solder thermal pad to the board, and have via on the thermal pad plane star-connecting to GND.

Absolute Maximum Ratings

Stresses beyond those listed under the Absolute Maximum Rating table may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other condition beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

	Parameter	Rating	Unit	
VPHS voltage	Continuous	-1.4 to 26.0	V	
VBUS voltage	Pulsed, 100 ms maximum, non-repetitive	-2.0 to 26.0	V	
STAT voltage		-0.3 to 26.0	V	
PMID voltage		6.5	V	
SW, CSIN, VBAT, DISABLE Voltage		-0.3 to 6.5	V	
Voltage on other pins		-0.3 to 6.5	V	
Maximum V _{BUS} slope above 5.5	V when charger are active	4	V/µs	
Junction temperature		-40 to 150	°C	
Storage temperature		-65 to 150	°C	
Lead soldering temperature, 10	seconds	260	°C	
Junction-to-ambient thermal resistance		60	°C/W	

Recommend Operating Conditions

The Recommended Operating Conditions table defines the conditions for actual device operation. Recommended operating conditions are specified to ensure optimal performance to the datasheet specifications. DIOO does not recommend exceeding them or designing to absolute maximum ratings.

Parameter		Rating	Unit
Supply voltage		4 to 6	V
Negative VBUS slew rate during V _{BUS} short	T _A ≤ 60°C	4	V/µs
Circuit, C _{MID} ≤ 4.7 μF	T _A ≥ 60°C	2	ν/μ3
Ambient temperature		-30 to 85	°C
Junction temperature		-30 to 120	°C

Electrical Characteristics

 $V_{IN} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$, unless otherwise specified.

Symbol	Parameter	Test Conditions	Min	Тур	Max	Un
Power Supp	lies					
		V _{BUS} > V _{BUS(min)} , PWM switching		10		m/
I_{VBUS}	VBUS current	V _{BUS} > V _{BUS(min)} ; PWM enabled, not switching		0.2		m
		DISABLE = 1		96		μA
I _{LKG}	VBAT to VBUS leakage current ⁽¹⁾	$0^{\circ}\text{C} < \text{T}_{\text{J}} < 85^{\circ}\text{C}, \text{ V}_{\text{BAT}} = 4.2 \text{ V},$ $\text{V}_{\text{BUS}} = 0 \text{ V}$		1.6	5.0	μ/
I _{BAT}	Battery is charge current in high- impedance mode	DISABLE = 1, 0°C < TJ < 85°C, V _{BAT} = 4.2 V		12	20	μ/
Charger Vo	Itage Regulation					<u> </u>
	Charge voltage range		4.2		4.4	
V_{OREG}		T _A = 25°C	-0.5%		0.5%	V
	Charge voltage accuracy	T _J = 0 to 125° C	-1%		1%	
Charging C	urrent Regulation					
	Output charge current range	I_{OCHRG} = 101.9 mV/R _{SENSE} R_{SENSE} = 51 m Ω		2		Α
I _{OCHRG}	Charge current accuracy across R _{SENSE}		-4		4	%
Logic Level	Is: DISABLE					
V _{IH}	High-level input voltage		1.05			V
VIL	Low-level input voltage				0.4	\
I _{IN}	Input bias current	Input = 5 V		5.0		μ
Charge Ter	mination Detection	·				
	Termination current range	I _(TERM) = 9.38 mV/ R _{SENSE}		184		m
I _(TERM)	Termination current accuracy	$R_{SENSE} = 51 \text{ m}\Omega$	-3		3	%
	Termination current deglitch time			30		m
nput Powe	r Source Detection					
V _{IN(MIN)}	VBUS input voltage rising	To initiate and pass VBUS validation	3.75	4	4.25	V
V_{hys}				0.3		V
t _{VBUS_VALID}	VBUS validation time			30		m
Special Cha	arger (V _{BUS})					
V _{SP}	Special charger VBUS voltage			4.5		V

		DIO59121X				
	Special charger set point accuracy		-4		4	%
Input Curre	nt Limit					
	Innut assessed P. Miller J. L.	CTRL = 0	470	500	530	
I _{INLIM}	Input current limit threshold	CTRL = 1		No limit		- m∆
Battery Rec	harge Threshold			,		
	Recharge threshold	Below V _(OREG)	70	100	130	m√
V _{RCH}	Deglitch time	V _{BAT} falling below V _{RCH} threshold		30		ms
STAT Outpu	ıt			,		
V _{STAT(OL)}	STAT output low	I _{STAT} = 10 mA			0.4	V
I _{STAT(OH)}	STAT high leakage current	V _{STAT} = 5 V			1	μA
Sleep Comp	parator		1			
V_{SLP}	Sleep-mode entry threshold, V _{BUS} - V _{BAT}	$4~V~\leqslant~V_{BA~T}~\leqslant~V_{OREG},~V_{BUS}~\text{falling}$	0	0.04	0.1	V
V _{SLP-EXIT}	Sleep-mode exit threshold, V _{BUS} - V _{BAT}			0.1		V
t _{SLP_EXIT}	Deglitch time for V_{BUS} rising above V_{BAT} by V_{SLP}	Rising voltage		30		ms
Power Swite	ches					•
	Q3 On resistance (VBUS to PMID)	I _{IN(LIMIT)} = 500 mA		86		
$R_{\text{DS(ON)}}$	Q1 On resistance (PMID to SW)			85		mΩ
	Q2 On resistance (SW to GND)			75		
Charger PW	M Modulator					•
f _{SW}	Oscillator frequency			1.5		МН
D _{MAX}	Maximum duty cycle				100	%
D _{MIN}	Minimum duty cycle			6		%
I _{SYNC}	Synchronous to non-synchronous current cut-off threshold	Low-side MOSFET(Q2) cycle-by- cycle current limit		300		m/
Battery Dete	ection					
Іретест	Battery detection sink current	Begins after charge termination detected		10		m/
t _{DETECT}	Battery detection time			30		ms
Protection a	and Timers					•
\/D!:2	VBUS over-voltage shutdown	V _{BUS} rising	5.82	6	6.2	V
VBUS _{OVP}	Hysteresis	V _{BUS} falling		200		m\
I _{LIMPK(CHG)}	Q1 cycle-by-cycle peak current	Charge mode		3.4		А

V	Battery short-circuit threshold	V _{BAT} rising	1.95	2	2.05	V	
V _{SHORT}	Hysteresis	V _{BAT} falling		100		mV	
I _{SHORT}	Linear charging current	V _{BAT} < V _{SHORT}	20	30	40	mA	
_	Thermal shutdown threshold	T _J rising		145		°C	
T _{SHUTDWN}	Hysteresis	T _J falling		10			
T _{CF}	Thermal regulation threshold	Charge current reduction begins		120		°C	
t _{INT}	Detection interval			30		ms	
NTC							
T _{DET_RANGE}	Detected temperature range	$R_{NTC} = 10 \text{ k}\Omega$	0		50	°C	
V	High temperature detection voltage threshold	Battery temperature rise		0.12		V	
V _{NTC_HOT}	High temperature detection voltage hysteresis	Battery temperature drop		40		mV	
V	Low temperature detection voltage threshold	Battery temperature drop		0.9		V	
V _{NTC_COLD}	Low temperature detection voltage hysteresis	Battery temperature rise		60		mV	

Note (1): Guarantee by design.

6

Block Diagram

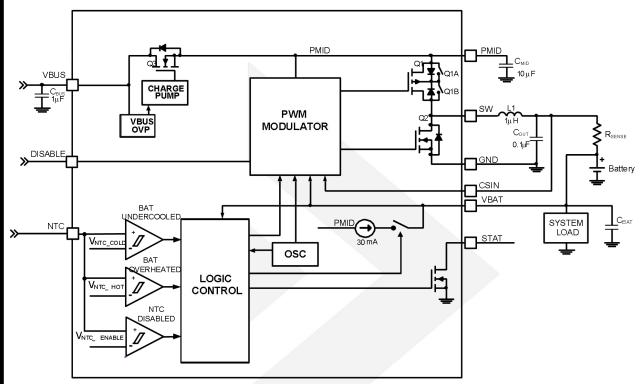


Figure 2. IC and System Block Diagram

Typical Application

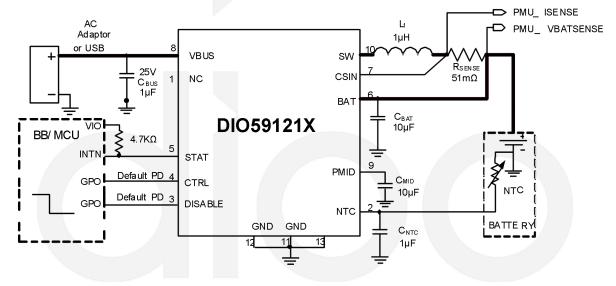


Figure 3. Typical Application

Application Information

Overview

When charging batteries with a current-limited input source, such as USB, a switching charger's high efficiency over a wide range of output voltages minimizes charging time.

The DIO59121X has a highly integrated synchronous buck regulator for charging. The regulator employs synchronous rectification to maintain high efficiency over a wide range of battery voltages and charge states.

The DIO59121X has two operating modes:

- 1. Charge Mode:
 - Charge a signal-cell li-ion or li-polymer battery.
- 2. High-Impedance Mode:

Charging circuits are OFF in this mode. Current flow from VBUS to the battery or from the battery to VBUS is blocked in this mode, which means the device consumes very little current from VBUS or the battery.

Charge Mode

In the charge Mode, the DIO59121X employs four regulation loops:

- 1. Input Current: Limits the amount of current drawn from VBUS. This current is sensed internally and can be set by the CTRL pin.
- 2. Charging Current: Limits the maximum charging current. This current is sensed using an external R_{SENSE} resistor
- 3. Charge Voltage: The regulator is restricted from exceeding this voltage. As the internal battery voltage rises, the battery's internal impedance and R_{SENSE} work in conjunction with the charge voltage regulation to decrease the amount of current flowing to the battery. Battery charging is completed when the voltage across R_{SENSE} drops below the I_{TERM} threshold.
- Temperature: If the IC's junction temperature reaches 120°C, the charge current is reduced until the IC's temperature stabilizes at 120°C.
- 5. An additional loop limits the amount of drop on VBUS to a voltage (V_{SP}) to accommodate "special chargers" that limit current to a lower current than might be available from a "normal" USB wall charger.

Battery Charging Curve

If the battery voltage is below V_{SHORT} , a linear current source pre-charges the battery until V_{BAT} reaches V_{SHORT} . The PWM charging circuit is then started and the battery is charged with a constant current if the sufficient input power is available. The current slew rate is limited to prevent overshoot.

The DIO59121X is designed to work with a current-limited input source at VBUS. During the current regulation phase of charging, I_{INLIM} limits the current available to charge the battery and power the system. The effect of I_{INLIM} on I_{CHARGE} can be seen in Figure 5.

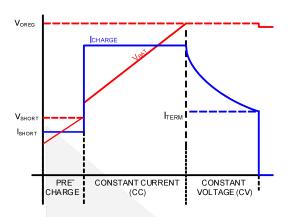


Figure 4. Charge Curve, ICHARGE Not Limited by IINLIM

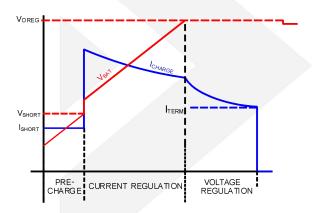


Figure 5. Charge Curve, IINLIM Limits ICHARGE

Assuming that V_{OREG} is programmed to the cell's fully charged "float" voltage, the current that the battery accepts with the PWM regulator limiting its output (sensed at VBAT) to V_{OREG} declines, and the charger enters the voltage regulation phase of charging. When the current declines to I_{TERM} value, the charge cycle is complete.

A new charge cycle begins when one of the following occurs:

- The battery voltage falls below V_{OREG}-V_{RCH}
- VBUS Power on Reset (POR) clears and the battery voltage is below the V_{SHORT}.
- Reset DISABLE pin.

PWM Controller in Charge Mode

The IC uses a current-mode PWM controller to regulator the output voltage and battery charge currents. The synchronous rectifier (Q2) has a current limit that switches off the FET when the current is negative by more than 400 mA peak. This prevents current flow from battery.

V_{BUS} POR/Non-Compliant Charger Rejection

When the IC detects that VBUS has risen above $V_{IN(MIN)}$ (4.3 V), the IC applies a 250 Ω load from VBUS to GND. To clear the VBUS POR (Power-On-Reset) and begin charging, VBUS must remain above $V_{IN(MIN)}$ and below VBUS_{OVP} for t_{VBUS_VALID} (30 ms) before the IC initiates charging. The VBUS validation sequence always occurs charging is initiated or re-initiated (for example, after a VBUS OVP fault or a V_{RCH} recharge initiation).

tybus value ensures that unfiltered 50/60 Hz chargers and other non-compliant chargers are rejected.

Special Charger

The DIO59121X has additional functionality to limit input current in case a current-limited "special charger" is supplying VBUS. These slowly increase the charging current until either

■ I_{INLIM} or I_{OCHARGE} is reached

or

■ V_{BUS} = V_{SP}.

If V_{BUS} collapses to V_{SP} when the current is ramping up, the DIO59121X charges with an input current that keeps $V_{BUS} = V_{SP}$.

Thermal Regulation and Protection

When the IC's junction temperature reaches T_{CF} (about 120°C), the charger reduces its output current to prevent overheating. If the temperature increases beyond T_{SHUTDOWN}, charging is suspended, and STAT is pulsed. Charging resumes after the die cools to about 120°C.

Charge Mode Input Supply Protection

Sleep Mode

When V_{BUS} falls below ($V_{BAT} + V_{SLP}$) and V_{BUS} is above $V_{IN(MIN)}$, the IC enters the Sleep Mode to prevent the battery from draining into VBUS. During the Sleep Mode, the reverse current is disabled by body switching Q1.

Input Supply Low-Voltage Detection

The IC continuously monitors VBUS during charging. If V_{BUS} falls below V_{IN(MIN)}, the IC:

- 1. Terminates charging.
- 2. Pulses the STAT pin.

If V_{BUS} recovers above the $V_{IN(MIN)}$ rising threshold after a time of 30 ms, the charging process is repeated. This function prevents the USB power bus from collapsing or oscillating when the IC is connected to a suspended USB port or a low-current-capable OTG device.

Input Over-Voltage Detection

When the V_{BUS} exceeds VBUS_{OVP}, the IC:

- 1. Turns off Q3
- 2. Suspends charging
- Pulses the STAT pin.

When V_{BUS} falls about 200 mV below VBUS_{OVP}, the fault is cleared and charging resumes after V_{BUS} is revalidated (see VBUS POR/Non-Compliant Charger Rejection).

Charge Mode Battery Detection & Protection

VBAT Over-Voltage Protection

The OREG voltage regulation loop prevents V_{BAT} from overshooting the OREG voltage when the battery is removed. If the VBAT Pin voltage is higher than 4.8 V, the STAT pin pulses.

Battery Detection During Charging

The IC can detect the presence, absence, or removal of a battery. During normal charging, once VBAT is close to VOREG and the termination charge current is detected, the IC terminates charging and turns on a discharge current, I_{DETECT}, for 30 ms. If VBAT is still above 2 V, the battery is present. If VBAT is below 2 V, the battery is

absent and IC enters the No Battery Mode.

Battery Short-Circuit Protection

If the battery voltage is below the short-circuit threshold (V_{SHORT}), a linear current source, I_{SHORT} , supplies V_{BAT} until $V_{BAT} > V_{SHORT}$.

NTC protection

The NTC pin output 30 uA current to NTC resistor (typical 10 k Ω). When the battery temperature rises to 50°C (VNTC=120 mV) or falls to 0°C (VNTC=0.9 V), the IC stops charging, and IC pulses the STAT pin. If NTC protection is not used, the NTC pin must be connected to the 10 k Ω normal resistor to ground.

System Operation with No Battery

The DIO59121X continues charging after VBUS POR, regulating the V_{BAT} line to a typical 3.8 V. In this way, the DIO59121X can start the system without a battery. Re-connect power to VBUS or reset DISABLE pin and the IC can exit the No Battery Mode.

Charger Status/Fault Status

The STAT pin indicates the operating condition of the IC and provides a fault indicator for interrupt driven systems.

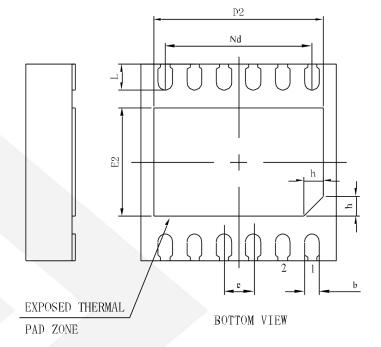
Table 1. STAT Pin Function

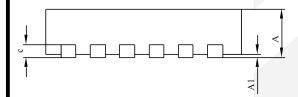
Charge State	STAT Pin
No Charging	OPEN
Charging	LOW
Fault	2 Hz Pulse

The types of fault in Charge Mode (see Table 2).

Table 2. Fault Status During Charge Mode


Fault Description				
VBUS OVP				
Sleep Mode				
Poor Input Source				
Battery OVP				
Thermal Shutdown				
No Battery				
NTC protection				


PCB Layout Recommendations


Bypass capacitors should be placed as close to the IC as possible. In particular, the total loop length for CMID should be minimized to reduce overshoot and ringing on the SW, PMID, and VBUS pins. All power and ground pins must be routed to their bypass capacitors, using top copper whenever possible. The copper area connecting to the IC should be maximized to improve thermal performance if possible.

Physical Dimensions: DFN3*3-12

Common Dimensions (mm)						
Symbol	Min	Nom	Max			
Α	0.70	0.75	0.80			
A1	-	0.02	0.05			
b	0.16	0.23	0.28			
С	0.18	0.20	0.25			
D	2.90	3.00	3.10			
D2	2.40	2.50	2.60			
е		0.45 BSC				
Nd		2.25 BSC				
E	2.90	3.00	3.10			
E2	1.45	1.55	1.65			
L	0.30	0.40	0.50			
h	0.20	0.25	0.30			

www.dioo.com

CONTACT US

Dioo is a professional design and sales corporation for high-quality and performance analog semiconductors. The company focuses on industry markets, such as cell phones, handheld products, laptops, medical equipment, and so on. Dioo's product families include analog signal processing and amplifying, LED drivers, and charger ICs. Go to http://www.dioo.com for a complete list of Dioo product families.

For additional product information or full datasheet, please contact our sales department or representatives.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

DIOO:

DIO59121CCD12