
Adafruit I2C Quad Rotary Encoder
Breakout

Created by Liz Clark

https://learn.adafruit.com/adafruit-i2c-quad-rotary-encoder-breakout

Last updated on 2024-02-26 01:40:28 PM EST

©Adafruit Industries Page 1 of 21

3

6

11

16

16

20

21

Table of Contents

Overview

Pinouts
• Power Pins
• I2C Logic Pins
• Address Jumpers
• Interrupt Pin and LED
• UPDI Pin
• Power LED
• Rotary Encoder Pins

CircuitPython & Python
• CircuitPython Microcontroller Wiring
• Python Computer Wiring
• Python Installation of seesaw Library
• CircuitPython Usage
• Python Usage
• Example Code
• I2C Clock Stretching

Python Docs

Arduino
• Wiring
• Library Installation
• Example Code

Arduino Docs

Downloads
• Files
• Schematic and Fab Print

©Adafruit Industries Page 2 of 21

Overview

Rotary encoders are soooo much fun! Twist 'em this way, then twist them that way.
Unlike potentiometers, they go all the way around and often have little detents for
tactile feedback. But, if you've ever tried to add encoders to your project you know
that they're a real challenge to use: timers, interrupts, debouncing...

This Stemma QT breakout makes all that frustration go away - and allows you to read
up to 4 encoders for big builds with lots of twisty interfaces. You can solder in any
four 'standard' PEC11-pinout rotary encoders with or without a push-switch. The
onboard microcontroller is programmed with our seesaw firmware and will track all

©Adafruit Industries Page 3 of 21

pulses and pins for you and then save the incremental value for querying at any time
over I2C. Plug it in with a Stemma QT cable for instant rotary goodness, with any kind
of microcontroller from an Arduino UNO up to a Raspberry Pi.

You can use our Arduino library to control and read data (https://adafru.it/BrV) with
any compatible microcontroller. We also have CircuitPython/Python code (https://
adafru.it/BrW) for use with computers or single-board Linux boards.

It's also easy to add this breakout to a breadboard - with six 0.1"-spaced breakout
pads. Power with 3 to 5V DC and then use 3 or 5V logic I2C data. The INT pin can be
configured to pulse low whenever rotation or push-buttoning is detected so you do
not have to spam-read the I2C port to detect motion.

©Adafruit Industries Page 4 of 21

https://github.com/adafruit/Adafruit_Seesaw
https://github.com/adafruit/Adafruit_CircuitPython_seesaw

If you happen to be using clear/translucent shaft encoders, there are reverse-mount
NeoPixels on board, that can display any color you like, they are controlled over I2C
for additional visual feedback or keep them off if you like. Note that for metal-shaft
encoders, the LEDs are not visible. On the back, there's a green power LED as well as
a red INT LED that, if the interrupt is configured, will blink when the interrupt fires.

Using the three onboard address jumpers, you can connect up to 8 of these encoders
on a single I2C port. The first one will be at address 0x49, the last one at 0x50 when
all three jumpers are cut open.

To get you going fast, we spun up a custom-made PCB with the seesaw chip and all
supporting circuitry, in the STEMMA QT form factor (https://adafru.it/LBQ), making
them easy to interface with. The STEMMA QT connectors (https://adafru.it/JqB) on
either side are compatible with the SparkFun Qwiic (https://adafru.it/Fpw) I2C
connectors. This allows you to make solderless connections between your
development board and the rotary encoder or to chain them with a wide range of
other sensors and accessories using a compatible cable (https://adafru.it/JnB). A QT
Cable is not included, but we have a variety in the shop (https://adafru.it/17VE).

©Adafruit Industries Page 5 of 21

https://www.adafruit.com/?q=stemma%20qt%20sensor
https://www.adafruit.com/?q=stemma%20qt%20sensor
https://learn.adafruit.com/introducing-adafruit-stemma-qt/what-is-stemma-qt
https://www.sparkfun.com/qwiic
https://www.adafruit.com/?q=stemma%20qt%20cable
https://www.adafruit.com/?q=stemma%20qt%20cable
https://www.adafruit.com/?q=stemma+qt+cable&sort=BestMatch
https://www.adafruit.com/?q=stemma+qt+cable&sort=BestMatch

This breakout does not come with any encoders soldered on, so you can pick
whatever encoder you like. We sell a common 24-detent-with-switch encoder here
and it works wonderfully. (http://adafru.it/377) You can also use encoders without
detents or with a different number of detents per rotation, of course! You'll need to
solder the encoders and optional header onto the PCB to use with a solderless
breadboard. but it's fairly easy and takes only a few minutes even for a beginner.

Pinouts

The default I2C address is 0x49.

©Adafruit Industries Page 6 of 21

https://www.adafruit.com/product/377
https://www.adafruit.com/product/377

Power Pins
VIN - This is the power pin. To power the board, give it the same power as the
logic level of your microcontroller - e.g. for a 3V microcontroller like a Feather
RP2040, use 3V, or for a 5V microcontroller like Arduino, use 5V.
- (GND) - This is common ground for power and logic.

I2C Logic Pins

The default I2C address is 0x49.

C - I2C clock pin (SCL), connect to your microcontroller I2C clock line. There's a
10K pullup on this pin.
D - I2C data pin (SDA), connect to your microcontroller I2C data line. There's a
10K pullup on this pin.
STEMMA QT (https://adafru.it/Ft4) - These connectors allow you to connect to
development boards with STEMMA QT / Qwiic connectors or to other things
with various associated accessories (https://adafru.it/JRA).

Address Jumpers

On the back of the board are three address jumpers, labeled A0, A1, and A2, above
the breakout pads along the bottom of the board. These jumpers allow you to chain
up to 8 of these boards on the same pair of I2C clock and data pins. To do so, you cut
the jumpers "open" by separating the two pads.

If you happen to need more than 8, it's possible to set the I2C address with a special
address-change command that is saved to the onboard non-volatile EEPROM
memory.

The default I2C address is 0x49. The other address options can be calculated by
"adding" the A0/A1/A2 to the base of 0x49.

A0 sets the lowest bit with a value of 1, A1 sets the next bit with a value of 2 and A2
sets the next bit with a value of 4. The final address is 0x49 + A2 + A1 + A0 which
would be 0x50.

If only A0 is cut, the address is 0x49 + 1 = 0x49

•

•

•

•

•

©Adafruit Industries Page 7 of 21

https://learn.adafruit.com/introducing-adafruit-stemma-qt
https://learn.adafruit.com/introducing-adafruit-stemma-qt
https://www.adafruit.com/category/619

If only A1 is cut, the address is 0x49 + 2 = 0x4B

If only A2 is cut, the address is 0x49 + 4 = 0x4D

The table below shows all possible addresses, and whether the pin(s) should be Low
(left closed) or High (cut open).

Interrupt Pin and LED
INT - This is the interrupt output pin. It can be configured to pulse low whenever
rotation or push-buttoning is detected so you do not have to spam-read the I2C
port to detect motion.
Interrupt LED - On the back of the board to the left of the bottom row of
breakout pins is the interrupt LED. It is the red LED and turns on whenever an
interrupt is detected.

•

•

©Adafruit Industries Page 8 of 21

UPDI Pin

The UPDI pin is not labeled on the board silk and is located next to the interrupt (INT)
pin.

UPDI - This is the single-pin Unified Program and Debug Interface. This pin is for
external programming or on-chip-debugging for the ATtiny817 running the
seesaw firmware (https://adafru.it/VdL). We have a page in the ATtiny Breakouts
with seesaw Learn Guide (https://adafru.it/18ED) detailing how to reprogram
these chips with your own firmware (at your own risk). We don't provide any
support for custom builds of seesaw - we think this is cool and useful for the
Maker community.

Power LED
Power LED - On the back of the board, below the STEMMA connector on the
right, is the power LED, labeled on. It is the green LED.

Rotary Encoder Pins

On the front of the board are outlines for four rotary encoders on the board silk. They
are labeled #0 to #3. This lets you know where you should place the rotary encoders
for soldering. This breakout does not come with any encoders soldered on. We sell a
common 24-detent-with-switch encoder here and it works wonderfully. (http://
adafru.it/377)

Rotary Encoder + Extras
This rotary encoder is the best of the
best, it's a high-quality 24-pulse encoder,
with detents and a nice feel. It is panel
mountable for placement in a box, or you
can plug it...
https://www.adafruit.com/product/377

•

•

©Adafruit Industries Page 9 of 21

https://github.com/adafruit/Adafruit_seesawPeripheral
https://learn.adafruit.com/adafruit-attiny817-seesaw/advanced-reprogramming-with-updi
https://learn.adafruit.com/adafruit-attiny817-seesaw/advanced-reprogramming-with-updi
https://www.adafruit.com/product/377
https://www.adafruit.com/product/377
https://www.adafruit.com/product/377
https://www.adafruit.com/product/377

Each of the four encoder sections has pins for reading the encoder and a switch. The
encoder pins are the three pins on the right side of the encoder outline. The encoder
A pin is towards the bottom of the board and the encoder B pin is towards the top of
the board. The center pin is ground.

The switch pins are the two pins on the left side of the encoder outline. The switch
pin is towards the bottom of the board and the pin towards the top of the board is
ground. The two larger oval pins are both connected to ground.

These are the pin names in the seesaw firmware for each rotary encoder:

Encoder #0

Switch: pin 12
Encoder A: pin 8
Encoder B: pin 9

Encoder #1

Switch: pin 14
Encoder A: pin 10
Encoder B: pin 11

Encoder #2

Switch: pin 17
Encoder A: pin 2
Encoder B: pin 3

•

◦
◦
◦

•

◦
◦
◦

•

◦
◦
◦

©Adafruit Industries Page 10 of 21

Encoder #3

Switch: pin 9
Encoder A: pin 4
Encoder B: pin 5

CircuitPython & Python
It's easy to use the I2C Quad Rotary Encoder breakout with Python or CircuitPython,
and the Adafruit_CircuitPython_seesaw (https://adafru.it/BrW) module. This module
allows you to easily write Python code that reads each encoder position (relative to
the starting position) and the four button presses on each encoder.

You can use this adapter with any CircuitPython microcontroller board or with a
computer that has GPIO and Python thanks to Adafruit_Blinka, our CircuitPython-for-
Python compatibility library (https://adafru.it/BSN).

CircuitPython Microcontroller Wiring

First wire up an I2C adapter to your board exactly as follows. The following is the
adapter wired to a Feather RP2040 using the STEMMA connector:

Board STEMMA 3V to breakout VIN (red
wire)
Board STEMMA GND to breakout GND
(black wire)
Board STEMMA SCL to breakout SCL
(yellow wire)
Board STEMMA SDA to breakout SDA
(blue wire)

The following is the adapter wired to a Feather RP2040 using a solderless
breadboard:

•

◦
◦
◦

©Adafruit Industries Page 11 of 21

https://github.com/adafruit/Adafruit_CircuitPython_seesaw
https://learn.adafruit.com/circuitpython-on-raspberrypi-linux
https://learn.adafruit.com/circuitpython-on-raspberrypi-linux
https://learn.adafruit.com//assets/122298
https://learn.adafruit.com//assets/122298

Board 3V to breakout VIN (red wire)
Board GND to breakout GND (black wire)
Board SCL to breakout SCL (yellow wire)
Board SDA to breakout SDA (blue wire)

Python Computer Wiring

Since there are dozens of Linux computers/boards you can use, we will show wiring
for Raspberry Pi. For other platforms, please visit the guide for CircuitPython on Linux
to see whether your platform is supported (https://adafru.it/BSN).

Here's the Raspberry Pi wired with I2C using the STEMMA connector:

Pi 3V to breakout VIN (red wire)
Pi GND to breakout GND (black wire)
Pi SCL to breakout SCL (yellow wire)
Pi SDA to breakout SDA (blue wire)

Here's the Raspberry Pi wired with I2C using a solderless breadboard:

©Adafruit Industries Page 12 of 21

https://learn.adafruit.com//assets/122299
https://learn.adafruit.com//assets/122299
https://learn.adafruit.com/circuitpython-on-raspberrypi-linux
https://learn.adafruit.com/circuitpython-on-raspberrypi-linux
https://learn.adafruit.com//assets/122300
https://learn.adafruit.com//assets/122300

Pi 3V to breakout VIN (red wire)
Pi GND to breakout GND (black wire)
Pi SCL to breakout SCL (yellow wire)
Pi SDA to breakout SDA (blue wire)

Python Installation of seesaw Library

You'll need to install the Adafruit_Blinka library that provides the CircuitPython
support in Python. This may also require enabling I2C on your platform and verifying
you are running Python 3. Since each platform is a little different, and Linux changes
often, please visit the CircuitPython on Linux guide to get your computer
ready (https://adafru.it/BSN)!

Once that's done, from your command line run the following command:

pip3 install adafruit-circuitpython-seesaw

If your default Python is version 3 you may need to run 'pip' instead. Just make sure
you aren't trying to use CircuitPython on Python 2.x, it isn't supported!

CircuitPython Usage

To use with CircuitPython, you need to first install the Adafruit_CircuitPython_seesaw
library, and its dependencies, into the lib folder on your CIRCUITPY drive. Then you
need to update code.py with the example script.

Thankfully, we can do this in one go. In the example below, click the Download
Project Bundle button below to download the necessary libraries and the code.py file
in a zip file. Extract the contents of the zip file, and copy the entire lib folder and the
code.py file to your CIRCUITPY drive.

Your CIRCUITPY/lib folder should contain the following folders and file:

adafruit_bus_device/

•

•

©Adafruit Industries Page 13 of 21

https://learn.adafruit.com//assets/122301
https://learn.adafruit.com//assets/122301
https://learn.adafruit.com/circuitpython-on-raspberrypi-linux
https://learn.adafruit.com/circuitpython-on-raspberrypi-linux
https://learn.adafruit.com/circuitpython-on-raspberrypi-linux

adafruit_seesaw/
adafruit_pixelbuf.mpy

Python Usage

Once you have the library pip3 installed on your computer, copy or download the
following example to your computer, and run the following, replacing code.py with
whatever you named the file:

python3 code.py

Example Code

If running CircuitPython: Once everything is saved to the CIRCUITPY drive, connect
to the serial console (https://adafru.it/Bec) to see the data printed out!

If running Python: The console output will appear wherever you are running Python.

SPDX-FileCopyrightText: 2023 ladyada for Adafruit Industries
SPDX-License-Identifier: MIT

"""Quad I2C rotary encoder NeoPixel color picker example."""
import board
from rainbowio import colorwheel
import digitalio
import adafruit_seesaw.seesaw
import adafruit_seesaw.neopixel
import adafruit_seesaw.rotaryio
import adafruit_seesaw.digitalio

For boards/chips that don't handle clock-stretching well, try running I2C at 50KHz
import busio
i2c = busio.I2C(board.SCL, board.SDA, frequency=50000)
For using the built-in STEMMA QT connector on a microcontroller
i2c = board.STEMMA_I2C()
seesaw = adafruit_seesaw.seesaw.Seesaw(i2c, 0x49)

encoders = [adafruit_seesaw.rotaryio.IncrementalEncoder(seesaw, n) for n in
range(4)]
switches = [adafruit_seesaw.digitalio.DigitalIO(seesaw, pin) for pin in (12, 14, 17,
9)]

•
•

©Adafruit Industries Page 14 of 21

https://learn.adafruit.com/welcome-to-circuitpython/kattni-connecting-to-the-serial-console
https://learn.adafruit.com/welcome-to-circuitpython/kattni-connecting-to-the-serial-console

for switch in switches:
switch.switch_to_input(digitalio.Pull.UP) # input & pullup!

four neopixels per PCB
pixels = adafruit_seesaw.neopixel.NeoPixel(seesaw, 18, 4)
pixels.brightness = 0.5

last_positions = [-1, -1, -1, -1]
colors = [0, 0, 0, 0] # start at red

while True:
negate the position to make clockwise rotation positive
positions = [encoder.position for encoder in encoders]
print(positions)
for n, rotary_pos in enumerate(positions):

if rotary_pos != last_positions[n]:
if switches[n].value: # Change the LED color if switch is not pressed

if (
rotary_pos > last_positions[n]

): # Advance forward through the colorwheel.
colors[n] += 8

else:
colors[n] -= 8 # Advance backward through the colorwheel.

colors[n] = (colors[n] + 256) % 256 # wrap around to 0-256
Set last position to current position after evaluating
print(f"Rotary #{n}: {rotary_pos}")
last_positions[n] = rotary_pos

if switch is pressed, light up white, otherwise use the stored color
if not switches[n].value:

pixels[n] = 0xFFFFFF
else:

pixels[n] = colorwheel(colors[n])

In the example, each rotary encoder position is printed to the serial console as it
changes. As the encoder position changes, the NeoPixel underneath advances
through the rainbow. If you press a rotary encoder button, the NeoPixel underneath
turns white.

I2C Clock Stretching

For boards that don't handle clock-stretching well, like Raspberry Pi, you may want to
reduce the I2C clock speed to 50KHz by following the directions in this
guide. (https://adafru.it/18MF)

©Adafruit Industries Page 15 of 21

https://learn.adafruit.com/raspberry-pi-i2c-clock-stretching-fixes/change-the-clock-speed
https://learn.adafruit.com/raspberry-pi-i2c-clock-stretching-fixes/change-the-clock-speed

Then, at the beginning of the example code, uncomment the busio I2C instantiation
and comment out the STEMMA_I2C() instantiation.

For boards/chips that don't handle clock-stretching well, try running I2C at 50KHz
import busio
i2c = busio.I2C(board.SCL, board.SDA, frequency=50000)
For using the built-in STEMMA QT connector on a microcontroller
i2c = board.STEMMA_I2C()
seesaw = adafruit_seesaw.seesaw.Seesaw(i2c, 0x49)

For more information on I2C clock stretching and Raspberry Pi, check out this Learn
Guide (https://adafru.it/18Na).

Raspberry Pi I2C Clock Stretching
Fixes Learn Guide

https://adafru.it/18Nb

Python Docs
Python Docs (https://adafru.it/18EG)

Arduino
Using the I2C quad rotary encoder breakout with Arduino involves wiring up the
breakout to your Arduino-compatible microcontroller, installing the
Adafruit_Seesaw (https://adafru.it/BrV) library and running the provided example
code.

Wiring

Wire as shown for a 5V board like an Uno. If you are using a 3V board, like an Adafruit
Feather, wire the board's 3V pin to the breakout VIN.

Here is an Adafruit Metro wired up to the breakout using the STEMMA QT connector:

©Adafruit Industries Page 16 of 21

https://learn.adafruit.com/raspberry-pi-i2c-clock-stretching-fixes/overview
https://learn.adafruit.com/raspberry-pi-i2c-clock-stretching-fixes/overview
https://learn.adafruit.com/raspberry-pi-i2c-clock-stretching-fixes
https://docs.circuitpython.org/projects/seesaw/en/latest/
https://github.com/adafruit/Adafruit_Seesaw

Board 5V to breakout VIN (red wire)
Board GND to breakout GND (black wire)
Board SCL to breakout SCL (yellow wire)
Board SDA to breakout SDA (blue wire)

Here is an Adafruit Metro wired up using a solderless breadboard:

Board 5V to breakout VIN (red wire)
Board GND to breakout GND (black wire)
Board SCL to breakout SCL (yellow wire)
Board SDA to breakout SDA (blue wire)

Library Installation

You can install the Adafruit_Seesaw library for Arduino using the Library Manager in
the Arduino IDE.

Click the Manage Libraries ... menu item, search for Adafruit_Seesaw, and select the
Adafruit seesaw Library library:

©Adafruit Industries Page 17 of 21

https://learn.adafruit.com//assets/122296
https://learn.adafruit.com//assets/122296
https://learn.adafruit.com//assets/122297
https://learn.adafruit.com//assets/122297

If asked about dependencies, click "Install all".

If the "Dependencies" window does not come up, then you already have the
dependencies installed.

Example Code

/*
 * This is a demo for a QT Py RP2040 connected to a quad rotary encoder breakout
 * using the onboard Stemma QT Port
 * https://www.adafruit.com/product/4900
 * https://www.adafruit.com/product/5752
 *
 */
#include "Adafruit_seesaw.h"
#include <seesaw_neopixel.h>

#define SS_NEO_PIN 18
#define SS_ENC0_SWITCH 12
#define SS_ENC1_SWITCH 14
#define SS_ENC2_SWITCH 17
#define SS_ENC3_SWITCH 9

If the dependencies are already installed, you must make sure you update them
through the Arduino Library Manager before loading the example!

©Adafruit Industries Page 18 of 21

#define SEESAW_ADDR 0x49

Adafruit_seesaw ss = Adafruit_seesaw(&Wire);
seesaw_NeoPixel pixels = seesaw_NeoPixel(4, SS_NEO_PIN, NEO_GRB + NEO_KHZ800);

int32_t enc_positions[4] = {0, 0, 0, 0};

void setup() {
Serial.begin(115200);
while (!Serial) delay(10);

Serial.println("Looking for seesaw!");

if (! ss.begin(SEESAW_ADDR) || !pixels.begin(SEESAW_ADDR)) {
Serial.println("Couldn't find seesaw on default address");
while(1) delay(10);

}
Serial.println("seesaw started");
uint32_t version = ((ss.getVersion() >> 16) & 0xFFFF);
if (version != 5752){

Serial.print("Wrong firmware loaded? ");
Serial.println(version);
while(1) delay(10);

}
Serial.println("Found Product 5752");

ss.pinMode(SS_ENC0_SWITCH, INPUT_PULLUP);
ss.pinMode(SS_ENC1_SWITCH, INPUT_PULLUP);
ss.pinMode(SS_ENC2_SWITCH, INPUT_PULLUP);
ss.pinMode(SS_ENC3_SWITCH, INPUT_PULLUP);
ss.setGPIOInterrupts(1UL << SS_ENC0_SWITCH | 1UL << SS_ENC1_SWITCH |

1UL << SS_ENC2_SWITCH | 1UL << SS_ENC3_SWITCH, 1);

// get starting positions
for (int e=0; e<4; e++) {

enc_positions[e] = ss.getEncoderPosition(e);
ss.enableEncoderInterrupt(e);

}

Serial.println("Turning on interrupts");

pixels.setBrightness(255);
pixels.show(); // Initialize all pixels to 'off'

}

void loop() {

if (! ss.digitalRead(SS_ENC0_SWITCH)) {
Serial.println("ENC0 pressed!");

}
if (! ss.digitalRead(SS_ENC1_SWITCH)) {

Serial.println("ENC1 pressed!");
}
if (! ss.digitalRead(SS_ENC2_SWITCH)) {

Serial.println("ENC2 pressed!");
}
if (! ss.digitalRead(SS_ENC3_SWITCH)) {

Serial.println("ENC3 pressed!");
}

for (int e=0; e<4; e++) {
int32_t new_enc_position = ss.getEncoderPosition(e);
// did we move around?
if (enc_positions[e] != new_enc_position) {

Serial.print("Encoder #");
Serial.print(e);

©Adafruit Industries Page 19 of 21

Serial.print(" -> ");
Serial.println(new_enc_position); // display new position
enc_positions[e] = new_enc_position; // and save for next round

// change the neopixel color, mulitply the new positiion by 4 to speed it up
pixels.setPixelColor(e, Wheel((new_enc_position*4) & 0xFF));
pixels.show();

}
}

// don't overwhelm serial port
delay(10);

}

uint32_t Wheel(byte WheelPos) {
WheelPos = 255 - WheelPos;
if (WheelPos < 85) {

return seesaw_NeoPixel::Color(255 - WheelPos * 3, 0, WheelPos * 3);
}
if (WheelPos < 170) {

WheelPos -= 85;
return seesaw_NeoPixel::Color(0, WheelPos * 3, 255 - WheelPos * 3);

}
WheelPos -= 170;
return seesaw_NeoPixel::Color(WheelPos * 3, 255 - WheelPos * 3, 0);

}

Upload the sketch to your board and open up the Serial Monitor (Tools -> Serial
Monitor) at 115200 baud. You'll see the seesaw firmware recognized by the code.
Then, when you turn any of the four encoders or press any of the buttons on the
encoders it will print to the Serial Monitor. As you turn an encoder, the NeoPixel
underneath the encoder will begin to advance through the color rainbow. You'll also
see the interrupt LED light up with each encoder turn and button press.

Arduino Docs
Arduino Docs (https://adafru.it/SdQ)

©Adafruit Industries Page 20 of 21

https://adafruit.github.io/Adafruit_Seesaw/html/index.html

Downloads
Files

ATtiny817 Datasheet (https://adafru.it/VhF)
EagleCAD PCB Files on GitHub (https://adafru.it/18Nc)
Fritzing object in the Adafruit Fritzing Library (https://adafru.it/18Nd)

Schematic and Fab Print

•
•
•

©Adafruit Industries Page 21 of 21

https://cdn-learn.adafruit.com/assets/assets/000/105/460/original/ATtiny417-814-816-817-DataSheet-DS40002288A.pdf?1634157151
https://github.com/adafruit/Adafruit-I2C-Quad-Rotary-Encoder-Breakout-PCB
https://github.com/adafruit/Fritzing-Library/blob/master/parts/Adafruit%20I2C%20Quad%20Rotary%20Encoder%20Breakout.fzpz

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Adafruit:

 5752

https://www.mouser.com/adafruit
https://www.mouser.com/access/?pn=5752

	Adafruit I2C Quad Rotary Encoder Breakout
	Table of Contents
	Overview
	Pinouts
	CircuitPython & Python
	Python Docs
	Arduino
	Arduino Docs
	Downloads

	Overview
	Pinouts
	Power Pins
	I2C Logic Pins
	Address Jumpers
	Interrupt Pin and LED
	UPDI Pin
	Power LED
	Rotary Encoder Pins

	CircuitPython & Python
	CircuitPython Microcontroller Wiring
	Python Computer Wiring
	Python Installation of seesaw Library
	CircuitPython Usage
	Python Usage
	Example Code
	I2C Clock Stretching

	Python Docs
	Arduino
	Wiring
	Library Installation
	Example Code

	Arduino Docs
	Downloads
	Files
	Schematic and Fab Print

