

R9A02G015

ASSP (USB Power Delivery Controller)

R19DS0101EJ0100 Rev.1.00 Mar 29, 2019

1. OUTLINE

1.1 Features

Ultra-low power consumption technology

- V_{DD} = single power supply voltage of 2.7 to 5.5 V
- HALT mode
- STOP mode
- SNOOZE mode

RL78 CPU core

- CISC architecture with 3-stage pipeline
- Minimum instruction execution time: 0.04167 µs:
 @ 24 MHz operation with high-speed on-chip oscillator
- Multiply/divide/multiply & accumulate instructions are supported.
- Address space: 1 MB
- General-purpose registers: (8-bit register × 8) × 4 banks
- On-chip RAM: 7 KB

Code flash memory

- Code flash memory: 128 KB
- Block size: 1 KB
- Prohibition of block erase and rewriting (security function)
- On-chip debug function
- Self-programming (with boot swap function/flash shield window function)

Data flash memory

- Data flash memory: 2 KB
- Back ground operation (BGO): Instructions can be executed from the program memory while rewriting the data flash memory.
- Number of rewrites: 1,000,000 times (TYP.)
- Voltage of rewrites: V_{DD} = 2.7 to 5.5 V

High-speed on-chip oscillator

- Select from 48 MHz, 24 MHz, 16 MHz, 12 MHz, 8 MHz, 6 MHz, 4 MHz, 3 MHz, 2 MHz, and 1 MHz
- High accuracy: ±1.0% (V_{DD} = 2.7 to 5.5 V, T_A = -20 to +85°C)

Operating ambient temperature

• T_A = -40 to +85°C (A: Consumer applications)

Power management and reset function

- On-chip power-on-reset (POR) circuit
- On-chip voltage detector (LVD) (Select reset from 6 levels)

USB

- Complying with USB Specification Revision 2.0, incorporating host/function controller
- Corresponding to full-speed transfer (12 Mbps) and low-speed (1.5 Mbps)
- Complying with Battery Charging Specification Revision 1.2
- Compliant with the 2.1 A/1.0 A charging mode.

Serial interfaces

- CSI: 2 channels
- UART: 1 channel
- Simplified I²C: 2 channels
- I²C: 2 or 3 channels

Timers

- 16-bit timer: 8 channels
- 12-bit interval timer: 1 channel
- Watchdog timer: 1 channel

A/D converter

- 8/10-bit resolution A/D converter (V_{DD} = 2.7 to 5.5 V)
- Analog input: 8 channels
- Internal reference voltage (1.45 V) and temperature sensor

I/O ports

- I/O port: 23 or 28 (N-ch open drain I/O [withstand voltage of 6 V]: 5, N-ch open drain I/O [V_{DD} withstand voltage]: 8 or 13)
- Can be set to N-ch open drain, TTL input buffer, and on-chip pull-up resistor
- On-chip clock output/buzzer output controller

Others

 On-chip BCD (binary-coded decimal) correction circuit

Remark

The functions mounted depend on the product. See **1.6 Outline of Functions**.

ROM, RAM capacities

		RAM	R9A02G015		
Flash ROM	n ROM Data flash RAI		32 pins (with USB)	32 pins (without USB)	
128 KB	2 KB 7 KB ^{Note}		R9A02G0150	R9A02G0151	

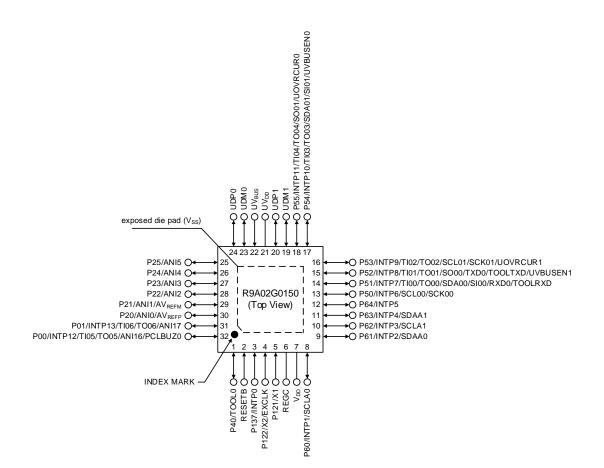
Note

The flash library uses RAM in self-programming and rewriting of the data flash memory. The target products and start address of the RAM areas used by the flash library are shown below.

R9A02G0150/R9A02G0151: Start address FE300H

1.2 Ordering Information

Pin count	Package	Ordering Part Number	Remarks
32 pins		R9A02G015020GNP#AC0	Product with USB (R9A02G0150)
	(4 × 4 mm, 0.4 mm pitch)	R9A02G015120GNP#AC0	Product without USB (R9A02G0151)

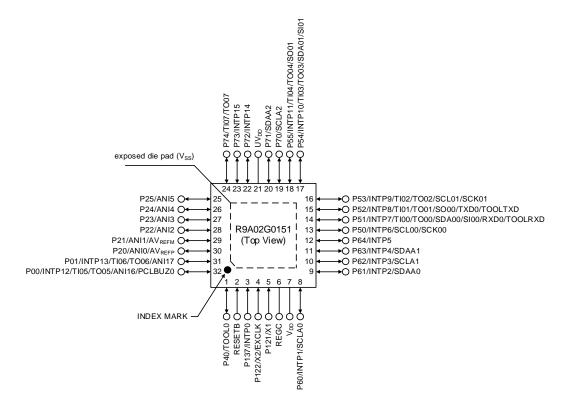

Caution The ordering part numbers represent the numbers at the time of publication. For the latest ordering part numbers, refer to the target product page of the Renesas Electronics website.

1.3 Pin Configuration (Top View)

1.3.1 32-pin product (with USB)

• 32-pin QFN (4 × 4 mm, 0.4 mm pitch)

Caution 1. Connect the exposed die pad (V $_{\mbox{ss}}$) to ground.


Caution 2. Connect the REGC pin to V_{SS} via a capacitor (0.47 to 1 $\mu\text{F}).$

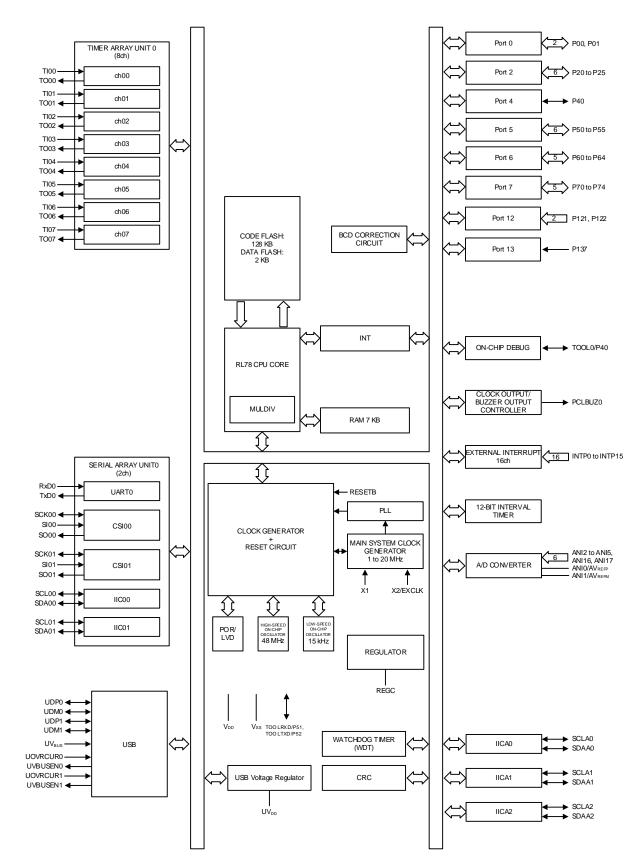
Remark For pin identification, see 1.4 Pin Identification.

1.3.2 32-pin product (without USB)

• 32-pin QFN (4 × 4 mm, 0.4 mm pitch)

Caution 1. Connect the exposed die pad (V $_{SS}$) to ground. Caution 2. Connect the REGC pin to V $_{SS}$ via a capacitor (0.47 to 1 μF).

Remark For pin identification, see 1.4 Pin Identification.


1.4 Pin Identification

ANI0 to ANI5, ANI16, ANI17:	Analog input
AV _{REFM} :	A/D converter reference potential (- side) input
AVREFP:	A/D converter reference potential (+ side) input
EXCLK:	External clock input (main system clock)
INTP0 to INTP15:	External interrupt input
P00, P01:	Port 0
P20 to P25:	Port 2
P40:	Port 4
P50 to P55:	Port 5
P60 to P64:	Port 6
P70 to P74:	Port 7
P121, P122:	Port 12
P137:	Port 13
PCLBUZ0:	Programmable clock output/buzzer output
REGC:	Regulator capacitance
RESETB:	Reset
RxD0:	Receive data
SCK00, SCK01:	Serial clock input/output
SCLA0 to SCLA2, SCL00, SCL01:	Serial clock input/output
SDAA0 to SDAA2, SDA00, SDA01:	Serial data input/output
SI00, SI01:	Serial data input
SO00, SO01:	Serial data output
TI00 to TI07:	Timer input
TO00 to TO07:	Timer output
TOOL0:	Data input/output for tool
TOOLRXD, TOOLTXD:	Data input/output for external device
TxD0:	Transmit data
UDM0, UDM1, UDP0, UDP1:	USB Input/Output
UOVRCUR0, UOVRCUR1:	USB Input
UVBUSEN0, UVBUSEN1:	USB Output
UV _{DD} :	USB Power Supply/USB Regulator Capacitance
UV _{BUS} :	USB Input/USB Power Supply (USB Optional BC)
V _{DD} :	Power supply
V _{SS} :	Ground
X1, X2:	Crystal oscillator (main system clock)

1.5 Block Diagram

1.5.1 32-pin products

1.6 Outline of Functions

			(1/2)		
	ltem	32-pin (with USB)	32-pin (without USB)		
	nem	R9A02G0150	R9A02G0151		
Code flash memo	ry (KB)	128 KB	1		
Data flash memor	у (КВ)	2 KB			
RAM		7KB Note 1			
Address space		1 MB			
Main system clock	High-speed system clock (f _{MX})	X1 (crystal/ceramic) oscillation, extern HS (High-speed main) mode: 1 to 20 M			
	High-speed on-chip oscillator clock (f_{1H}) Max: 24 MHz	HS (High-speed main) mode: 1 to 24 N	$MHz (V_{DD} = 2.7 \text{ to } 5.5 \text{ V})$		
	PLL clock	6, 12, 24 MHz ^{Note 2} : V_{DD} = 2.7 to 5.5 V			
Subsystem clock	Low-speed on-chip oscillator $clock(f_{IL})$	15 kHz (TYP.): V _{DD} = 2.7 to 5.5 V			
General-purpose register		8 bits x 32 registers (8 bits x 8 register	rs × 4 banks)		
Minimum instruction execution time		0.04167 µs (High-speed on-chip oscilla operation)	ator clock: $f_{HOCO} = 48MHz/f_{IH} = 24 MHz$		
		0.04167 μ s (PLL clock: f _{PLL} = 48 MHz/f _{IH} = 24 MHz ^{Note 2} operation)			
		0.05 μ s (High-speed system clock: f_{MX} = 20 MHz operation)			
Instruction set		 Data transfer (8/16 bits) Adder and subtractor/logical operatio Multiplication (8 bits x 8 bits, 16 bits z bits ÷ 32 bits) Multiplication and Accumulation (16 k Rotate, barrel shift, and bit manipulat operation), etc. 	× 16 bits), Division (16 bits ÷ 16 bits, 32 bits × 16 bits + 32 bits)		
I/O port	Total	23	28		
	CMOS I/O	15	20		
	CMOS input	3			
	N-ch open-drain I/O (6 V tolerance)	5			
Timer	16-bit timer	8 channels			
	Watchdog timer	1 channel			
	12-bit interval timer	1 channel			
	Timer output	7	8		
Clock output/buzz	er output	1			
		2.93 kHz, 5.86 kHz, 11.7 kHz, 1.5 MHz, 3 MHz, 6 MHz (Main system clock: f _{MAIN} = 24 MHz operation)			
10-bit resolution A	/D converter	8 channels			
Serial interface		CSI: 2 channels/UART: 1 channel/sim	plified I ² C: 2 channels		
	I ² C bus	2 channels	3 channels		

12	121
(4)	~)

			(=/=)				
	ltem	32-pin (with USB)	32-pin (without USB)				
nem		R9A02G0150	R9A02G0151				
USB	Host controller	2 channels	—				
	Function controller	1channel	—				
Vectored	Internal	22	21				
interrupt sources	External	14	16				
Reset		 Internal reset by RAM parity error 	 Internal reset by watchdog timer Internal reset by power-on-reset Internal reset by voltage detector Internal reset by illegal instruction execution Note 3 				
Power-on-reset ci	rcuit	 Power-on-reset: 1.51 ± 0.04 V (T_A = Power-down-reset: 1.50 ± 0.04 V (T 	 Power-on-reset: 1.51 ± 0.04 V (T_A = -40 to +85°C) Power-down-reset: 1.50 ± 0.04 V (T_A = -40 to +85°C) 				
Voltage detector	Power on	2.81 V to 4.06 V (6 stages)	2.81 V to 4.06 V (6 stages)				
	Power down	2.75 V to 3.98 V (6 stages)	2.75 V to 3.98 V (6 stages)				
On-chip debug function		Provided (Enable to tracing)	Provided (Enable to tracing)				
Power supply voltage		V _{DD} = 2.7 to 5.5 V	V _{DD} = 2.7 to 5.5 V				
Operating ambien	at temperature	T _A = -40 to +85°C	T _A = -40 to +85°C				

Note 1.The flash library uses RAM in self-programming and rewriting of the data flash memory.The target products and start address of the RAM areas used by the flash library are shown below.

R9A02G0150/R9A02G0151: Start address FE300H

Note 2. In the PLL clock 48 MHz operation, the system clock is 2/4/8 dividing ratio.

 Note 3.
 The illegal instruction is generated when instruction code FFH is executed.

 Reset by the illegal instruction execution is not issued by emulation with the in-circuit emulator or on-chip debug emulator.

2. ELECTRICAL SPECIFICATIONS

The target products A: Consumer applications; $T_A = -40$ to $+85^{\circ}C$ R9A02G0150, R9A02G0151

- Cautions 1. The R9A02G015 has an on-chip debug function, which is provided for development and evaluation. Do not use the on-chip debug function in products designated for mass production, because the guaranteed number of rewritable times of the flash memory may be exceeded when this function is used, and product reliability therefore cannot be guaranteed. Renesas Electronics is not liable for problems occurring when the on-chip debug function is used.
 - 2. The pins mounted depend on the product. Refer to 2.1 Port Function to 2.2 Functions other than port pins in the R9A02G015 User's Manual.

2.1 Absolute Maximum Ratings

Parameter	Symbols	Conditions	Ratings	Unit
Supply voltage	Vdd		–0.5 to +6.5	V
REGC pin input voltage	Viregc	REGC	-0.3 to +2.8 and -0.3 to V_DD +0.3 $^{\text{Note 1}}$	V
UV _{DD} pin input voltage	Viuvdd	UVDD	-0.3 to VDD +0.3	V
Input voltage	VI1	P00, P01, P20 to P25, P40, P50 to P55, P70 to P74, P121, P122, P137, RESETB	–0.3 to V _{DD} +0.3 ^{Note 2}	V
	VI2	P60 to P64 (N-ch open-drain)	–0.3 to +6.5	V
	Vı3	UDP0, UDM0, UDP1, UDM1	–0.3 to +6.5	V
	V _{I4}	UVBUS	–0.3 to +6.5	V
Output voltage	Vo1	P00, P01, P20 to P25, P40, P50 to P55, P70 to P74	-0.3 to V_DD +0.3 $^{\text{Note 2}}$	V
	V _{O2}	UDP0, UDM0, UDP1, UDM1	-0.3 to +6.5	V
Analog input voltage	Vaii	ANI16, ANI17	-0.3 to V_{DD} +0.3 and -0.3 to AV_{REF} (+) +0.3 Notes 2, 3	V
	Vai2	ANI0 to ANI5	-0.3 to V _{DD} +0.3 and -0.3 to AV _{REF} (+) +0.3 _{Notes 2, 3}	V

Absolute Maximum Ratings (T_A = 25°C) (1/2)

- **Notes 1.** Connect the REGC pin to Vss via a capacitor (0.47 to 1 μ F). This value regulates the absolute maximum rating of the REGC pin. Do not use this pin with voltage applied to it.
 - 2. Must be 6.5 V or lower.
 - 3. Do not exceed AVREF(+) + 0.3 V in case of A/D conversion target pin
- Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.
- **Remarks 1.** Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.
 - AVREF (+): The + side reference voltage of the A/D converter. This can be selected from AVREFP, the internal reference voltage (1.45 V), and VDD.
 - 3. Vss : Reference voltage

Absolute Maximum Ratings (TA = 25°C) (2/2)

Parameter	Symbols		Conditions	Ratings	Unit
Output current, high	Іон1	Per pin	P00, P01, P40, P50 to P55, P70- P74	-40	mA
		Total of all pins	P00, P01, P40	-70	mA
		–170 mA	P50 to P55, P70 to P74	-100	mA
	Іон2	Per pin	P20 to P25	-0.5	mA
		Total of all pins		-2	mA
Output current, low	Iol1	Per pin	P00, P01, P40, P50 to P55, P60 to P64, P70 to P74	40	mA
		Total of all pins 170 mA	P00, P01, P40	70	mA
			P50 to P55, P60 to P64, P70 to P74	100	mA
	IOL2	Per pin	P20 to P25	1	mA
		Total of all pins		5	mA
Operating ambient	TA	In normal operati	In normal operation mode		°C
temperature		In flash memory programming mode			
Storage temperature	Tstg			-65 to +150	°C

Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

2.2 Oscillator Characteristics

2.2.1 X1 oscillator characteristics

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 2.7 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = 0 \text{ V})$

Parameter	Resonator	Conditions	MIN.	TYP.	MAX.	Unit
X1 clock oscillation	Ceramic resonator/	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$	1.0		20.0	MHz
frequency (fx) ^{Note}	crystal resonator					

- **Note** Indicates only permissible oscillator frequency ranges. Refer to AC Characteristics for instruction execution time. Request evaluation by the manufacturer of the oscillator circuit mounted on a board to check the oscillator characteristics.
- Caution Since the CPU is started by the high-speed on-chip oscillator clock after a reset release, check the X1 clock oscillation stabilization time using the oscillation stabilization time counter status register (OSTC) by the user. Determine the oscillation stabilization time of the OSTC register and the oscillation stabilization time select register (OSTS) after sufficiently evaluating the oscillation stabilization time with the resonator to be used.

2.2.2 On-chip oscillator characteristics

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, 2.7 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = 0 \text{ V})$

Oscillators	Parameters	Conditions	MIN.	TYP.	MAX.	Unit
High-speed on-chip oscillator clock frequency Notes 1, 2	fносо		1		48	MHz
High-speed on-chip oscillator		–20 to +85 °C	-1.0		+1.0	%
clock frequency accuracy		-40 to -20 °C	-1.5		+1.5	%
Low-speed on-chip oscillator clock frequency	fı∟			15		kHz
Low-speed on-chip oscillator clock frequency accuracy			-15		+15	%

Notes 1. High-speed on-chip oscillator frequency is selected by bits 0 to 3 of option byte (000C2H/010C2H) and bits 0 to 2 of HOCODIV register.

2. This indicates the oscillator characteristics only. Refer to AC Characteristics for instruction execution time.

2.2.3 PLL oscillator characteristics

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, 2.7\text{V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = 0 \text{ V})$

Oscillators	Parameters	Conditions	MIN.	TYP.	MAX.	Unit
PLL input frequency Note	fpllin	High-speed system clock	6.00		16.00	MHz
PLL output frequency Note	fpll			48.00		MHz

Note Indicates only oscillator characteristics. Refer to AC Characteristics for instruction execution time.

2.3 DC Characteristics

2.3.1 Pin characteristics

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, 2.7 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = 0 \text{ V})$

Items	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Input voltage, high	VIH1	P00, P01, P40, P50 to P55, P70 to P74	Normal input buffer	0.8Vdd		Vdd	V
	VIH2	P00, P01, P50 to P55, P70 to P74	TTL input buffer $4.0 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$	2.2		Vdd	V
		TTL input buffer $3.3 \text{ V} \leq \text{V}_{\text{DD}} < 4.0 \text{ V}$	2.0		Vdd	V	
		TTL input buffer $2.7 \ V \leq V_{DD} < 3.3 \ V$	1.5		Vdd	V	
	Vінз	P20 to P25		0.7Vdd		Vdd	V
VIH4	VIH4	P60 to P64		0.7Vdd		6.0	V
	VIH5	P121, P122, P137, RESETB	0.8Vdd		Vdd	V	
Input voltage, low	VIL1	P00, P01, P40, P50 to P55, P70 to P74	Normal input buffer	0		0.2Vdd	V
	VIL2	P00, P01, P50 to P55, P70 to P74	TTL input buffer $4.0 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$	0		0.8	V
			TTL input buffer 3.3 V \leq VDD $<$ 4.0 V	0		0.5	V
			TTL input buffer $2.7 \text{ V} \leq \text{V}_{\text{DD}} < 3.3 \text{ V}$	0		0.32	V
	VIL3	P20 to P25	0		0.3Vdd	V	
	VIL4	P60 to P64		0		0.3Vdd	V
	VIL5	P121, P122, P137, RESETB	0		0.2Vdd	V	

Caution The maximum value of VIH of pins P00, P01, P50-P55, and P70-P74 is VDD, even in the N-ch open-drain mode.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, 2.7 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{V}_{\text{SS}} = 0 \text{ V})$

Items	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Output voltage, high	Vон1	P00, P01. P40, P50 to P55, P70 to P74	$\begin{array}{l} 2.7 \ V \leq V_{\text{DD}} \leq 5.5 \ V, \\ I_{\text{OH1}} = -1.5 \ mA \end{array} \end{array} \label{eq:DD}$	Vdd - 0.5			V
	Vон2	P20 to P25	$2.7 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V},$ Ioh2 = -100 μ A	Vdd - 0.5			V
Output voltage, low	Vol1	P00, P01, P40, P50 to P55, P70 to P74	$\begin{array}{l} 2.7 \ V \leq V_{\text{DD}} \leq 5.5 \ V, \\ I_{\text{OL1}} = 1.5 \ mA \end{array} \end{array} \label{eq:DD}$			0.4	V
	Vol2	P20 to P25	$2.7 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V},$ Iol2 = 400 μ A			0.4	V
	Vol3	P60 to P64	$\begin{array}{l} 2.7 \ V \leq V_{\text{DD}} \leq 5.5 \ V, \\ I_{\text{OL1}} = 3.0 \ mA \end{array} \end{array} \label{eq:DD}$			0.4	V

Caution P00, P01, P50-P55, and P70-P74 do not output high level in N-ch open-drain mode.

$(T_A = -40 \text{ to } +85^{\circ}C, 2.7 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{ Vss} = 0 \text{ V})$

Items	Symbol	Condition	Conditions				MAX.	Unit
Input leakage current, high	Ішні	P00, P01, P20 to P25, P40, P50 to P55, P60 to P64, P70 to P74, P137, RESETB	Vi = Vdd				1	μA
	Ішна	P121, P122	Vi = Vdd	In input port or external clock input			1	μA
Input leakage current, low	ILIL1	P00, P01, P20 to P25, P40, P50 to P55, P60 to P64, P70 to P74, P137, RESETB	Vı = Vss				-1	μA
	ILIL2	P121, P122	Vı = Vss	In input port or external clock input			-1	μA
On-chip pll-up resistance	Ru	P00, P01, P40, P50 to P55, P70 to P74	VI = Vss, In input port		10	20	100	kΩ

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

2.3.2 Supply current characteristics

Parameter	Symbol		(Conditions	MIN.	TYP.	MAX.	Unit
Supply IDD1 Operating HS (High-spe current mode main) mode		HS (High-speed main) mode	fносо = 48 MHz f _{IH} = 24 MHz ^{Note 2}		2.8		mA	
	fносо = 24 MHz fін = 24 MHz ^{Note 2}		2.6		mA			
	DD2 Note 3	HALT mode	HS (High-speed main) mode	fносо = 48 MHz fін = 24 MHz ^{Note 4}		0.92		mA
	fносо = 24 MHz f _{IH} = 24 MHz ^{Note 4}		0.72		mA			
	DD3 ^{Note 5}	STOP mode		•		0.26		μA

 $(T_A = 25 \ ^{\circ}C, V_{DD} = 3.3 \ V, V_{SS} = 0 \ V)$

- **Notes 1.** Total current flowing into V_{DD}, including the input leakage current flowing when the level of the input pin is fixed to V_{DD}, or V_{SS}. However, not including the current flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.
 - 2. When high-speed system clock is stopped.
 - **3.** During HALT instruction execution by flash memory.
 - 4. When high-speed system clock and Low-speed on-chip oscillator clock are stopped.
 - 5. Not including the current flowing into the 12-bit interval timer and watchdog timer.

Remarks 1. fHoco: High-speed on-chip oscillator clock frequency (Max. 48 MHz)

fill: Main system clock source frequency obtained by dividing the high-speed on-chip oscillator clock by 2, 4, or 8 (Max. 24 MHz)

(TA = 25 °C, VDD = UVDD = 3.3 V , Vss = 0 V)

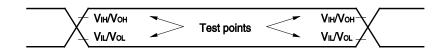
Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
USB operating current ^{Note 1}	IUSBF Note 2	During USB communication operation under the following settings and conditions: • The function controller is set to operate in full-speed mode • The internal power supply for the USB is stopped. • $f_{HOCO} = 48MHz$, $f_{IH} = 24MHz$		1.8		mA
	ISUSP Note 3	 During suspended state under the following settings and conditions: The function controller is set to full-speed mode (the UDP0 pin is pulled up). The internal power supply for the USB is stopped. The system is set to STOP mode (When the high-speed on-chip oscillator and high-speed system clock are stopped. When the watchdog timer is stopped.). 		180		μA

Notes 1. Current flowing into V_{DD} and UV_{DD} .

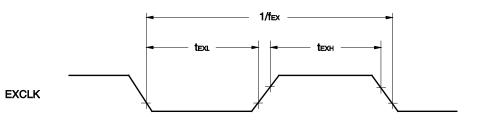
- **2.** Current consumed only by the USB module.
- **3.** Includes the current supplied from the pull-up resistor of the UDP0 pin to the pull-down resistor of the host device, in addition to the current consumed by this MCU during the suspended state.
- Remarks 1. fHOCO: High-speed on-chip oscillator clock frequency (Max. 48 MHz)
 - fill: Main system clock source frequency obtained by dividing the high-speed on-chip oscillator clock by 2, 4, or 8 (Max. 24 MHz)

2.4 AC Characteristics

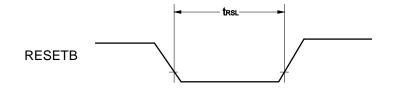
2.4.1 Basic operation


(TA = -40 to +85°C, 2.7 V \leq VDD \leq 5.5 V, Vss = 0 V)

Items	Symbol		Conditions	6	MIN.	TYP.	MAX.	Unit
Instruction cycle (minimum instruction execution time)	Тсү	Main system clock (f _{MAIN}) operation	HS (High- speed main) mode	$2.7 V \le V_{DD} \le 5.5 V$	0.04167		1	μS
		In the self programming mode	HS (High- speed main) mode	$2.7 V \le V_{DD} \le 5.5 V$	0.04167		1	μS
External system clock frequency	fex	$2.7 \text{ V} \leq \text{V}_{\text{DD}} \leq$	≤ 5.5 V		1.0		20.0	MHz
External system clock input high-level width, low-level width	texh, texl	$2.7 \text{ V} \leq \text{V}_{\text{DD}} \leq$	≦ 5.5 V		24			ns
Interrupt input high-level width, low-level width	tinth, tintl	INTP0 to INT	P15 2.7 V	$\leq V_{DD} \leq 5.5 \text{ V}$	1			μS
RESETB low-level width	trsl				10			μS


Remark fmck: Timer array unit operation clock frequency

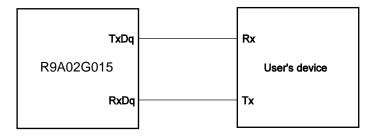
(Operation clock to be set by the CKS0n bit of timer mode register 0n (TMR0n). n: Channel number (n = 0 to 7))


AC Timing Test Points

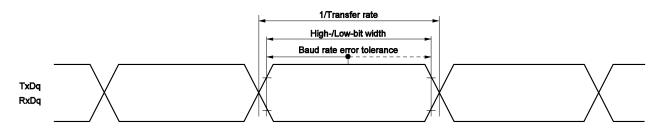
External System Clock Timing

RESETB Input Timing

2.5 Peripheral Functions Characteristics


2.5.1 Serial array unit

(1) During communication at same potential (UART mode) (dedicated baud rate generator output) ($T_A = -40$ to +85°C, 2.7 V \leq V_{DD} \leq 5.5 V, V_{SS} = 0 V)


Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Transfer rate					fмск/6	bps
		Theoretical value of the maximum transfer rate $f_{MCK} = f_{CLK}$ Note			4.0	Mbps

Caution Select the normal input buffer for the RxDq pin and the normal output mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg).

UART mode connection diagram (during communication at same potential)

UART mode bit width (during communication at same potential) (reference)

Remarks 1. q: UART number (q = 0), g: PIM and POM number (g = 5)

 fMCK: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00))

(2) During communication at same potential (CSI mode) (master mode, SCKp... internal clock output, corresponding CSI00 only)

Parameter	Symbol	C	Conditions	MIN.	TYP.	MAX.	Unit
SCKp cycle time	tKCY1	$t_{\text{KCY1}} \ge 2/f_{\text{CLK}}$	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$	83.3			ns
SCKp high-/low-level width	t кн1,	$4.0~V \leq V_{\text{DD}} \leq 5.5~V$		tkcy1/2 - 7			ns
	tĸ∟1	$2.7 \text{ V} \leq \text{V}_{\text{DD}} \leq$	5.5 V	tксү1/2 – 10			ns
SIp setup time (to SCKp↑) Note 1	tsik1	$4.0~V \leq V_{\text{DD}} \leq 5.5~V$		23			ns
		$2.7~V \leq V_{\text{DD}} \leq 5.5~V$		33			ns
SIp hold time (from SCKp \uparrow) ^{Note 2}	tksi1	$2.7 \text{ V} \leq \text{V}_{\text{DD}} \leq$	5.5 V	10			ns
Delay time from SCKp↓ to SOp output ^{Note 3}	tkso1	C = 20 pF ^{Note 4}				10	ns

$(T_A = -40 \text{ to } +85^\circ \text{C},$	$2.7 V < V_{DD} < 5.5$	V. Vss = 0 V
(1 = +0.0 + 00.0)	2.1 4 3 400 3 0.0	•,•33 = ••

- **Notes 1.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp \downarrow " when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - **2.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from SCKp \downarrow " when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - **3.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 4. C is the load capacitance of the SCKp and SOp output lines.

Caution Select the normal input buffer for the SIp pin and the normal output mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg).

- **Remarks 1.** This specification is valid only when CSI00's peripheral I/O redirect function is not used.
 - p: CSI number (p = 00), m: Unit number (m = 0), n: Channel number (n = 0),
 g: PIM and POM numbers (g = 5)
 - fMCK: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00))

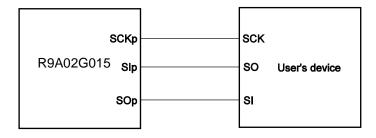
(3) During communication at same potential (CSI mode) (master mode, SCKp... internal clock output) $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 2.7 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{ V}_{SS} = 0 \text{ V})$

Parameter	Symbol	C	conditions	MIN.	TYP.	MAX.	Unit
SCKp cycle time	tkCY1	$t_{KCY1} \geq 4/f_{CLK}$	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$	167			ns
SCKp high-/low-level width	t кн1,	$4.0~V \leq V_{\text{DD}} \leq 5.5~V$		tксү1/2 – 12			ns
	tĸ∟1	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$		tксү1/2 – 18			ns
SIp setup time (to SCKp↑) Note 1	tsik1	$4.0~V \leq V_{DD} \leq$	5.5 V	44			ns
		$2.7 \text{ V} \leq V_{\text{DD}} \leq 5.5 \text{ V}$		44			ns
SIp hold time (from SCKp [↑]) Note 2	tksi1			19			ns
Delay time from SCKp↓ to SOp output ^{Note 3}	tkso1	C = 30 pF ^{Note 4}				25	ns

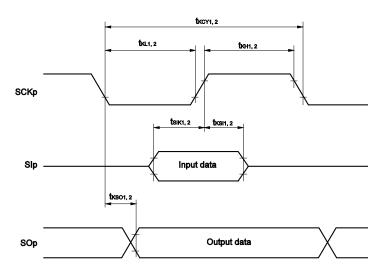
- **Notes 1.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp \downarrow " when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - **2.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from SCKp \downarrow " when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - **3.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp[↑]" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 4. C is the load capacitance of the SCKp and SOp output lines.

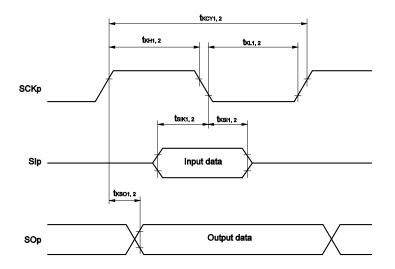
Caution Select the normal input buffer for the SIp pin and the normal output mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg).

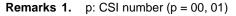
- **Remarks 1.** p: CSI number (p = 00, 01), m: Unit number (m = 0), n: Channel number (n = 0, 1),
 - g: PIM and POM numbers (g = 5)
 - fMCK: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00, 01))


(4) During communication at same potential (CSI mode) (slave mode, SCKp... external clock input) ($T_A = -40$ to +85°C, 2.7 V \leq V_{DD} \leq 5.5 V, V_{SS} = 0 V)

Parameter	Symbol	Conc	litions	MIN.	TYP.	MAX.	Unit
SCKp cycle time Note 5	t ксү2	$4.0~V \leq V_{\text{DD}} \leq 5.5~V$	20 MHz < fмск	8/fмск			ns
			fмск ≤ 20 MHz	6/fмск			ns
		$2.7~V \leq V_{\text{DD}} \leq 5.5~V$	16 MHz < fмск	8/fмск			ns
			fмск ≤ 16 MHz	6/fмск			ns
SCKp high-/low-level width tkH2, $4.0 \text{ V} \le \text{V}$		$4.0~V \leq V_{\text{DD}} \leq 5.5~V$		tксү2/2 – 7			ns
	tĸ∟2	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$		tксү2/2 – 8			ns
SIp setup time (to SCKp↑) ^{Note 1}	tsik2	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$		1/fмск+20			ns
SIp hold time (from SCKp↑) ^{Note 2}	tksi2	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$		1/fмск+31			ns
Delay time from SCKp↓ to SOp output ^{Note 3}	tĸso2	C = 30 pF ^{Note 4}	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$			2/fмск+44	ns


- Notes 1. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - **2.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from SCKp \downarrow " when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - **3.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp[↑]" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 4. C is the load capacitance of the SOp output lines.
 - 5. Transfer rate in the SNOOZE mode : MAX. 1 Mbps
- Caution Select the normal input buffer for the SIp pin and SCKp pin and the normal output mode for the SOp pin by using port input mode register g (PIMg) and port output mode register g (POMg).
- **Remarks 1.** p: CSI number (p = 00, 01), m: Unit number (m = 0),
 - n: Channel number (n = 0, 1), g: PIM number (g = 0, 5, 7) **2.** fMCK: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00, 01))


CSI mode connection diagram (during communication at same potential)



CSI mode serial transfer timing (during communication at same potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.)

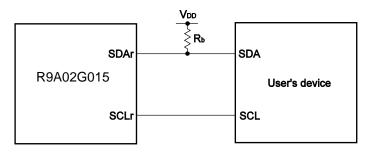
CSI mode serial transfer timing (during communication at same potential) (When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.)

2. m: Unit number, n: Channel number (mn = 00, 01)

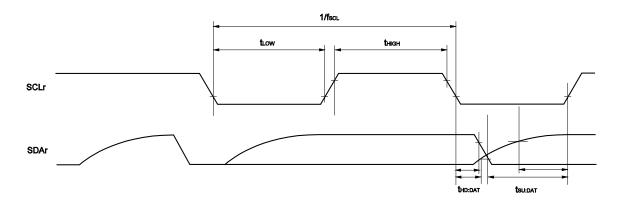
(5) During communication at same potential (simplified I^2C mode)

Parameter	Symbol	Conditions	MIN.	MAX.	Unit
SCLr clock frequency	fscL	$2.7~V \leq V_{\text{DD}} \leq 5.5~V,$		1000 Note 1	kHz
		C_b = 50 pF, R_b = 2.7 k Ω			
		$2.7~V \leq V_{\text{DD}} \leq 5.5~V,$		400 Note 1	kHz
		$C_b = 100 \text{ pF}, R_b = 3 \text{ k}\Omega$			
Hold time when SCLr = "L"	tLOW	$2.7~V \leq V_{\text{DD}} \leq 5.5~V,$	475		ns
		C_b = 50 pF, R_b = 2.7 k Ω			
		$2.7~V \leq V_{\text{DD}} \leq 5.5~V,$	1150		ns
		$C_b = 100 \text{ pF}, R_b = 3 \text{ k}\Omega$			
Hold time when SCLr = "H"	tніgн	$2.7~V \leq V_{\text{DD}} \leq 5.5~V,$	475		ns
		C_b = 50 pF, R_b = 2.7 k Ω			
		$2.7~V \leq V_{\text{DD}} \leq 5.5~V,$	1150		ns
		$C_b = 100 \text{ pF}, R_b = 3 \text{ k}\Omega$			
Data setup time (reception)	tsu:dat	$2.7~V \leq V_{\text{DD}} \leq 5.5~V,$	1/fмск + 85		ns
		C_b = 50 pF, R_b = 2.7 k Ω	Note 2		
		$2.7~V \leq V_{\text{DD}} \leq 5.5~V,$	1/fмск + 145		ns
		$C_b = 100 \text{ pF}, R_b = 3 \text{ k}\Omega$	Note 2		
Data hold time (transmission)	thd:dat	$2.7~V \leq V_{\text{DD}} \leq 5.5~V,$	0	305	ns
		$C_b = 50 \text{ pF}, \text{ R}_b = 2.7 \text{ k}\Omega$			
		$2.7~V \leq V_{\text{DD}} \leq 5.5~V,$	0	355	ns
		$C_b = 100 \text{ pF}, R_b = 3 \text{ k}\Omega$			

(TA = -40 to +85°C, 2.7 V \leq VDD \leq 5.5 V, Vss = 0 V)


Notes 1. The value must also be equal to or less than $f_{MCK}/4$.

- **2.** Set the fMCK value to keep the hold time of SCLr = "L" and SCLr = "H".
- Caution Select the normal input buffer and the N-ch open drain output (VDD tolerance) mode for the SDAr pin and the normal output mode for the SCLr pin by using port input mode register g (PIMg) and port output mode register h (POMh).


(Caution and Remarks are listed on the next page.)

Simplified I²C mode mode connection diagram (during communication at same potential)

Simplified I²C mode serial transfer timing (during communication at same potential)

- **Remarks 1.** R_b[Ω]:Communication line (SDAr) pull-up resistance, C_b[F]: Communication line (SDAr, SCLr) load capacitance
 - **2.** r: IIC number (r = 00, 01), g: PIM number (g = 5), h: POM number (h = 5)
 - **3.** f_{MCK}: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number (m = 0), n: Channel number (n = 0, 1), mn = 00, 01)

R9A02G015

(6) Communication at different potential (2.5 V, 3 V) (UART mode) (1/2) (T_A = -40 to +85°C, 2.7 V \leq V_{DD} \leq 5.5 V, V_{SS} = 0 V)

Parameter	Symbol		Conditio	MIN.	TYP.	MAX.	Unit	
Transfer rate		reception	$4.0~V \leq V_{\text{DD}} \leq 5.5~V,$				fмск/6 ^{Note 1}	bps
		$2.7~V \leq V_b \leq 4.0~V$	Theoretical value of the maximum transfer rate fMCK = fcLK Note 2			4.0	Mbps	
		$2.7 \text{ V} \leq \text{V}_{\text{DD}} < 4.0 \text{ V},$				fмск/6 ^{Note 1}	bps	
			$2.3~V \leq V_b \leq 2.7~V$	Theoretical value of the maximum transfer rate $f_{MCK} = f_{CLK}^{Note 2}$			4.0	Mbps

Notes 1. Use it with $V_{DD} \ge V_b$.

- 2. The maximum operating frequencies of the CPU/peripheral hardware clock (fcLk) are: HS (high-speed main) mode: 24 MHz ($2.7 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}$)
- Caution Select the TTL input buffer for the RxDq pin and the N-ch open drain output (V_{DD} tolerance) mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg). For V_H and V_L, see the DC characteristics with TTL input buffer selected.
- **Remarks 1.** V_b[V]: Communication line voltage
 - **2.** q: UART number (q = 0), g: PIM and POM number (g = 5)
 - fMCK: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00)

(6) Communication at different potential (2.5 V, 3 V) (UART mode) (2/2) ($T_A = -40$ to +85°C, 2.7 V \leq V_{DD} \leq 5.5 V, V_{SS} = 0 V)

			-					
Parameter	Symbol		MIN.	TYP.	MAX.	Unit		
Transfer rate		transmission	$4.0~V \leq V_{DD} \leq 5.5~V,$				Note 1	bps
			$2.7~V \leq V_b \leq 4.0~V$	Theoretical value of the maximum transfer rate $C_b = 50 \text{ pF}, R_b = 1.4 \text{ k}\Omega, V_b = 2.7 \text{ V}$			2.8 ^{Note 2}	Mbps
			$2.7~V \leq V_{\text{DD}} < 4.0~V$				Note 3	bps
			$2.3~V \leq V_b \leq 2.7~V$	Theoretical value of the maximum transfer rate $C_b = 50 \text{ pF}, R_b = 2.7 \text{ k}\Omega, V_b = 2.3 \text{ V}$			1.2 ^{Note 4}	Mbps

Notes 1. The smaller maximum transfer rate derived by using fMCK/6 or the following expression is the valid maximum transfer rate.

Expression for calculating the transfer rate when 4.0 V \leq VDD \leq 5.5 V and 2.7 V \leq Vb \leq 4.0 V

Maximum transfer rate = $\frac{1}{\{-Cb \times Rb \times ln (1 - \frac{2.2}{Vb})\} \times 3}$

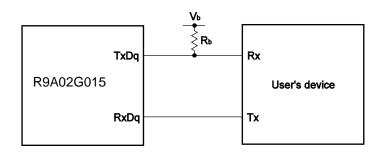
$$\frac{1}{\text{Transfer rate} \times 2} - \{-\text{Cb} \times \text{Rb} \times \ln(1 - \frac{2.2}{\text{Vb}})\}$$
Baud rate error (theoretical value) = ______)} × 100 [%]
$$\frac{1}{(\frac{1}{\text{Transfer rate}}) \times \text{Number of transferred bits}}$$

* This value is the theoretical value of the relative difference between the transmission and reception sides.

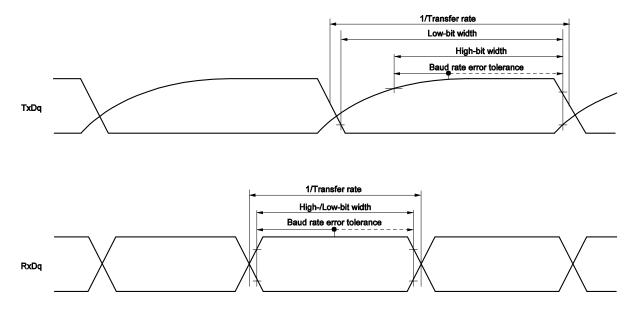
- 2. This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to Note 1 above to calculate the maximum transfer rate under conditions of the customer.
- **3.** The smaller maximum transfer rate derived by using fMCK/6 or the following expression is the valid maximum transfer rate.

Expression for calculating the transfer rate when 2.7 V \leq VDD < 4.0 V and 2.3 V \leq Vb \leq 2.7 V

Maximum transfer rate = $\frac{1}{\{-Cb \times Rb \times ln (1 - \frac{2.0}{Vb})\} \times 3}$


$$\frac{1}{\text{Transfer rate} \times 2} - \{-\text{Cb} \times \text{Rb} \times \ln (1 - \frac{2.0}{\text{Vb}})\}$$
Baud rate error (theoretical value) = ______)} × 100 [%]
$$\frac{(\frac{1}{\text{Transfer rate}}) \times \text{Number of transferred bits}}$$

- * This value is the theoretical value of the relative difference between the transmission and reception sides.
- **4.** This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to Note 3 above to calculate the maximum transfer rate under conditions of the customer.



Caution Select the TTL input buffer for the RxDq pin and the N-ch open drain output (V_{DD} tolerance) mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg). For V_{IH} and V_{IL}, see the DC characteristics with TTL input buffer selected.

UART mode connection diagram (during communication at different potential)

UART mode bit width (during communication at different potential) (reference)

- **Remarks 1.** R_b[Ω]:Communication line (TxDq) pull-up resistance, C_b[F]: Communication line (TxDq) load capacitance, V_b[V]: Communication line voltage
 - **2.** q: UART number (q = 0), g: PIM and POM number (g = 5)
 - 3. fmck: Serial array unit operation clock frequency

(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00))

(7) Communication at different potential (2.5 V, 3 V) (CSI mode) (master mode, SCKp... internal clock output, corresponding CSI00 only)

Parameter	Symbol		Conditions	MIN.	TYP.	MAX.	Unit
SCKp cycle time	t ксү1	tксү1 ≥ 2/fс∟к	$ \begin{array}{l} 4.0 \; V \leq V_{DD} \leq 5.5 \; V, \\ 2.7 \; V \leq V_b \leq 4.0 \; V, \\ C_b = 20 \; pF, \; R_b = 1.4 \; k\Omega \end{array} $	200			ns
			$\label{eq:VD} \begin{split} & 2.7 \; V \leq V_{DD} < 4.0 \; V, \\ & 2.3 \; V \leq V_b \leq 2.7 \; V, \\ & C_b = 20 \; pF, \; R_b = 2.7 \; k\Omega \end{split}$	300			ns
SCKp high-level width	tкнı	$\begin{array}{l} 4.0 \ V \leq V_{DD} \leq \\ C_{b} = 20 \ pF, \ R \end{array}$	5.5 V, 2.7 V \leq V_b \leq 4.0 V, $\label{eq:bound} {}_{b}$ = 1.4 k Ω	tксү1/2 – 50			ns
		$\begin{array}{l} 2.7 \ V \leq V_{DD} < \\ C_b = 20 \ pF, \ R \end{array}$	4.0 V, 2.3 V \leq Vb \leq 2.7 V, b = 2.7 k\Omega	tксү1/2 – 120			ns
SCKp low-level width	tĸ∟1	$\begin{array}{l} 4.0 \ V \leq V_{DD} \leq \\ C_b = 20 \ pF, \ R \end{array}$	5.5 V, 2.7 V \leq V _b \leq 4.0 V, _b = 1.4 k Ω	tkcy1/2 - 7			ns
		$2.7 \text{ V} \leq \text{V}_{\text{DD}} <$ $C_{\text{b}} = 20 \text{ pF, R}$	4.0 V, 2.3 V \leq V _b \leq 2.7 V, b = 2.7 kΩ	tксү1/2 – 10			ns
SIp setup time (to SCKp↑) ^{Note 1}	tsik1	$\begin{array}{l} 4.0 \ V \leq V_{DD} \leq \\ C_b = 20 \ pF, \ R \end{array}$	5.5 V, 2.7 V \leq V _b \leq 4.0 V, b = 1.4 kΩ	58			ns
		$2.7 \text{ V} \leq \text{V}_{\text{DD}} <$ $C_{b} = 20 \text{ pF}, \text{ R}$	$4.0 \text{ V}, 2.3 \text{ V} \leq \text{V}_{\text{b}} \leq 2.7 \text{ V},$ $_{\text{b}} = 2.7 \text{ k}\Omega$	121			ns
SIp hold time (from SCKp↑) ^{Note 1}	tksıı	$4.0 \text{ V} \le \text{V}_{\text{DD}} \le$ $C_{\text{b}} = 20 \text{ pF, R}$	5.5 V, 2.7 V \leq V _b \leq 4.0 V, b = 1.4 kΩ	10			ns
		$2.7 \text{ V} \le \text{V}_{\text{DD}} <$ $C_{\text{b}} = 20 \text{ pF, R}$	4.0 V, 2.3 V \leq V _b \leq 2.7 V, b = 2.7 kΩ	10			ns
Delay time from SCKp↓ to SOp output ^{Note 1}	tĸso1	$\begin{array}{l} 4.0 \ V \leq V_{DD} \leq \\ C_b = 20 \ pF, \ R \end{array}$	5.5 V, 2.7 V \leq Vb \leq 4.0 V, b = 1.4 k\Omega			60	ns
		$2.7 \text{ V} \leq \text{V}_{\text{DD}} <$ $C_{\text{b}} = 20 \text{ pF}, \text{ R}$	4.0 V, 2.3 V \leq V _b \leq 2.7 V, b = 2.7 kΩ			130	ns
SIp setup time (to SCKp↓) ^{Note 2}	tsiĸ1	$\begin{array}{l} 4.0 \ V \leq V_{DD} \leq \\ C_b = 20 \ pF, \ R \end{array}$	5.5 V, 2.7 V \leq Vb \leq 4.0 V, b = 1.4 k\Omega	23			ns
		$2.7 \text{ V} \leq \text{V}_{\text{DD}} <$ $C_{\text{b}} = 20 \text{ pF}, \text{ R}$	4.0 V, 2.3 V \leq V _b \leq 2.7 V, b = 2.7 kΩ	33			ns
SIp hold time (from SCKp↓) ^{Note 2}	tksn	$\begin{array}{l} 4.0 \ V \leq V_{DD} \leq \\ C_b = 20 \ pF, \ R \end{array}$	5.5 V, 2.7 V \leq V _b \leq 4.0 V, _b = 1.4 k Ω	10			ns
		$2.7 \text{ V} \le \text{V}_{\text{DD}} <$ $C_{\text{b}} = 20 \text{ pF, R}$	4.0 V, 2.3 V \leq V _b \leq 2.7 V, b = 2.7 kΩ	10			ns
Delay time from SCKp↑ to SOp output ^{Note 2}	tkso1	$\begin{array}{l} 4.0 \ V \leq V_{DD} \leq \\ C_b = 20 \ pF, \ R \end{array}$	5.5 V, 2.7 V \leq Vb \leq 4.0 V, b \equiv 1.4 k\Omega			10	ns
			4.0 V, 2.3 V \leq V _b \leq 2.7 V,			10	ns

(TA = -40 to +85°C, 2.7 V \leq VDD \leq 5.5 V, Vss = 0 V)

Notes 1. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.

2. When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

(Caution and Remark are listed on the next page.)

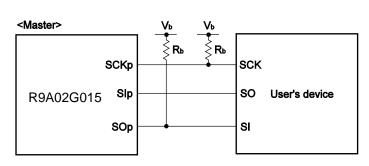
- Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (VDD tolerance) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.
- **Remarks 1.** R_b[Ω]:Communication line (SCKp, SOp) pull-up resistance, C_b[F]: Communication line (SCKp, SOp) load capacitance, V_b[V]: Communication line voltage
 - 2. p: CSI number (p = 00), m: Unit number (m = 0), n: Channel number (n = 0), g: PIM and POM number (g = 5)
 - fMCK: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00)
 - 4. This value is valid only when CSI00's peripheral I/O redirect function is not used.

(8) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (master mode, SCKp... internal clock output) (1/2) $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 2.7 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{ Vss} = 0 \text{ V})$

Parameter	Symbol		Conditions	MIN.	TYP.	MAX.	Unit
SCKp cycle time	t ксү1	$ \begin{split} t_{\text{KCY1}} &\geq 4/f_{\text{CLK}} & 4.0 \ \text{V} \leq \text{V}_{\text{DD}} \leq 5.5 \ \text{V}, \\ & 2.7 \ \text{V} \leq \text{V}_{\text{b}} \leq 4.0 \ \text{V}, \\ & \text{C}_{\text{b}} = 30 \ \text{pF}, \ \text{R}_{\text{b}} = 1.4 \ \text{k}\Omega \end{split} $		300			ns
			$\label{eq:2.7} \begin{array}{l} 2.7 \ V \leq V_{DD} < 4.0 \ V, \\ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 30 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$	500			ns
SCKp high-level width	tкнı	$\begin{array}{l} 4.0 \; V \leq V_{DD} \leq 5.5 \; V, \; 2.7 \; V \leq V_b \leq 4.0 \; V, \\ C_b = 30 \; pF, \; R_b = 1.4 \; k\Omega \end{array}$		tксү1/2 – 75			ns
		$\begin{array}{l} 2.7 \ V \leq V_{DD} \\ C_b = 30 \ pF, \ l \end{array}$	< 4.0 V, 2.3 V \leq V _b \leq 2.7 V, R _b = 2.7 kΩ	tксү1/2 – 170			ns
SCKp low-level width	tĸL1	$\begin{array}{l} 4.0 \ V \leq V_{DD} \leq 5.5 \ V, \ 2.7 \ V \leq V_b \leq 4.0 \ V, \\ \\ C_b = 30 \ pF, \ R_b = 1.4 \ k\Omega \end{array}$		tксү1/2 – 12			ns
		$\begin{array}{l} 2.7 \ V \leq V_{DD} \\ C_b = 30 \ pF, \ l \end{array}$	< 4.0 V, 2.3 V \leq V _b \leq 2.7 V, R _b = 2.7 kΩ	tксү1/2 – 18			ns

- Cautions 1. Select the TTL input buffer for the SIp pin and the N-ch open drain output (VDD tolerance) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.
 - 2. Use it with $V_{DD} \ge V_b$.

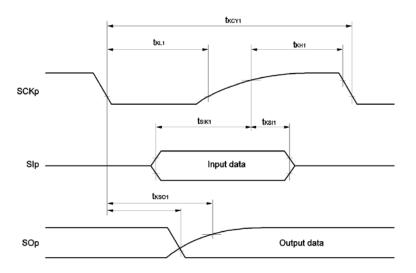
(Remarks are listed two pages after the next page.)


(8) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (master mode, SCKp... internal clock output) (2/2) $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 2.7 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{ V}_{SS} = 0 \text{ V})$

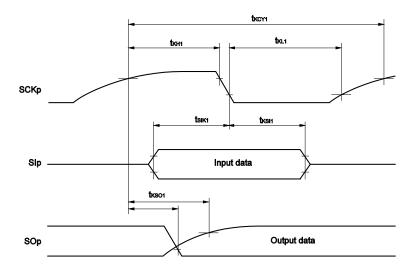
Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
SIp setup time (to SCKp↑) ^{Note 1}	tsik1	$\begin{array}{l} 4.0 \; V \leq V_{DD} \leq 5.5 \; V, \; 2.7 \; V \leq V_{b} \leq 4.0 \; V, \\ C_{b} = 30 \; pF, \; R_{b} = 1.4 \; k\Omega \end{array}$	81			ns
		$2.7 \text{ V} \le \text{V}_{\text{DD}} < 4.0 \text{ V}, 2.3 \text{ V} \le \text{V}_{\text{b}} \le 2.7 \text{ V},$ $C_{\text{b}} = 30 \text{ pF}, R_{\text{b}} = 2.7 \text{ k}\Omega$	177			ns
SIp hold time (from SCKp↑) ^{Note 1}	tksii		19			ns
		$\begin{array}{l} 2.7 \ V \leq V_{DD} < 4.0 \ V, \ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 30 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$	19			ns
Delay time from SCKp↓ to SOp output ^{Note 1}	tkso1	$\begin{array}{l} 4.0 \; V \leq V_{DD} \leq 5.5 \; V, \; 2.7 \; V \leq V_b \leq 4.0 \; V, \\ C_b = 30 \; pF, \; R_b = 1.4 \; k\Omega \end{array}$			100	ns
		$\begin{array}{l} 2.7 \ V \leq V_{DD} < 4.0 \ V, \ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 30 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$			195	ns
SIp setup time (to SCKp↓) ^{Note 2}	tsiĸ1	$\begin{array}{l} 4.0 \; V \leq V_{DD} \leq 5.5 \; V, \; 2.7 \; V \leq V_b \leq 4.0 \; V, \\ C_b = 30 \; pF, \; R_b = 1.4 \; k\Omega \end{array}$	44			ns
		$\label{eq:VDD} \begin{array}{l} 2.7 \ V \leq V_{DD} < 4.0 \ V, \ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 30 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$	44			ns
SIp hold time (from SCKp↓) ^{Note 2}	tksi1	$\begin{array}{l} 4.0 \; V \leq V_{DD} \leq 5.5 \; V, \; 2.7 \; V \leq V_b \leq 4.0 \; V, \\ C_b = 30 \; pF, \; R_b = 1.4 \; k\Omega \end{array}$	19			ns
		$\begin{array}{l} 2.7 \ V \leq V_{DD} < 4.0 \ V, \ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 30 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$	19			ns
Delay time from SCKp↑ to SOp output ^{Note 2}	tkso1				25	ns
		$\begin{array}{l} 2.7 \ V \leq V_{DD} < 4.0 \ V, \ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 30 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$			25	ns

(Notes, Cautions and Remarks are listed on the next page.)

- **Notes 1.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.
 - 2. When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (V_{DD} tolerance) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For V_H and V_L, see the DC characteristics with TTL input buffer selected.



CSI mode connection diagram (during communication at different potential)


- **Remarks 1.** R_b[Ω]:Communication line (SCKp, SOp) pull-up resistance, C_b[F]: Communication line (SCKp, SOp) load capacitance, V_b[V]: Communication line voltage
 - 2. p: CSI number (p = 00), m: Unit number, n: Channel number (mn = 00), g: PIM and POM number (g = 5)
 - fMCK: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn).
 m: Unit number, n: Channel number (mn = 00))
 - 4. CSI01 cannot communicate at different potential. Use other CSI for communication at different potential.

CSI mode serial transfer timing (master mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.)

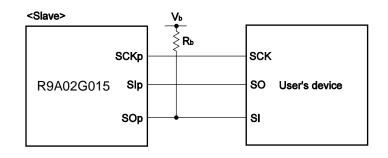
CSI mode serial transfer timing (master mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.)

Remarks 1. p: CSI number (p = 00), m: Unit number, n: Channel number (mn = 00), g: PIM and POM number (g =5)
 CSI01 cannot communicate at different potential. Use other CSI for communication at different potential.

(9) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (slave mode, SCKp... external clock input) $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 2.7 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{ Vss} = 0 \text{ V})$

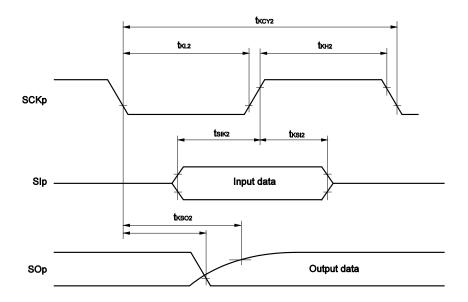
Parameter	Symbol	(MIN.	TYP.	MAX.	Unit	
SCKp cycle time ^{Note 1}	t ксү2	$\begin{array}{l} 4.0 \ V \leq V_{DD} \leq 5.5 \ V, \\ 2.7 \ V \leq V_b \leq 4.0 \ V \end{array}$	$20 \text{ MHz} < f_{\text{MCK}} \le 24 \text{ MHz}$	12/f мск			ns
			$8 \text{ MHz} < f_{MCK} \le 20 \text{ MHz}$	10/fмск			ns
			$4 \text{ MHz} < \text{fmck} \le 8 \text{ MHz}$	8/fмск			ns
			fмск \leq 4 MHz	6/fмск			ns
		$2.7 \text{ V} \le \text{V}_{\text{DD}} < 4.0 \text{ V},$	$20 \text{ MHz} < f_{\text{MCK}} \le 24 \text{ MHz}$	16/fмск			ns
		$2.3V{\leq}V_b{\leq}2.7V$	$16 \text{ MHz} < \text{fmck} \le 20 \text{ MHz}$	14/fмск			ns
			$8 \text{ MHz} < f_{MCK} \le 16 \text{ MHz}$	12/fмск			ns
			4 MHz < fмск ≤ 8 MHz	8/fмск			ns
			fмск ≤4 MHz	6/fмск			ns
SCKp high-/low-level width	tкн2, tkl2	$4.0 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$	/, 2.7 V \leq V_b \leq 4.0 V	tксү2/2 – 12			ns
		$2.7 \text{ V} \leq \text{V}_{\text{DD}} < 4.0 \text{ V}$	/, 2.3 V \leq V_b \leq 2.7 V	tксү2/2 – 18			ns
SIp setup time (to SCKp↑) ^{Note 2}	tsik2	$4.0 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$	/, 2.7 V \leq V_b \leq 4.0 V	1/fмск + 20			ns
		$2.7 \text{ V} \le \text{V}_{\text{DD}} < 4.0 \text{ V}$	/, 2.3 V \leq V_b \leq 2.7 V	1/fмск + 20			ns
SIp hold time (from SCKp↑) ^{Note 3}	tksi2			1/fмск + 31			ns
Delay time from SCKp↓ to SOp output ^{Note 4}	tкso2	$4.0 \text{ V} \leq V_{DD} \leq 5.5 \text{ V}$	/, 2.7 V \leq V _b \leq 4.0 V,			2/fмск +	ns
		$C_{\rm b}=30\ pF,\ R_{\rm b}=1$.4 kΩ			120	
		$2.7 \text{ V} \le \text{V}_{\text{DD}} < 4.0 \text{ V}_{\text{DD}}$	/, 2.3 V \leq Vb \leq 2.7 V,			2/fмск +	ns
		$C_{\rm b} = 30 \text{ pF}, R_{\rm b} = 2$.7 kΩ			214	

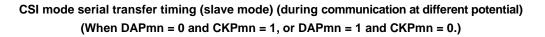
Notes 1. Transfer rate in the SNOOZE mode : MAX. 1 Mbps

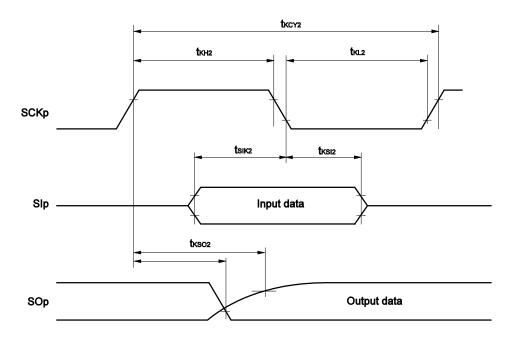

- **2.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp \downarrow " when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- **3.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from SCKp \downarrow " when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- 4. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

(Caution and Remarks are listed on the next page.)

Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (V_{DD} tolerance) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For V_H and V_L, see the DC characteristics with TTL input buffer selected.


CSI mode connection diagram (during communication at different potential)




- **Remarks 1.** $R_b[\Omega]$:Communication line (SOp) pull-up resistance, $C_b[F]$: Communication line (SOp) load capacitance, $V_b[V]$: Communication line voltage
 - 2. p: CSI number (p = 00), m: Unit number, n: Channel number (mn = 00), g: PIM and POM number (g = 5)
 - **3.** fMCK: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn).
 m: Unit number, n: Channel number (mn = 00))
 - 4. CSI01 cannot communicate at different potential. Use other CSI for communication at different potential.

CSI mode serial transfer timing (slave mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.)

Remarks 1. p: CSI number (p = 00), m: Unit number, n: Channel number (mn = 00),

g: PIM and POM number (g = 5)

2. CSI01 cannot communicate at different potential. Use other CSI for communication at different potential.

(10) Communication at different potential (1.8 V, 2.5 V, 3 V) (simplified I^2C mode) (1/2)

(TA = -40 to +85°C, 2.7 V \leq VDD \leq 5.5 V, Vss = 0 V)

Parameter	Symbol	Conditions	MIN.	MAX.	Unit
SCLr clock frequency	fscL	$\begin{array}{l} 4.0 \; V \leq V_{DD} \leq 5.5 \; V, \\ 2.7 \; V \leq V_b \leq 4.0 \; V, \\ C_b = 50 \; pF, \; R_b = 2.7 \; k\Omega \end{array}$		1000 ^{Note 1}	kHz
		$\label{eq:VDD} \begin{array}{l} 2.7 \; V \leq V_{DD} < 4.0 \; V, \\ 2.3 \; V \leq V_b < 2.7 \; V, \\ C_b = 50 \; pF, \; R_b = 2.7 \; k\Omega \end{array}$		1000 ^{Note 1}	kHz
				400 ^{Note 1}	kHz
		$\label{eq:VDD} \begin{split} & 2.7 \; V \leq V_{DD} < 4.0 \; V, \\ & 2.3 \; V \leq V_{b} < 2.7 \; V, \\ & C_{b} = 100 \; pF, \; R_{b} = 2.7 \; k\Omega \end{split}$		400 ^{Note 1}	kHz
Hold time when SCLr = "L"	t∟ow	$ \begin{array}{l} 4.0 \; V \leq V_{DD} \leq 5.5 \; V, \\ 2.7 \; V \leq V_b \leq 4.0 \; V, \\ C_b = 50 \; pF, \; R_b = 2.7 \; k\Omega \end{array} $	475		ns
		$\label{eq:VD} \begin{array}{l} 2.7 \; V \leq V_{DD} < 4.0 \; V, \\ 2.3 \; V \leq V_b < 2.7 \; V, \\ C_b = 50 \; pF, \; R_b = 2.7 \; k\Omega \end{array}$	475		ns
		$\begin{array}{l} 4.0 \; V \leq V_{DD} \leq 5.5 \; V, \\ 2.7 \; V \leq V_b \leq 4.0 \; V, \\ C_b = 100 \; pF, \; R_b = 2.8 \; k\Omega \end{array}$	1150		ns
		$\label{eq:VD} \begin{split} & 2.7 \; V \leq V_{DD} < 4.0 \; V, \\ & 2.3 \; V \leq V_{b} < 2.7 \; V, \\ & C_{b} = 100 \; pF, \; R_{b} = 2.7 \; k\Omega \end{split}$	1150		ns
Hold time when SCLr = "H"	tніgн	$\begin{array}{l} 4.0 \; V \leq V_{DD} \leq 5.5 \; V, \\ 2.7 \; V \leq V_b \leq 4.0 \; V, \\ C_b = 50 \; pF, \; R_b = 2.7 \; k\Omega \end{array}$	245		ns
		$\label{eq:VD} \begin{array}{l} 2.7 \; V \leq V_{DD} < 4.0 \; V, \\ 2.3 \; V \leq V_b < 2.7 \; V, \\ C_b = 50 \; pF, \; R_b = 2.7 \; k\Omega \end{array}$	200		ns
		$\begin{array}{l} 4.0 \; V \leq V_{DD} \leq 5.5 \; V, \\ 2.7 \; V \leq V_b \leq 4.0 \; V, \\ C_b = 100 \; pF, \; R_b = 2.8 \; k\Omega \end{array}$	675		ns
		$\begin{array}{l} 2.7 \; V \leq V_{DD} < 4.0 \; V, \\ 2.3 \; V \leq V_b < 2.7 \; V, \\ C_b = 100 \; pF, \; R_b = 2.7 \; k\Omega \end{array}$	600		ns

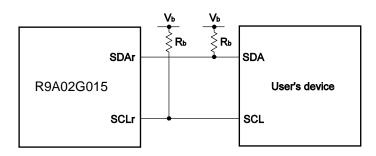
(Notes, Caution and Remarks are listed on the next page.)

(10) Communication at different potential (1.8 V, 2.5 V, 3 V) (simplified I^2C mode) (2/2)

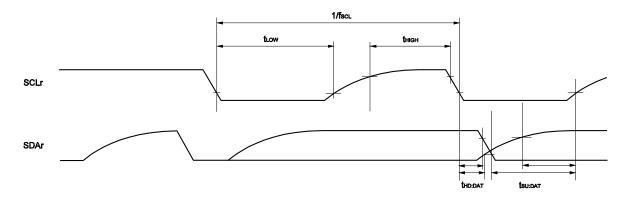
(TA = -40 to +85°C, 2.7 V \leq VDD \leq 5.5 V, Vss = 0 V)

Parameter	Symbol	Conditions	MIN.	MAX.	Unit
Data setup time (reception)	tsu:dat		1/fмск + 135 Note 2		ns
		$\begin{array}{l} 2.7 \; V \leq V_{DD} < 4.0 \; V, \\ 2.3 \; V \leq V_b < 2.7 \; V, \\ C_b = 50 \; pF, \; R_b = 2.7 \; k\Omega \end{array}$	1/fмск + 135 Note 2		ns
			1/fмск + 190 Note 2		ns
		$\begin{array}{l} 2.7 \; V \leq V_{DD} < 4.0 \; V, \\ 2.3 \; V \leq V_b < 2.7 \; V, \\ C_b = 100 \; pF, \; R_b = 2.7 \; k\Omega \end{array}$	1/fмск + 190 Note 2		ns
Data hold time (transmission)	thd:dat	$\begin{array}{l} 4.0 \; V \leq V_{DD} \leq 5.5 \; V, \\ 2.7 \; V \leq V_b \leq 4.0 \; V, \\ C_b = 50 \; pF, \; R_b = 2.7 \; k\Omega \end{array}$	0	305	ns
		$\begin{array}{l} 2.7 \; V \leq V_{DD} < 4.0 \; V, \\ 2.3 \; V \leq V_b < 2.7 \; V, \\ C_b = 50 \; pF, \; R_b = 2.7 \; k\Omega \end{array}$	0	305	ns
		$ \begin{array}{l} 4.0 \; V \leq V_{DD} \leq 5.5 \; V, \\ 2.7 \; V \leq V_b \leq 4.0 \; V, \\ C_b = 100 \; pF, \; R_b = 2.8 \; k\Omega \end{array} $	0	355	ns
		$\begin{array}{l} 2.7 \; V \leq V_{DD} < 4.0 \; V, \\ 2.3 \; V \leq V_b < 2.7 \; V, \\ C_b = 100 \; pF, \; R_b = 2.7 \; k\Omega \end{array}$	0	355	ns

Notes 1. The value must also be equal to or less than $f_{MCK}/4$.


2. Set the fmck value to keep the hold time of SCLr = "L" and SCLr = "H".

Caution Select the TTL input buffer and the N-ch open drain output (VDD tolerance) mode for the SDAr pin and the N-ch open drain output (VDD tolerance) mode for the SCLr pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.


(Remarks are listed on the next page.)

Simplified I²C mode connection diagram (during communication at different potential)

Simplified I²C mode serial transfer timing (during communication at different potential)

- **Remarks 1.** R_b[Ω]:Communication line (SDAr, SCLr) pull-up resistance, C_b[F]: Communication line (SDAr, SCLr) load capacitance, V_b[V]: Communication line voltage
 - **2.** r: IIC number (r = 00), g: PIM, POM number (g = 5)
 - **3.** f_{MCK}: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00)

2.5.2 Serial interface IICA

(1) I²C standard mode

(TA = -40 to +85°C, 2.7 V \leq VDD \leq 5.5 V, Vss = 0 V)

Parameter	Symbol	Conditions		HS (high-speed main) mode		Unit
				MIN.	MAX.	
SCLA0 clock frequency	fsc∟	Standard mode: fclk≥1 MHz	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$	0	100	kHz
Setup time of restart condition	tsu:sta	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$		4.7		μS
Hold time ^{Note 1}	thd:sta	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$	$2.7 \text{ V} \leq V_{\text{DD}} \leq 5.5 \text{ V}$			μS
Hold time when SCLA0 = "L"	t∟ow	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$	4.7		μS	
Hold time when SCLA0 = "H"	tніgн	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$		4.0		μS
Data setup time (reception)	tsu:dat	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$		250		μS
Data hold time (transmission) ^{Note 2}	thd:dat	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$		0	3.45	μS
Setup time of stop condition	tsu:sto	$2.7 \text{ V} \leq V_{\text{DD}} \leq 5.5 \text{ V}$		4.0		μs
Bus-free time	t BUF	$2.7 \text{ V} \leq V_{\text{DD}} \leq 5.5 \text{ V}$		4.7		μS

Notes 1. The first clock pulse is generated after this period when the start/restart condition is detected.

2. The maximum value (MAX.) of the is during normal transfer and a wait state is inserted in the ACK (acknowledge) timing.

Standard mode: $C_b = 400 \text{ pF}, R_b = 2.7 \text{ k}\Omega$

(2) I²C fast mode

 $(T_A = -40 \text{ to } +85^{\circ}C, 2.7 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{ Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions		HS (high-speed main) Mode		Unit
				MIN.	MAX.	
SCLA0 clock frequency	fscl	Fast mode: fclk ≥ 3.5 MHz	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$	0	400	kHz
Setup time of restart condition	tsu:sta	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$		0.6		μS
Hold time ^{Note 1}	t hd:sta	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$	0.6		μS	
Hold time when SCLA0 = "L"	tLOW	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$	1.3		μS	
Hold time when SCLA0 = "H"	tніgн	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$		0.6		μS
Data setup time (reception)	tsu:dat	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$		100		ns
Data hold time (transmission) ^{Note 2}	t hd:dat	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$		0	0.9	μS
Setup time of stop condition	tsu:sto	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$		0.6		μS
Bus-free time	t BUF	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$			μS

Notes 1. The first clock pulse is generated after this period when the start/restart condition is detected.

2. The maximum value (MAX.) of the during normal transfer and a wait state is inserted in the ACK (acknowledge) timing.

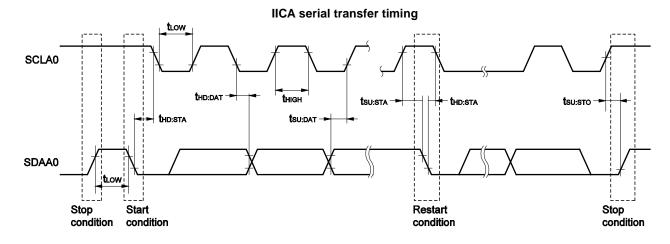
Remark The maximum value of Cb (communication line capacitance) and the value of Rb (communication line pull-up resistor) at that time in each mode are as follows.

Fast mode: $C_b = 320 \text{ pF}, R_b = 1.1 \text{ k}\Omega$

Remark The maximum value of Cb (communication line capacitance) and the value of Rb (communication line pull-up resistor) at that time in each mode are as follows.

(3) I²C fast mode plus

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, 2.7 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS}$	= 0 V)
--	--------


Parameter	Symbol	Conditi	HS (high-spee	ed main) Mode	Unit	
				MIN.	MAX.	
SCLA0 clock frequency	fscl	Fast mode plus:	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$	0	1000	kHz
		fclk≥ 10 MHz				
Setup time of restart condition	tsu:sta	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$		0.26		μS
Hold time ^{Note 1}	thd:sta	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$	0.26		μS	
Hold time when SCLA0 = "L"	t∟ow	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$			μS
Hold time when SCLA0 = "H"	tніgн	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$		0.26		μS
Data setup time (reception)	tsu:dat	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$		50		ns
Data hold time (transmission) ^{Note 2}	thd:dat	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$	0	0.45	μS	
Setup time of stop condition	tsu:sto	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$		0.26		μS
Bus-free time	t BUF	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$		0.5		μS

Notes 1. The first clock pulse is generated after this period when the start/restart condition is detected.

2. The maximum value (MAX.) of the is during normal transfer and a wait state is inserted in the ACK (acknowledge) timing.

Remark The maximum value of Cb (communication line capacitance) and the value of Rb (communication line pull-up resistor) at that time in each mode are as follows.

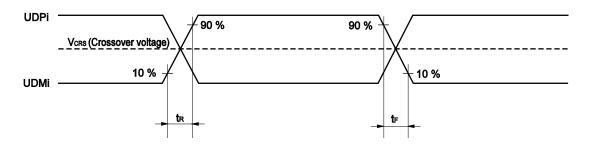
Fast mode plus: $C_b = 120 \text{ pF}, R_b = 1.1 \text{ k}\Omega$

2.5.3 USB

(1) Electrical specifications

(TA = -40 to +85°C, 3.0 V \leq UVDD \leq 3.6 V, 3.0 V \leq VDD \leq 5.5 V, Vss = 0 V)

	Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
UVdd	UV _{DD} input voltage characteristic	UVdd		3.0	3.3	3.6	V
	UV _{DD} output voltage characteristic	UVdd	$V_{DD} = 4.0$ to 5.5 V, PXXCON = VDDUSEB = 1	3.0	3.3	3.6	V
UVBUS	UV _{BUS} input voltage characteristic	UVBUS	Function	4.35 (4.02 ^{Note})	5.00	5.5	V
			Host	4.75	5.00	5.5	V


Note Value of instantaneous voltage

(TA = -40 to +85°C, 3.0 V \leq UVDD \leq 3.6 V, 3.0 V \leq VDD \leq 5.5 V, Vss = 0 V)

Pai	ameter		Symbol	Conditions	MIN.	TYP.	MAX.	Unit
UDPi/UDMi	Input volt	tage	VIH		2.0			V
pins input			VIL				0.8	V
characteristic	Difference sensitivit		VDI	UDP voltage – UDM voltage	0.2			V
	Difference common mode range		Vсм		0.8		2.5	V
UDPi/UDMi	Output ve	oltage	Vон	Іон = -200 <i>µ</i> А	2.8		3.6	V
pins output characteristic			Vol	IoL = 2.4 mA	0		0.3	V
(FS driver)	Transi-	Rising	tfr	Rising: From 10% to 90 % of	4		20	ns
	tion time	Falling	tff	amplitude, Falling: From 90% to 10 % of	4		20	ns
	Matching (TFR/TFF)		TFRFM	amplitude, CL = 50 pF	90		111.1	%
	Crossove	er voltage	VFCRS		1.3		2.0	V
	Output Impedan	се	Zdrv	UV _{DD} voltage = 3.3 V, Pin voltage = 1.65 V	28		44	Ω
UDPi/UDMi	Pull-dow	n resistor	Rpd		14.25		24.80	kΩ
pins pull-up, pull-down	Pull-up resistor	Idle	Rpui		0.9		1.575	kΩ
	(i = 0 only)	Recep- tion	Rpua		1.425		3.09	kΩ
UVBUS	UV _{BUS} pur resistor	UV _{BUS} pull-down resistor		UV _{BUS} voltage = 5.5 V		1000		kΩ
		UVBUS input			3.20			V
	voltage		VIL				0.8	V

Timing of UDPi and UDMi

(2) BC standard (TA = -40 to +85°C, 3.0 V \leq UV_{DD} \leq 3.6 V, 3.0 V \leq V_{DD} \leq 5.5 V, Vss = 0 V)

	Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
USB	UDPi sink current	DP_SINK		25		175	μA
standard BC1.2	UDMi sink current	IDM_SINK		25		175	μA
DO1.2	Dedicated charging port resistor	RDCP_DAT	0 V < UDP/UDM voltage < 1.0 V			200	Ω
	Data detection voltage	VDAT_REF		0.25		0.4	V
	UDPi source voltage	Vdp_src	Output current 250 μA	0.5		0.7	V
	UDMi source voltage	Vdm_src	Output current 250 μA	0.5		0.7	V

(3) BC option standard (Host)

$(T_{\text{A}} = -40 \text{ to } +85^{\circ}\text{C}, 4.75 \text{ V} \le \text{UV}_{\text{BUS}} \le 5.5 \text{ V}, 3.0 \text{ V} \le \text{UV}_{\text{DD}} \le 3.6 \text{ V}, 2.7 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{V}_{\text{SS}} = 0 \text{ V})$

Parameter		Symbol	Conditions	MIN.	TYP.	MAX.	Unit	
UDPi output	VDSELi	1000	V _{P20}		38	40	42	% UVвus
voltage	[3:0]	1001	Vp27		51.6	53.6	55.6	% UV _{BUS}
(UVBUS divider ratio)		1010	VP20		38	40	42	% UV _{BUS}
• VDOUEi = 1		1100	V _{P33}		60	66	72	% UV _{BUS}
UDMi output	VDSELi	1000	Vm20		38	40	42	% UV _{BUS}
voltage	[3:0]	1001	V _{M20}		38	40	42	% UV _{BUS}
(UVBUS divider ratio)		1010	Vm27		51.6	53.6	55.6	% UV _{BUS}
• VDOUEi = 1		1100	Vмзз		60	66	72	% UVвus
UDPi	VDSELi	1000	VHDETP_UP0	The rise of pin voltage detection voltage	56.2			% UVBUS
comparing voltage Note 1	[3:0]		VHDETP_DWN0	The fall of pin voltage detection voltage			29.4	% UVBUS
(UVBUS divider		1001	VHDETP_UP1	The rise of pin voltage detection voltage	60.5			% UV _{BUS}
ratio)			VHDETP_DWN1	The fall of pin voltage detection voltage			45.0	% UV _{BUS}
• VDOUEi = 1		1010	VHDETP_UP2	The rise of pin voltage detection voltage	56.2			% UVBUS
• CUSDETEi = 1			VHDETP_DWN2	The fall of pin voltage detection voltage			29.4	% UVBUS
UDMi	VDSELi	1000	VHDETM_UP0	The rise of pin voltage detection voltage	56.2			% UV _{BUS}
comparing voltage ^{Note 1}	[3:0]		VHDETM_DWN0	The fall of pin voltage detection voltage			29.4	% UV _{BUS}
(UVBUS divider		1001	VHDETM_UP1	The rise of pin voltage detection voltage	56.2			% UV _{BUS}
ratio)			VHDETM_DWN1	The fall of pin voltage detection voltage			29.4	% UVBUS
• VDOUEi = 1		1010	VHDETM_UP2	The rise of pin voltage detection voltage	60.5			% UV _{BUS}
• CUSDETEi = 1			VHDETM_DWN2	The fall of pin voltage detection voltage			45.0	% UV _{BUS}
UDPi pull-up de	etection	1000	RHDET_PULL	In full-speed mode, the power supply			1.575	kΩ
Note 2		1001		voltage range of pull-up resistors				
Connect detect the full speed f		1010		connected to the USB function module is between 3.0 V and 3.6 V.				
(pull-up resisto								
UDMi pull-up d	etection	1000	RHDET_PULL	In low-speed mode, the power supply			1.575	kΩ
Note 2		1001		voltage range of pull-up resistors				
Connect detect the low-speed		1010		connected to the USB function module is between 3.0 V and 3.6 V.				
resistor)	(puil up							
UDMi sink curr		1000	HDET_SINK		25			μA
detection Note 2		1001						
Connect detect the BC1.2 porta		1010						
device (sink res	sistor)							

Notes 1. If the voltage output from UDPi or UDMi exceeds the range of the MAX and MIN values prescribed in this specification, DPCUSDETi (bit 8) and DMCUSDETi (bit 9) of the USBBCOPTi register are set to 1.

2. If the pull-up resistance or sink current prescribed in this specification is applied to UDPi or UDMi, DPCUSDETi (bit 8) and DMCUSDETi (bit 9) of the USBBCOPTi register are set to 1.

(4) BC option standard (Function)

$(T_{\text{A}} = -40 \text{ to } +85^{\circ}\text{C}, \ 4.35 \text{ V} \le \text{UV}_{\text{BUS}} \le 5.5 \text{ V}, \ 3.0 \text{ V} \le \text{UV}_{\text{DD}} \le 3.6 \text{ V}, \ 2.7 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, \ \text{Vss} = 0 \text{ V})$

Par	ameter		Symbol	Conditions	MIN.	TYP.	MAX.	Unit
UDPi/UDMi	VDSELi	0000	VDDET0		27	32	37	% UV _{BUS}
input	[3:0]	0001	VDDET1		29	34	39	% UV _{BUS}
reference voltage		0010	VDDET2		32	37	42	% UV _{BUS}
(UVBUS divider		0011	Vddet3		35	40	45	% UV _{BUS}
ratio)		0100	VDDET4		38	43	48	% UV _{BUS}
• VDOUEi = 0		0101	VDDET5		41	46	51	% UV _{BUS}
		0110	VDDET6		44	49	54	% UV _{BUS}
		0111	VDDET7		47	52	57	% UV _{BUS}
		1000	VDDET8		51	56	61	% UV _{BUS}
		1001	VDDET9		55	60	65	% UV _{BUS}
		1010	VDDET10		59	64	69	% UV _{BUS}
		1011	Vddet11		63	68	73	% UV _{BUS}
		1100	VDDET12		67	72	77	% UV _{BUS}
		1101	Vddet13		71	76	81	% UV _{BUS}
		1110	Vddet14		75	80	85	% UV _{BUS}
		1111	Vddet15		79	84	89	% UV _{BUS}

2.6 Analog Characteristics

2.6.1 A/D converter characteristics

Classification of A/D converter characteristics

Input channel		Reference Voltage						
	Reference voltage (+) = AVREFP Reference voltage (-) = AVREFM	Reference voltage (+) = VDD Reference voltage (-) = Vss	Reference voltage (+) = VBGR Reference voltage (-) = AVREFM					
ANI0 to ANI5	Refer to 2.6.1 (1) .	Refer to 2.6.1 (3).	Refer to 2.6.1 (4).					
ANI16, ANI17	Refer to 2.6.1 (2) .							
Internal reference voltage Temperature sensor output voltage	Refer to 2.6.1 (1) .		_					

(1) When AVREF (+) = AVREFP/ANIO (ADREFP1 = 0, ADREFP0 = 1), reference voltage (-) = AVREFM/ANI1 (ADREFM = 1), target pin : ANI2 to ANI5, internal reference voltage, and temperature sensor output voltage

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 2.7 \text{ V} \le \text{AV}_{REFP} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{ V}_{SS} = 0 \text{ V}, \text{ Reference voltage (+)} = \text{AV}_{REFP}, \text{ Reference voltage (-)} = \text{AV}_{REFM} = 0 \text{ V}$

Parameter	Symbol	Cond	itions	MIN.	TYP.	MAX.	Unit
Resolution	Res			8		10	bit
Overall error ^{Note 1}	AINL	10-bit resolution AV _{REFP} = V _{DD} ^{Note 2}	$2.7~\text{V} \leq \text{Vdd} \leq 5.5~\text{V}$		1.2	±3.5	LSB
Analog input voltage	VAIN	ANI2 to ANI7		0 AVREFP		V	
		Internal reference volt (2.7 V \leq VDD \leq 5.5 V, mode)	tage HS (high-speed main)		VBGR Note 3		
		Temperature sensor of $(2.7 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{mode})$	output voltage HS (high-speed main)		/TMPS25 Note	3	V

Notes 1. Excludes quantization error ($\pm 1/2$ LSB).

- 2. When AV_{REFP} < V_{DD}, the MAX. values are as follows. Overall error: Add ± 1.0 LSB to the MAX. value when AV_{REFP} = V_{DD}.
- 3. Refer to 2.6.2 Temperature sensor/internal reference voltage characteristics.

(2) When reference voltage (+) = AVREFP/ANIO (ADREFP1 = 0, ADREFP0 = 1), reference voltage (-) = AVREFM/ANI1 (ADREFM = 1), target pin : ANI16, ANI17

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 2.7 \text{ V} \le \text{AV}_{REFP} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = 0 \text{ V}, \text{Reference voltage (+)} = \text{AV}_{REFP}, \text{Reference voltage (-)} = \text{AV}_{REFM} = 0 \text{ V}$

Parameter	Symbol	Cond	MIN.	TYP.	MAX.	Unit	
Resolution	Res			8		10	bit
Overall error ^{Note 1}	AINL	10-bit resolution AV _{REFP} = V _{DD} ^{Note 2}	$2.7~\text{V} \leq \text{Vdd} \leq 5.5~\text{V}$		1.2	±5.0	LSB
Analog input voltage	VAIN	ANI16, ANI17		0		AV _{REFP} and V _{DD}	V

Notes 1. Excludes quantization error ($\pm 1/2$ LSB).

- 2. When $AV_{REFP} < V_{DD}$, the MAX. values are as follows. Overall error: Add ±4.0 LSB to the MAX. value when $AV_{REFP} = V_{DD}$.
- (3) Reference voltage (+) = V_{DD} (ADREFP1 = 0, ADREFP0 = 0), Reference voltage (-) = V_{SS} (ADREFM = 0), target ANI pin : ANI0 to ANI5, ANI16, ANI17, internal reference voltage, and temperature sensor output voltage

Parameter	Symbol	Conditi	MIN.	TYP.	MAX.	Unit	
Resolution	Res			8		10	bit
Overall error ^{Note 1}	AINL	10-bit resolution	$2.7~V \leq V\text{DD} \leq 5.5~V$		1.2	±7.0	LSB
Analog input voltage	VAIN	ANI0 to ANI5, ANI16, AN	0		Vdd	V	
		Internal reference voltage (2.7 V \leq VDD \leq 5.5 V, HS (mode)	high-speed main)	V _{BGR} Note 2			V
		Temperature sensor outp (2.7 V \leq VDD \leq 5.5 V, HS (mode)	0	,	V _{TMPS25} Note 2		V

(T_A = -40 to +85°C, 2.7 V \leq V_{DD} \leq 5.5 V, V_{SS} = 0 V, Reference voltage (+) = V_{DD}, Reference voltage (-) = V_{SS})

- **Notes 1.** Excludes quantization error ($\pm 1/2$ LSB).
 - 2. Refer to 2.6.2 Temperature sensor/internal reference voltage characteristics.

(4) When Reference voltage (+) = Internal reference voltage (ADREFP1 = 1, ADREFP0 = 0), Reference voltage (-) = AVREFM/ANI1 (ADREFM = 1), target pin : ANI0 to ANI5, ANI16, ANI17

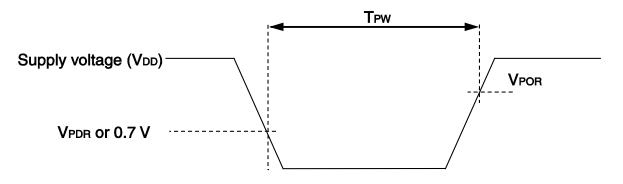
(T_A = -40 to +85°C, 2.7 V \leq V_{DD} \leq 5.5 V, V_{SS} = 0 V, Reference voltage (+) = V_{BGR} ^{Note 1}, Reference voltage (-) = AV_{REFM} = 0 V, HS (high-speed main) mode)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Resolution	Res			8		Bit
Analog input voltage	VAIN		0		V _{BGR} Note 1	V

Notes 1. Refer to 2.6.2 Temperature sensor/internal reference voltage characteristics.

2.6.2 Temperature sensor/internal reference voltage characteristics

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Temperature sensor output voltage	VTMPS25	Setting ADS register = 80H, TA = $+25^{\circ}C$		1.05		V
Internal reference voltage	Vbgr	Setting ADS register = 81H	1.38	1.45	1.5	V
Temperature coefficient	Fvtmps	Temperature sensor that depends on the temperature		-3.6		mV/°C
Operation stabilization wait time	tamp		5			μS


$(T_{A} = -40 \text{ to } +85^{\circ}\text{C})$. 2.7 V < VDD < 5.5 V	. Vss = 0 V. HS	(high-speed main) mode)
(17 - 40 100 0	,	,	(ingii opeca mani) meac)

2.6.3 POR circuit characteristics

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, \text{ Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Detection voltage	VPOR	Power supply rise time	1.47	1.51	1.55	V
	VPDR	Power supply fall time	1.46	1.50	1.54	V
Minimum pulse width ^{Note}	TPW		300			μS

Note Minimum time required for a POR reset when V_{DD} exceeds below V_{PDR}. This is also the minimum time required for a POR reset from when V_{DD} exceeds below 0.7 V to when V_{DD} exceeds V_{POR} while STOP mode is entered or the main system clock (f_{MAIN}) is stopped through setting bit 0 (HIOSTOP) and bit 7 (MSTOP) in the clock operation status control register (CSC).

2.6.4 LVD circuit characteristics

LVD Detection Voltage of Reset Mode and Interrupt Mode

	Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Detection	Supply voltage level	VLVD0	Power supply rise time	3.98	4.06	4.14	V
voltage			Power supply fall time	3.98 4.06 4.14 3.90 3.98 4.06 3.60 3.75 3.82 3.60 3.67 3.74 3.07 3.13 3.19 3.00 3.06 3.12 2.96 3.02 3.08 2.90 2.96 3.02 2.86 2.92 2.97 2.80 2.86 2.91 2.76 2.81 2.87	V		
		VLVD1 Power supply ris Power supply fail Power supply fail VLVD2 Power supply ris Power supply fail Power supply fail VLVD3 Power supply ris	Power supply rise time	3.68	3.75	3.82	V
			Power supply fall time	3.60	3.67	3.74	V
		VLVD2	Power supply rise time	3.07	3.13	3.19	V
			Power supply fall time	3.00	3.06	3.12	V
		VLVD3	Power supply rise time	2.96	3.02	3.08	V
			Power supply fall time	2.90	2.96	3.02	V
		VLVD4	Power supply rise time	2.86	2.92	2.97	V
			Power supply fall time	2.80	2.86	2.91	V
		VLVD5	Power supply rise time	2.76	2.81	2.87	V
			Power supply fall time	2.70	2.75	2.81	V
Minimum pu	Ilse width	tLW		300			μS
Detection de	elay time	tld				300	μs

LVD Detection Voltage of Interrupt & Reset Mode

(TA = -40 to +85°C, VPDR \leq VDD \leq 5.5 V, Vss = 0 V)

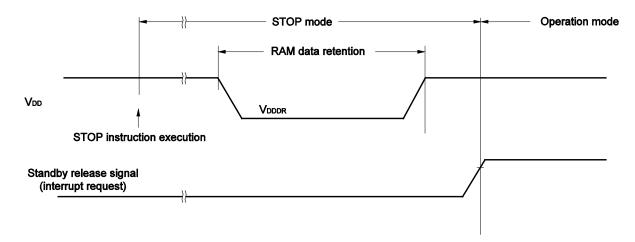
Parameter	Symbol		Cond	litions	MIN.	TYP.	MAX.	Unit
Interrupt and reset	VLVDC0	VPOO	C2, VPOC1, VPOC0 =	0, 1, 0, falling reset voltage	2.40	2.45	2.50	V
mode	VLVDC1		LVIS1, LVIS0 = 1, 0	Rising release reset voltage	2.56	2.61	2.50 2.66 2.60 2.76 2.70 3.82 3.74 2.81 2.97 2.91 3.08 3.02 4.14	V
				Falling interrupt voltage	2.50	2.55	2.60	V
	VLVDC2		LVIS1, LVIS0 = 0, 1	Rising release reset voltage	2.66	2.71	2.76	V
				Falling interrupt voltage	2.60	2.65	2.70	V
	VLVDC3		LVIS1, LVIS0 = 0, 0	Rising release reset voltage	3.68	3.75	3.82	V
				Falling interrupt voltage	3.60	3.67	3.74	V
	VLVDD0	VPOC		2.81	V			
	VLVDD1		LVIS1, LVIS0 = 1, 0	Rising release reset voltage	2.86	2.92	2.97	V
				Falling interrupt voltage	2.80	2.86	2.91	V
	VLVDD2		LVIS1, LVIS0 = 0, 1	Rising release reset voltage	2.96	3.02	3.08	V
				Falling interrupt voltage	2.90	2.96	3.02	V
	VLVDD3		LVIS1, LVIS0 = 0, 0	Rising release reset voltage	3.98	4.06	4.14	V
				Falling interrupt voltage	3.90	3.98	4.06	V

2.6.5 Power supply voltage rising slope characteristics

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, \text{ Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Power supply voltage rising slope	SVDD				54	V/ms

Caution Make sure to keep the internal reset state by the LVD circuit or an external reset until V_{DD} reaches the operating voltage range shown in 2.4 AC Characteristics.



2.7 RAM Data Retention Characteristics

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, \text{ Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Data retention supply voltage	Vdddr		1.46 ^{Note}		5.5	V

Note The value depends on the POR detection voltage. When the voltage drops, the data is retained before a POR reset is effected, but data is not retained when a POR reset is effected.

2.8 Flash Memory Programming Characteristics

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
CPU/peripheral hardware clock frequency	fclк	$2.7~V \leq V \text{dd} \leq 5.5~V$	1		24	MHz
Number of code flash rewrites	Cerwr	Retaining years: 20 years T _A = +85°C	1,000			Times
Number of data flash rewrites Notes 1, 2, 3		Retaining years: 1 year T _A = +25°C		1,000,000		
		Retaining years: 5 years T _A = +85°C	100,000			
		Retaining years: 20 years T _A = +85°C	10,000			

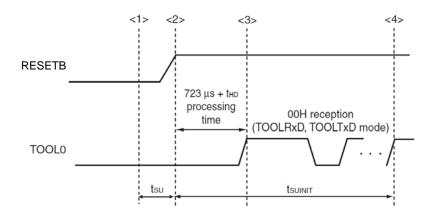
($T_{A} = -40$ to	+85°C. 2.7	/ V < Vnn	< 5.5 V.	Vss = 0 V)
	1A = -70.00	+00 0, 2.7		<u> </u>	v 33 – v vj

Notes 1. 1 erase + 1 write after the erase is regarded as 1 rewrite. The retaining years are until next rewrite after the rewrite.

- 2. When using flash memory programmer and Renesas Electronics self programming library.
- **3.** These specifications show the characteristics of the flash memory and the results obtained from Renesas Electronics reliability testing.

2.9 Dedicated Flash Memory Programmer Communication (UART)

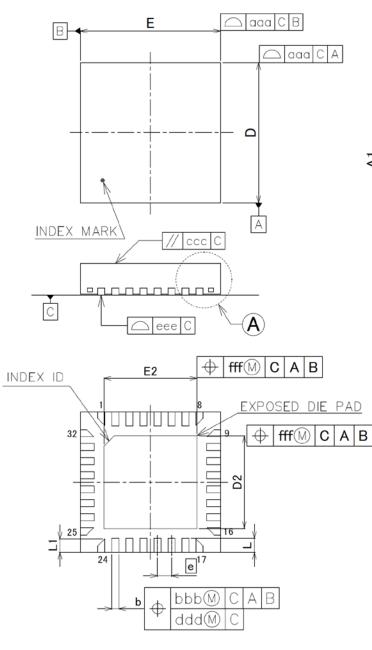
 $(T_A = -40 \text{ to } +85^{\circ}C, 2.7 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{ Vss} = 0 \text{ V})$

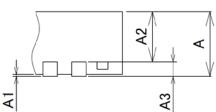

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Transfer rate		During serial programming	115,200		1,000,000	bps

2.10 Timing Specs for Switching Flash Memory Programming Modes

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
How long from when an external reset ends until the initial communication settings are specified	tsuinit	POR and LVD reset must end before the external reset ends.			100	ms
How long from when the TOOL0 pin is placed at the low level until an external reset ends	ts∪	POR and LVD reset must end before the external reset ends.	10			μS
How long the TOOL0 pin must be kept at the low level after an external reset ends (excluding the processing time of the firmware to control the flash memory)	tнd	POR and LVD reset must end before the external reset ends.	1			ms

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 2.7 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{ V}_{SS} = 0 \text{ V})$


- <1> The low level is input to the TOOL0 pin.
- <2> The external reset ends (POR and LVD reset must end before the external reset ends.).
- <3> The TOOL0 pin is set to the high level.
- <4> Setting of the flash memory programming mode by UART reception and complete the baud rate setting.
- **Remark** tsuinit: The segment shows that it is necessary to finish specifying the initial communication settings within 100 ms from when the resets end.
 - $t_{su:}$ How long from when the TOOL0 pin is placed at the low level until an external reset ends
 - t_{HD}: How long to keep the TOOL0 pin at the low level from when the external and internal resets end (excluding the processing time of the firmware to control the flash memory)



3. PACKAGE DRAWINGS

32-pin QFN (4 x 4 mm)

JEITA Package Code		RENESAS Code	MASS(Typ.)[g]	
	P-HVQFN32-4 × 4-0. 40	PVQN0032LD-A	0.04	

DETAIL OF (A) PART

Reference	Dimension in Millimeters			
Symbol	Min.	Nom.	Max.	
Α	—	—	0. 900	
A1	—	—	0. 050	
A2	—	0.650	0.700	
A3	—	0. 203	_	
b	0. 150	—	0. 250	
D	—	4	_	
D2	—	2.650	-	
E	—	4	_	
E2	—	2.650	_	
L	0. 350	0. 400	0. 450	
L1	0. 307	0. 382	0. 407	
е	—	0. 400	—	
aaa	—	—	0.100	
bbb	—	—	0.100	
CCC	-	—	0. 100	
ddd	-	—	0. 050	
eee	-	—	0. 050	
fff	-	_	0. 100	

Rev.	Date	Description		
		Page	Summary	
0.10	Oct 31, 2018	—	First Draft of the Preliminary Data Sheet	
0.20	Nov 9, 2018	15	Updated section 2.3.2	
		44-45	Updated section 2.5.3	
0.90	Feb 15, 2019	15	Updated section 2.3.2	
		42-43	Updated section 2.5.3	
		53	Updated section 3	
1.00	Mar 29, 2019	— First Edition issued.		

SuperFlash(R) is a registered trademark of Silicon Storage Technology, Inc. in several countries including the United States and Japan.

NOTE) This product uses SuperFlash(R) technology licensed from Silicon Storage Technology, inc.

Notice

- 1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use of these circuits, software, or information Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights, or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples 3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others 4. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering. 5. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The intended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic "Standard": equipment: industrial robots: etc. "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key financial terminal systems; safety control equipment; etc. Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product that is inconsistent with any Renesas Electronics data sheet, user's manual or other Renesas Electronics document. 6. When using Renesas Electronics products, refer to the latest product information (data sheets, user's manuals, application notes, "General Notes for Handling and Using Semiconductor Devices" in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such specified ranges 7. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are responsible for evaluating the safety of the final products or systems manufactured by you. 8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations 9. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions. 10. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document. 11. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics, 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products. (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled subsidiaries (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics. (Rev.4.0-1 November 2017) RENESAS **Renesas Electronics Corporation** SALES OFFICES http://www.renesas.com Refer to "http://www.renesas.com/" for the latest and detailed information. Renesas Electronics Corporation TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan Renesas Electronics America Inc. 1001 Murphy Ranch Road, Milpitas, CA 95035, U.S.A. Tel: +1-408-432-8888, Fax: +1-408-434-5351 Renesas Electronics Canada Limited 9251 Yonge Street, St Tel: +1-905-237-2004 reet, Suite 8309 Richmond Hill, Ontario Canada L4C 9T3 Renesas Electronics Europe GmbH Arcadiastrasse 10, 40472 Düsseldorf, Germany Tel: +49-211-6503-0, Fax: +49-211-6503-1327 Renesas Electronics (China) Co., Ltd. Room 101-T01, Floor 1, Building 7, Yard No. 7, 8th Street, Shangdi, Haidian District, Beijing 100085, China Tel: +86-10-8235-1155, Fax: +86-10-8235-7679 Renesas Electronics (Shanghai) Co., Ltd. Uni 301, Tower A, Central Towers, 555 Langao Road, Putuo District, Shanghai 200333, China Tel: +86-21-2226-0888, Fax: +86-21-2226-0999 Unit 1601-1611, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong Tel: +852-2265-6688, Fax: +852 2886-9022 Renesas Electronics Hong Kong Limited Renesas Electronics Taiwan Co., Ltd. 13F, No. 363, Fu Shing North Road, Taipei 10543, Taiwan Tel: +886-2-8175-9600, Fax: +886 2-8175-9670
- Renesas Electronics Singapore Pte. Ltd. 80 Bendemeer Road, Unit #06-02 Hyflux Innovation Centre, Singapore 339949 Tel: +65-6213-0200, Fax: +65-6213-0300
- Renesas Electronics Malaysia Sdn.Bhd. Unit No 3A-1 Level 3A Tower 8 UOA Business Park, No 1 Jalan Pengaturcara U1/51A, Seksyen U1, 40150 Shah Alam, Selangor, Malaysia Tel: +60-3-5022-1288, Fax: +60-3-5022-1290

Renesas Electronics India Pvt. Ltd. No.777C, 100 Feet Road, HAL 2nd Stage, Indiranagar, Bangalore 560 038, India Tel: +91-80-67208700

Renesas Electronics Korea Co., Ltd. 17F, KAMCO Yangjae Tower, 262, Gangnam-daero, Gangnam-gu, Seoul, 06265 Korea Tel: +82-2-558-3737, Fax: +82-2-558-5338

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Renesas Electronics:

R9A02G015020GNP#AC0 R9A02G015120GNP#AC0