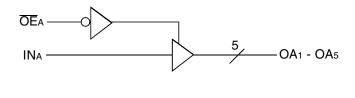
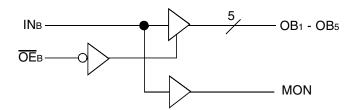


3.3V CMOS BUFFER/CLOCK DRIVER

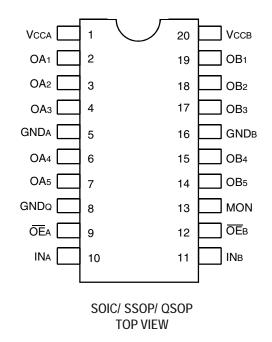
FEATURES:

- 0.5 MICRON CMOS Technology
- Guaranteed low skew < 500ps (max.)
- Very low duty cycle distortion < 1.0ns (max.)
- · Very low CMOS power levels
- TTL compatible inputs and outputs
- Inputs can be driven from 3.3V or 5V components
- Two independent output banks with 3-state control
- 1:5 fanout per bank
- "Heartbeat" monitor output
- VCC = $3.3V \pm 0.3V$
- · Available in SSOP, SOIC, and QSOP packages


DESCRIPTION:


The FCT3805B is a 3.3 volt, non-inverting clock driver built using advanced dual metal CMOS technology. The device consists of two banks of drivers, each with a 1:5 fanout and its own output enable control. The device has a "heartbeat" monitor for diagnostics and PLL driving. The MON output is identical to all other outputs and complies with the output specifications in this document. The FCT3805B offers low capacitance inputs with hysteresis.

The FCT3805B is designed for high speed clock distribution where signal quality and skew are critical. The FCT3805B also allows single point-to-point transmission line driving in applications such as address distribution, where one signal must be distributed to multiple recievers with low skew and high signal quality.


For more information on using the FCT3805B with two different input frequencies on bank A and B, please see AN-236.

FUNCTIONAL BLOCK DIAGRAM

PINCONFIGURATION

The IDT logo is a registered trademark of Integrated Device Technology, Inc.
COMMERCIAL AND INDUSTRIAL TEMPERATURE RANGE

1

MAY 2010

ABSOLUTE MAXIMUM RATINGS⁽¹⁾

Symbol	Description	Max	Unit
VTERM ⁽²⁾	Terminal Voltage with Respect to GND	-0.5 to +4.6	V
VTERM ⁽³⁾	Terminal Voltage with Respect to GND	-0.5 to +7	V
VTERM ⁽⁴⁾	Terminal Voltage with Respect to GND	-0.5 to Vcc+0.5	V
Tstg	Storage Temperature	-65 to +150	°C
Ιουτ	DC Output Current	-60 to +60	mA

PINDESCRIPTION

Pin Names	Description
ΟΕΑ, ΟΕΒ	3-State Output Enable Inputs (Active LOW)
INA, INB	Clock Inputs
OAn, OBn	Clock Outputs
MON	Monitor Output

NOTES:

1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

2. Vcc terminals.

3. Input terminals.

4. Outputs and I/O terminals.

CAPACITANCE (TA = +25°C, f = 1.0MHz)

Symbol	Parameter ⁽¹⁾	Conditions	Тур.	Max.	Unit
Cin	Input Capacitance	VIN = 0V	4.5	6	pF
Соит	Output Capacitance	Vout = 0V	5.5	8	pF

NOTE:

1. This parameter is measured at characterization but not tested.

FUNCTION TABLE (1)

Inpu	uts	Outputs		
OEA, OEB	INa, INb	OAn, OBn	MON	
L	L	L	L	
L	Н	Н	Н	
Н	L	Z	L	
Н	Н	Z	Н	

NOTE:

1. H = HIGHL = LOW

Z = High-Impedance

DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE

Following Conditions Apply Unless Otherwise Specified

Commercial: TA = 0°C to +70°C, Industrial: TA = -40°C to +85°C, Vcc = $3.3V \pm 0.3V$

Symbol	Parameter	Test Conditions ⁽¹⁾		Min.	Тур.	Мах.	Unit
Vih	Input HIGH Level (Input pins)	Guaranteed Logic HIGH Level		2	_	5.5	V
	Input HIGH Level (I/O pins)	1		2	_	Vcc + 0.5	
Vil	Input LOW Level (Input and I/O pins)	Guaranteed Logic LOW Le	vel	-0.5	_	0.8	V
Ін	Input HIGH Current (Input pins)	Vcc = Max.	VI = 5.5V	_	_	±1	
	Input HIGH Current (I/O pins)	7	VI = VCC	-	_	±1	μA
lil	Input LOW Current (Input pins)	Vcc = Max.	VI = GND	_	_	±1	
	Input LOW Current (I/O pins)		VI = GND	_	_	±1	
lozн	High Impedence Output Current	Vcc = Max.	Vo = Vcc	_	_	±1	μA
Iozl	(3-State Output Pins)		Vo = GND	_	_	±1	
Vik	Clamp Diode Voltage	VCC = Min., IIN = -18mA	·	_	-0.7	-1.2	V
IODH	Output HIGH Current	VCC = $3.3V$, VIN = VIH or VIL, VO = $1.5V^{(3)}$		-36	-60	-110	mA
IODL	Output LOW Current	$V_{CC} = 3.3V, V_{IN} = V_{IH} \text{ or } V_{IL}, V_{O} = 1.5V^{(3)}$		50	90	200	mA
Vон	Output HIGH Voltage	Vcc = Min.	Iон = -0.1mA	Vcc-0.2	_	_	
		VIN = VIH or VIL	Iон = -8mA	2.4 ⁽⁵⁾	3	-	V
Vol	Output LOW Voltage	Vcc = Min.	IOL = 0.1mA	_	_	0.2	
		VIN = VIH or VIL	IOL = 16mA	_	0.2	0.4	V
			IOL = 24mA	-	0.3	0.5	
loff	Input Power Off Leakage	VCC = 0V, VIN = 4.5V		_	_	±1	μA
los	Short Circuit Current ⁽⁴⁾	Vcc = Max., Vo = GND ⁽³⁾		-60	-135	-240	mA
Vн	Input Hysteresis	_		_	150	—	mV
ICCL	Quiescent Power Supply Current	Vcc = Max.		_	0.1	10	μA
Іссн		VIN = GND or VCC					
lccz							

NOTES:

1. For conditions shown as Max. or Min., use appropriate value specified under Electrical Characteristics for the applicable device type.

2. Typical values are at Vcc = 3.3V, +25°C ambient.

3. Not more than one output should be shorted at one time. Duration of the test should not exceed one second.

4. This parameter is guaranteed but not tested.

5. VOH = Vcc - 0.6V at rated current.

POWER SUPPLY CHARACTERISTICS

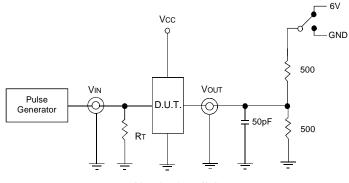
Symbol	Parameter	Test Cond	ditions ⁽¹⁾	Min.	Typ. ⁽²⁾	Max.	Unit
Δlcc	Quiescent Power Supply Current	Vcc = Max.		-	10	30	μA
	TTL Inputs HIGH	$VIN = VCC - 0.6V^{(3)}$					
ICCD	Dynamic Power Supply Current ⁽⁴⁾	Vcc = Max.	VIN = VCC	-	0.035	0.06	mA/MHz
		Outputs Open	VIN = GND				
		OEA = OEB = GND					
		Per Output Toggling					
		50% Duty Cycle					
lc	Total Power Supply Current ⁽⁶⁾	Vcc = Max.	VIN = VCC	-	0.9	1.6	
		Outputs Open	VIN = GND				
		fo = 25MHz					
		50% Duty Cycle	VIN = VCC - 0.6V	_	0.9	1.6	
		OEA = OEB = VCC	VIN = GND				
		Mon. Output Toggling					
		Vcc = Max.	VIN = VCC	_	20	33 ⁽⁵⁾	mA
		Outputs Open	VIN = GND				
		fo = 50MHz					
		50% Duty Cycle	VIN = VCC - 0.6V		20	33 ⁽⁵⁾	
		OEA = OEB = GND	VIN = GND				
		Eleven Outputs Toggling					

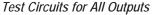
NOTES:

- 1. For conditions shown as Max. or Min., use appropriate value specified under Electrical Characteristics for the applicable device type.
- 2. Typical values are at Vcc = 3.3V, +25°C ambient.
- 3. Per TTL driven input (VIN = Vcc -0.6V); all other inputs at Vcc or GND.
- 4. This parameter is not directly testable, but is derived for use in Total Power Supply calculations.
- 5. Values for these conditions are examples of the Ic formula. These limits are guaranteed but not tested.
- 6. IC = IQUIESCENT + INPUTS + IDYNAMIC
 - $IC = ICC + \Delta ICC DHNT + ICCD (foNo)$
 - Icc = Quiescent Current (IccL, IccH and Iccz)
 - Δ Icc = Power Supply Current for a TTL High Input (VIN = Vcc -0.6V)
 - DH = Duty Cycle for TTL Inputs High
 - NT = Number of TTL Inputs at DH
 - ICCD = Dynamic Current Caused by an Input Transition Pair (HLH or LHL)
 - fo = Output Frequency
 - No = Number of Outputs at fo
 - All currents are in milliamps and all frequencies are in megahertz.

SWITCHING CHARACTERISTICS OVER OPERATING RANGE (3,4)

	strial	Indus	nercial	Comm			
Unit			Max.	Min. ⁽²⁾	Conditions ⁽¹⁾	Parameter	Symbol
ns	5.2	1.5	5	1.5	CL = 50pF	Propagation Delay	t PLH
					$RL = 500\Omega$	INA to OAn, INB to OBn	t PHL
ns	2	—	2	_		Output Rise Time	tR
ns	2	—	2	_		Output Fall Time	tF
ns	0.6	—	0.5	_		Output skew: skew between outputs of all banks of	tsk(0)
						same package (inputs tied together)	
ns	1	—	1	_		Pulse skew: skew between opposite transitions	tsk(P)
						of same output (tphl tplh)	
ns	1.2	—	1.2	_		Package skew: skew between outputs of different	tsk(t)
						packages at same power supply voltage,	
						temperature, package type and speed grade	
ns	6	1.5	6	1.5		Output Enable Time	tPZL
						OEA to OAn, OEB to OBn	tрzн
ns	5	1.5	5	1.5		Output Disable Time	t PLZ
						OEA to OAn, OEB to OBn	t PHZ
						Output Enable Time OEA to OAn, OEB to OBn Output Disable Time	tpzh tplz


NOTES:

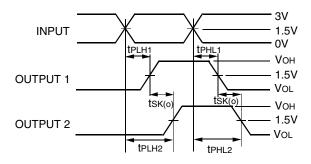

1. See test circuits and waveforms.

2. Minimum limits are guaranteed but not tested on Propagation Delays.

3. tPLH, tPHL, tsk(t) are production tested. All other parameters guaranteed but not production tested.
 4. Propagation delay range indicated by Min. and Max. limit is due to Vcc, operating temperature and process parameters. These propagation delay limits do not imply skew.

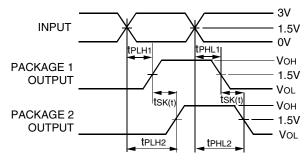
TEST CIRCUITS AND WAVEFORMS

SWITCH POSITION

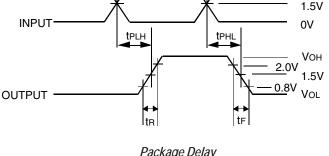

Test	Switch
Disable LOW Enable LOW	6V
Disable HIGH Enable HIGH	GND

DEFINITIONS:

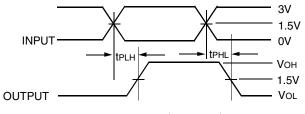
ЗV


CL = Load capacitance: includes jig and probe capacitance.

RT = Termination resistance: should be equal to ZOUT of the Pulse Generator.

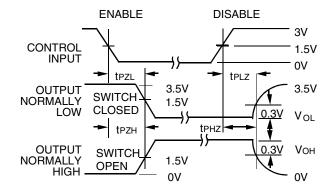

tSK(o) = |tPLH2 - tPLH1| or |tPHL2 - tPHL1|

Output Skew - tsk(0)



tSK(t) = |tPLH2 - tPLH1| or |tPHL2 - tPHL1|

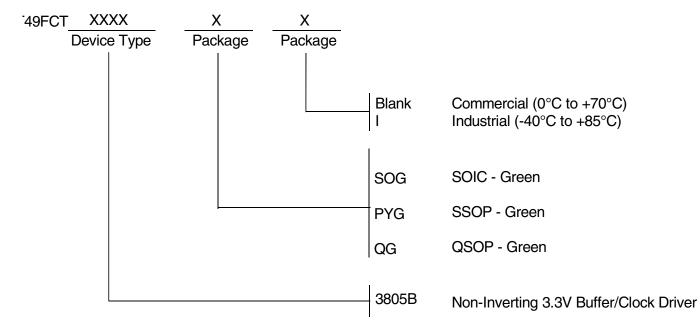
Package Skew - tsk(T)



Package Delay

tSK(p) = |tPHL - tPLH|

Pulse Skew - tsk(P)



NOTES:

- 1. Diagram shown for input Control Enable-LOW and input Control Disable-HIGH 2. Pulse Generator for All Pulses: f ≤1.0MHz; tF ≤2.5ns; tR ≤2.5ns

ORDERING INFORMATION

IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES ("RENESAS") PROVIDES TECHNICAL SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for developers skilled in the art designing with Renesas products. You are solely responsible for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. Renesas grants you permission to use these resources only for development of an application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is granted to any other Renesas intellectual property or to any third party intellectual property. Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses, or liabilities arising out of your use of these resources. Renesas' products are provided only subject to Renesas' Terms and Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources expands or otherwise alters any applicable warranties or warranty disclaimers for these products.

(Rev.1.0 Mar 2020)

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan www.renesas.com

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

Contact Information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit: www.renesas.com/contact/

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Renesas Electronics:

<u>49FCT3805BSOGI</u> <u>49FCT3805BSOGI8</u> <u>49FCT3805BPYGI8</u> <u>49FCT3805BPYG8</u> <u>49FCT3805BPYG</u> <u>49FCT3805BQG</u> <u>49FCT3805BSOG</u> <u>49FCT3805BQGI</u> <u>49FCT3805BQGI8</u> <u>49FCT3805BSOG8</u> <u>49FCT3805BQG8</u> <u>49FCT3805BPYGI</u>