
MCC 118 Voltage Measurement DAQ HAT for Raspberry Pi[®]

The MCC 118 is a 12-bit, high-speed 8-channel voltage measurement DAQ HAT. The MCC 118 is shown here connected to a Raspberry Pi (not included).

Overview

The MCC 118 is a voltage HAT (Hardware Attached on Top) board designed for use with Raspberry Pi, the most popular single-board computer on the market today.

A HAT is an add-on board with a 40W GPIO (general purpose input/output) connector that conforms to the Raspberry Pi HAT specification.

The MCC 118 HAT provides eight single-ended (SE) analog inputs for voltage measurements. Up to eight MCC HATs can be stacked onto one Raspberry Pi.

Raspberry Pi Interface

The MCC 118 header plugs into the 40-pin general purpose I/O (GPIO) connector on a user-supplied Raspberry Pi. The MCC 118 was tested for use with all Raspberry Pi models with the 40-pin GPIO connector.

HAT configuration

HAT configuration parameters are stored in an on-board EEPROM that allows the Raspberry Pi to automatically set up the GPIO pins when the HAT is connected.

Stackable HATs

Up to eight MCC HAT boards can be stacked onto a single Raspberry Pi. Multiple boards can be synchronized using external clock and trigger input options.

Users can mix and match MCC HAT models in the stack.

Analog Input

The MCC 118 provides eight 12-bit SE analog inputs. The analog input range is fixed at ± 10 V.

Sample Rates

- Single-board: max throughput is 100 kS/s.
- Stacked boards: max throughput is 320 kS/s aggregate¹.

External Scan Clock

A bidirectional clock I/O pin lets users pace operations with an external clock signal or with the board's internal scan clock. Use software to set the direction.

Digital Trigger

The external digital trigger input is software-configurable for rising or falling edge, or high or low level.

Power

The MCC 118 is powered with 3.3 V provided by the Raspberry Pi through the GPIO header connector.

Features

- Eight 12-bit voltage inputs
- 100 kS/s max sample rate (320 kS/s aggregate for stacked boards)
- ±10 V input range
- Onboard sample buffers allow high-speed acquisition
- External scan clock I/O
- External digital trigger input
- Screw terminal connections
- Stack up to eight MCC HATs onto a single Raspberry Pi

Software

• MCC DAQ HAT Library; available on GitHub

Supported Operating Systems

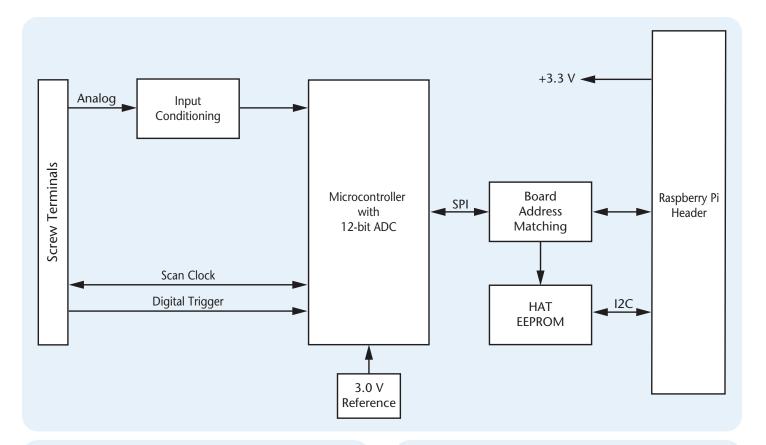
• Linux[®]/Raspbian

Programming API

• C, C++, Python

MCC DAQ HAT Library

The open-source MCC DAQ HAT Library of commands in C/C++ and Python allows users to develop applications on the Raspberry Pi using Linux.


The library is available to download from <u>GitHub</u>. Comprehensive API and hard-ware <u>documentation</u> is available.

The MCC DAQ HAT Library supports operation with multiple MCC DAQ HATs running concurrently.

Console-based and user interface (UI) example programs are available for each API.

MCC 118 Block Diagram

OEM Version

The MCC 118-OEM is designed with (unpopulated) header connectors instead of screw terminals, and is functionally equivalent to the standard version. The MCC 118-OEM accepts 1×6 and 1×10 0.1 in. spacing header connectors.

Stackable

Connect up to eight MCC DAQ HATs onto a single Raspberry Pi. Onboard jumpers identify each board in the stack. Use an external clock and connect the trigger inputs to synchronize the acquisition.

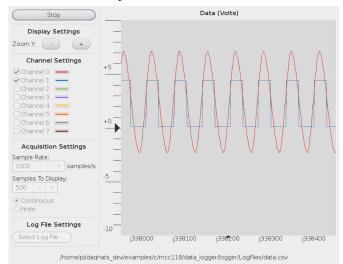
MCC 118 Example Programs

MCC DAQ HAT Examples

The MCC DAQ HAT Library includes example programs developed in C/C++ and Python that users can run to become familiar with the DAQ HAT library and boards; source code is included.

Console-Based (C/C++ and Python)

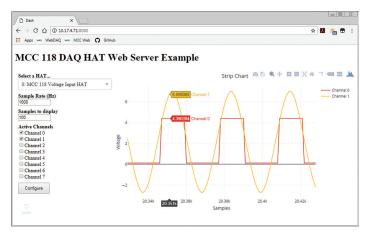
Console-based examples are provided that demonstrate how to perform continuous and finite scans, trigger an acquisition, and synchronously acquire data from multiple DAQ HATs (source included). The continuous_scan example is shown here.


Display the value of each input channel in a terminal window

User Interface

Example programs featuring a user interface are provided in different formats. Examples of each are shown here.

DataLogger (C/C++)


The datalogger example shows how to acquire data from the MCC 118, display the data on a strip chart, and log the data to a CSV file. This example can be run from the terminal.

Configure options, plot data on a strip chart, and log data to a file

Web Server (Python)

The web server example lets users configure acquisition options and view acquired data from a browser window. This example is written for Python (source included).

Configure options and view strip chart data from your browser

IFTTT Applet (Python)

IFTTT (If This Then That) is a free web-based service that interacts with apps and hardware to automate various functions. The IFTTT DAQ HAT example reads two MCC 118 channels at regular intervals, and writes the data to a Google Sheets spreadsheet.

Users can remotely monitor the spreadsheet from Google Drive. An IFTTT account is required. This example is written for Python (source included).

÷	→ C ① Secure I	https://docs.googl	e.com/spre 🟠	🛃 💏 🖬
	Apps 🚾 WebDAQ 🚾 MC	C Web 🗋 MCC I	intranet »	Other bookm
-	voltage_data 🕁			
E	File Edit View Ins			
_	File Edit View ins	ert Format Data	a	
k	~ 高早 100% -	\$ % .0 .1	00 123	~
fx		-	-	
JA	A	в	c	D
_			-	D
1	July 19, 2018 at 03:28PM	0.131	2.312	
2	July 19, 2018 at 03:33PM	4.385	5.316	
3	July 19, 2018 at 03:38PM	0.126	0.771	
4	July 19, 2018 at 03:43PM	4.39	7.077	
5	July 19, 2018 at 03:48PM	0.126	3.535	
6	July 19, 2018 at 03:53PM	4.396	6.417	
7	July 19, 2018 at 03:58PM	0.126	3.504	
8	July 19, 2018 at 04:03PM	0.126	3.407	
9	July 19, 2018 at 04:08PM	4.396	6.442	
10	July 19, 2018 at 04:13PM	0.126	0.684	
11	July 19, 2018 at 04:18PM	0.126	2.301	
12	July 19, 2018 at 04:23PM	0.126	2.066	
13	July 19, 2018 at 04:28PM	4.396	4.328	

View logged data on a Google Sheets spreadsheet from your browser

MCC 118 Specifications and Ordering

Specifications

All specifications are subject to change without notice. Typical for 25 °C unless otherwise specified. **Analog Input** A/D converter type: Successive approximation ADC resolution: 12 bits Number of channels: 8 single-ended Input voltage range: ±10 V Absolute maximum input voltage CHx relative to GND: ±25 V max (power on or power off) Input impedance: $1 M\Omega$ (power on or power off) Input bias current **10 V input:** –12 μA 0 V input: 2 μA -10 V input: 12 μA Monotonicity: Guaranteed Input bandwidth, small signal (-3 dB): 150 kHz Maximum working voltage Input range relative to AGND: ±10.1 V max Crosstalk (adjacent channels, DC to 10 kHz): -75 dB Input coupling: DC Recommended warm-up time: 1 minute min Sample rate, hardware paced Internal scan clock: 0.004 S/s to 100 kS/s, software-selectable External scan clock: 100 kS/s max Sampling mode: 1 A/D conversion for each configured channel per clock Conversion time, per channel: 8 µs Scan clock source Internal scan clock External scan clock input on terminal CLK Channel queue: Up to eight unique, ascending channels Throughput, Raspberry Pi[®] 2 / 3 / 4 Single board: 100 kS/s max Multiple boards: Up to 320 kS/s aggregate* Throughput, Raspberry Pi A+ / B+ Single board: Up to 100 kS/s* Multiple boards: Up to 100 kS/s aggregate* * When using multiple boards, throughput depends on the load on the Raspberry Pi processor. The highest throughput may be achieved by using a Raspberry Pi 3 B+.

Accuracy

Analog Input DC Voltage Measurement Accuracy

Range: ±10 V Gain error (% of reading): 0.098 max Offset error: 11 mV max Absolute accuracy at full scale: 20.8 mV Gain temperature coefficient (% reading/°C): 0.016 Offset temperature coefficient (mV/°C): 0.87

Noise Performance

For peak to peak noise distribution, the input channel is connected to AGND at the input terminal block, and 12,000 samples are acquired at the maximum throughput. Range: ±10 V Counts: 5 LSBrms: 0.76

Order Information

Hardware

Part No.	Description
MCC 118	12-bit, 8-channel voltage measurement DAQ HAT. Raspberry Pi model with the 40-pin GPIO connector required.
MCC 118-OEM	12-bit, 8-channel voltage measurement DAQ HAT with (unpopulated) header connectors instead of screw terminals. Raspberry Pi model with the 40-pin GPIO connector required.

External Digital Trigger

Trigger source: TRIG input Trigger mode: Software-selectable for rising or falling edge, or high or low level Trigger latency: Internal scan clock: 1 µs max External scan clock: 1 µs + 1 scan clock cycle max Trigger pulse width: 125 ns min Input type: Schmitt trigger, weak pull-down to ground (approximately 10 K) Input high voltage threshold: 2.64 V min Input low voltage threshold: 0.66 V max Input voltage limits: 5.5 V absolute max, -0.5 V absolute min, 0 V recommended min **External Scan Clock Input/Output** Terminal name: CLK Terminal types: Bidirectional, defaults to input when not sampling analog channels Direction (software-selectable): Output: Outputs internal scan clock, active on rising edge Input: Receives scan clock from external source, active on rising edge Input clock rate: 100 kHz max Clock pulse width: 400 ns min Input type: Schmitt trigger, weak pull-down to ground (approximately 10 K), protected with a 150 Ω series resistor Input high voltage threshold: 2.64 V min Input low voltage threshold: 0.66 V max Input voltage limits: 5.5 V absolute max, -0.5 V absolute min, 0 V recommended min Output high voltage: 3.0 V min (IOH = -50μ A), 2.65 V min (IOH = -3μ A) **Output low voltage:** 0.1 V max (IOL = 50 μ A), 0.8 V max (IOL = 3 mA) Output current: ±3 mA max

Memory

Data FIFO: 7 K (7,168) analog input samples Non-volatile memory: 4 KB (ID and calibration storage, no user-modifiable memory)

Power

Supply current, 3.3 V supply: Typical: 35 mA Maximum: 55 mA

Interface

Raspberry Pi GPIO pins used: ĜPIO 8, GPIO 9, ĜPIO 10, GPIO 11 (SPI interface) ID SD, ID SC (ID EEPROM) GPIO 12, GPIO 13, GPIO 26 (Board address) Data interface type: SPI slave device, CE0 chip select SPI mode: 1 SPI clock rate: 10 MHz, max

Environment

Operating temperature: 0 °C to 55 °C Storage temperature: -40 °C to 85 °C max Relative humidity: 0% to 90% non-condensing

Mechanical

Dimensions (L × W × H): 65 × 56.5 × 12 mm (2.56 × 2.22 × 0.47 in.) max

Software

Part No.	Description
MCC DAQ HAT Library	Open-source library for developing applications in C, C++, and Python on Linux for MCC DAQ HAT hardware. Available for download on GitHub at <u>https://github.com/ mccdaq/daqhats</u> .

DS-MCC-118

4

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Digilent: 6069-410-000-OEM