Features

2.3GHz to 2.7GHz MIMO Wireless Broadband RF Transceiver

General Description

The MAX2839 direct conversion, zero-IF, RF transceiver is designed specifically for 2GHz 802.16e MIMO mobile WiMAX systems. The device incorporates one transmitter and two receivers, with >40dB isolation between each receiver. The MAX2839 completely integrates all circuitry required to implement the RF transceiver function, providing RF to baseband receive path, and baseband to RF transmit path, VCO, frequency synthesizer, crystal oscillator, and baseband/control interface. The device includes a fast-settling sigma-delta RF synthesizer with smaller than 40Hz frequency steps and a crystal oscillator that allows the use of a low-cost crystal in place of a TCXO. The transceiver IC also integrates circuits for on-chip DC-offset cancellation, I/Q error, and carrier leakage detection circuits. An internal transmit to receive loopback mode allows for receiver I/Q imbalance calibration. The local oscillator I/Q quadrature phase error can be digitally corrected in approximately 0.125° steps. Only an RF bandpass filter (BPF), crystal, RF switch, PA, and a small number of passive components are needed to form a complete wireless broadband RF radio solution.

The MAX2839 completely eliminates the need for an external SAW filter by implementing on-chip programmable monolithic filters for both the receiver and transmitter, for all 2GHz and 802.16e profiles and WIBRO. The baseband filters along with the Rx and Tx signal paths are optimized to meet the stringent noise figure and linearity specifications. The device supports up to 2048 FFT OFDM and implements programmable channel filters for 3.5MHz to 20MHz RF channel bandwidths. The transceiver requires only 2µs Tx-Rx switching time. The IC is available in a small 56-pin TQFN package measuring 8mm x 8mm x 0.8mm.

Applications

802.16e Mobile WiMAX™ Systems Korean WIBRO Systems Proprietary Wireless Broadband Systems 802.11g or n WLAN with MRC or MIMO Down Link

WiMAX is a trademark of the WiMAX Forum. SPI is a trademark of Motorola, Inc.

♦ 2.3GHz to 2.7GHz Wideband Operation

- ♦ Dual Receivers for MIMO, Single Transmitter
- ♦ Complete RF Transceiver, PA Driver, and Crystal Oscillator

2.3dB Rx Noise Figure on Each Receiver

-35dB Rx EVM for 64QAM Signal

0dBm Linear OFDM Transmit Power (64QAM)

-70dBr Tx Spectral Emission Mask

-35dBc LO Leakage

Automatic Rx DC Offset Correction Monolithic Low-Noise VCO with -39dBc

Integrated Phase Noise

Programmable Rx I/Q Lowpass Channel Filters Programmable Tx I/Q Lowpass Anti-Aliasing

Sigma-Delta Fractional-N PLL with < 40Hz Step 62dB Tx Gain Control Range with 1dB Step Size, Digitally Controlled

95dB Rx Gain Control Range with 1dB Step Size, Digitally Controlled

60dB Analog RSSI Instantaneous Dynamic Range

4-Wire SPI™ Digital Interface I/Q Analog Baseband Interface Digital Tx/Rx Mode Control **Digitally Tuned Crystal Oscillator On-Chip Digital Temperature Sensor Readout**

- ♦ +2.7V to +3.6V Transceiver Supply
- **♦ Low-Power Shutdown Current**
- ♦ Small, 56-Pin TQFN Package (8mm x 8mm x 0.8mm)

Ordering Information

PART	TEMP RANGE	PIN- PACKAGE	PKG CODE
MAX2839ETN+TD	-40°C to +85°C	56 TQFN-EP*	T5688+2

+Denotes a lead-free package.

T = Tape and reel.

*EP = Exposed paddle.

D = Dry pack.

Pin Configuration and Block Diagram/Typical Operating Circuit appear at end of data sheet.

ABSOLUTE MAXIMUM RATINGS

V _{CC} _ Pins to GND0.3V to +3.6V RF Inputs: RXINA+, RXINA-, RXINB+,
RXINB- to GNDAC-Coupled Only
RF Outputs: TXOUT+, TXOUT- to GND0.3V to +3.6V
Analog Inputs: TXBBI+, TXBBI-, TXBBQ+,
TXBBQ- to GND0.3V to +3.6V
Analog Input: REFCLK, XTAL10.3V to +3.6V _{P-P}
Analog Outputs: RXBBIA+, RXBBIA-, RXBBQA+, RXBBQA-,
RXBBIB+, RXBBIB-, RXBBQB+, RXBBQB-, CPOUT+,
CPOUT-, PABIAS, RSSI to GND0.3V to +3.6V
Digital Inputs: RXTX, CS, SCLK, DIN,
B0-B7, LOAD, RXHP, ENABLE to GND0.3V to +3.6V

Digital Outputs: DOUT, CLKOUTBias Voltages: VCOBYP	
Short-Circuit Duration on All Output Pins	
RF Input Power: All RXIN	+15dBm
RF Output Differential Load VSWR: All TXOU	
Continuous Power Dissipation ($T_A = +70^{\circ}C$)	
56-Pin TQFN (derate 31.3mW/°C above +	
Operating Temperature Range	40°C to +85°C
Junction Temperature	+150°C
Storage Temperature Range	65°C to +160°C
Lead Temperature (soldering, 10s)	+300°C

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

CAUTION! ESD SENSITIVE DEVICE

DC ELECTRICAL CHARACTERISTICS TABLE

(MAX2839 Evaluation Kit, $V_{CC-} = 2.7V$ to 3.6V, $T_A = -40$ °C to +85°C, Rx set to the maximum gain. RXTX set according to operating mode, ENABLE = CS = high, SCLK = DIN = low, no input signal at RF inputs, all RF inputs and outputs terminated into 50Ω. 90mV_{RMS} differential I and Q signals (1MHz) applied to I, Q baseband inputs of transmitter in transmit mode, all registers set to recommended settings and corresponding test mode, unless otherwise noted. Typical values are at V_{CC} = 2.8V, f_{LO} = 2.5GHz and $T_A = +25$ °C, unless otherwise noted.) (Note 1)

PARAMETER		CONDITIONS	MIN	TYP	MAX	UNITS
Supply Voltage	V _{CC} _		2.7		3.6	V
	Shutdown mode, TA	λ = +25°C		2		μΑ
	Clock-out only mode	e		1.4	3.5	
	Standby mode			32	45	
	Rx mode	One receiver ON		76	95	
Supply Current	Hx mode	Both receivers ON		117	145	^
	Tx mode	16 QAM		116		mA
	1x mode	64 QAM (Note 4)		140	170	
	Rx calibration mode, both receivers ON			153	195	
	Tx calibration mode			102	135	
	D9:D8 = 00 in A4:A0 = 00100		0.85	1.0	1.2	
Rx I/Q Output Common-Mode	D9:D8 = 01 in A4:A0 = 00100			1.1		.,,
Voltage	D9:D8 = 10 in A4:A0 = 00100			1.2		V
	D9:D8 = 11 in A4:A0	0 = 00100		1.35		
Tx Baseband Input Common- Mode Voltage Operating Range	DC-coupled		0.5		1.2	V
Tx Baseband Input Bias Current	Source current			10	20	μΑ
LOGIC INPUTS: RXTX, ENABLE	, SCLK, DIN, CS, B7:	B0, LOAD, RXHP				
Digital Input Voltage High, VIH			V _{CC} - 0.4	_	_	V
Digital Input Voltage Low, V _{IL}					0.4	V
Digital Input Current High, I _{IH}			-1		+1	μA

DC ELECTRICAL CHARACTERISTICS TABLE (continued)

(MAX2839 Evaluation Kit, $V_{CC_-}=2.7V$ to 3.6V, $T_A=-40^{\circ}C$ to $+85^{\circ}C$, Rx set to the maximum gain. RXTX set according to operating mode, ENABLE = \overline{CS} = high, SCLK = DIN = low, no input signal at RF inputs, all RF inputs and outputs terminated into 50Ω . 90mV_{RMS} differential I and Q signals (1MHz) applied to I, Q baseband inputs of transmitter in transmit mode, all registers set to recommended settings and corresponding test mode, unless otherwise noted. Typical values are at $V_{CC_-}=2.8V$, $f_{LO}=2.5GHz$ and $T_A=+25^{\circ}C$, unless otherwise noted.) (Note 1)

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Digital Input Current Low, I _{IL}		-1		+1	μΑ
LOGIC OUTPUTS: DOUT, CLKOU	л				
Digital Output Voltage High, VOH	Sourcing 100μA	V _{CC} - 0.4			V
Digital Output Voltage Low, VOL	Sinking 100µA			0.4	V

AC ELECTRICAL CHARACTERISTICS TABLE—Rx MODE

(MAX2839 Evaluation Kit, V_{CC} = 2.8V, T_A = +25°C, f_{RF} = 2.4999GHz, f_{LO} = 2.5GHz; baseband output signal frequency = 100kHz, f_{REF} = 40MHz, ENABLE = RXTX = \overline{CS} = high, SCLK = DIN = low, with power matching for the differential RF pins using the typical applications circuit and registers set to default settings and corresponding test mode, unless otherwise noted. Lowpass filter is set to 10MHz RF channel BW. Unmodulated single tone RF input signal is used with specifications which normally apply over the entire operating conditions, unless otherwise indicated.) (Note 1)

PARAMETER		CONDITIONS	MIN	TYP	MAX	UNITS
RF INPUT TO I, Q BASEBAND-LO	OADED OUTPUT					
RF Input Frequency Range			2.3		2.7	GHz
Peak-to-Peak Gain Variation over RF Input Frequency Range	Tested at band edges and band center			0.8		dB
RF Input Return Loss	All LNA settings			12		dB
Total Voltage Gain	$T_A = -40^{\circ}C$ to	Maximum gain, B7:B0 = 0000000	90	99		dB
Total Voltage Gain	+85°C	Minimum gain, B7:B0 = 1111111		5	13	иь
	From max RF gai	n to max RF gain - 8dB		8		
RF Gain Steps	From max RF gai	n to max RF gain - 16dB		16		dB
	From max RF gai	n to max RF gain - 32dB		32		
	Any RF or basebate ±1dB of steady s	and gain change; gain settling to within tate; RXHP = 1	n 200			
Gain Change Settling Time	Any RF or baseband gain change; gain settling to within ±0.1dB of steady state; RXHP = 1			2000		ns
Baseband Gain Range		From maximum baseband gain (B5:B0 = 000000) to minimum gain (B5:B0 = 111111), T _A = -40°C to +85°C		63	66	dB
Baseband Gain Minimum Step Size				1		dB
	Voltage gain = 65	odB with max RF gain (B7:B6 = 00)		2.3		
	Voltage gain = 50	dB with max RF gain - 8dB (B7:B6 = 01)		5.5]
DSB Noise Figure	Voltage gain = 45dB with max RF gain - 16dB (B7:B6 = 10)			13		dB
	Voltage gain = 15 (B7:B6 = 11)	5dB with max RF gain - 32dB		27		

AC ELECTRICAL CHARACTERISTICS TABLE—Rx MODE (continued)

(MAX2839 Evaluation Kit, $V_{CC} = 2.8V$, $T_A = +25^{\circ}C$, $f_{RF} = 2.4999 GHz$, $f_{LO} = 2.5 GHz$; baseband output signal frequency = 100 kHz, $f_{REF} = 40 MHz$, ENABLE = $RXTX = \overline{CS} = high$, SCLK = DIN = low, with power matching for the differential RF pins using the typical applications circuit and registers set to default settings and corresponding test mode, unless otherwise noted. Lowpass filter is set to 10 MHz RF channel BW. Unmodulated single tone RF input signal is used with specifications which normally apply over the entire operating conditions, unless otherwise indicated.) (Note 1)

PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
	AGC set for -65dBm wanted signal, m (B7:B6 = 00)	ax RF gain		-13		
	AGC set for -55dBm wanted signal, m (B7:B6 = 01)	ax RF gain - 8dB		-9		dBm
Out-of-Band Input IP3 (Note 2)	AGC set for -40dBm wanted signal, m (B7:B6 = 10)	ax RF gain - 16dB		-7		dBm
	AGC set for -30dBm wanted signal, m (B7:B6 = 11)	ax RF gain - 32dB		+16		
	Max RF gain (B7:B6 = 00)			-37		
	Max RF gain - 8dB (B7:B6 = 01)			-29		j
Inband Input P-1dB	Max RF gain - 16dB (B7:B6 = 01)			-21		dBm
	Max RF gain - 32dB (B7:B6 = 11)			-4		1
Maximum Output Signal Level	Over passband frequency range; at an 1dB compression point	ny gain setting;		1.5		V _{P-P}
I/Q Gain Imbalance	100kHz IQ baseband output; 1 σ varia	tion		0.1		dB
I/Q Phase Error	100kHz IQ baseband output; 1 σ varia	tion		0.125		Degrees
Rx I/Q Output Load Impedance	Minimum differential resistance		10			kΩ
(R II C)	Maximum differential capacitance				5	pF
Loopback Gain (for Receiver I/Q Calibration)	Transmitter I/Q input to receiver I/Q output; transmitter B6:B1 = 000011, receiver B5:B0 = 101000 programmed through SPI			0	+5	dB
I/Q Output DC Droop	After switching RXHP to 0; average ov gain change, or 2µs after receive enable AC-coupling			1		V/s
I/Q Static DC Offset	No RF input signal; measure at 3µs aft RXHP = 1 for 0 to 2µs and set to 0 after			2		mV
Isolation Between Rx Channels A and B	Any RF gain settings			40		dB
RECEIVER BASEBAND FILTERS						
	At 15MHz			57		
Baseband Filter Rejection	At 20MHz			75		dB
	At > 40MHz			90		
	RXHP = 1 (used before AGC completion	on)		650		
	I Highpass Filter Corner			0.1]
Baseband Highpass Filter Corner				1		kHz
Frequency	completion) address A4:A0 = 01110	D5:D4 = 10		30]
		D5:D4 = 11		100]

! ______*NIXIM*

AC ELECTRICAL CHARACTERISTICS TABLE—Rx MODE (continued)

(MAX2839 Evaluation Kit, $V_{CC} = 2.8V$, $T_A = +25^{\circ}C$, $f_{RF} = 2.4999 GHz$, $f_{LO} = 2.5 GHz$; baseband output signal frequency = 100kHz, $f_{REF} = 40 MHz$, ENABLE = RXTX = \overline{CS} = high, SCLK = DIN = low, with power matching for the differential RF pins using the typical applications circuit and registers set to default settings and corresponding test mode, unless otherwise noted. Lowpass filter is set to 10MHz RF channel BW. Unmodulated single tone RF input signal is used with specifications which normally apply over the entire operating conditions, unless otherwise indicated.) (Note 1)

PARAMETER	CONDITIONS	3	MIN	TYP	MAX	UNITS	
	A4:A0 = 00100 serial bits D9:D6 =	0000		1.75			
	A4:A0 = 00100 serial bits D9:D6 =	0001		2.25			
	A4:A0 = 00100 serial bits D9:D6 =	3.5			1		
	A4:A0 = 00100 serial bits D9:D6 =	0011		5.0			
	A4:A0 = 00100 serial bits D9:D6 =	0100		5.5			
	A4:A0 = 00100 serial bits D9:D6 =	0101		6.0			
	A4:A0 = 00100 serial bits D9:D6 =	0110		7.0			
RF Channel BW Supported by	A4:A0 = 00100 serial bits D9:D6 =	0111		8.0		NALI-	
Baseband Filter	A4:A0 = 00100 serial bits D9:D6 =	1000		9.0		MHz	
	A4:A0 = 00100 serial bits D9:D6 =	1001		10.0			
	A4:A0 = 00100 serial bits D9:D6 =	1010		12.0			
	A4:A0 = 00100 serial bits D9:D6 =	1011		14.0			
	A4:A0 = 00100 serial bits D9:D6 =		15.0				
	A4:A0 = 00100 serial bits D9:D6 =		20.0				
	A4:A0 = 00100 serial bits D9:D6 =		24.0				
	A4:A0 = 00100 serial bits D9:D6 =	28.0]		
December of Caire District	0 to 2.3MHz for BW = 5MHz			1.3 1.3		-ID	
Baseband Gain Ripple	0 to 4.6MHz for BW = 10MHz					- dB _{P-P}	
Basakand Guarra Balan Biranla	0 to 2.3MHz for BW = 5MHz			90			
Baseband Group Delay Ripple	0 to 4.6MHz for BW = 10MHz			50		nsp-p	
Baseband Filter Rejection for	At 3.3MHz			6		-ID	
5MHz RF Channel BW	At > 21MHz			85		dB	
Baseband Filter Rejection for	At 6.7MHz			6		-ID	
10MHz RF Channel BW	At > 41.6MHz	At > 41.6MHz				dB	
RSSI	•					-	
RSSI Minimum Output Voltage	$R_{LOAD} \ge 10k\Omega$			0.4		V	
RSSI Maximum Output Voltage	$R_{LOAD} \ge 10k\Omega$			2.2		V	
RSSI Slope	30				mV/dB		
DCCI Output Cattling Time	To within 2dD of stoody state	+32dB signal step		200		-	
RSSI Output Settling Time	To within 3dB of steady state	-32dB signal step		800		ns	

AC ELECTRICAL CHARACTERISTICS TABLE—Tx MODE

(MAX2839 Evaluation Kit, V_{CC} = 2.8V, T_A = +25°C, f_{RF} = 2.501GHz, f_{LO} = 2.5GHz, f_{REF} = 40MHz, ENABLE = \overline{CS} = high, RXTX = SCLK = DIN = low, with power matching for the differential RF pins using the typical applications and registers set to default settings and corresponding test mode, unless otherwise noted. Lowpass filter is set to 10MHz RF channel BW. 1MHz 90mV_{RMS} cosine and sine signals applied to I/Q baseband inputs of transmitter (differential DC coupled)). (Note 1)

PARAMETER	CONDITIONS MIN TYP MA		MAX	UNITS	
Tx BASEBAND I/Q INPUTS TO R	F OUTPUTS				
RF Output Frequency Range		2.3		2.7	GHz
Peak-to-Peak Peak Gain Variation over RF Band	Output optimally matched over 200MHz RF BW		2.5		dB
Total Voltage Gain	Max gain -3dB; at unbalanced 50Ω matched output		12		dB
Max Output Power over Frequency for Any Given 200MHz Band	64 QAM OFDM signal conforming to spectral emission mask and -36dB EVM after I/Q imbalance calibration by modem (Note 3)		0		dBm
RF Output Return Loss	Given 200MHz band in the 2.3GHz to 2.7GHz range, for which the matching has been optimized		8		dB
RF Gain Control Range	B6:B1 = 000000 to 1111111		62		dB
Unwanted Sideband Suppression	Without calibration by modem, and excludes modem I/Q imbalance; POUT = 0dBm		45		dBc
	B1		1		
	B2		2		
RF Gain Control Binary Weights	B3		4		
The dain control binary worging	B4		8		
	B5		16		
	B6		32		
Carrier Leakage	Relative to 0dBm output power; without calibration by modern		-35		dBc
Ty I/O least there does a (DIIO)	Differential resistance		100		kΩ
Tx I/Q Input Impedance (RIIC)	Differential capacitance		0.5		рF
Baseband Frequency Response	0 to 2.3MHz		0.2		dB
for 5MHz RF Channel BW	At > 25MHz	80			ИΒ
Baseband Frequency Response	0 to 4.6MHz		0.2		dB
for 10MHz RF Channel BW	At > 41.6MHz		80		UD
Baseband Group Delay Ripple	0 to 2.3MHz (BW = 5MHz)		20		ns
basebariu Group Delay nippie	0 to 4.6MHz (BW = 10MHz)		12		115

AC ELECTRICAL CHARACTERISTICS TABLE—FREQUENCY SYNTHESIS

(MAX2839 Evaluation Kit, V_{CC} = 2.8V, T_A = +25°C, f_{LO} = 2.5GHz, f_{REF} = 40MHz, \overline{CS} = high, SCLK = DIN = low, PLL 3dB loop noise bandwidth = 120kHz. VCO and RF synthesis enabled, unless otherwise noted.) (Note 1)

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
RF Channel Center Frequency Range		2.3		2.7	GHz
Channel Center Frequency Programming Minimum Step Size			39		Hz
Charge-Pump Comparison Frequency		11	40		MHz
Reference Frequency Range		11	40	80	MHz
Reference Frequency Input Levels	AC-coupled to REFCLK pin	0.8			V _{P-P}
Reference Frequency Input	Resistance (REFCLK pin)		10		kΩ
Impedance (RIIC)	Capacitance (REFCLK pin)		1		pF
Programmable Reference Divider Values		1	2	4	
Closed-Loop Integrated Phase Noise	Integrate phase noise from 200Hz to 5MHz; charge- pump comparison frequency = 40MHz		-39		dBc
Charge-Pump Output Current	On each differential side		0.8		mA
	foffset = 0 to 1.8MHz		-40		
Close-In Spur Level	foffset = 1.8MHz to 7MHz	-70			dBc
	f _{OFFSET} > 7MHz		-80		
Reference Spur Level			-85		dBc
Turnaround LO Frequency Error	Relative to steady state; measured 35µs after Tx-Rx or Rx-Tx switching instant, and 4µs after any receiver gain changes		±50		Hz
Temperature Range Over Which VCO Maintains Lock	Relative to the ambient temperature TA, as long as the VCO lock temperature range is within operating temperature range		T _A ±40		°C
Reference Output Clock Divider Values			2		
Output Clock Drive Level	20MHz output, 1x drive setting		1.5		V _{P-P}
Output Clock Load Impedance	Resistance		10		kΩ
(RIIC)	Capacitance		2		рF

AC ELECTRICAL CHARACTERISTICS TABLE—MISCELLANEOUS BLOCKS

(MAX2839 Evaluation Kit, $V_{CC} = 2.8V$, $f_{REF} = 40MHz$, $\overline{CS} = high$, SCLK = DIN = low, and $T_A = +25^{\circ}C$, unless otherwise noted.) (Note 1)

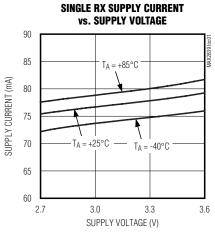
PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
PA BIAS DAC: VOLTAGE MOD	E		•			•
Output High level	10mA source current			V _C C - 0.	.1	V
Output Low level	100µA sink current			0.1		V
Turn-On Time	Excludes programmable delay of 0 to 0.5µs	200			ns	
CRYSTAL OSCILLATOR			•			
On-Chip Tuning Capacitance	Maximum capacitance, A4:A0 = 110	15.5				
Range	Minimum capacitance, A4:A0 = 1100 0000000				- pF	
On-Chip Tuning Capacitance Step Size				0.12		pF
ON-CHIP TEMPERATURE SEN	SOR					•
	D. I. I. DOLLT . II. I ODL	T _A = +25°C	01111			
Digital Output Code	Readout at DOUT pin through SPI A4:A0 = 01011, D4:D0	$T_A = +85^{\circ}C$		11101		
	$T_A = -40^{\circ}C$			00001		

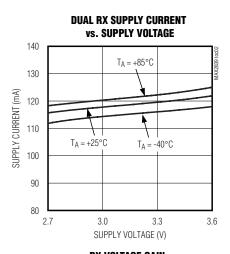
AC ELECTRICAL CHARACTERISTICS TABLE—TIMING

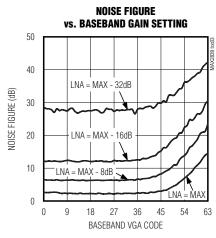
(MAX2839 Evaluation Kit, V_{CC} = 2.8V, f_{LO} = 2.5GHz, f_{REF} = 40MHz, \overline{CS} = high, SCLK = DIN = low, 3dB PLL noise bandwidth = 120kHz, and T_A = +25°C, unless otherwise noted.) (Note 1)

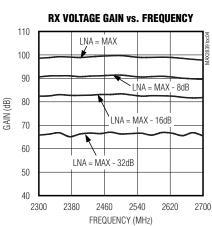
PARAMETER	SYMBOL	COND	ITIONS	MIN	TYP	MAX	UNITS
SYSTEM TIMING							
		Measured from Tx or Rx enable edge;	Rx to Tx		2		
Turnaround Time		signal settling to within 2dB of steady state Tx to Rx,	Tx to Rx, RXHP = 1		2		μs
Tx Turn-On Time (from Standby Mode)		Measured from Tx-enable edge; signal settling to within 2dB of steady state			2		μs
Tx Turn-Off Time (to Standby Mode)		From Tx-disable edge			0.1		μs
Rx Turn-On Time (from Standby Mode)			Measured from Rx-enable edge; signal settling to within 2dB of steady state		2		μs
Rx Turn-Off Time (to Standby Mode)		From Rx-disable edge			0.1		μs
TRANSMITTER AND RECEIVER I	PARALLEL G	AIN CONTROL					
LOAD Rising Edge Setup Time		B7:B0 stable to LOAD rising edge		10			ns
LOAD Rising Edge Hold Time		LOAD rising edge to I	B7:B0 stable		10		ns

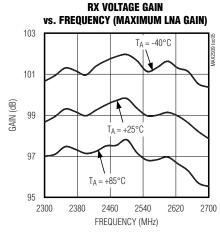
AC ELECTRICAL CHARACTERISTICS TABLE—TIMING (continued)

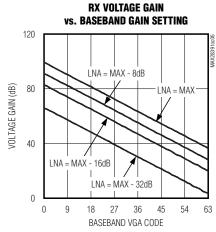

(MAX2839 Evaluation Kit, $V_{CC_{-}}$ = 2.8V, f_{LO} = 2.5GHz, f_{REF} = 40MHz, \overline{CS} = high, SCLK = DIN = low, 3dB PLL noise bandwidth = 120kHz, and T_A = +25°C, unless otherwise noted.) (Note 1)

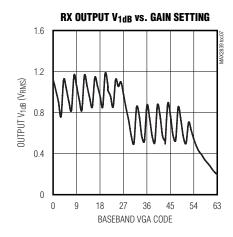

PARAMETER	SYMBOL	CONDITIONS	MIN TYP MAX	UNITS
LOAD Falling Edge Setup Time		B7:B0 stable to LOAD falling edge	10	ns
LOAD Falling Edge Hold Time		LOAD falling edge to B7:B0 stable	10	ns
LOAD Rise and Fall Time		Between 10% and 90% of static levels	100	ns
4-WIRE SERIAL PARALLEL INTE	RFACE TIMI	NG (see Figure 1)		
SCLK Rising Edge to $\overline{\text{CS}}$ Falling Edge Wait Time	tcso		6	ns
Falling Edge of $\overline{\text{CS}}$ to Rising Edge of First SCLK Time	tcss		6	ns
DIN to SCLK Setup Time	tDS		6	ns
DIN to SCLK Hold Time	tDH		6	ns
SCLK Pulse-Width High	tсн		6	ns
SCLK Pulse-Width Low	tCL		6	ns
Last Rising Edge of SCLK to Rising Edge of CS or Clock to Load Enable Setup Time	tcsh		6	ns
CS High Pulse Width	tcsw		20	ns
Time Between Rising Edge of CS and the Next Rising Edge of SCLK	tCS1		6	ns
Clock Frequency	fCLK		45	MHz
Rise Time	t _R		0.1/f _{CLK}	ns
Fall Time	t _F		0.1/f _{CLK}	ns
SCLK Falling Edge to Valid DOUT	t _D		12.5	ns

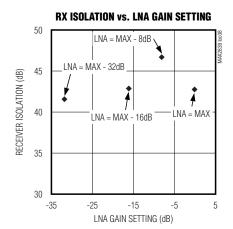

- **Note 1:** Min/max limits are production tested at T_A = +85°C. Min/max limits at T_A = -40°C and T_A = +25°C are guaranteed by design and characterization. The power-on register settings are not production tested. Load register setting 500ns after V_{CC} is applied.
- Note 2: Two tones at +20MHz and +39MHz offset with -35dBm/tone. Measure IM3 at 1MHz.
- Note 3: Gain adjusted over max gain and max gain -3dB. Optimally matched over given 200MHz band.
- **Note 4:** Tx mode supply current is specified for 64 QAM while achieving the Tx output spectrum mask shown in the *Typical Operating Characteristics*. The supply current can be reduced for 16 QAM signal by adjusting the Tx bias settings through the SPI.

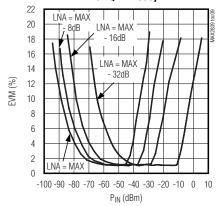

Typical Operating Characteristics

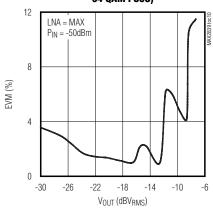

 $(V_{CC} = 2.8V, T_A = +25^{\circ}C, f_{LO} = 2.5GHz, f_{REF} = 40MHz, \overline{CS} = high, RXHP = SCLK = DIN = low, RF BW = 10MHz, Tx output at <math>50\Omega$ unbalanced output of balun, using the MAX2839 Evalutation Kit.)



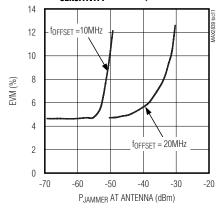


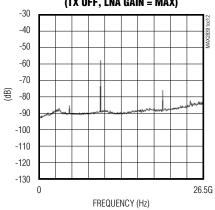




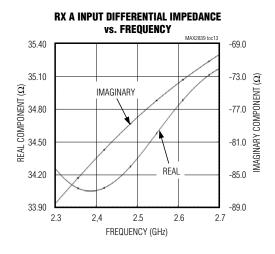

Typical Operating Characteristics (continued)

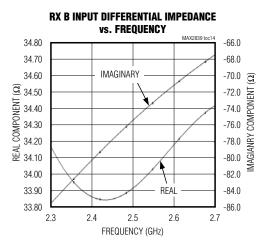
 $(V_{CC}=2.8V, T_{A}=+25^{\circ}C, f_{LO}=2.5GHz, f_{REF}=40MHz, \overline{CS}=high, RXHP=SCLK=DIN=low, RF~BW=10MHz, Tx~output~at~50\Omega~unbalanced~output~of~balun,~using~the~MAX2839~Evalutation~Kit.)$

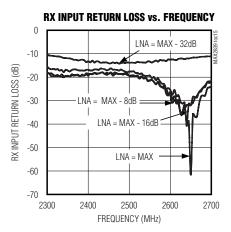

RX EVM vs. P_{in} (Channel Bandwidth = 10MHz, 64 Qam Fusc)

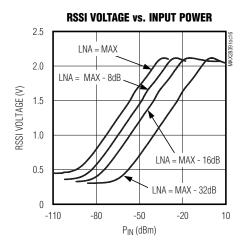

RX EVM vs. V_{OUT} (CHANNEL BANDWIDTH = 10MHz, 64 QAM FUSC)

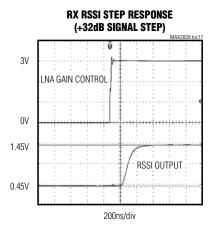
WIMAX EVM vs. OFDM JAMMER
(10MHz CHANNEL BANDWIDTH, 64 QAM FUSC)
PWANTED = PSENSITIVITY + 3dB = -70.3dBm AT ANTENNA
(INCLUDING 4dB FRONT-END LOSS).
EVM AT PSENSITIVITY = 6.37%, WITHOUT JAMMER.

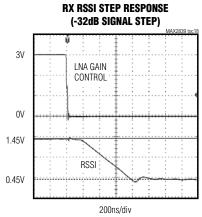


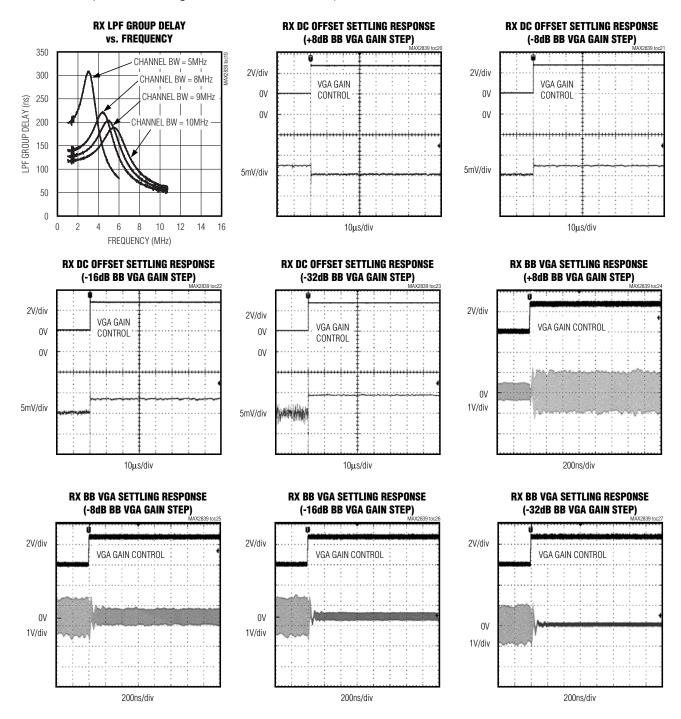


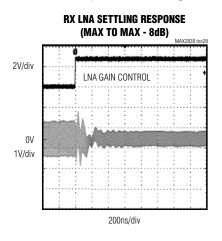


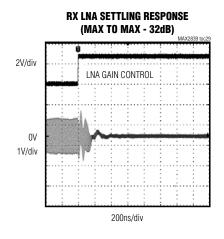

Typical Operating Characteristics (continued)

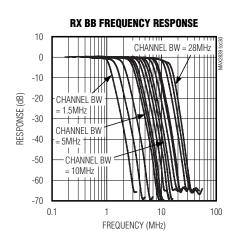

 $(V_{CC}=2.8V, T_A=+25^{\circ}C, f_{LO}=2.5GHz, f_{REF}=40MHz, \overline{CS}=high, RXHP=SCLK=DIN=low, RF~BW=10MHz, Tx~output~at~50\Omega~unbalanced~output~of~balun,~using~the~MAX2839~Evalutation~Kit.)$

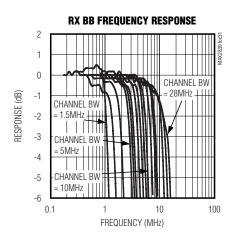


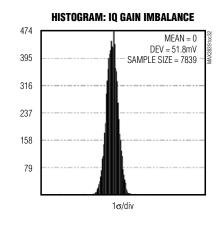


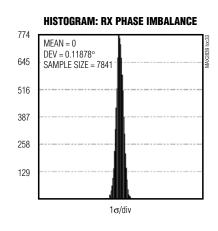

Typical Operating Characteristics (continued)

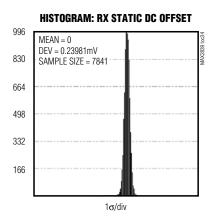

 $(V_{CC}=2.8V, T_A=+25^{\circ}C, f_{LO}=2.5GHz, f_{REF}=40MHz, \overline{CS}=high, RXHP=SCLK=DIN=low, RF BW=10MHz, Tx output at <math>50\Omega$ unbalanced output of balun, using the MAX2839 Evalutation Kit.)

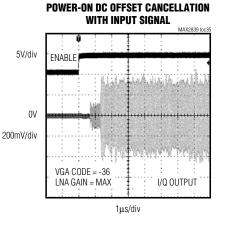


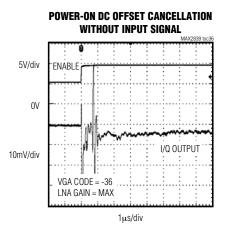

Typical Operating Characteristics (continued)

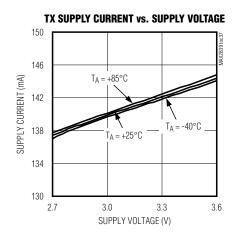

 $(V_{CC}=2.8V, T_A=+25^{\circ}C, f_{LO}=2.5GHz, f_{REF}=40MHz, \overline{CS}=high, RXHP=SCLK=DIN=low, RF BW=10MHz, Tx output at <math>50\Omega$ unbalanced output of balun, using the MAX2839 Evalutation Kit.)

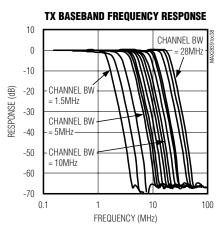


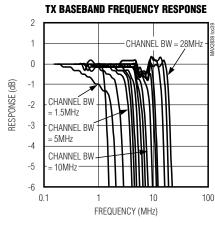


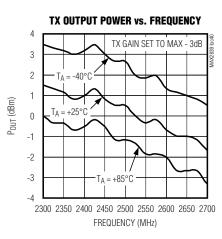


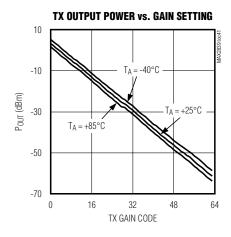


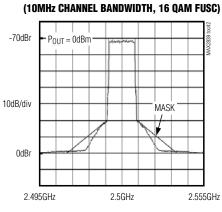


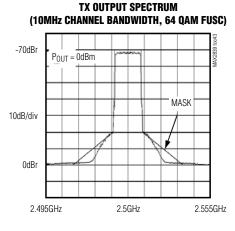


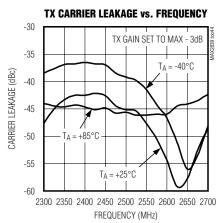


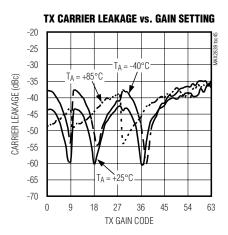

Typical Operating Characteristics (continued)


 $(V_{CC}=2.8V, T_A=+25^{\circ}C, f_{LO}=2.5GHz, f_{REF}=40MHz, \overline{CS}=high, RXHP=SCLK=DIN=low, RF BW=10MHz, Tx output at <math>50\Omega$ unbalanced output of balun, using the MAX2839 Evalutation Kit.)

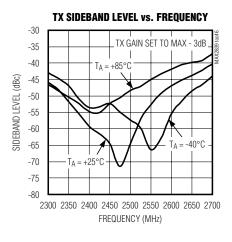


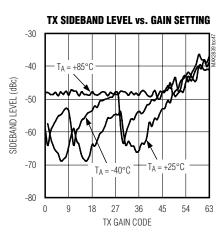


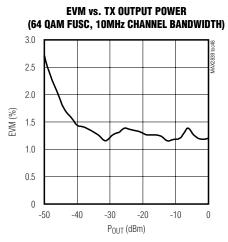


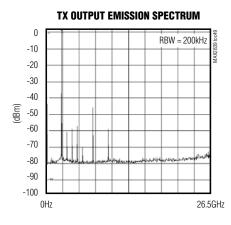


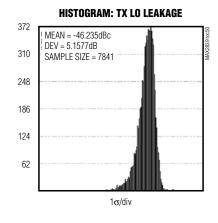
TX OUTPUT SPECTRUM

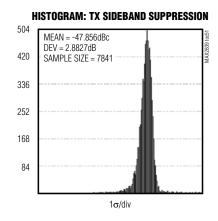


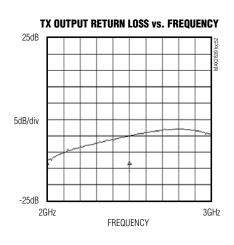


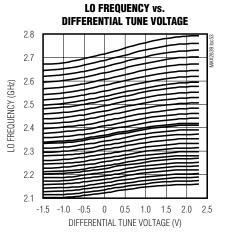


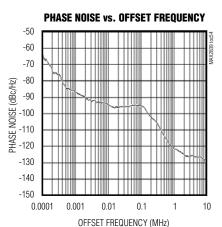

Typical Operating Characteristics (continued)

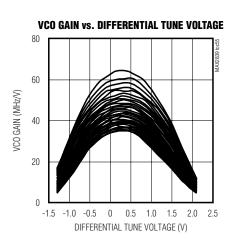

 $(V_{CC} = 2.8V, T_A = +25^{\circ}C, f_{LO} = 2.5GHz, f_{REF} = 40MHz, \overline{CS} = high, RXHP = SCLK = DIN = low, RF BW = 10MHz, Tx output at 50<math>\Omega$ unbalanced output of balun, using the MAX2839 Evaluation Kit.)

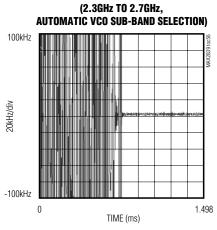


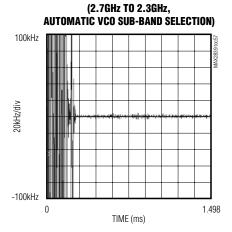






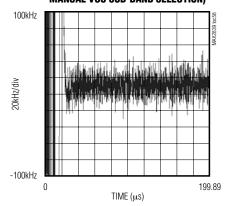


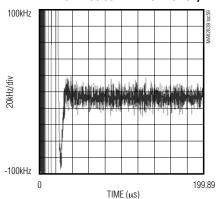



Typical Operating Characteristics (continued)

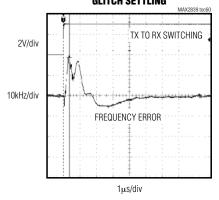
 $(V_{CC} = 2.8V, T_A = +25^{\circ}C, f_{LO} = 2.5GHz, f_{REF} = 40MHz, \overline{CS} = high, RXHP = SCLK = DIN = low, RF BW = 10MHz, Tx output at <math>50\Omega$ unbalanced output of balun, using the MAX2839 Evalutation Kit.)

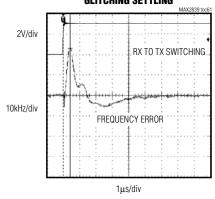
CHANNEL-SWITCHING FREQUENCY SETTLING





CHANNEL-SWITCHING FREQUENCY SETTLING


CHANNEL-SWITCHING FREQUENCY SETTLING (2.3GHz TO 2.7GHz, MANUAL VCO SUB-BAND SELECTION)



TX-TO-RX TURNAROUND FREQUENCY GLITCH SETTLING

RX-TO-TX TURNAROUND FREQUENCY GLITCHING SETTLING

Pin Description

PIN	NAME	FUNCTION					
1	GNDRXLNA_A	Receiver A LNA Ground					
2	VCCRXLNA_A	Receiver A LNA Supply Voltage. Bypass with a 22pF capacitor as close as possible to the pin.					
3	B0	Receiver Gain-Control Logic Input Bit 0					
4	LOAD	Receiver Gain Select. Positive edge trigger latches digital gain inputs B0-B7 to receive A. Negative edge trigger latches digital gain inputs B0-B7 to receive B.					
5	VCCRXLNA_B	Receiver B LNA Supply Voltage. Bypass with a 22pF capacitor as close as possible to the pin.					
6	GNDRXLNA_B	Receiver B LNA Ground					
7	RXINB+	Pagaivar P LNA Differential Input Input is internally DC coupled					
8	RXINB-	Receiver B LNA Differential Input. Input is internally DC-coupled.					
9	B4	Receiver and Transmitter Gain-Control Logic Input Bit 4					
10	В3	Receiver and Transmitter Gain-Control Logic Input Bit 3					
11	VCCTXPAD	Supply Voltage for Transmitter PA Driver. Bypass with a 22pF capacitor as close as possible to the pin.					
12	B2	Receiver and Transmitter Gain-Control Logic Input Bit 2					
13	TXOUT+	Dower Amplifier Driver Differential Output. The pipe have internal AC blocking connectors					
14	TXOUT-	Power Amplifier Driver Differential Output. The pins have internal AC blocking capacitors.					
15	B1	Receiver and Transmitter Gain-Control Logic Input Bit 1					
16	B5	Receiver and Transmitter Gain-Control Logic Input Bit 5					
17	PABIAS	Transmit External PA Bias DAC Output					
18	VCCTXMX	Transmitter Upconverter Supply Voltage. Bypass with a 22pF capacitor as close as possible to the pin.					
19	SCLK	Serial-Clock Logic Input of 4-Wire Serial Interface					
20	ENABLE	Transceiver Enable					
21	CLKOUT	Reference Clock Buffer Output					
22	REFCLK	Crystal or Reference Clock Input. AC-couple a crystal or a reference clock to this analog input.					
23	XTAL1	XTAL Input. Connect the other terminal of the XTAL to this pin.					
24	VCCXTAL	Crystal Oscillator Supply Voltage. Bypass with a 100nF capacitor as close as possible to the pin.					
25	VCCCP	PLL Charge-Pump Supply Voltage. Bypass with a 100nF capacitor as close as possible to the pin.					
26	GNDCP	Charge-Pump Circuit Ground					
27	CPOUT+	Differential Charge-Pump Output. Connect the frequency synthesizer's loop filter between these pins					
28	CPOUT-	(see the Typical Operating Circuit).					
29	GNDVCO	VCO Ground					
30	VCOBYP	On-Chip VCO Regulator Output Bypass. Bypass with a 1µF capacitor to GND. Do not connect other circuitry to this pin.					
31	VCCVCO	VCO Supply Voltage. Bypass with a 22nF capacitor as close as possible to the pin.					
32	CS	Chip-Select Logic Input of 4-Wire Serial Interface					
33	DOUT	Data Logic Output of 4-Wire Serial Interface					
34	DIN	Data Logic Input of 4-Wire Serial Interface					
35	RXBBIB-	Receiver B Basehand I-Channel Differential Outputs					
36	RXBBIB+	Receiver B Baseband I-Channel Differential Outputs					
37	RXBBQB-	Receiver B Baseband Q-Channel Differential Outputs					
38	RXBBQB+	neceiver a basebana a-onalmer binerential outputs					

Pin Description (continued)

PIN	NAME	FUNCTION			
39	RSSI	Receiver Signal Strength Output			
40	В7	Receiver Gain-Control Logic Input Bit 7			
41	B6	Receiver and Transmitter Gain-Control Logic Input Bit 6			
42	RXHP	Receiver Baseband AC-Coupling Highpass Corner Frequency Control Logic Input. For typical WiMAX application, connect pin to ground.			
43	RXBBQA-	Receiver Baseband Q-Channel Differential Outputs			
44	RXBBQA+	Receiver Basebaria Q-Chariner Differential Outputs			
45	RXBBIA-	Bassiyar A Basshand I Channel Differential Outputs			
46	RXBBIA+	Receiver A Baseband I-Channel Differential Outputs			
47	VCCRXVGA	Receiver VGA Supply Voltage. Bypass with a 100nF capacitor as close as possible to the pin.			
48	VCCRXFL	Receiver Baseband Filter Supply Voltage. Bypass with a 100nF capacitor as close as possible to the pin.			
49	TXBBI-	Transmitter Baseband I-Channel Differential Inputs			
50	TXBBI+	Transmitter basepand i-Chamei Dillerentiai Inputs			
51	TXBBQ+	Transmitter Baseband Q-Channel Differential Inputs			
52	TXBBQ-	Transmitter baseband Q-Chainer Dinerential inputs			
53	VCCRXMX	Receiver Downconverters Supply Voltage. Bypass with a 22pF capacitor as close as possible to the pin.			
54	RXTX	Receive/Transmit Mode Enable			
55	RXINA-	Pagaiyar A LNA Differential Input Input is internally DC coupled			
56	RXINA+	Receiver A LNA Differential Input. Input is internally DC-coupled.			
_	EP	Exposed Paddle. Internally connected to GND. Connect to a large ground plane for optimum RF performance and enhanced thermal dissipation. Not intended as an electrical connection point.			

Table 1. Operating Mode

	MODE CONTROL LOGIC INPUTS				CIRCUIT BLOCK STATES					
MODE	ENABLE PIN	RXTX PIN	SPI REG1 D<3>	SPI REG16 D<1:0>	Rx PATH	Тх РАТН	PLL, VCO, LO GEN	CALIBRATION SECTIONS ON	CLOCK OUTPUT	
Shutdown	0	0	Х	XX	Off	Off	Off	None	Off	
Clock-Out Only	1	Х	Х	X0	Off	Off	Off	None	On	
Clock-Out Only	Х	1	Х	X0	Off	Off	Off	None	On	
Standby	0	1	Х	01	Off	Off	On or Off	None	On	
Rx (1x2 MIMO)	1	1	1	01	On	Off	On	None	On	
Rx (1x1 SISO)	1	1	0	01	On (RxA)	Off	On	None	On	
Tx	1	0	Χ	01	Off	On	On	None	On	
Tx Calibration	1	0	Х	11	Off	On (except PA driver)	On	AM detector + Rx I, Q buffers	On	
RxA Calibration (Loopback)	1	1	0	11	On (except LNA)	On (except PA driver)	On	Loopback	On	
RxB Calibration (Loopback)	1	1	1	11	On (except LNA)	On (except PA driver)	On	Loopback	On	

Detailed Description

Modes of Operation

The modes of operation for the MAX2839 are shutdown, clock-out only, standby, receive, transmit, transmitter calibration and receiver calibration. See Table 1 for a summary of the modes of operation. When the parts are active, various blocks can be shutdown individually by programming different SPI registers.

Shutdown Mode

The MAX2839 features a low-power shutdown mode. In shutdown mode, all circuit blocks are powered down, except the 4-wire serial bus and its internal programmable registers.

Clock-Out Only

In clock-out mode, the entire transceiver is off except the divided reference clock output on the CLKOUT pin and the clock divider, which remains on.

Standby Mode

The standby mode is used to enable the frequency synthesizer block while the rest of the device is powered down. In this mode, PLL, VCO, and LO generator are on so that Tx or Rx modes can be quickly enabled from this mode. These and other blocks can be selectively enabled in this mode by programming different SPI registers.

Receive (Rx) Mode

In receive mode, all Rx circuit blocks are powered on and active. Antenna signal is applied; RF is downconverted, filtered, and buffered at Rx BB I and Q outputs. Either receiver A or both receivers can be enabled. Receiver B cannot be enabled by itself.

Transmit (Tx) Mode

In transmit mode, all Tx circuit blocks are powered on. The external PA is powered on after a programmable delay using the on-chip PA bias DAC.

Transmitter (Tx) Calibration Mode

All Tx circuit blocks except PA driver and external PA are powered on and active. The AM detector and receiver I/Q channel buffers are also ON, along with multiplexers in receiver side to route this AM detector's signal to each I and Q differential outputs.

20 /VIXI/M

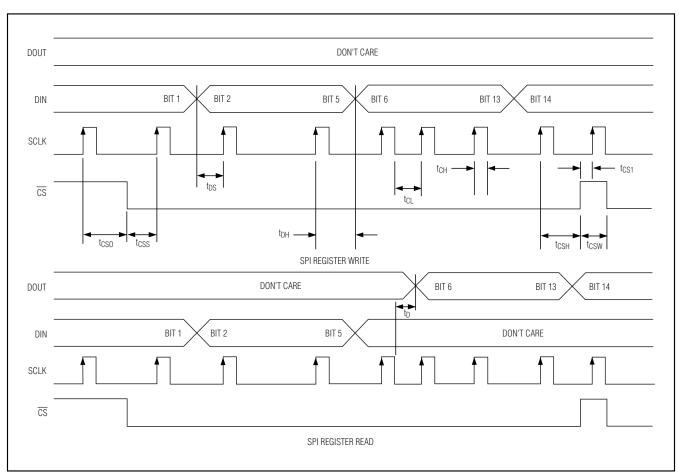
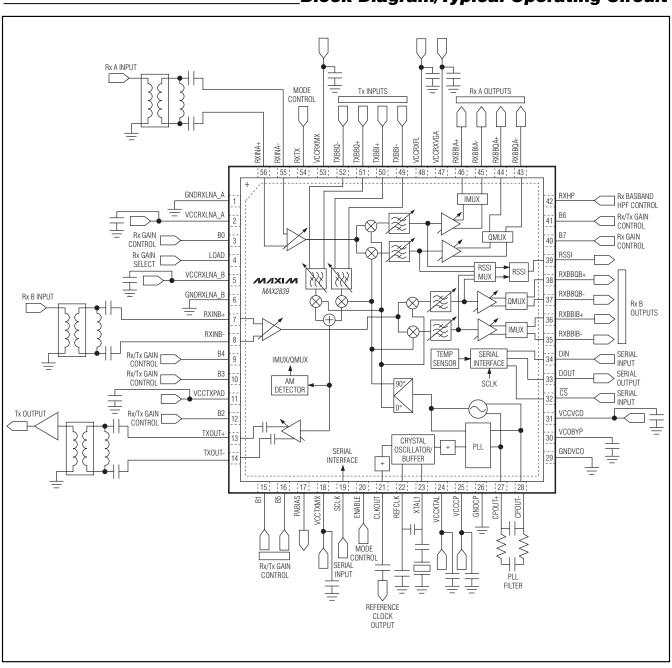
Receiver (Rx) Calibration or Loopback

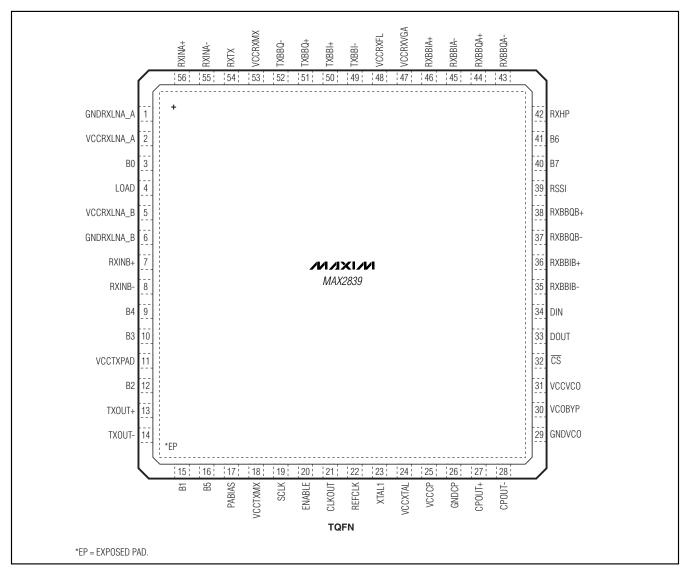
Part of Rx and Tx circuit blocks except LNA and PA driver are powered on and active. The transmitter I/Q input signals are upconverted to RF, and the output of the Tx gain control block (VGA) is fed to the receiver at the input of the downconverter. Either receiver A or both receivers can be connected to the transmitter and powered on. The I/Q lowpass filters are not present in the transmitter signal path (they are bypassed).

Programmable Registers and 4-Wire SPI Interface

The MAX2839 includes 32 programmable 16-bit registers. The most significant bit (MSB) is the read/write selection bit. The next 5 bits are register address. The

10 least significant bits (LSBs) are register data. Register data is loaded through the 4-wire SPI/MICROWIRE™-compatible serial interface. Data at DIN is shifted in MSB first and is framed by \overline{CS} . When \overline{CS} is low, the clock is active, and input data is shifted at the rising edge of the clock. During the read mode, register data selected by address bits is shifted out to DOUT at the falling edges of the clock. At the \overline{CS} rising edge, the 10-bit data bits are latched into the register selected by address bits. See Figure 1. The register values are preserved in shutdown mode as long as the power-supply voltage is maintained. However, every time the power-supply voltage is turned on, the registers are reset to the default values.

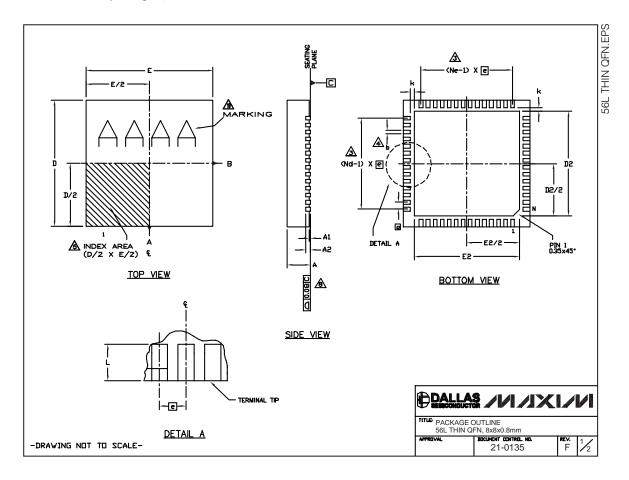




Figure 1. 4-Wire SPI Serial-Interface Timing Diagram

MICROWIRE is a trademark of National Semiconductor Corp.

Block Diagram/Typical Operating Circuit

Pin Configuration



Chip Information

PROCESS: BICMOS

Package Information

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to www.maxim-ic.com/packages.)

Package Information (continued)

56L 8x8

NOM.

0.75

0.25

8.00

0.50 BSC

56

14

14

0.02

0.20 REF

0.40 0.50

0.05

8.00

MAX.

0.80

0.30

8.10

4

3

MIN.

0.70

0.20

7.90

0.30

0.00

0.25

e

Ν

Nd

Ne

A1

A2

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to www.maxim-ic.com/packages.)

NDTES: 1. DIE THICKNESS ALLDWABLE IS 0.225mm MAXIMUM (0.009 INCHES MAXIMUM).

2. DIMENSIONING & TOLERANCES CONFORM TO ASME Y14.5M. - 1994.

N IS THE NUMBER OF TERMINALS.
No IS THE NUMBER OF TERMINALS IN X-DIRECTION &
No IS THE NUMBER OF TERMINALS IN Y-DIRECTION.

DIMENSION & APPLIES TO PLATED TERMINAL AND IS MEASURED BETVEEN 0.20 AND 0.25mm FROM TERMINAL TIP.

THE PIN #1 IDENTIFIER MUST BE LOCATED ON THE TOP SURFACE OF THE PACKAGE WITHIN HATCHED AREA AS SHOWN. EITHER AN INDENTATION MARK OR INK/LASER MARK IS ACCEPTABLE.

- 6. ALL DIMENSIONS ARE IN MILLIMETERS.
- 7. PACKAGE WARPAGE MAX 0.01mm.

APPLIES TO EXPOSED PAD AND TERMINALS, EXCLUDES INTERNAL DIMENSION OF EXPOSED PAD.

9. NEETS JEDEC MO220.

MARKING IS FOR PACKAGE DRIENTATION REFERENCE ONLY.

11. NUMBER OF LEADS ARE FOR REFERENCE ONLY.

12. ALL DIMENSIONS APPLY TO BOTH LEADED AND PHFREE PARTS.

	EXPOSED PAD VARIATION						
PKG.	D2			E2			JEDEC
CODE	MIN.	NOM.	MAX.	MIN.	NOM.	MAX.	DEDEC
T5688-2	6.50	6.65	6.70	6.50	6.65	6.70	WLLD-5
T5688-3	6.50	6.65	6.70	6.50	6.65	6.70	WLLD-5
T5688MN-3	6.50	6.65	6.70	6.50	6.65	6.70	WLLD-5

-DRAWING NOT TO SCALE-

Revision History

REVISION NUMBER	REVISION DATE	DESCRIPTION	PAGES CHANGED
0	2/08	Initial release	_
1	3/08	Corrected Ordering Information and pin 42 in Pin Description	1, 19

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Analog Devices Inc.:

MAX2839ETN+D MAX2839ETN+TD