

Click here to ask an associate for production status of specific part numbers.

MAX16193

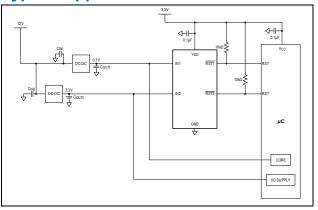
0.3% Accuracy Dual-Channel Supervisory Circuit

General Description

The MAX16193 is an ultra-high accuracy, dual-channel window-detector supervisor circuit that monitors a system's supply rails for undervoltage and overvoltage faults. Input channel 1 (IN1) monitors low core voltage rails from a 0.6V to 0.9V threshold range with $\pm 0.3\%$ accuracy while input-channel 2 (IN2) monitors higher system rails from a 0.9V to 3.3V threshold range with $\pm 0.3\%$ accuracy. A variety of factory trimmed undervoltage/overvoltage thresholds from $\pm 2\%$ to $\pm 5\%$ are available to accommodate different supply voltages and tolerances.

The MAX16193 features two independent, active-low reset outputs. Both reset output are available in either an open-drain or push-pull version. Each reset output asserts low when the corresponding monitored rail falls outside of the undervoltage/overvoltage threshold window. The reset outputs deassert after a factory-set reset timeout period when the corresponding rail voltage returns to its nominal voltage level.

The MAX16193 is available in a small, 2mm x 3mm, 8-pin standard TDFN chip-on-lead package for industrial and a side-wettable package for automotive. It can operate over the temperature range of -40°C to +125°C.


Applications

- Advanced Driver-Assistance Systems (ADAS)
- Programmable Logic Controllers (PLC)
- FPGA-Based Systems
- Medical Equipment
- Multivoltage ASICs
- Servers
- Storage Equipment

Benefits and Features

- ±0.3% IN1 Threshold Accuracy
- ±0.3% IN2 Threshold Accuracy
- 0.6V to 0.9V IN1 Threshold Range
- 0.9V to 3.3V IN2 Threshold Range
- ±2% to ±5% UV/OV Monitoring Range
- Open-Drain/Push-Pull Reset Output Options
- Enables Functional Safety at System Level
- Automotive:
 - 8-Pin TDFN, 2mm x 3mm Side-Wettable Flanks
 - AEC-Q100 Qualified
- Industrial:
 - 8-Pin TDFN, 2mm x 3mm Package
- -40°C to +125°C Temperature Range

Typical Application Circuit

Ordering Information appears at end of data sheet.

0.3% Accuracy Dual-Channel Supervisory Circuit

Absolute Maximum Ratings

V _{DD} to GND0.3V to +6V	
IN1, IN2 to GND0.3V to +6V	
$\overline{\text{RST1}} \ \overline{\text{RST2}}$ (Open Drain Outputs) to GND0.3V to +6V	
$\overline{\text{RST1}} \; \overline{\text{RST2}}$ (Push-Pull Outputs) to GND0.3V to VDD + 0.3V	
Input/Output Continuous Current±20mA	
Continuous Power Dissipation (TDFN) ((T823Y+3C, T823+3C) $T_A = +70^{\circ}$ C, derate 16.7mW/°C above +70°C) 1333.3mW	

Operating Temperature Range	-40°C to +125°C
Junction Temperature	+150°C
Soldering Temperature (Reflow)	+260°C
Storage Temperature Range	-65°C to +150°C
Lead Temperature (Soldering, 10s)	+300°C

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Package Information

Package Code	T823Y+3C	T823+3C			
Outline Number	<u>21-100417</u>	<u>21-0174</u>			
Land Pattern Number	<u>90-0091</u>	<u>90-0091</u>			
Thermal Resistance, Four Layer Board:					
Junction-to-Ambient (θ _{JA})	60°C/W	60°C/W			
Junction-to-Case Thermal Resistance (θ _{JC})	11°C/W	11°C/W			

For the latest package outline information and land patterns (footprints), go to <u>Package Index</u>. Note that a "+", "#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a four-layer board. For detailed information on package thermal considerations, refer to <u>Thermal Characterization of IC Packages</u>.

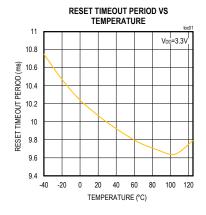
Electrical Characteristics

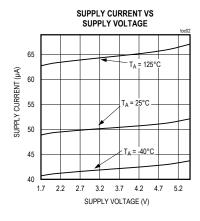
 $(V_{DD} = 1.7V \text{ to } 5.5V, T_A = T_J = -40^{\circ}\text{C to } +125^{\circ}\text{C}, \text{ unless otherwise noted.}$ Typical values are at $V_{DD} = 3.3V, V_{IN1} = 0.9V, V_{IN2} = 3.280V, \text{ and } T_A = +25^{\circ}\text{C} \text{ under normal conditions, unless otherwise noted)}$

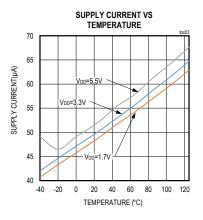
PARAMETER	SYMBOL	CONDITIONS	MIN TYP MAX			UNITS	
POWER SUPPLY							
Operating Voltage Range	V _{DD}	Output guaranteed to be at known state	1.7	1.7 5.5			
Minimum Supply Voltage	V _{DD}	RST1 and RST2 are guaranteed to be at a known logic	1.1			V	
Supply Current	I_{DD}	RST1 and RST2 not asserted		50	100	μΑ	
Undervoltage Lockout Threshold	V _{UVLO}	V _{DD} rising	1.30	1.50	1.68	V	
Undervoltage Lockout Hysteresis	V _{UVLO_HYS}	V _{DD} falling		47		mV	
INPUT VOLTAGE (IN1 A	INPUT VOLTAGE (IN1 AND IN2)						
IN1 Input Voltage Range (Note 1)	V _{IN1_NOM}		0.6		0.9	V	
IN2 Input Voltage Range (Note 1)	V _{IN2_NOM}		0.9		3.3	V	

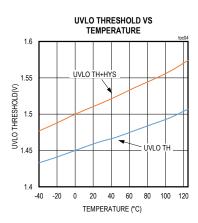
0.3% Accuracy Dual-Channel Supervisory Circuit

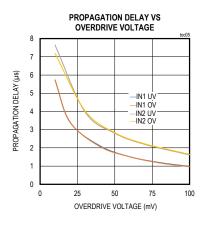
 $(V_{DD}$ = 1.7V to 5.5V, T_A = T_J = -40°C to +125°C, unless otherwise noted. Typical values are at V_{DD} = 3.3V, V_{IN1} = 0.9V, V_{IN2} = 3.280V, and T_A = +25°C under normal conditions, unless otherwise noted)

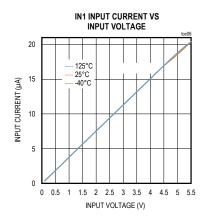

PARAMETER	SYMBOL	CONDITIONS MIN TY		TYP	MAX	UNITS	
Undervoltage/Overvolta ge Threshold Programming Range	TOL	Reset occurs when V _{IN} falls outside of V _{IN_NOM} x (1±TOL) ±2		±5	% of V _{IN_NOM}		
INPUT THRESHOLD AC	CURACY						
IN1/IN2 Overvoltage Threshold Accuracy	V _{OVTH_A}	V_{IN1} / V_{IN2} rising, $V_{OVTH} = V_{IN_NOM} \times (1+TOL\%)$	-0.3		+0.3	%	
IN1/IN2 Undervoltage Threshold Accuracy	V _{UVTH_} A	V_{IN1} / V_{IN2} falling, $V_{UVTH} = V_{IN_NOM x}$ (1 - TOL%)	-0.3		+0.3	%	
Undervoltage/Overvolta ge Hysteresis	V _{HYS}			0.15		%V _{TH}	
In must Current	I _{IN1}	$V_{IN1} = V_{IN1_NOM}$		3	6	μA	
Input Current	I _{IN2}	$V_{IN2} = V_{IN2_NOM}$		6	12	μA	
RESET OUTPUT (RST1	AND RST2)						
Reset Timeout Period Accuracy	t _{RP}	From time V _{IN} enters overvoltage/undervoltage thresholdwindow to time RST goes high	oltage threshold20 +		+20	%	
IN1-to-RST1 Propagation Delay	t _D	(V _{UVTH} + 1%) to (V _{UVTH} - 1%) or (V _{OVTH} - 1%) to (V _{OVTH} + 1%)		5		μs	
IN2-to-RST2 Propagation Delay	t _D	(V _{UVTH} + 1%) to (V _{UVTH} - 1%) or (V _{OVTH} - 1%) to (V _{OVTH} + 1%)		5		μs	
OUTPUT VOLTAGE							
		$V_{DD} \ge 4.25V$, $I_{SINK} = 1mA$			0.1		
Output Voltage Low	V_{OL}	V _{DD} = 2.5V, I _{SINK} = 250μA			0.1	V	
		V _{DD} = 1.2V, I _{SINK} = 25μA			0.1	1	
Output Voltage High	V _{OH}	V _{DD} = 1.70V, I _{SOURCE} = 200μA	0.8 x V _{DD}			.,	
(Push-Pull)	VOH	V _{DD} ≥ 4.5V, I _{SOURCE} = 800μA	0.8 x V _{DD}			V	

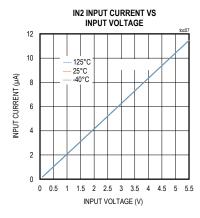

Note 1: Input voltage for IN1 and IN2 is factory programmable to a midpoint between the undervoltage threshold and overvoltage threshold levels.

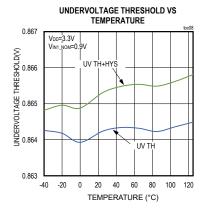

Note 2: Limits are 100% tested at $T_A = +25$ °C. Limits over the operating temperature range and relevant supply voltage range are guaranteed by design and characterization.

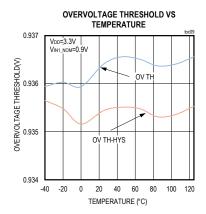

Typical Operating Characteristics

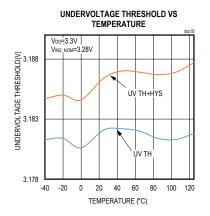

(V_{DD} = 1.70V to 5.5V, T_{A} = T_{MIN} to T_{MAX} unless otherwise noted.)

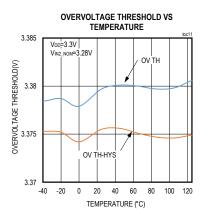


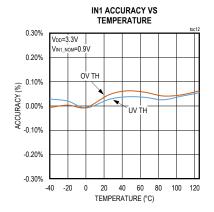


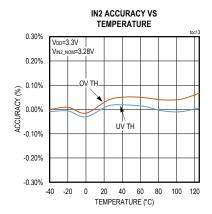












(V_{DD} = 1.70V to 5.5V, T_A = T_{MIN} to T_{MAX} unless otherwise noted.)



Pin Configurations



Pin Descriptions

PIN	NAME	FUNCTION
1	V_{DD}	Supply Input. Bypass V _{DD} to ground with a 0.1μF capacitor.
2	INIA	Monitoring Input 1. IN1 monitors supply rails for undervoltage/overvoltage faults with respect to a nominal input threshold. IN1 monitors supply range from 0.6V to 0.9V. When V _{IN1} falls outside the
2	IN1	undervoltage/overvoltage thresholds window, RST1 asserts and stays asserted for the reset timeout period after V _{IN1} falls within undervoltage/overvoltage thresholds window.
3	GND	Ground
4 1110		Monitoring Input 2. IN2 monitors supply rails for undervoltage/overvoltage faults with respect to nominal input threshold. IN2 monitors supply range from 0.9V to 3.3V. When V _{IN2} falls outside the window
4	IN2	between the undervoltage and overvoltage thresholds, $\overline{\text{RST2}}$ asserts and stays asserted for the reset timeout period after V_{IN2} falls within this window.
5, 6	N.C.	No Connect
7	RST2	Active-Low, Open-Drain or Push-Pull Reset Output 2. For the open-drain version, connect $\overline{\text{RST2}}$ with a 10k Ω pull-up resistor.
8	RST1	Active-Low, Open-Drain or Push-Pull Reset Output 1. For the open-drain version, connect $\overline{\text{RST1}}$ with a 10k Ω pull-up resistor.

Functional Diagrams

Functional Block Diagram

Detailed Description

The MAX16193 is a dual-channel, 0.3% accurate window-detector supervisor circuit that monitors two supply voltages in a system. The MAX16193 offers factory-trimmed nominal input voltage levels and a factory-trimmed window between the undervoltage and overvoltage thresholds, from $\pm 2\%$ to $\pm 5\%$. Contact Analog Devices for a threshold not listed in the *Ordering Information* table.

Reset Timeout Period

The active-low, open-drain reset outputs $\overline{RST1}$ and $\overline{RST2}$ assert low when the respective input voltage falls outside the factory-trimmed undervoltage and overvoltage threshold window. The corresponding reset output deasserts after the reset timeout period when the input voltage falls within the set window threshold. At power-up, resets stay asserted for the reset timeout period once V_{DD} is above the UVLO. The reset output is available in a factory-programmable open-drain or push-pull option. The reset output with open-drain configuration requires a pullup resistor. See *Figure 1* for more details.

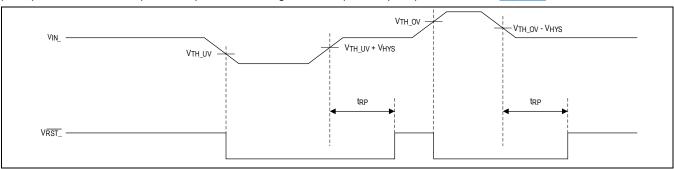


Figure 1. Reset Output Timing Diagram

Applications Information

Setting Input Thresholds and Hysteresis

The MAX16193 monitors a system supply voltage for undervoltage/overvoltage window threshold. Depending on the system supply tolerance requirement, the undervoltage/overvoltage thresholds can be factory-trimmed from $\pm 2\%$ to $\pm 5\%$ with respect to the selected nominal input threshold voltage. The following is a detailed calculation of how to determine the undervoltage/overvoltage threshold levels with $\pm 0.3\%$ threshold accuracy.

$$V_{IN_NOM} = 0.9V$$
 $TOL = \pm 3\%$
 $V_{UVTH} = V_{IN_NOM} (1 - 3\%) = 0.9V \times (1 - 0.03) = 0.873V$
 $V_{OVTH} = V_{IN_NOM} (1 + 3\%) = 0.9V \times (1 + 0.03) = 0.927V$

Where V_{IN_NOM} is the selected nominal input threshold voltage, TOL is the input tolerance, V_{UVTH} is undervoltage threshold voltage, and V_{OVTH} is the overvoltage threshold voltage.

The MAX16193 monitors the supply voltage with $\pm 0.3\%$ accuracy over the operating temperature and supply range. The accuracy range is shown as follows:

```
V_{UVTH\_A} = V_{IN\_NOM} (1 - 3\% \pm 0.3\%)

V_{OVTH\_A} = V_{IN\_NOM} (1 + 3\% \pm 0.3\%)
```

Where V_{UVTH_A} is the undervoltage threshold accuracy range and V_{OVTH_A} is the overvoltage threshold accuracy range. See <u>Figure 2</u> for details.

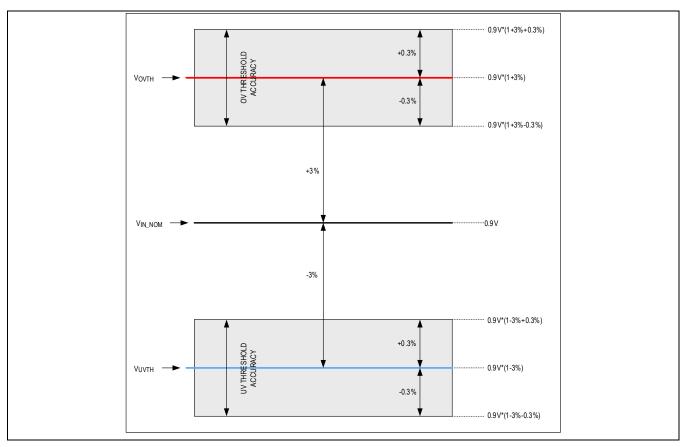


Figure 2. Undervoltage/Overvoltage Threshold Accuracy

Hysteresis adds noise immunity to the voltage monitors and prevents oscillation due to repeated triggering when the monitored voltage is near the threshold trip voltage.

Use the following equation to calculate the threshold hysteresis:

 $V_{IN_NOM} = 0.9V$

Hysteresis = 0.15%

 $V_{HYST} = 0.9V \times 0.15\% = 0.00135V$

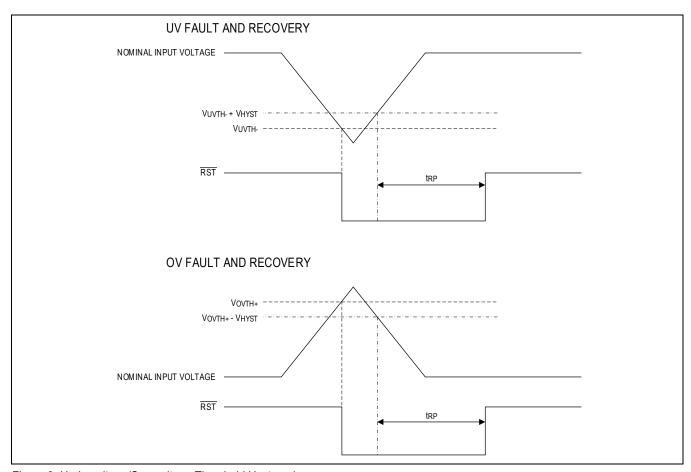
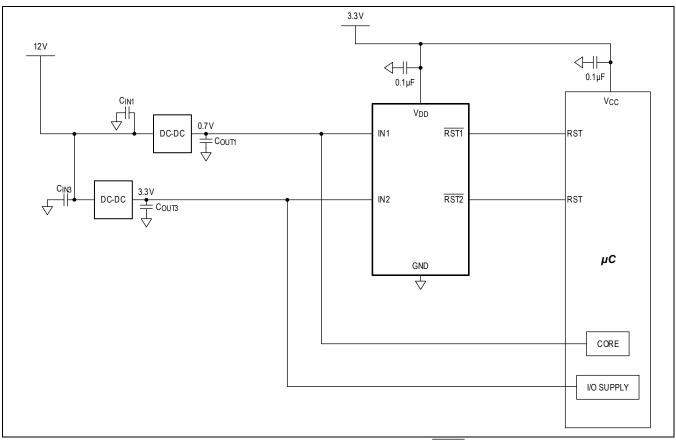


Figure 3. Undervoltage/Overvoltage Threshold Hysteresis


Power-Supply Bypassing/Noise Immunity

The MAX16193 operates from a 1.7V to 5.5V supply. Bypass V_{DD} to ground with a $0.1\mu F$ capacitor as close to the device as possible. An additional capacitor improves transient immunity.

Selector Guide Table

PART NUMBER	IN1/IN2 THRESHOLD VOLTAGE	IN1/IN2 TOLERANCE	IN1/IN2 ACCURACY	IN1/IN2 HYSTERESIS	RESET OUTPUT	RESET TIMEOUT
MAX16193ATA00/VY+T	0.9V/3.280V	4%/3%	0.3%/0.3%	0.15%/0.15%	Open Drain	10ms
MAX16193BATA00+T	0.9V/3.280V	4%/3%	0.3%/0.3%	0.15%/0.15%	Open Drain	10ms
MAX16193CATA00+T	0.9V/3.280V	4%/3%	0.3%/0.3%	0.15%/0.15%	Push-Pull	10ms

Typical Application Circuit

For the MAX16193C with push-pull reset output, there is no need to connect RST_pins with a pull-up resistor.

Ordering Information

PART NUMBER	TEMP RANGE	PIN-PACKAGE
MAX16193ATA00/VY+T	-40°C to +125°C	8 TDFN (T823Y+3C)
MAX16193BATA00+T	-40°C to +125°C	8 TDFN (T823+3C)
MAX16193CATA00+T	-40°C to +125°C	8 TDFN (T823+3C)

⁺ Denotes a lead(Pb)-free/RoHS-compliant package.

T = Tape and reel.

/V denotes an automotive qualified part.

Y = Side-wettable package.

Chip Information

PROCESS: BICMOS

Revision History

REVISION NUMBER	REVISION DATE	DESCRIPTION	PAGES CHANGED
0	03/22	Release for Market Intro	
1	00/23	Updated General Description, Applications, Benefits and Features, Absolute Maximum Ratings, Package Information Table, Electrical Characteristics, Typical Operating Characteristics, Selector Guide Table, Typical Application Circuit, and Ordering Information	1-10

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Analog Devices Inc.:

MAX16193ATA00/VY+ MAX16193ATA00/VY+T MAX16193BATA00+T MAX16193CATA00+T