

## A<sup>2</sup>B Transceiver

**AD2437** 

#### A<sup>2</sup>B BUS FEATURES

#### Line topology

Single main node, up to 16 subordinate nodes

Up to 30 m between nodes and up to 300 m overall cable length

#### Communication over distance

Synchronous data

Multichannel I<sup>2</sup>S/TDM to I<sup>2</sup>S/TDM

Clock synchronous, phase aligned in all nodes

Low latency node to node communication

Control and status information I<sup>2</sup>C to I<sup>2</sup>C

**GPIO** over distance

Bus power or local power subordinate nodes

Configurable with SigmaStudio+ graphical software tool

#### **BASELINE A<sup>2</sup>B TRANSCEIVER FEATURES**

Configurable as A<sup>2</sup>B bus main node or subordinate node Programmable via I<sup>2</sup>C and SPI interfaces

8-bit to 32-bit multichannel I<sup>2</sup>S/TDM interface

I<sup>2</sup>S/TDM/PDM programmable data rate

Up to 51 channels of 16-bit data or 32 channels of 24-bit data between nodes

PDM inputs for up to 4 high dynamic range microphones on main or subordinate nodes

Support for receiving I<sup>2</sup>S/TDM and PDM data on the same node

Unique ID register for each transceiver

Support for crossover or straight-through cabling

#### **AD2437 TRANSCEIVER ENHANCEMENTS**

#### **Mixed Signal**

ADC monitoring of supply voltages

Supports 3.3 V input at VIN in Low Voltage Input (LVI)

#### Digital

High speed SPI (up to 10 Mbps) over distance

**Dedicated hardware reset pin** 

I<sup>2</sup>S/TDM crossbar switch

Flexible mapping of Tx/Rx TDM channel data to A<sup>2</sup>B slot

Support for I<sup>2</sup>C fast mode plus (1 MHz)

**Support for LED lighting control using 4 PWM outputs** 

8 GPIO pins with configurable pin mapping

#### **APPLICATIONS**

Conference room transducer nodes Musical instrument connectivity Distributed audio systems Personal audio zones

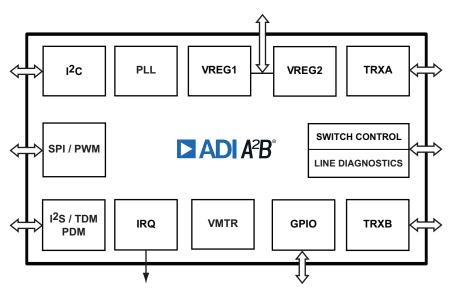



Figure 1. Functional Block Diagram

A<sup>2</sup>B and the A<sup>2</sup>B logo are registered trademarks of Analog Devices, Inc.

#### Rev. 0 Document Feedback

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

### **TABLE OF CONTENTS**

| A <sup>2</sup> B Bus Features                  |
|------------------------------------------------|
| Baseline A <sup>2</sup> B Transceiver Features |
| AD2437 Transceiver Enhancements                |
| Applications                                   |
| Table of Contents                              |
| Revision History                               |
| General Description                            |
| A <sup>2</sup> B Bus Details                   |
| I <sup>2</sup> C Interface                     |
| I <sup>2</sup> S/TDM Interface                 |
| Pulse Density Modulation (PDM) Interface 6     |
| Data Slot Exchange Between Subordinate Nodes 6 |
| I <sup>2</sup> S TX/RX Crossbar                |
| Serial Peripheral Interface (SPI)              |
| Pulse Width Modulation (PWM) Interface 7       |
| GPIO Over Distance                             |
| Mailboxes                                      |
| Line Diagnostics                               |
| Clock Sustain State                            |
| Dedicated Interrupt                            |
| Support for Parallel A <sup>2</sup> B Buses    |
| Voltage Monitor (VMTR) ADC                     |
| Power on Reset                                 |
| Hardware Reset                                 |
| Low Voltage Input (LVI) Mode                   |
| Power Configurations                           |

| Standby Mode                                |
|---------------------------------------------|
| Unique ID                                   |
| Support for Cabling                         |
| Additional Information                      |
| Specifications                              |
| Operating Conditions                        |
| Electrical Characteristics                  |
| VMTR ADC Specifications                     |
| Power Supply Rejection Ratio (PSRR)         |
| Timing Specifications                       |
| A <sup>2</sup> B Bus System Specification   |
| Power-Up Sequencing Restrictions            |
| PDM Typical Performance Characteristics     |
| Absolute Maximum Ratings                    |
| ESD Caution                                 |
| Thermal Characteristics                     |
| Test Circuits and Switching Characteristics |
| Output Drive Currents                       |
| Test Conditions                             |
| Pin Configuration and Function Descriptions |
| Designer Reference                          |
| PCB Layout                                  |
| Recommended PCB Footprint                   |
| Outline Dimensions                          |
| Ordering Guide                              |

#### **REVISION HISTORY**

#### 7/2023—Revision 0: Initial Version

Analog Devices is in the process of updating documentation to provide terminology and language that is culturally appropriate. This is a process with a wide scope and will be phased in as quickly as possible. Thank you for your patience.

### **GENERAL DESCRIPTION**

The AD2437  $A^2B^{\otimes}$  transceiver provides a multichannel,  $I^2S/TDM$  link over distances of up to 30 m between nodes. It embeds bidirectional synchronous pulse-code modulation (PCM) data (for example, digital audio), clock, and synchronization signals onto a single-pair differential cable.  $A^2B$  supports a direct point to point connection and allows multiple, daisy-chained nodes at different locations to contribute and/or consume time division multiplexed channel content.

A<sup>2</sup>B is a single main node, multiple subordinate node system where the transceiver at the host controller is the main node. The main node generates clock, synchronization, and framing for all subordinate nodes. The main A<sup>2</sup>B transceiver is programmable over a control port (I<sup>2</sup>C/SPI) for configuration and read back. An extension of the control port protocol is embedded in the A<sup>2</sup>B data stream. This allows direct access to registers and status information on subordinate transceivers, as well as I<sup>2</sup>C to I<sup>2</sup>C, SPI to I<sup>2</sup>C, or SPI to SPI communication from the host to a peripheral in a subordinate node. SPI to SPI communication between subordinate nodes can be performed directly and does not need to involve the main node.

The transceiver can connect directly to general-purpose digital signal processors (DSPs), field-programmable gate arrays (FPGAs), application specific integrated circuits (ASICs), digital microphones, analog-to-digital converters (ADCs), digital-to-analog converters (DACs), and codecs through a multichannel I<sup>2</sup>S/TDM interface. It also provides a pulse density modulation (PDM) interface for direct connection of up to four PDM digital microphones.

The transceiver supports a bus power feature, where the main node supplies voltage and current to the subordinate nodes over the same daisy-chained, single-pair wire or XLR/DMX cable as used for the communication link.

The transceiver also supports a broad spectrum of Ethernet cables in which the A<sup>2</sup>B occupies only one pair of a category (CAT) cable. This frees up the remaining CAT cable pairs for power delivery.

**Table 1. Product Features** 

| Feature                         | AD2437     |
|---------------------------------|------------|
| Main node capable               | Yes        |
| Functional TRX blocks           | A + B      |
| I <sup>2</sup> S/TDM support    | Yes        |
| PDM microphone inputs           | 4 mics     |
| A <sup>2</sup> B bus power      | Up to 50 W |
| Nominal bus bias voltage (VBUS) | 24 V       |
| SPI over distance               | Yes        |
| Power configuration             | CFG-4      |

#### A<sup>2</sup>B BUS DETAILS

Figure 2 shows a single main node, multiple subordinate node A<sup>2</sup>B communications system with the main transceiver controlled by the host. The host generates a periodic synchronization signal on the I<sup>2</sup>S/TDM interface at a fixed frequency (typically 48 kHz) to which all A<sup>2</sup>B nodes synchronize.

Communications along the  $A^2B$  bus occur in periodic superframes. The superframe frequency is the same as the synchronization signal frequency, and data is transferred at a bit rate that is 1024 times faster (typically 49.152 MHz). Each superframe is divided into periods of downstream transmission, upstream transmission, and no transmission (where the bus is not driven). Data is exchanged over the  $A^2B$  bus in equal width slots for both upstream and downstream transmissions. Up to 32 bidirectional slots can be configured at 24 bits, while up to 51 slots can be configured at 16 bits.

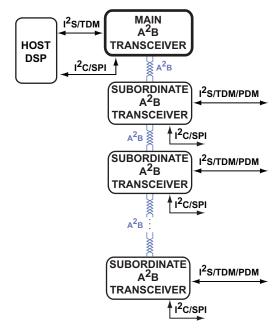



Figure 2. Communication System Block Diagram

The A<sup>2</sup>B bus also communicates the following control and status information between nodes:

- I<sup>2</sup>C to I<sup>2</sup>C or SPI to I<sup>2</sup>C/SPI communication
- General-purpose input/output (GPIO)
- Interrupts

In Figure 3, a superframe is shown with an initial period of downstream transmission and a later period of upstream transmission.

All signals on the A<sup>2</sup>B bus are line coded, and the main node forwards the synchronization signal downstream from the main transceiver to the last subordinate node transceiver in the form

of a synchronization preamble. This preamble is followed by control data to build a synchronization control frame (SCF). Downstream, TDM synchronous data and SPI tunnel data are added directly after the control frame. Every subordinate node can use or consume some of the downstream data and add data for downstream nodes. The last subordinate node transceiver responds after the response time with a synchronization response frame (SRF). Upstream TDM synchronous data and SPI tunnel data are added by each node directly after the response frame. Each node can also use or consume upstream data.

The embedded control and response frames allow the host to individually address each subordinate transceiver in the system. The host also enables access to remote peripheral devices that are connected to the subordinate transceivers via the I<sup>2</sup>C or SPI ports for I<sup>2</sup>C to I<sup>2</sup>C, SPI to SPI, and SPI to I<sup>2</sup>C communication over distance between multiple nodes.

All nodes in an A<sup>2</sup>B system are sampled synchronously in the same A<sup>2</sup>B superframe. Synchronous I<sup>2</sup>S/TDM downstream data from the nodes arrives at all downstream subordinate nodes in the same A<sup>2</sup>B superframe, and every node's upstream audio data arrives synchronously in the same I<sup>2</sup>S/TDM frame at any upstream node. I<sup>2</sup>S/TDM to I<sup>2</sup>S/TDM communication over distance does not require involvement of the main node and can be performed directly between subordinate nodes. The remaining audio phase differences between subordinate nodes can be compensated for by register-programmable fine adjustment of the SYNC pin signal delay.

There is a sample delay incurred for data moving between the A<sup>2</sup>B bus and the I<sup>2</sup>S/TDM interfaces because data is received and transmitted over the I<sup>2</sup>S/TDM every sample period (typically 48 kHz). This timing relationship between samples over the A<sup>2</sup>B bus is shown in Figure 4. It shows the data transfer between the main node and a subordinate node, but would be similar for data transfer between any two subordinate nodes as well.

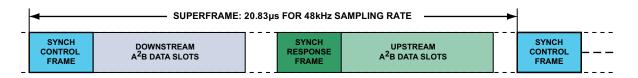



Figure 3. A<sup>2</sup>B Superframe

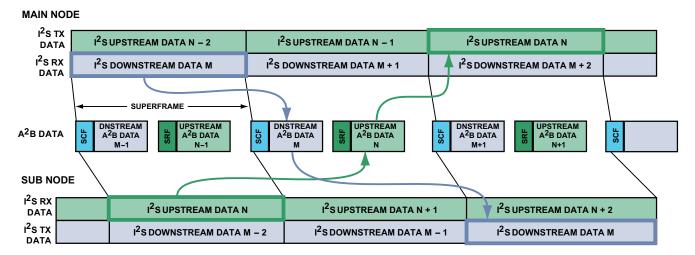



Figure 4. A<sup>2</sup>B Bus Synchronous Data Exchange

Note in Figure 4, both downstream and upstream samples are named for the frame where they enter the A<sup>2</sup>B system as follows:

- I<sup>2</sup>S/TDM data received by the main node transceiver in superframe M creates downstream data M and is transmitted over the A<sup>2</sup>B bus in the next superframe.
- 1<sup>2</sup>S/TDM data received by the subordinate node transceivers in superframe N creates upstream data N and is transmitted over the A<sup>2</sup>B bus in the next superframe.
- Data received via the A<sup>2</sup>B bus is transmitted on the I<sup>2</sup>S/TDM interface of an A<sup>2</sup>B transceiver in the following superframe.
- Data transmitted across the A<sup>2</sup>B bus (from any node to any node) has two frames of latency plus any internal delay that has accumulated in the transceivers, as well as delays due to wire length. Therefore, overall latency is slightly over two samples (<50 µs at 48 kHz sample periods) from the I<sup>2</sup>S/TDM interface in one A<sup>2</sup>B transceiver to the I<sup>2</sup>S/TDM interface of another A<sup>2</sup>B transceiver.

To support and extend the A<sup>2</sup>B bus functions and performance, the transceivers have additional features, as described in the following sections.

#### I<sup>2</sup>C INTERFACE

The I<sup>2</sup>C interface in the transceiver provides access to the internal registers. It has the following features:

- Target functionality in the A<sup>2</sup>B main node
- Controller or target functionality in the A<sup>2</sup>B subordinate node
- Multi-controller support in the A<sup>2</sup>B subordinate node
- 100 kbps, 400 kbps, or 1Mbps rate operation
- 7-bit addressing
- Single-word and burst mode read and write operations
- Clock stretching

Table 2. SIO Pin Mapping<sup>1</sup>

All transceivers can be accessed by a locally connected processor using the 7-bit I²C device address (BASE\_ADDR) established by the logic levels applied to the ADR2 and ADR1 pins at power-on reset, thus providing for up to four I²C controller devices connecting to the same I²C bus. A subordinate configured transceiver recognizes only this I²C device address. A main configured transceiver, however, also recognizes a second I²C device address for remote access to subordinate nodes and remote peripherals over the A²B bus (BUS\_ADDR). The least significant bit (LSB) of the 7-bit device address determines whether an I²C data exchange uses the BASE\_ADDR (bit 1 = 0) to access the local transceiver or BUS\_ADDR (bit 1 = 1) to access a bus node subordinate transceiver and remote peripherals through a main configured transceiver. See the *AD2437 A²B Transceiver Technical Reference* for details.

#### I<sup>2</sup>S/TDM INTERFACE

The I<sup>2</sup>S/TDM serial port operates in full-duplex mode, where both the transmitter and receiver operate simultaneously using the same critical timing bit clock (BCLK) and synchronization (SYNC) pins. A<sup>2</sup>B main transceivers receive the timing signals from BCLK and SYNC pins driven by the host device. A<sup>2</sup>B subordinate transceivers generate the timing signals on the BCLK and SYNC output pins. The I<sup>2</sup>S/TDM port features:

- Programmable clock and frame sync timing and polarity
- Numerous TDM operating modes
- 16- or 32-bit data width
- I<sup>2</sup>S TX/RX crossbar to associate specific TDM data channels with specific A<sup>2</sup>B slots
- Simultaneous operation with PDM port

The I<sup>2</sup>S/TDM/PDM port includes five programmable data pins (SIO0-SIO4) which can be configured to exchange any combination of up to two PDM streams (SIO0/1 only) and up to five I<sup>2</sup>S/TDM streams, with a maximum of four I<sup>2</sup>S/TDM streams in the same direction (see Table 2).

|      | A2B_PDMCTL.PDM1EN /PDM0EN |            |            |            |  |  |
|------|---------------------------|------------|------------|------------|--|--|
| Pin  | 00                        | 01         | 10         | 11         |  |  |
| SIO0 | DRX0                      | PDM0       | DRX0       | PDM0       |  |  |
| SIO1 | DRX1, DTX3                | DRX0, DTX3 | PDM1       | PDM1       |  |  |
| SIO2 | DRX2, DTX2                | DRX1, DTX2 | DRX1, DTX2 | DRX0, DTX2 |  |  |
| SIO3 | DRX3, DTX1                | DRX2, DTX1 | DRX2, DTX1 | DRX1, DTX1 |  |  |
| SIO4 | DTX0                      | DTX0       | DTX0       | DTX0       |  |  |

<sup>&</sup>lt;sup>1</sup> Pin mapping of I<sup>2</sup>S/TDM DTXn and DRXn depends on A2B\_PDMCTL and A2B\_I2SCFG registers. See the *AD2437 A<sup>2</sup>B Transceiver Technical Reference* for details on pin mappings.

#### I<sup>2</sup>S Reduced or Increased Rate

Subordinate transceivers can run the  $I^2S/TDM/PDM$  interface at a reduced or increased rate frequency, with respect to the superframe rate. The reduced rate frequency is derived by dividing the superframe rate from a programmable set of values. The subordinate transceiver also supports increased sampling rates of  $2\times$  and  $4\times$  superframe rates ( $f_{SYNCM}$ ). Each subordinate node transceiver can be configured to run at a different  $I^2S/TDM$  rate.

In reduced rate mode, the transceiver provides an option for a processor to track the full rate audio frame, which contains new reduced rate samples. The GPIO7 pin can be used as a strobe, and the direction can be configured as an input or output.

#### PULSE DENSITY MODULATION (PDM) INTERFACE

PDM microphones can directly interface to the SIO0/1 pins of the A<sup>2</sup>B transceiver. The PDM block on the transceiver converts a PDM input stream into pulse code modulated (PCM) data for transmission over the A<sup>2</sup>B bus, to the local device through the I<sup>2</sup>S/TDM port, or both. The PDM interface is available on both main and subordinate transceivers. It supports high dynamic range microphones with high signal-to-noise ratio (SNR) and extended maximum sound pressure level (SPL). The output rate of the PDM demodulators is controllable at the superframe (SFF), SFF/2, or SFF/4 rates. In addition, reduced rate modes support frame rates of SFF/2, SFF/4, SFF/8, SFF/12, SFF/16, SFF/20, SFF/24, SFF/28, SFF/32, and SFF/128 (for example, down to 375 Hz for a superframe rate of 48 kHz).

The PDM block supports high pass filtering of the input with a selectable cut-off frequency including 1, 60, 120, and 240 Hz. A register setting selects whether rising edge data or falling edge data is sampled first.

On a subordinate node, either BCLK or GPIO7 can clock PDM microphones. If GPIO7 is the clock, the BCLK frequency can be set to a different frequency using the I<sup>2</sup>S/TDM registers. In this case, GPIO7 is the PDM clock (PDMCLK) capturing PDM input on SIO0/SIO1. The clock rate from PDMCLK is 64× the SYNC frequency. BCLK and GPIO7 can also work concurrently to clock PDM microphones at the same frequency and phase alignment, but with opposite polarity.

On a main node, BCLK is always an input, so the clock to PDM microphones attached to a main node typically come from GPIO7. It is possible to use BCLK to drive the PDM clock inputs on a main node, but this restricts the possible TDM settings because BCLK is required to fall within the specification in Table 8.

## DATA SLOT EXCHANGE BETWEEN SUBORDINATE NODES

On the DTX pins of the I<sup>2</sup>S/TDM interface, subordinate transceivers can selectively output upstream data and downstream data that originates from other nodes without the need for data slots routed through the main node. Similarly, RX data channels from an I<sup>2</sup>S/TDM frame can become upstream and/or downstream slots on the A<sup>2</sup>B bus and can be received by any node.

#### I<sup>2</sup>S TX/RX CROSSBAR

The I<sup>2</sup>S crossbar provides flexible mapping between channels in the I<sup>2</sup>S/TDM interface and slots on the A<sup>2</sup>B bus.

When a node receives data over the  $A^2B$  bus and sends it to the  $I^2S/TDM$  interface, by default, there is a one-to-one mapping. For example, the first received slot is mapped to the first channel on the  $I^2S/TDM$  interface, and so on. Using the  $I^2S/TX$  crossbar, the channels on the  $I^2S/TDM$  interface can be reordered to map to an  $A^2B$  bus slot for each TDM channel.

Similarly, when a node receives data from the I<sup>2</sup>S/TDM interface and sends it over the A<sup>2</sup>B bus, by default, all the received I<sup>2</sup>S/TDM channels (defined in the A2B\_SLOT registers) are mapped one-to-one on the A<sup>2</sup>B bus. Using the I<sup>2</sup>S RX crossbar, the TDM channels can be individually selected to send data over A<sup>2</sup>B bus slots. For example, only TDM channels marked as valid are put onto the A<sup>2</sup>B bus and channels not in use are masked. See the *AD2437A<sup>2</sup>B Transceiver Technical Reference* for details.

#### **SERIAL PERIPHERAL INTERFACE (SPI)**

The SPI interface in the transceiver has the following features:

- Master or slave configurable
- Supports up to 3 slave-select outputs
- Up to 12.288 MHz operation
- Programmable clock phase (CPHA) and polarity (CPOL)
- · Subordinate transceiver register access
- · Local register access

SPI transactions take place between SPI ports of connected transceivers or between the SPI port and the I<sup>2</sup>C port of connected transceivers over the A<sup>2</sup>B bus. The transceiver provides the ability for SPI communication to occur over the A<sup>2</sup>B bus between multiple nodes in a system. The SPI interface is enabled by default and the transceiver is configured as an SPI slave. To use the alternative pin functionality, the SPI interface must be disabled by writing the value 0x02 to the A2B SPICFG register.

#### **SPI Over Distance**

An SPI tunnel is an extension to the A<sup>2</sup>B protocol where SPI control and data are exchanged between A<sup>2</sup>B nodes using dedicated slots on the A<sup>2</sup>B bus. SPI tunnels are configured and allocated by the host. SPI over distance supports the following features:

- Full-duplex read/writes between master and slave
  - Up to 256 bytes of pipelined reads
  - Extended full-duplex mode with pipelined reads for more than 256 bytes of data
- · Atomic SPI transfer
- Bulk SPI to SPI writes
- Extended bulk SPI writes

#### **PULSE WIDTH MODULATION (PWM) INTERFACE**

The PWM interface has the following features:

- Support for LED lighting control. The PWM output sends the clock at a fixed frequency and modulates the duty cycle (high/low time) for brighter or dimmer lights.
- Support for 3 PWM outputs and 1 output enable (OE) master dimmer. Each output rises on a different phase to limit instantaneous current draw.
- Two PWM frequency generators that can be programmed to frequencies 192 kHz, 96 kHz, 48 kHz, 24 kHz, 12 kHz, 3 kHz, 1.5 kHz, 750 Hz, 375 Hz, or 187.5 Hz.
- Supports independent blink rates of 0, 0.25, 0.5, 0.75, and 1.0 seconds (blink period) for PWM and OE channels with a blink duty cycle fixed at 50%.

The PWM block also supports a frequency hopping scheme. The PWM frequency hopper randomly selects frequencies from 187.5 Hz to 3 kHz to spread the PWM emissions over a range of frequencies.

The PWM outputs are shared with the SPI pins. Disable SPI functionality when PWM channels are enabled.

#### **GPIO OVER DISTANCE**

The transceiver supports general-purpose input/output (GPIO) communication over the A<sup>2</sup>B bus between multiple nodes without host intervention after initial programming. The host is required only for initial setup of the GPIO bus ports. I/O pins of different nodes can be logically OR or AND gate combined.

#### **MAILBOXES**

The transceiver supports interrupt driven, bidirectional message exchange between I<sup>2</sup>C/SPI controller devices (microcontrollers) at different subordinate nodes and the host connected to the main node transceiver using two dedicated mailboxes per subordinate node. The mailboxes can be used to customize handshaking among numerous nodes in a system to coordinate system events, such as synchronizing audio.

#### **LINE DIAGNOSTICS**

The line diagnostic block of the transceiver with XLR/DMX and CAT cables can detect mainly two types of fault conditions occurring on the A<sup>2</sup>B bus. These include:

- Open wire fault (A<sup>2</sup>B cable between nodes is disconnected or a node drops from the A<sup>2</sup>B bus)
- · Overcurrent condition

And, the line diagnostic block of the transceiver with a single-pair wire can detect, isolate, and indicate the following type of cable line faults occurring on the  $A^2B$  bus:

- · Positive terminal of cable shorted to VBAT
- · Positive terminal of cable shorted to ground
- Negative terminal of cable shorted to VBAT
- Negative terminal of cable shorted to ground

- Positive terminal of cable shorted to the negative terminal of the cable
- Open wire fault (A<sup>2</sup>B cable between the node is disconnected or the node drops from the A<sup>2</sup>B bus)
- Wrong port (adjacent A<sup>2</sup>B nodes are not connected to the correct A<sup>2</sup>B ports)
- Reverse wires (positive terminal of the cable at one node is connected to the negative terminal of the next node and conversely)
- Defective node (node is not responding)

These line faults are detected during and after discovery in the system run time. When a fault is detected during discovery, the switches that enable the bias current to the next-in-line node are disconnected automatically. The main node indicates the fault condition to the host controller via the interrupt (IRQ) pin. See the  $AD2437 \ A^2B \ Transceiver \ Technical \ Reference$  for details.

#### **CLOCK SUSTAIN STATE**

In the clock sustain state, audio signals of locally powered subordinate nodes are attenuated in the event of lost bus communication. When the bus loses communication and a reliable clock cannot be recovered by the subordinate node, the subordinate node transceiver enters the sustain state and, if enabled, signals this event on a GPIO pin.

In the clock sustain state, the phase-locked loop (PLL) of the subordinate transceiver continues to run for 1024 SYNC periods, while gradually attenuating the negative values to zero and the positive values to  $-109~\mathrm{dB}$  on the enabled I²S SIOn data pins. After the 1024 SYNC periods, the subordinate node transceiver resets and reenters the power-up state.

#### **DEDICATED INTERRUPT**

The transceiver features a dedicated interrupt pin (IRQ) to signal:

- Bit errors on the bus
- A line fault on the bus
- An interrupt from GP input pins
- Mailbox interrupts
- SPI and VMTR interrupts

Once the IRQ pin is asserted, the host controller checks the type and source of the interrupt. This pin can be configured active high or active low.

#### SUPPORT FOR PARALLEL A<sup>2</sup>B BUSES

This feature allows for parallel  $A^2B$  buses to exist between nodes in a system, thereby doubling the possible  $A^2B$  bandwidth between two nodes. The parallel  $A^2B$  main nodes are  $I^2S$  targets and share BCLK and SYNC. On the  $A^2B$  subordinate node, one of the  $A^2B$  transceivers is configured as an  $I^2S$  target and the other remains the  $I^2S$  controller (default behavior). BCLK and SYNC are shared between the two  $A^2B$  bus subordinate nodes and any attached peripherals.

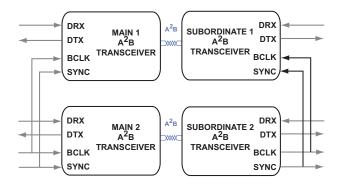



Figure 5. Parallel A<sup>2</sup>B Bus Diagram

#### **VOLTAGE MONITOR (VMTR) ADC**

The voltage monitor ADC is a multichannel successive approximation ADC. It allows software to monitor the health of key voltages on A<sup>2</sup>B bus nodes. The VMTR:

- Selectively monitors VIN, VBUS, DVDD, TRXVDD, and IOVDD supply voltages and high/low side downstream
- Features an on-chip analog front end that conditions input to the ADC
- Uses an internal reference voltage
- Features an option to enable interrupts based on a maximum and minimum threshold
- Provides measured voltages and interrupts that are available in the next superframe

#### **POWER ON RESET**

The transceiver remains in reset state until all the supplies (VIN, IOVDD, DVDD, and TRXVDD) are stable. Refer to Operating Conditions for chip reset assertion and deassertion voltage specifications.

#### HARDWARE RESET

The transceiver features a dedicated active low hardware reset pin to reset the device. The reset pin can be deasserted after all the power domains are stable, thereby eliminating the need for power-up sequencing.

#### **LOW VOLTAGE INPUT (LVI) MODE**

The transceiver supports a low voltage input mode in which VIN can be 3.3V. In this mode, only VOUT1 is available. VOUT2 must be connected to the VIN pin. In LVI mode, there is no restriction on VBUS—any voltage within the respective specified range can be used.

#### **POWER CONFIGURATIONS**

The transceiver supports one power configuration:

 CFG-4 — Supports up to 50 W depending on cable and connector configuration.

The operating power configuration of the transceiver can be identified by reading the A2B\_SWSTAT2.HPSW\_CFG\_ DET bit field. With the single-pair cable configuration, an external NMOS is used on both the high side and low side to deliver power along each of the data wire to the sub node. When using the XLR/DMX cables, only one NMOS is used at the high side to send power over both the data wires. When using the RJ45 connector, only one NMOS is used at the high side to deliver power to the sub node, but over the non-data wire pairs of the 8P8C modular connector.

Refer to Table 1, Product Features, for the bus power capabilities.

#### **STANDBY MODE**

Standby is a low power mode in which only a minimal (19-bit) SCF exists to keep all of the subordinate node transceivers synchronized. There is no downstream or upstream data traffic on the A<sup>2</sup>B bus and there is no SRF field. Standby mode can be exited and system traffic can be resumed without the need for rediscovery of the A<sup>2</sup>B node transceiver again. The GPIO settings retain their values while the transceiver is in standby mode.

#### **UNIQUE ID**

Each transceiver contains a 5-byte unique ID, which can be read from registers using software.

#### **SUPPORT FOR CABLING**

By default, the A<sup>2</sup>B transceiver is configured for use with crossover cables with single-pair cables. Straight-through, single-pair cables can also be used by swapping the connections of the dc bias inductors at the connector side. With RJ45 connectors, it is recommended to use straight-through CAT cables (T568 wiring standard) with the A<sup>2</sup>B transceivers. Straight-through CAT cabling is enabled using a register programming feature that allows polarity reversal on the B-side transceiver. With XLR/DMX cables, standard 3-pin XLR/DMX cables are used.

Contact Analog Devices for the latest reference schematic detailing implementation.

#### **ADDITIONAL INFORMATION**

Contact Analog Devices to request the  $AD2437 A^2B$  Transceiver Technical Reference, which provides detailed information about the AD2437 transceivers.

### **SPECIFICATIONS**

Specifications are subject to change without notice. For information about product specifications, contact your Analog Devices, Inc. representative.

#### **OPERATING CONDITIONS**

All specifications and characteristics apply across the entire operating conditions range unless otherwise noted.

| Parameter                            |                                              | Conditions                                 | Min                    | Nominal      | Max                    | Unit   |
|--------------------------------------|----------------------------------------------|--------------------------------------------|------------------------|--------------|------------------------|--------|
| Power Supp                           | olies                                        |                                            |                        |              |                        |        |
| $V_{DVDD}$                           | Digital Core Logic Supply Voltage            |                                            | 1.70                   | 1.90         | 1.98                   | V      |
| $V_{IOVDD}$                          | Digital Input/Output (I/O) Supply<br>Voltage | 3.3 V I/O<br>1.8 V I/O                     | 3.00<br>1.70           | 3.30<br>1.90 | 3.63<br>1.98           | V<br>V |
| $V_{PLLVDD}$                         | Phased-Locked Loops (PLL) Supply Voltage     |                                            | 1.70                   | 1.90         | 1.98                   | V      |
| $V_{TRXVDD}$                         | Transceiver Supply Voltage                   |                                            | 3.00                   | 3.30         | 3.45                   | V      |
| $V_{VIN}^{-1}$                       | Input Supply Voltage                         | Normal Mode, LVI Mode = 0                  | 3.7                    |              | 9.0                    | V      |
|                                      |                                              | LVI Mode = 1 (VIN and VOUT2 are connected) | 3.17                   |              | 3.45                   | V      |
| V <sub>VBUS</sub> <sup>2, 3, 4</sup> | Bus Bias Supply Voltage                      |                                            | 12.0                   |              | 24.0                   |        |
| VBUS Syste                           | m Operating Conditions                       |                                            |                        |              |                        |        |
| I <sub>VBUS_SYS_HP</sub>             | Bus Current                                  | $V_{VBUS} = 12 \text{ V to } 24 \text{ V}$ |                        |              | 2.1                    | Α      |
| Digital I/O                          |                                              |                                            |                        |              |                        |        |
| $V_{IH}^{5}$                         | High Level Input Voltage                     | $V_{IOVDD} = 1.98 \text{ V}$               | $0.7 \times V_{IOVDD}$ |              |                        | V      |
|                                      |                                              | $V_{IOVDD} = 3.63 \text{ V}$               | 2.2                    |              |                        | V      |
| $V_{IL}^{5}$                         | Low Level Input Voltage                      | $V_{IOVDD} = 1.70 \text{ V}$               |                        |              | $0.3 \times V_{IOVDD}$ | V      |
|                                      |                                              | $V_{IOVDD} = 3.00 \text{ V}$               |                        |              | 0.8                    | V      |
| $V_{IH\_I2C}^{6}$                    |                                              | V <sub>IOVDD</sub> = 3.63 V, 1.98 V        | $0.7 \times V_{IOVDD}$ |              |                        | V      |
| $V_{IL\_I2C}^{6}$                    |                                              | V <sub>IOVDD</sub> = 3.00 V, 1.70 V        |                        |              | $0.3 \times V_{IOVDD}$ | V      |
| CONSUMER                             | RGRADE                                       |                                            |                        |              |                        |        |
| T <sub>J</sub>                       | Junction Temperature                         |                                            | 0                      |              | 105                    | °C     |
| INDUSTRIA                            | L GRADE                                      |                                            |                        |              |                        |        |
| T <sub>J</sub>                       | Junction Temperature                         |                                            | -40                    |              | +105                   | °C     |

 $<sup>^{1}</sup>$  V<sub>VIN</sub> must be  $\leq$  (V<sub>VBUS</sub> + 0.6 V).

<sup>&</sup>lt;sup>2</sup> Bus bias must be stable after discovery.

<sup>&</sup>lt;sup>3</sup> Refer to Line Power Switch section of the Electrical Characteristics table for the maximum bus current specification.

<sup>&</sup>lt;sup>4</sup> Ensure that the last subordinate node meets the minimum  $V_{VBUS}$  requirement. If line fault diagnostics are not required on the B-port of a last subordinate node operating in LVI mode, nominal  $V_{VBUS} = V_{IN} = 3.3 \text{ V}$ .

 $<sup>^5</sup>$  Applies to ADR1, ADR2, SCK, MISO, MOSI, SIOn, BCLK, SYNC,  $\overline{RST},$  and GPIO7 pins.

<sup>&</sup>lt;sup>6</sup> Applies to SDA and SCL pins.

### **ELECTRICAL CHARACTERISTICS**

All specifications and characteristics apply across the entire operating conditions range unless otherwise noted.

| Parameter                |                                       | Conditions                                                           | Min   | Тур   | Max   | Unit |
|--------------------------|---------------------------------------|----------------------------------------------------------------------|-------|-------|-------|------|
| Supply Current           |                                       |                                                                      |       |       |       |      |
| Digital Core Logic Su    | upply Currents                        |                                                                      |       |       |       |      |
| I <sub>DVDD_OP</sub>     | V <sub>DVDD</sub> Operating Current   | $V_{DVDD} = 1.98 V$                                                  | 10.0  | 14.1  | 16.5  | mA   |
| I <sub>DVDD_RST</sub>    | V <sub>DVDD</sub> Reset Current       | $\overline{RST} = 0  V$                                              | 1.2   | 1.7   | 2.5   | mA   |
| I <sub>DVDD_STBY</sub>   | V <sub>DVDD</sub> Standby Current     | A2B_DATCTL = 0x80                                                    | 8.5   | 10.7  | 12.5  | mA   |
| PLL Supply Currents      |                                       |                                                                      |       |       |       |      |
| I <sub>PLLVDD_OP</sub>   | V <sub>PLLVDD</sub> Operating Current | $V_{PLLVDD} = 1.98 V$                                                | 0.45  | 0.68  | 0.92  | mA   |
| I <sub>PLLVDD_RST</sub>  | V <sub>PLLVDD</sub> Reset Current     | $\overline{RST} = 0  V$                                              | 0.02  | 0.06  | 0.12  | mA   |
| I <sub>PLLVDD_STBY</sub> | V <sub>PLLVDD</sub> Standby Current   | A2B_DATCTL = 0x80                                                    | 0.45  | 0.68  | 0.92  | mA   |
| Transceiver Supply C     |                                       |                                                                      |       |       |       |      |
| $I_{TRXVDD\_OP}$         | V <sub>TRXVDD</sub> Operating Current | TX enabled, RX disabled,                                             | 12.5  | 15.0  | 16.5  | mA   |
|                          |                                       | 100% duty cycle ( $I_{TXVDD}$ ), $V_{TRXVDD} = 3.45 \text{ V}$       |       |       |       |      |
|                          |                                       | TX disabled, RX enabled,                                             | 1.75  | 2.75  | 3.25  | mA   |
|                          |                                       | 100% duty cycle ( $I_{RXVDD}$ ), $V_{TRXVDD} = 3.45 \text{ V}$       |       |       |       |      |
| I <sub>TRXVDD_RST</sub>  | V <sub>TRXVDD</sub> Reset Current     | $\overline{RST} = 0  V$                                              | 1.7   | 2.8   | 4.0   | mA   |
| I <sub>TRXVDD_STBY</sub> | V <sub>TRXVDD</sub> Standby Current   | A2B_DATCTL = 0x80                                                    | 2.1   | 3.3   | 4.5   | mA   |
| IOVDD Supply Curre       | ents <sup>2</sup>                     |                                                                      |       |       |       |      |
| $I_{IOVDD\_RST}$         | V <sub>IOVDD</sub> Reset Current      | $\overline{RST} = 0  V$                                              | 65.0  | 92.0  | 115.0 | μΑ   |
| I <sub>IOVDD_STBY</sub>  | V <sub>IOVDD</sub> Standby Current    | A2B_DATCTL = 0x80                                                    | 75.0  | 99.0  | 125.0 | μΑ   |
| VBUS Supply Curren       | ts                                    |                                                                      |       |       |       |      |
| I <sub>VBUS_OP</sub>     | V <sub>VBUS</sub> Operating Current   | $V_{VBUS} = 24 V$                                                    | 0.68  | 0.79  | 0.90  | mA   |
| I <sub>VBUS_RST</sub>    | V <sub>VBUS</sub> Reset Current       | $\overline{RST} = 0  V,  VBUS = 24  V$                               | 0.68  | 0.79  | 0.90  | mA   |
| I <sub>VBUS_STBY</sub>   | V <sub>VBUS</sub> Standby Current     | A2B_DATCTL = 0x80, VBUS = 24 V                                       | 0.68  | 0.79  | 0.90  | mA   |
| VIN Supply Currents      |                                       |                                                                      |       |       |       |      |
| I <sub>VIN_OP</sub>      | V <sub>VIN</sub> Operating Current,   | $V_{VIN} = 9 V$ ,                                                    | 38.96 | 46.08 | 50.72 | mA   |
|                          | LVI Mode = 0                          | $I_{VOUT1} = 17.4 \text{ mA}^3,$                                     |       |       |       |      |
|                          |                                       | $I_{VOUT2} = 31.5 \text{ mA}^3$                                      |       |       |       |      |
|                          | V <sub>VIN</sub> Operating Current,   | $V_{VIN} = 3.45 V,$                                                  | 11.00 | 15.43 | 18.32 | mA   |
|                          | LVI Mode = 1                          | $I_{VOUT1} = 17.4 \text{ mA},$                                       |       |       |       |      |
|                          |                                       | $I_{VOUT2} = 0 \text{ mA}$                                           |       |       |       |      |
| $I_{VIN\_RST}$           | V <sub>VIN</sub> Reset Current,       | $\overline{RST} = 0 \text{ V},$                                      | 5.23  | 7.92  | 10.53 | mA   |
|                          | LVI Mode = 0                          | $V_{VIN} = 9 \text{ V}, V_{DVDD} = 1.98 \text{ V},$                  |       |       |       |      |
|                          |                                       | $V_{PLLVDD} = 1.98 \text{ V},$                                       |       |       |       |      |
|                          |                                       | $V_{TRXVDD} = 3.45 \text{ V},$ $V_{IOVDD} = 3.63 \text{ V}$          |       |       |       |      |
|                          | V <sub>VIN</sub> Reset Current,       | $\frac{V_{\text{OVDD}} - 3.03 \text{ V}}{\text{RST} = 0 \text{ V},}$ | 1.67  | 2.37  | 3.52  | mA   |
|                          | LVI Mode = 1                          | $V_{VIN} = Maximum V_{TRXVDD} = 3.45 V,$                             | 1.07  | 2.57  | ۵.۵∠  | 1117 |
|                          | LVI MOGE - 1                          | $V_{DVDD} = 1.98 \text{ V},$                                         |       |       |       |      |
|                          |                                       | V <sub>PLLVDD</sub> = 1.98 V,                                        |       |       |       |      |
|                          |                                       | V <sub>IOVDD</sub> = 3.63 V                                          |       |       |       |      |

| Parameter                       |                                    | Conditions                                                   | Min  | Тур  | Max              | Unit |
|---------------------------------|------------------------------------|--------------------------------------------------------------|------|------|------------------|------|
| Bus Voltage                     |                                    |                                                              |      |      |                  |      |
| Chip Reset Assertion            | Voltage Threshold <sup>4</sup>     |                                                              |      |      |                  |      |
| $V_{RST\_VIN}$                  |                                    | $V_{VIN}$ dropping, LVI Mode = 0, 1                          | 2.49 |      | 2.73             | ٧    |
| $V_{RST\_DVDD}$                 |                                    | V <sub>DVDD</sub> dropping                                   | 1.1  |      | 1.5              | ٧    |
| $V_{RST\_IOVDD}$                |                                    | V <sub>IOVDD</sub> dropping                                  | 1.0  |      | 1.5              | ٧    |
| $V_{RST\_TRXVDD}$               |                                    | $V_{TRXVDD}$ dropping, LVI Mode = 0, 1                       | 2.2  |      | 2.8              | ٧    |
| Chip Reset Deasserti            | on Voltage Threshold <sup>5</sup>  |                                                              |      |      |                  |      |
| $V_{RSTN\_VIN}$                 |                                    | $V_{VIN}$ rising, LVI Mode = 0, 1                            | 2.76 |      | 3.10             | ٧    |
| $V_{RSTN\_DVDD}$                |                                    | V <sub>DVDD</sub> rising                                     | 1.50 |      | 1.65             | ٧    |
| $V_{RSTN\_IOVDD}$               |                                    | V <sub>IOVDD</sub> rising                                    | 1.20 |      | 1.62             | ٧    |
| $V_{RSTN\_TRXVDD}$              |                                    | $V_{TRXVDD}$ rising, LVI Mode = 0, 1                         | 2.53 |      | 3.05             | ٧    |
| Voltage Regulator (             | VREG1, VREG2)                      |                                                              |      |      |                  |      |
| $V_{VOUT1}$                     | V <sub>REG1</sub> Output Voltage   |                                                              | 1.80 | 1.90 | 1.98             | ٧    |
| $V_{VOUT2}$                     | V <sub>REG2</sub> Output Voltage   |                                                              | 3.15 | 3.30 | 3.45             | ٧    |
| I <sub>VOUT1</sub> <sup>6</sup> | V <sub>REG1</sub> Output Current   |                                                              |      |      | 100 <sup>7</sup> | mA   |
| I <sub>VOUT2</sub> <sup>6</sup> | V <sub>REG2</sub> Output Current   |                                                              |      |      | 100 <sup>7</sup> | mA   |
| $I_{VOUT1} + I_{VOUT2}$         |                                    |                                                              |      |      | 130 <sup>7</sup> | mA   |
| $\Delta V_{OUT1\_LNREG}$        | V <sub>VOUT1</sub> Line Regulation | $V_{VIN} = 3.13 \text{ V to } 3.47 \text{ V},$               |      |      | 5                | mV   |
|                                 |                                    | $I_{VOUT1} = 100 \text{ mA, LVI\_MODE} = 1$                  |      |      |                  |      |
| $\Delta V_{\text{OUT1\_LNREG}}$ | V <sub>VOUT1</sub> Line Regulation | $V_{VIN} = 3.7 V \text{ to } 4.9 V,$                         |      |      | 5                | mV   |
|                                 |                                    | $I_{VOUT1} = 100 \text{ mA}$                                 |      |      |                  |      |
| $\Delta V_{\text{OUT2\_LNREG}}$ | V <sub>VOUT2</sub> Line Regulation | $V_{VIN} = 3.7 \text{ V to } 6.3 \text{ V,}$                 |      |      | 15               | mV   |
|                                 |                                    | $I_{VOUT2} = 100 \text{ mA}$                                 |      |      |                  |      |
| $\Delta V_{OUT1\_LNREG}$        | V <sub>VOUT1</sub> Line Regulation | $V_{VIN} = 3.7 \text{ V to 9 V},$                            |      |      | 6                | mV   |
|                                 |                                    | I <sub>VOUT1</sub> = 40 mA                                   |      |      | _                | l    |
| $\Delta V_{OUT2\_LNREG}$        | V <sub>VOUT2</sub> Line Regulation | $V_{VIN} = 3.7 \text{ V to 9 V},$                            |      |      | 8                | mV   |
| A\/                             | V Load Regulation                  | $I_{VOUT2} = 50 \text{ mA}$ $V_{VIN} = 3.13 \text{ V},$      |      |      | 33               | m)/  |
| $\Delta V_{OUT1\_LDREG}$        | V <sub>VOUT1</sub> Load Regulation | $I_{VOUT1} = 1 \text{ mA to } 100 \text{ mA, LVI\_MODE} = 1$ |      |      | 33               | mV   |
| $\Delta V_{OUT1\_LDREG}$        | V <sub>VOUT1</sub> Load Regulation | $V_{VIN} = 3.7 \text{ V},$                                   |      |      | 15               | mV   |
| △VOUT1_LDREG                    | V <sub>VOUT1</sub> Load Regulation | $I_{VOUT1} = 1 \text{ mA to } 40 \text{ mA}$                 |      |      | 13               | IIIV |
| $\Delta V_{OUT2\_LDREG}$        | V <sub>VOUT2</sub> Load Regulation | V <sub>VIN</sub> = 3.7 V,                                    |      |      | 25               | mV   |
|                                 | 1 V0012 2000 110g diation          | $I_{VOUT2} = 1 \text{ mA to } 50 \text{ mA}$                 |      |      |                  |      |
| $\Delta V_{OUT1\_LDREG}$        | V <sub>VOUT1</sub> Load Regulation | $V_{VIN} = 3.7 \text{ V},$                                   |      |      | 33               | mV   |
| OUT_EDILEG                      | , com                              | I <sub>VOUT1</sub> = 1mA to 100 mA                           |      |      |                  |      |
| $\Delta V_{\text{OUT2\_LDREG}}$ | V <sub>VOUT2</sub> Load Regulation | $V_{VIN} = 3.7 V$ ,                                          |      |      | 42               | mV   |
|                                 | -                                  | $I_{VOUT2} = 1 \text{mA to } 100 \text{ mA}$                 |      |      |                  |      |
| $C_{Load1}$                     | V <sub>REG1</sub> Load Capacitance |                                                              | 1.8  |      | 26               | μF   |
| $C_{Load2}$                     | V <sub>REG2</sub> Load Capacitance |                                                              | 3.9  |      | 26               | μF   |

| Parameter                                         |                                           | Conditions                                            | Min  | Тур  | Max  | Unit |
|---------------------------------------------------|-------------------------------------------|-------------------------------------------------------|------|------|------|------|
| Digital I/O                                       |                                           |                                                       |      |      |      |      |
| I <sub>IH</sub> <sup>8</sup>                      | Input Leakage, High                       | $V_{IOVDD} = 3.63 \text{ V}, V_{IN} = 3.63 \text{ V}$ |      |      | 10.0 | μΑ   |
| I <sub>IL</sub> <sup>8</sup>                      | Input Leakage, Low                        | $V_{IOVDD} = 3.63 \text{ V}, V_{IN} = 0 \text{ V}$    |      |      | 10.0 | μΑ   |
| V <sub>OH1.9</sub> <sup>8</sup>                   | High Level Output Voltage                 | $V_{IOVDD} = 1.70 \text{ V}, I_{OH} = 1 \text{ mA}$   | 1.35 |      |      | ٧    |
| V <sub>OH3.3</sub> <sup>8</sup>                   | High Level Output Voltage                 | $V_{IOVDD} = 3.00 \text{ V, } I_{OH} = 1 \text{ mA}$  | 2.40 |      |      | ٧    |
| $V_{OL}^{8}$                                      | Low Level Output Voltage                  | $V_{IOVDD} = 3.00 \text{ V}, I_{OL} = 1 \text{ mA}$   |      |      | 0.40 | ٧    |
| $V_{OL}^{8}$                                      | Low Level Output Voltage                  | $V_{IOVDD} = 1.70 \text{ V}, I_{OL} = 1 \text{ mA}$   |      |      | 0.40 | ٧    |
| $V_{OL\_I2C}^{9}$                                 | I <sup>2</sup> C Low Level Output Voltage | $V_{IOVDD} = 3.00 \text{ V}, I_{OL} = 3.0 \text{ mA}$ |      |      | 0.40 | ٧    |
| $V_{OL\_I2C}^{10}$                                | I <sup>2</sup> C Low Level Output Voltage | $V_{IOVDD} = 1.70 \text{ V}, I_{OL} = 1.0 \text{ mA}$ |      |      | 0.40 | ٧    |
| $C_PD$                                            | Pin Capacitance                           |                                                       |      |      | 5    | рF   |
| Line Power Switch                                 |                                           |                                                       |      |      |      |      |
| Internal VSENSEP Currents                         |                                           |                                                       |      |      |      |      |
| I <sub>VSENSEP</sub>                              | $V_{VSENSEP}$                             | $V_{VSENSEP} = V_{VBUS} = 24 \text{ V}$               |      |      | 400  | μΑ   |
| Internal ISENSEP Current                          |                                           |                                                       |      |      |      |      |
| I <sub>ISENSEP</sub>                              | V <sub>ISENSEP</sub>                      | $V_{VBUS} - V_{ISENSEP} = 100 \text{ mV}$             | 13.0 | 18.0 | 22.5 | μΑ   |
| SWN Leakage Current                               |                                           |                                                       |      |      |      |      |
| $I_{SWN\_LKG}$                                    | $V_{SWN\_LGKG}$                           | $V_{SWN} = 3.3 \text{ V}$                             |      |      | 3.2  | mA   |
| Current Thresholds                                |                                           |                                                       |      |      |      |      |
| $\Delta V_{HSNS\_LM} = V_{VBUS} - V_{ISENSEP}$    | High Side Current Limit Threshold         | ON State                                              | 100  | 150  | 182  | mV   |
| $\Delta V_{LSNS\_CF} = V_{ISENSEN} - V_{VSENSEN}$ | Low Side Current Fault Threshold          | ON State, V <sub>VSENSEN</sub> = 0.1 V                | 115  | 150  | 160  | mV   |
| External High Side NFET Gat                       | e Drive                                   |                                                       |      |      |      |      |
| $V_{SWP} - V_{VSENSEP}$                           |                                           | ON State, $V_{VSENSEP} = V_{VBUS}$                    | 4.5  | 4.7  | 5.1  | ٧    |
| SWP Slew Rate With Soft Sta                       | rt Enabled <sup>11</sup>                  |                                                       |      |      |      |      |
| $\Delta V_{SWP}/dt$                               |                                           | $CAP_DLY = 0$ , $V_{VBUS} = 7 V$                      | 1.9  | 2.2  | 2.5  | V/ms |
|                                                   |                                           | $CAP_DLY = 1$ , $V_{VBUS} = 7$ V                      | 9.5  | 11.6 | 12.8 | V/ms |
| External Low Side NFET Gate                       | e Drive                                   |                                                       |      |      |      |      |
| $V_{\sf SWN}$                                     |                                           | ON State, 220k pull-down to GND on SWN                | 4.1  |      |      | V    |

<sup>&</sup>lt;sup>1</sup> Main node and last subordinate node only consume half the transceiver current because only one of the two transceivers is used.

 $<sup>^2</sup>$ I<sub>IOVDD</sub> operational current depends on switching currents on digital I/O pins such as BCLK, SYNC, ADR1, ADR2, SCK, MISO, MOSI, SIOn, and GPIO7. Customers can calculate the dynamic current using the formula: Output Dynamic Current =  $(C_{PD} + C_L) \times V_{IOVDD} \times S$ witching Frequency.

 $<sup>^3</sup>$  I<sub>VOUT1</sub> = Max I<sub>DVDD</sub> + Max I<sub>PLIVDD</sub> and I<sub>VOUT2</sub> = Max I<sub>TRXVDD</sub> + Typ I<sub>IOVDD</sub>. The typical IOVDD current for I<sup>2</sup>S at 25 MHz is 15 mA, with a standard capacitive load of 6 pF (average) on all pins.

<sup>&</sup>lt;sup>4</sup> The chip reset signal is asserted when any supply voltage drops below the reset assertion threshold.

<sup>&</sup>lt;sup>5</sup>The transceiver comes out of reset when all the power supply and the reset pin voltages are above the reset deassertion threshold.

 $<sup>^6</sup>$   $I_{VOUT1}$  +  $I_{VOUT2}$  < 30 mA when  $V_{IN}$  is bus powered by a current limiting device like the ADP2360 from the upstream node.

<sup>&</sup>lt;sup>7</sup> Refer to the VREG Safe Operating Area section.

<sup>&</sup>lt;sup>8</sup> Applies to ADR1, ADR2, SCK, MISO, MOSI, SIOn, BCLK, SYNC, IRQ, and GPIO7 pins.

<sup>&</sup>lt;sup>9</sup> Applies to SDA and SCL pins in standard mode, fast mode, and fast mode plus.

<sup>&</sup>lt;sup>10</sup>Applies to SDA and SCL pins in fast mode and fast mode plus.

<sup>&</sup>lt;sup>11</sup>Applies when not in current limit with large capacitor bus loading.

Table 3. LVDS Input/Output Characteristics

| Parameter  |                                       | Conditions     | Min   | Тур | Max   | Unit |
|------------|---------------------------------------|----------------|-------|-----|-------|------|
| LVDS       |                                       |                |       |     |       |      |
| $ V_{OD} $ | Differential Output Voltage Magnitude | See Figure 27. | 0.455 |     | 0.630 | V    |
| Receiver   |                                       |                |       |     |       |      |
| $V_{TH}$   | Differential Input Threshold Voltage  |                | -85   |     | +85   | mV   |

#### **VREG Safe Operating Area**

Figure 6 through Figure 8 show the safe operating area for VREG VOUT1 and VOUT2. These specifications are supported only when the  $V_{\rm IN}$  supply can provide sufficient input current. For instance,  $V_{\rm IN}$  on RJ45 bus-powered subordinate nodes is sourced from a current-limited supply. See footnote 6 in Electrical Characteristics.

Note that the safe operating area graphs are supported over the specified junction temperature  $(T_J)$  of the device. Perform thermal simulation and/or thermal measurement to meet the  $T_J$  specification.

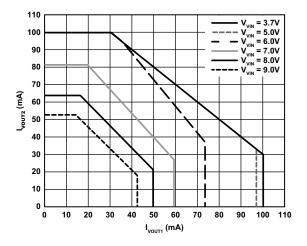



Figure 6. VREG VOUT1 Safe Operating Area, LVI\_MODE = 0

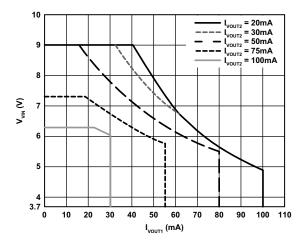



Figure 7.  $VREG\ VOUT2\ Safe\ Operating\ Area,\ LVI\_MODE=0$ 

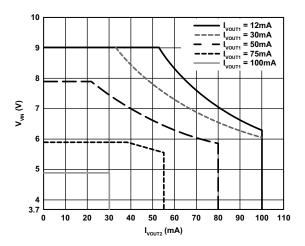



Figure 8. VREG VOUT1 and VOUT2 Safe Operating Area, LVI\_MODE = 0

### **VMTR ADC SPECIFICATIONS**

All specifications and characteristics apply across the entire operating conditions range unless otherwise noted.

| Parameter                                                       | Conditions                         | Min   | Тур | Max  | Unit |
|-----------------------------------------------------------------|------------------------------------|-------|-----|------|------|
| VMTR ACTIVE CURRENT                                             |                                    |       |     |      |      |
| I <sub>DD_VMTR_</sub> ACTIVE                                    |                                    | 35    |     | 58   | μΑ   |
| Resolution                                                      |                                    |       | 8   |      | Bits |
| DC ACCURACY                                                     |                                    |       |     |      |      |
| Applicable for A2B_VMTR_VLTG0 to<br>A2B_VMTR_VLTG4 <sup>1</sup> |                                    |       |     |      |      |
| Integral Nonlinearity (INL)                                     |                                    | -0.82 |     | 0.84 | LSB  |
| Differential Nonlinearity (DNL)                                 |                                    | -0.70 |     | 0.83 | LSB  |
| Offset Error                                                    |                                    | -2    |     | 2    | LSB  |
| Gain Error                                                      |                                    | -4    |     | 4    | LSB  |
| Applicable to A2B_VMTR_VLTG5 <sup>1</sup>                       |                                    |       |     |      |      |
| Integral Nonlinearity (INL)                                     | A2B_VMTR_VLTG5 range = 0 to 150 mV | -0.90 |     | 0.91 | LSB  |
| Differential Nonlinearity (DNL)                                 | A2B_VMTR_VLTG5 range = 0 to 150 mV | -0.77 |     | 0.77 | LSB  |
| Offset Error                                                    | A2B_VMTR_VLTG5 range = 0 to 150 mV | -2    |     | 2    | LSB  |
| Gain Error                                                      | A2B_VMTR_VLTG5 range = 0 to 150 mV | -5    |     | 5    | LSB  |
| Applicable to A2B_VMTR_VLTG6 <sup>1</sup>                       |                                    |       |     |      |      |
| Integral Nonlinearity (INL)                                     | A2B_VMTR_VLTG6 range = 0 to 150 mV | -0.89 |     | 0.84 | LSB  |
| Differential Nonlinearity (DNL)                                 | A2B_VMTR_VLTG6 range = 0 to 150 mV | -0.73 |     | 0.78 | LSB  |
| Offset Error                                                    | A2B_VMTR_VLTG6 range = 0 to 150 mV | -2    |     | 2    | LSB  |
| Gain Error                                                      | A2B_VMTR_VLTG5 range = 0 to 150 mV | -4    |     | 4    | LSB  |

 $<sup>^1</sup>$  See the Voltage Monitor ADC section in the AD2437  $A^2B$  Transceiver Technical Reference for details.

#### **POWER SUPPLY REJECTION RATIO (PSRR)**

Typical PSRR at  $T_I = 40$ °C.

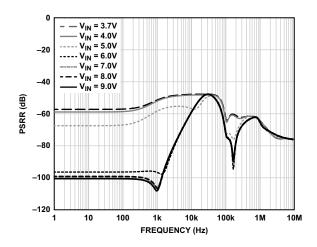



Figure 9. VOUT1 PSRR,  $I_{VOUT1}$  = 10 mA,  $C_{LOAD}$  = 4.7  $\mu$ F  $\parallel$  0.1  $\mu$ F

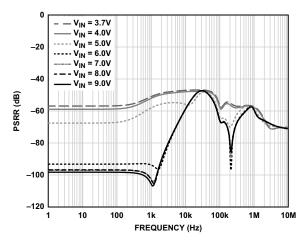



Figure 10. VOUT1 PSRR,  $I_{VOUT1}$  = 40 mA,  $C_{LOAD}$  = 4.7  $\mu$ F  $\parallel$  0.1  $\mu$ F

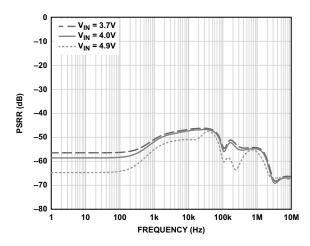



Figure 11. VOUT1 PSRR,  $I_{VOUT1} = 100$  mA,  $C_{LOAD} = 4.7 \mu$ F  $\parallel$  0.1  $\mu$ F

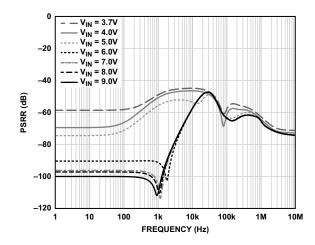



Figure 12. VOUT2 PSRR,  $I_{VOUT2}$  = 10 mA,  $C_{LOAD}$  = 6.8  $\mu$ F  $\parallel$  0.1  $\mu$ F

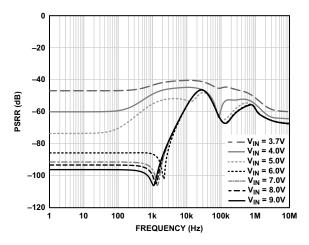



Figure 13. VOUT2 PSRR,  $I_{VOUT2}$  = 50 mA,  $C_{LOAD}$  = 6.8  $\mu$ F  $\parallel$  0.1  $\mu$ F

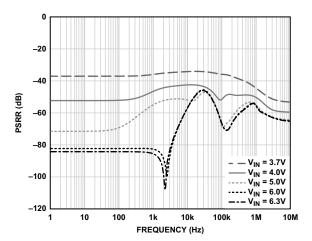



Figure 14. VOUT2 PSRR,  $I_{VOUT2}$  = 100 mA,  $C_{LOAD}$  = 6.8  $\mu$ F  $\parallel$  0.1  $\mu$ F

#### **TIMING SPECIFICATIONS**

All specifications and characteristics apply across the entire operating conditions range unless otherwise noted.

#### **Clock and Reset Timing**

Table 4 and Figure 15 describe clock and reset operations.

Table 4. Clock and Reset Timing

| Parame                              | Parameter                                                                |      | Тур                      | Max               | Unit               |
|-------------------------------------|--------------------------------------------------------------------------|------|--------------------------|-------------------|--------------------|
| Timing F                            | Requirements                                                             |      |                          |                   |                    |
| $f_{\text{SYNCM}}$                  | SYNC Pin Input Frequency Continuous Clock                                |      |                          |                   |                    |
|                                     | 44.1 kHz SYNC Input                                                      | 43.7 | 44.1                     | 44.5              | kHz                |
|                                     | 48 kHz SYNC Input                                                        | 47.5 | 48.0                     | 48.5              | kHz                |
| t <sub>SYNCIJ1</sub>                | SYNC Pin Input Jitter RMS TIE <sup>1</sup>                               |      |                          | 1.0               | ns                 |
| t <sub>MCLKIJ1</sub>                | Main Node Bit Clock Input Jitter RMS TIE <sup>1</sup>                    |      |                          | 1.0               | ns                 |
| t <sub>ACCESS</sub>                 | Device Access Time After Reset <sup>2</sup>                              | 1.5  |                          |                   | ms                 |
| $t_{RST}$                           | Reset Width <sup>3</sup>                                                 | 10   |                          |                   | μs                 |
| t <sub>DNSYNCR</sub> <sup>4</sup>   | Delay From First Missed SYNC Input to Reset (A <sup>2</sup> B Main Node) | 31   | 32                       | 33                | t <sub>SYNCM</sub> |
| t <sub>DNSCFR</sub> <sup>4, 5</sup> | Delay From First Missed SCF to Reset (A <sup>2</sup> B Subordinate Node) | 31   | 32                       | 33                | t <sub>SYNCM</sub> |
| $t_{\text{PLK}}$                    | PLL Lock Time                                                            |      | 7.5                      |                   | ms                 |
| $f_{SYSBCLK}$                       | A <sup>2</sup> B Bus Clock                                               |      | $1024 \times f_{SYNCM}$  |                   | kHz                |
| t <sub>SYSBCLK</sub>                | Bit-Period of A <sup>2</sup> B Bus Clock                                 |      | $1/(1024 \times f_{SY})$ | <sub>'NCM</sub> ) | ns                 |

 $<sup>^{1}</sup>$  Maximum allowed jitter which does not degrade THD + N performance in the last subordinate node.

<sup>&</sup>lt;sup>5</sup> Add 1024 if SUSTAIN = 1.

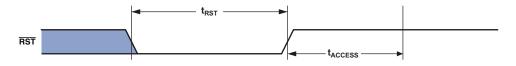



Figure 15. Reset Timing

#### I<sup>2</sup>C Port Timing

The transceiver conforms to the I<sup>2</sup>C specification v2.1.

 $<sup>^2</sup>$ The time it takes to access local registers via  $^2$ C/SPI once the reset pin is deasserted and the power supplies are stable.

 $<sup>^3</sup>$  Valid only when all the power supplies are stable. See Figure 15 for  $t_{\text{RST}}.$ 

<sup>&</sup>lt;sup>4</sup>Only consecutive missed SYNC or SCF transitions for the specified duration result in a reset.

#### I<sup>2</sup>S/TDM Port Timing

Table 5, Table 6, Figure 16, and Figure 17 describe I<sup>2</sup>S/TDM port operations. Note the following:

- The SIO0-SIO4 data pins on the I<sup>2</sup>S/TDM port can be configured for up to two PDM streams and up to five I<sup>2</sup>S/TDM streams, with a maximum of four I<sup>2</sup>S/TDM streams in the same direction. DTXn includes the DTX0, DTX1, DTX2, and DTX3 pins; and DRXn includes DRX0, DRX1, DRX2, and DRX3 in Table 5.
- The I<sup>2</sup>S/TDM target timing applies to the A<sup>2</sup>B main transceiver and the A<sup>2</sup>B subordinate transceiver operating in parallel bus mode.
- The I<sup>2</sup>S/TDM controller timing applies to the A<sup>2</sup>B subordinate transceiver.

Table 5. I<sup>2</sup>S/TDM Port—Controller Timing

|                                 |                                          | IOV | /DD = 1.8 V | IOV | /DD = 3.3 V |                    |
|---------------------------------|------------------------------------------|-----|-------------|-----|-------------|--------------------|
| Paramete                        | er                                       | Min | Max         | Min | Max         | Unit               |
| Timing Re                       | quirements                               |     |             |     |             |                    |
| $t_{RISM}$                      | DRXn Input Setup Before BCLK Sample Edge | 1.0 |             | 1.5 |             | ns                 |
| $t_{\text{RIHM}}$               | DRXn Input Hold After BCLK Sample Edge   | 5.5 |             | 2.0 |             | ns                 |
| Switching                       | Characteristics                          |     |             |     |             |                    |
| $f_{\text{BCLKM}}$              | BCLK Output Frequency <sup>1</sup>       |     | 25.0        |     | 50.0        | MHz                |
| $t_{\text{BCLKMOJ}}$            | BCLK Output Jitter (RMS Cycle to Cycle)  |     |             |     |             |                    |
|                                 | at $f_{BCLKSM} = 12.288 \text{ MHz}$     |     | 100         |     | 100         | ps                 |
|                                 | at $f_{BCLKSM} = 24.576 \text{ MHz}$     |     | 100         |     | 100         | ps                 |
| $t_{\text{SOL}}/t_{\text{SOH}}$ | Transmit or Receive BCLK Duty Cycle      | 49% | 51%         | 49% | 51%         | t <sub>BCLKM</sub> |
| $t_{\text{SOJ}}$                | SYNC Output Jitter (RMS Cycle to Cycle)  |     |             |     |             |                    |
|                                 | Normal Mode 48 kHz                       |     | 2.25        |     | 2.25        | ns                 |
|                                 | Increased Data Rate 2× SYNC              |     | 1.25        |     | 1.25        | ns                 |
|                                 | Increased Data Rate 4× SYNC              |     | 1.00        |     | 1.00        | ns                 |
| $t_{SOD}$                       | SYNC Output Delay After BCLK Drive Edge  |     | 9.75        |     | 9.75        | ns                 |
| $t_{SOHD}$                      | SYNC Output Hold After BCLK Drive Edge   | 3.0 |             | 4.5 |             | ns                 |
| $t_{DODM}$                      | DTXn Output Delay After BCLK Drive Edge  |     | 10.25       |     | 9.75        | ns                 |
| $t_{DOHM}$                      | DTXn Output Hold After BCLK Drive Edge   | 5.5 |             | 6.0 |             | ns                 |

<sup>&</sup>lt;sup>1</sup> When V<sub>IOVDD</sub> = 3.3 V, the setup and hold timing at the 50 MHz maximum bit clock rate can be violated when interfacing with other I<sup>2</sup>S devices. The timing violations are observed when the subordinate transceiver I<sup>2</sup>S/TDM port is receiving and the main transceiver I<sup>2</sup>S/TDM port is transmitting. In this case, the maximum BCLK frequency of 50 MHz cannot be achieved.

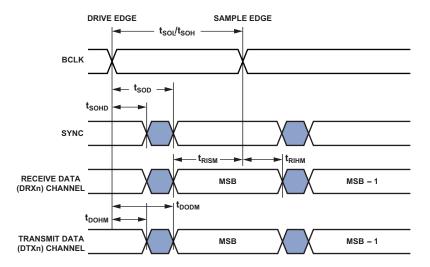



Figure 16. I<sup>2</sup>S/TDM Port—Controller Timing

Table 6. I<sup>2</sup>S/TDM Port—Target Timing

|                    |                                          | IOV  | DD = 1.8 V | IOV  | /DD = 3.3 V |      |
|--------------------|------------------------------------------|------|------------|------|-------------|------|
| Paramet            | ter                                      | Min  | Max        | Min  | Max         | Unit |
| Timing R           | equirements                              |      |            |      |             |      |
| t <sub>BCLKW</sub> | BCLK Width                               | 19.5 |            | 9.5  |             | ns   |
| t <sub>BCLKS</sub> | BCLK Period                              | 39.0 |            | 19.0 |             | ns   |
| $t_{SIS}$          | SYNC Input Setup Before BCLK Sample Edge | 2.25 |            | 2.25 |             | ns   |
| t <sub>SIH</sub>   | SYNC Input Hold After BCLK Sample Edge   | 2.0  |            | 2.5  |             | ns   |
| $t_{\text{RISS}}$  | DRXn Input Setup Before BCLK Sample Edge | 2.0  |            | 1.5  |             | ns   |
| $t_{\text{RIHS}}$  | DRXn Input Hold After BCLK Sample Edge   | 1.5  |            | 0.5  |             | ns   |
| Switchin           | g Characteristics                        |      |            |      |             |      |
| $t_{DODS}$         | DTXn Output Delay After BCLK Drive Edge  |      | 16.5       |      | 12.0        | ns   |
| $t_{\text{DOHS}}$  | DTXn Output Hold After BCLK Drive Edge   | 3.0  |            | 3.0  |             | ns   |

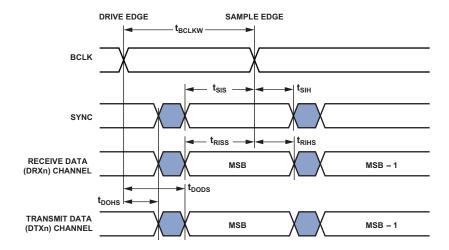



Figure 17. I<sup>2</sup>S/TDM Port—Target Timing

Table 7. I<sup>2</sup>S Target (A<sup>2</sup>B Main Node) DTXn Enable and Three-State Timing

|                                        |                                               |     | IOVDD = 1.8 V |     | IOVDD = 3.3 V |      |
|----------------------------------------|-----------------------------------------------|-----|---------------|-----|---------------|------|
| Paramet                                | ter                                           | Min | Max           | Min | Max           | Unit |
| Switching Characteristics <sup>1</sup> |                                               |     |               |     |               |      |
| t <sub>DOENM</sub>                     | DTXn Data Enable Delay After BCLK Drive Edge  | 5.0 |               | 4.0 |               | ns   |
| $t_{DODIM}$                            | DTXn Data Disable Delay After BCLK Drive Edge |     | 14.5          |     | 10.5          | ns   |

<sup>&</sup>lt;sup>1</sup> Refer to the A2B\_TXOFFSET register for three-state programming details.

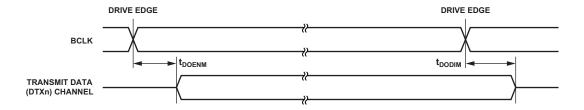



Figure 18. 1<sup>2</sup>S Target (A<sup>2</sup>B Main Node) DTXn Enable and Three-State Timing

Table 8. Pulse Density Modulation (PDM) Microphone Input Timing

|                       |                                                            | IOV   | /DD = 1.8 V | IOV   | DD = 3.3 V |      |
|-----------------------|------------------------------------------------------------|-------|-------------|-------|------------|------|
| Parameter             |                                                            | Min   | Max         | Min   | Max        | Unit |
| Timing Re             | equirements                                                |       |             |       |            |      |
| t <sub>PDMSS</sub>    | PDMn Input Setup Before BCLK/PDMCLK                        | 17.5  |             | 12.0  |            | ns   |
| t <sub>PDMHS</sub>    | PDMn Input Hold After BCLK/PDMCLK                          | 0     |             | 0     |            | ns   |
| Switching             | Characteristics                                            |       |             |       |            |      |
| $f_{PDMCLK}$          | BCLK/PDMCLK Output Frequency at f <sub>SYNC</sub> = 48 kHz | 3.040 | 3.104       | 3.040 | 3.104      | MHz  |
| t <sub>PDMCLKOJ</sub> | BCLK/PDMCLK Output Jitter RMS Cycle to Cycle               |       | 150         |       | 150        | ps   |
| t <sub>PDMCLKW</sub>  | BCLK/PDMCLK Output Pulse Width                             | 161.0 |             | 162.5 |            | ns   |

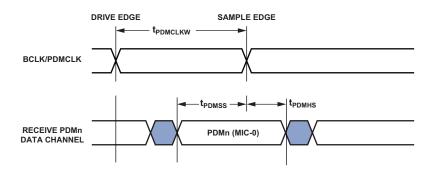



Figure 19. PDM Timing

### **GPIO** and **CLKOUT** Timing

Table 9 describes GPIO and CLKOUT operations.

Table 9. GPIO and CLKOUT Timing

| Paramete               | er                                    | Min                      | Тур | Max  | Unit |
|------------------------|---------------------------------------|--------------------------|-----|------|------|
| Timing Red             | quirement                             |                          |     |      |      |
| $t_{\text{GIPW}}$      | GPIO Input Pulse Width                | t <sub>SYSBCLK</sub> + 5 |     |      | ns   |
| Switching              | Characteristics                       |                          |     |      |      |
| $t_{GOPW}$             | GPIO Output Pulse Width               | t <sub>SYSBCLK</sub> – 1 |     |      | ns   |
| t <sub>CLKOUTJ</sub> 1 | CLKOUT Jitter RMS TIE for 48 kHz SYNC |                          |     |      |      |
|                        | at $f_{CLKOUT} = 12.288 \text{ MHz}$  |                          | 1.0 | 1.90 | ns   |
|                        | at $f_{CLKOUT} = 24.576 \text{ MHz}$  |                          | 1.0 | 1.95 | ns   |

<sup>&</sup>lt;sup>1</sup> Jitter measured at Subordinate Node 0.

#### Serial Peripheral Interface (SPI) Port—Master Timing

Table 10 and Figure 20 describe serial peripheral interface (SPI) port master operations.

Table 10. Serial Peripheral Interface (SPI) Port—Master Timing

|                                 |                                                              | IOVI  | DD = 1.8 V | IOVI  | DD = 3.3 V |      |
|---------------------------------|--------------------------------------------------------------|-------|------------|-------|------------|------|
| Parameter                       |                                                              | Min   | Max        | Min   | Max        | Unit |
| Timing Requiren                 | nents                                                        |       |            |       |            |      |
| $t_{\text{SMISO}}$              | Data Input Valid to SCK Sample Edge (Data Input Setup)       | 18.5  |            | 17.5  |            | ns   |
| t <sub>HMISO</sub>              | SCK Sample Edge to Data Input Invalid (Data Input Hold)      | 5.50  |            | 6.75  |            | ns   |
| Switching Chara                 | acteristics                                                  |       |            |       |            |      |
| t <sub>SCKM</sub> <sup>1</sup>  | SCK Period                                                   | 80.3  |            | 80.5  |            | ns   |
| $f_{SCKHM}^{1}$                 | SCK High Period                                              | 32.75 |            | 39.5  |            | ns   |
| t <sub>SCKLM</sub> <sup>1</sup> | SCK Low Period                                               | 37.0  |            | 39.7  |            | ns   |
| t <sub>DMOSI</sub>              | SCK Drive Edge to Data Out Valid (Data Out Delay)            |       | 9.00       |       | 3.25       | ns   |
| t <sub>HDMOSI</sub>             | SCK Drive Edge to Data Out Invalid (Data Out Hold)           | 0.5   |            | 0.5   |            | ns   |
| $t_{SSSM}^{-1}$                 | SPISSELn Assertion to First SCK Edge                         | 75.75 |            | 77.00 |            | ns   |
| t <sub>HSSM</sub> <sup>1</sup>  | Last SCK Edge to SPISSELn Deassertion                        | 35.50 |            | 36.75 |            | ns   |
| t <sub>SSPWM</sub>              | SPISSELn Pulse Width High (Inactive State Between Transfers) | 11.25 |            | 11.25 |            | ns   |

 $<sup>^{1}</sup>$  Measured at  $f_{SCKM} = 1/t_{SCKM} = 12.288$  MHz. Specification scales with  $f_{SCKM}$ .

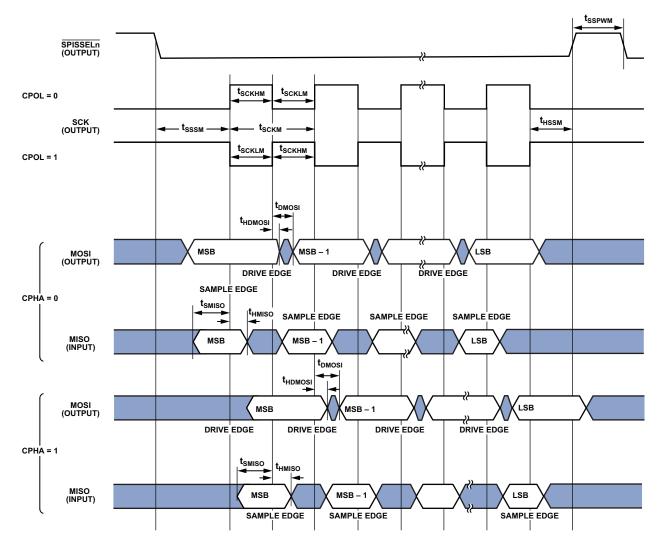



Figure 20. Serial Peripheral Interface (SPI) Port—Master Timing

#### Serial Peripheral Interface (SPI) Port—Slave Timing

Table 11 and Figure 21 describe serial peripheral interface (SPI) port slave operations.

Table 11. Serial Peripheral Interface (SPI) Port—Slave Timing

|                   |                                                           | IOVI  | DD = 1.8 V | IOVI  | DD = 3.3 V |      |
|-------------------|-----------------------------------------------------------|-------|------------|-------|------------|------|
| Parameter         |                                                           | Min   | Max        | Min   | Max        | Unit |
| Timing Requir     | ements                                                    |       |            |       |            |      |
| t <sub>scks</sub> | SCK Period                                                | 66.67 |            | 66.67 |            | ns   |
| SCKHS             | SCK High Period                                           | 30    |            | 30    |            | ns   |
| SCKLS             | SCK Low Period                                            | 30    |            | 30    |            | ns   |
| SMOSI             | Data Input Valid to SCK Sample Edge (Data Input Setup)    | 2.0   |            | 1.0   |            | ns   |
| HMOSI             | SCK Sample Edge to Data Input Invalid (Data Input Hold)   | 1.8   |            | 0.5   |            | ns   |
| SSS               | SPISS Assertion to First SCK Edge                         | 7.0   |            | 8.0   |            | ns   |
| HSS               | Last SCK Edge to SPISS Deassertion                        | 10.75 |            | 9.75  |            | ns   |
| SSPWS             | SPISS Pulse Width High (Inactive State Between Transfers) | 25    |            | 25    |            | ns   |
| witching Cha      | nracteristics                                             |       |            |       |            |      |
| DSSOE             | SPISS Assertion to Data Out Active                        | 4.50  | 28.50      | 2.50  | 17.50      | ns   |
| DSSHI             | SPISS Deassertion to Data Out High Impedance              | 1.25  | 22.00      | 1.25  | 12.75      | ns   |
| DMISO             | SCK Drive Edge to Data Out Valid (Data Out Delay)         |       | 19.50      |       | 10.75      | ns   |
| HDMISO            | SCK Drive Edge to Data Out Invalid (Data Out Hold)        | 2.50  |            | 3.50  |            | ns   |

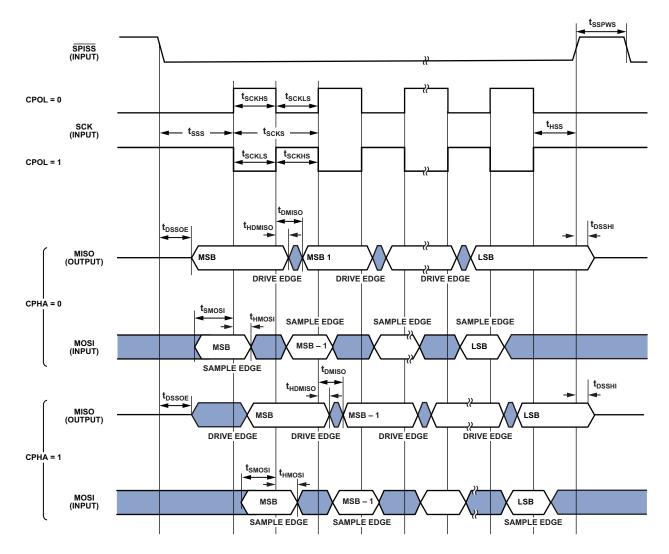



Figure 21. Serial Peripheral Interface (SPI) Port—Slave Timing

#### **Pulse Width Modulation (PWM) Timing**

Table 12 describes pulse width modulation (PWM) operations.

Table 12. Pulse Width Modulation (PWM) Timing

| Paramete              | r                    | Min                     | Тур | Max                  | Unit |
|-----------------------|----------------------|-------------------------|-----|----------------------|------|
| Switching (           | Characteristics      |                         |     |                      |      |
| $f_{\text{PWM}}$      | PWM Frequency        | f <sub>SYNCM</sub> /256 |     | $f_{SYNCM} \times 4$ | Hz   |
| $t_{PWM\_ON}$         | PWM Minimum ON Time  | 0                       |     |                      | ns   |
| $t_{\text{PWM\_OFF}}$ | PWM Minimum OFF Time | 18                      |     |                      | ns   |

#### A<sup>2</sup>B BUS SYSTEM SPECIFICATION

Table 13. A<sup>2</sup>B System Specifications

| Parameter                                                                      | System Specification                                                                                                                                                                                                                                                                                                                                                |
|--------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Cable                                                                          | CAT5e/CAT6/CAT7; XLR/DMX; or single-pair wire                                                                                                                                                                                                                                                                                                                       |
| Maximum Cable Length                                                           | 300 m total, up to 30 m between nodes                                                                                                                                                                                                                                                                                                                               |
| Maximum Number of Nodes                                                        | 17 nodes (1 main node and 16 subordinate nodes) <sup>1</sup>                                                                                                                                                                                                                                                                                                        |
| Maximum A <sup>2</sup> B Bus Bandwidth                                         | $1024 \times f_{SYNCM}$                                                                                                                                                                                                                                                                                                                                             |
| Maximum Number of A <sup>2</sup> B Data Slots                                  | 64 total, up to 32 upstream and 32 downstream data slots. It includes SPI data tunnel slots and audio data slots. The number of SPI data tunnel slots can be configured between 2 and 12; the number of audio slots can be configured between 0 to 32 depending upon system design. See the <i>AD2437 A</i> <sup>2</sup> <i>B Transceiver Technical Reference</i> . |
| Number of Audio TDM Channels per Node                                          | Individually programmable 0 to 32 upstream channels and 0 to 32 downstream channels                                                                                                                                                                                                                                                                                 |
| Synchronous A <sup>2</sup> B Data Slot Size                                    | 8, 12, 16, 20, 24, 28, or 32 bits to match $l^2S/TDM$ data-word lengths. Same slot size for all nodes. Upstream and downstream can choose different slot sizes. 12-, 16-, or 20-bit slot sizes can carry compressed data over the $A^2B$ bus for 16-, 20-, or 24-bit $l^2S/TDM$ word lengths.                                                                       |
| Audio Sampling Frequency                                                       | 44.1 kHz or 48 kHz. All nodes sample synchronously. Subordinate node transceivers support sample rates ( $f_s$ ) of 1× (48 kHz), 2× (96 kHz) or 4× (192 kHz), individually configured per subordinate node.                                                                                                                                                         |
|                                                                                | Subordinate node transceivers also support reduced rate sampling for 24 kHz, 12 kHz, 6 kHz, 4 kHz, 3 kHz, 2.4 kHz, 2 kHz, 1.71 kHz, or 1.5 kHz at a low latency 48 kHz superframe rate. See the <i>AD2437 A</i> <sup>2</sup> <i>B Transceiver Technical Reference</i> for more information.                                                                         |
| Discovery Time                                                                 | <50 ms per node and <<500 ms for total system startup in a system with 10 nodes (includes register initialization)                                                                                                                                                                                                                                                  |
| Maximum Current Supported During Discovery per Node (I <sub>SYS_DSCVRY</sub> ) | 250 mA                                                                                                                                                                                                                                                                                                                                                              |
| Maximum Capacitive Load per Bus Powered Subordinate Node C <sub>SUB</sub>      | 1000 μF                                                                                                                                                                                                                                                                                                                                                             |
| Bit Error Detection and Correction                                             | Robust error detection for control data and status data with 16-bit cyclic redundancy check (CRC)                                                                                                                                                                                                                                                                   |
|                                                                                | Parity and line code error detection on synchronous data slots with audio error correction (repeat of last known good data).                                                                                                                                                                                                                                        |
|                                                                                | For 24-bit and 32-bit data channels, single error correction and double error detection (SECDED) of synchronous data slots is possible.                                                                                                                                                                                                                             |
| Line Fault Diagnostics                                                         | Location and cause of fault can be detected for A <sup>2</sup> B wires shorted to a high voltage (for example, positive terminal of car battery), shorted to ground, wires shorted to each other, wires reversed, wires open, or wrong port connection. See the <i>AD2437 A<sup>2</sup>B Transceiver Technical Reference</i> for more information.                  |
| System EMI/EMC                                                                 | Meets or exceeds industry specification for robustness                                                                                                                                                                                                                                                                                                              |

 $<sup>^{\</sup>rm 1}$  Local power nodes are needed to maintain data sheet-specified supply voltages at each node.

#### RMS Time Interval Error (TIE) Jitter

Clocks in an  $A^2B$  system are passed from the main node to Subordinate Node 0, from Subordinate Node 0 to Subordinate Node 1, and so on. Each transceiver adds self jitter to the incoming jitter, which results in jitter growth from the main node to the  $n^{th}$  subordinate node. Table 14 illustrates typical RMS TIE jitter growth.

Table 14. SYNC Output RMS TIE Jitter at Each Subordinate Node<sup>1</sup>

| Subordinate Node | Тур  | Max  | Unit |
|------------------|------|------|------|
| 1                | 1.25 | 2.28 | ns   |
| 2                | 1.47 | 2.29 | ns   |
| 3                | 1.59 | 2.41 | ns   |
| 4                | 1.76 | 2.59 | ns   |
| 5                | 1.88 | 2.95 | ns   |
| 6                | 1.99 | 3.18 | ns   |
| 7                | 2.14 | 3.57 | ns   |
| 8                | 2.24 | 3.08 | ns   |
| 9                | 2.31 | 4.01 | ns   |
| 10               | 2.48 | 4.24 | ns   |
| 11               | 2.60 | 4.31 | ns   |
| 12               | 2.66 | 4.35 | ns   |
| 13               | 2.70 | 4.55 | ns   |
| 14               | 2.75 | 4.59 | ns   |
| 15               | 2.80 | 4.70 | ns   |
| 16               | 2.95 | 4.89 | ns   |

 $<sup>^{1}\,\</sup>text{Measured}$  at  $f_{\text{SYNC}}$  = 48 kHz.

Table 15. BCLK Output RMS TIE Jitter at Each Subordinate Node<sup>1</sup>

| Subordinate Node | Тур  | Max  | Unit |
|------------------|------|------|------|
| 1                | 1.19 | 2.09 | ns   |
| 2                | 1.39 | 2.21 | ns   |
| 3                | 1.59 | 2.33 | ns   |
| 4                | 1.76 | 2.51 | ns   |
| 5                | 1.86 | 2.86 | ns   |
| 6                | 1.91 | 3.11 | ns   |
| 7                | 2.06 | 3.31 | ns   |
| 8                | 2.21 | 3.45 | ns   |
| 9                | 2.28 | 3.84 | ns   |
| 10               | 2.31 | 4.00 | ns   |
| 11               | 2.47 | 4.03 | ns   |
| 12               | 2.57 | 4.06 | ns   |
| 13               | 2.74 | 4.28 | ns   |
| 14               | 2.78 | 4.38 | ns   |
| 15               | 2.83 | 4.50 | ns   |
| 16               | 2.88 | 4.60 | ns   |

 $<sup>^{1}</sup>$  Measured at  $f_{BCLK} = 3.072$  MHz.

#### POWER-UP SEQUENCING RESTRICTIONS

There are no power-up sequencing restrictions. The transceiver remains in the reset state until all of the supplies (VIN, IOVDD, DVDD, and TRXVDD) power up. Additionally, the hardware reset pin can be deasserted once all of the power domains are stable. To avoid damage to the input pins,  $V_{\rm IOVDD}$  must be within specification before the external devices drive the input signals, except the SCL and SDA pins.

#### PDM TYPICAL PERFORMANCE CHARACTERISTICS

Figure 22 through Figure 26 and Table 16 describe typical PDM performance characteristics.

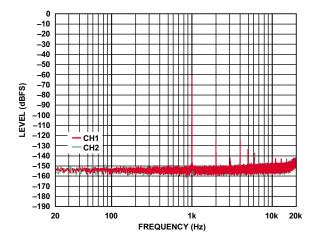



Figure 22. PDM FFT,  $f_{SYNCM} = 48 \text{ kHz}$ , -60 dBFS Input

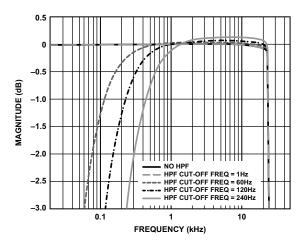



Figure 23. PDM Frequency Response ( $f_{SYNCM} = 48 \text{ kHz}$ )

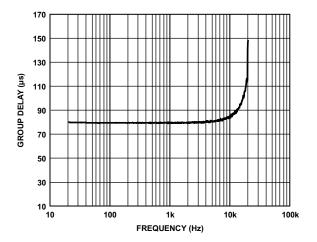



Figure 24. PDM Group Delay vs. Frequency,  $f_{\text{SYNCM}} = 48 \text{ kHz}$ 

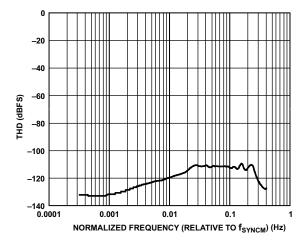



Figure 25. PDM Total Harmonic Distortion (THD) vs. Normalized Frequency (Relative to f<sub>SYNCM</sub>)

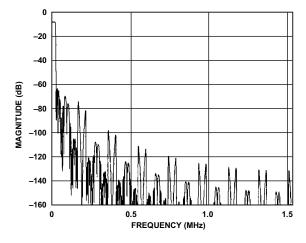



Figure 26. PDM Out of Band Frequency Response ( $f_{SYNCM} = 48 \text{ kHz}$ )

Table 16. PDM Interface Performance Specifications

| Parameter                            | Conditions                           | Min  | Тур   | Max   | Unit                      |
|--------------------------------------|--------------------------------------|------|-------|-------|---------------------------|
| Dynamic Range with A-Weighted Filter | 20 Hz to 20 kHz, -60 dBFS input      |      | 120   |       | dB                        |
| SNR with A-Weighted Filter           | 20 Hz to 20 kHz                      |      | 108   |       | dB                        |
| Decimation Ratio <sup>1</sup>        | Default is 64×                       | 64×  |       | 256×  |                           |
| Frequency Response <sup>2</sup>      | DC to 0.45 f <sub>SYNCM</sub>        | -0.1 |       | +0.01 | dB                        |
| Stop Band                            |                                      |      | 0.566 |       | f <sub>SYNCM</sub>        |
| Attenuation                          |                                      | 74   |       |       | dB                        |
| Group Delay                          | 0.02 f <sub>SYNCM</sub> input signal |      | 3.80  |       | f <sub>SYNCM</sub> cycles |
| Gain                                 | PDM to PCM                           |      | 0     |       | dB                        |
| Start-Up Time <sup>3</sup>           |                                      |      | 48    |       | f <sub>SYNCM</sub> cycles |
| Bit Width                            | Internal and output                  |      | 24    |       | Bits                      |

 $<sup>^{\</sup>rm 1}{\rm The}$  decimation ratio is controlled by the A2B\_PDMCTL.PDMRATE field.

<sup>&</sup>lt;sup>2</sup> Measured with the high pass filter (HPF) disabled. Refer to Figure 23 for the frequency response with the HPF enabled at different cut-off frequencies.

<sup>&</sup>lt;sup>3</sup> The PDM start-up time is the time for the filters to settle after the PDM block is enabled. It is the time to wait before data is guaranteed to meet the specified performance.

#### **ABSOLUTE MAXIMUM RATINGS**

Stresses at or above those listed in Table 17 can cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability.

**Table 17. Absolute Maximum Ratings** 

| Parameter                                     | Rating                                               |
|-----------------------------------------------|------------------------------------------------------|
| VIN to VSS                                    | -0.3 V to +30 V                                      |
| VBUS to VSS                                   | -0.3 V to +30 V                                      |
| Power Supply IOVDD to IOVSS                   | -0.3 V to +3.63 V                                    |
| Power Supply DVDD to DVSS                     | -0.3 V to +1.98 V                                    |
| Power Supply PLLVDD to PLLVSS                 | -0.3 V to +1.98 V                                    |
| Power Supply TRXVDD to TRXVSS                 | -0.3 V to +3.63 V                                    |
| Digital Pin Output Voltage Swing <sup>1</sup> | $-0.3 \text{ V to V}_{\text{IOVDD}} + 0.5 \text{ V}$ |
| Pin Voltage While IOVDD is Unbiased           |                                                      |
| I <sup>2</sup> C Pins SCL and SDA             | -0.3 V to +5.5 V                                     |
| Other Digital Pins <sup>1</sup>               | -0.3 V to +0.3 V                                     |
| Pin Voltage While IOVDD is Biased             |                                                      |
| I <sup>2</sup> C Pins SCL and SDA             | -0.3 V to +5.5 V                                     |
| Other Digital Pins <sup>2, 3</sup>            | -0.3 V to +2.10 V                                    |
| Other Digital Pins <sup>2, 4</sup>            | -0.3 V to +3.63 V                                    |
| A <sup>2</sup> B Bus Terminal Voltage         |                                                      |
| (AP, AN, BP, and BN Pins)                     | -0.3 V to +4.1 V                                     |
| Voltage to VSS                                |                                                      |
| ISENSEP, ISENSEN, VSENSEP, VSENSEN            | -0.3 V to +30 V                                      |
| SWN                                           | -0.3 V to +7 V                                       |
| ISENSEP                                       | V <sub>VBUS</sub> ±7 V                               |
| SWP to VSENSEP                                | -0.3 V to +8 V                                       |
| Storage Temperature Range                     | -65°C to +150°C                                      |
| Junction Temperature While Biased             | -40°C to +125°C                                      |
| Digital Pin Output Current per Pin            | 15 mA                                                |
| Group <sup>5</sup>                            |                                                      |

 $<sup>^{1}</sup>$  Applies to BCLK, SYNC, ADR1, ADR2, SCK, MISO, MOSI, SIOn, IRQ, and GPIO7 pins.

Permanent damage can occur if the digital pin output current per pin group value is exceeded. For example, if three pins from Group 2 in the Total Current Pin Groups table are sourcing or sinking 2 mA each, the total current for those pins is 6 mA. Up to 9 mA can be sourced or sunk by the remaining pins in the group without damaging the device.

**Table 18. Total Current Pin Groups** 

| Group | Pins in Group                                                                                  |  |  |  |  |
|-------|------------------------------------------------------------------------------------------------|--|--|--|--|
| 1     | SIO0, SIO1, SIO2, SYNC, BCLK                                                                   |  |  |  |  |
| 2     | SIO3, SIO4, GPIO7                                                                              |  |  |  |  |
| 3     | SDA <sup>1</sup> , SCL <sup>1</sup> , MISO <sup>2</sup> , MOSI <sup>2</sup> , SCK <sup>2</sup> |  |  |  |  |
| 4     | ADR1, ADR2, IRQ                                                                                |  |  |  |  |

<sup>&</sup>lt;sup>1</sup> Applicable when SCL and SDA are used as GPIO.

#### **ESD CAUTION**



#### ESD (electrostatic discharge) sensitive device.

Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

 $<sup>^2</sup>$  Applies to BCLK, SYNC, ADR1, ADR2, SCK, MISO, MOSI, SIOn,  $\overline{RST},$  and GPIO7 pins.

 $<sup>^3</sup>$  Applies when nominal  $V_{\rm IOVDD}$  is 1.8 V.

 $<sup>^4</sup>$  Applies when nominal  $V_{\rm IOVDD}$  is 3.3 V.

<sup>&</sup>lt;sup>5</sup> For more information, see the following description and Table 18.

<sup>&</sup>lt;sup>2</sup> PWM pins are multiplexed with SPI pins and cannot directly drive high power LEDs. An LED driver can be interfaced to drive high power LEDs.

#### THERMAL CHARACTERISTICS

The AD2437 A<sup>2</sup>B transceiver is rated for performance over the temperature range specified in Operating Conditions.

The JESD51 package thermal characteristics in this section are provided for package comparison and estimation purposes only. They are not intended for accurate system temperature calculation. System thermal simulation is required for accurate temperature analysis that accounts for all specific 3D system design features, including, but not limited to other heat sources, use of heat-sinks, and the system enclosure. Contact Analog Devices for package thermal models that are intended for use with thermal simulation tools.

In Table 19, airflow measurements comply with JEDEC standards JESD51-13, and the junction-to-board measurement complies with JESD51-8. Test board design complies with JEDEC standards JESD51-7 for leaded surface mount packages. The junction-to-case measurement complies with MIL-STD-883 (Method 1012.1). All measurements use a 2S2P JEDEC test board.

To estimate the junction temperature of a single device while on a JEDEC 2S2P PCB, use:

$$T_I = T_{CASE} + (\Psi_{IT} \times P_D)$$

where:

 $T_I$  is the junction temperature (°C).

 $T_{CASE}$  is the case temperature (°C) measured at the top center of the package.

 $\Psi_{JT}$  is the typical value (junction-to-top of package characterization parameter) from Table 19.

 $P_D$  is the power dissipation.

Values of  $\theta_{JA}$  are provided for package comparison and PCB design considerations.  $\theta_{JA}$  can be used for a first-order approximation of  $T_J$  by the equation:

$$T_I = T_A + \theta_{IA} \times P_D$$

where  $T_A$  is the ambient temperature (°C).

Values of  $\theta_{JB}$  are provided for package comparison and PCB design considerations when an external heat sink is required.

The 48-lead LFCSP package requires thermal trace squares and thermal vias to an embedded ground plane in the PCB. The exposed paddle must connect to ground for proper operation and to meet data sheet specifications. Refer to JEDEC standard JESD51-5 for more information.

Note that the thermal characteristics values provided in Table 19 are modeled values.

Table 19. Thermal Characteristics

| Parameter           | Conditions      | Typical (°C/W) |
|---------------------|-----------------|----------------|
| $\theta_{JA}$       | Airflow = 0 m/s | 23.256         |
| $\theta_{JMA}$      | Airflow = 1 m/s | 20.98          |
| $\theta_{JMA}$      | Airflow = 2 m/s | 20.19          |
| $\theta_{JB}$       | Airflow = 0 m/s | 5.8            |
| $\Psi_{	extsf{JT}}$ | Airflow = 0 m/s | 0.16           |
| $\Psi_{	extsf{JT}}$ | Airflow = 1 m/s | 0.28           |
| $\Psi_{	extsf{JT}}$ | Airflow = 2 m/s | 0.36           |

## TEST CIRCUITS AND SWITCHING CHARACTERISTICS

Figure 27 shows a line driver voltage measurement circuit of the differential line driver and receiver AP/AN and BP/BN pins.

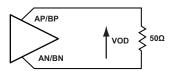



Figure 27. Differential Line Driver Voltage Measurement

#### **OUTPUT DRIVE CURRENTS**

Figure 28 through Figure 33 show typical current voltage characteristics for the output drivers of the transceiver. The curves represent the current drive capability of the output drivers as a function of output voltage. Drive strength 0 is DS0, and drive strength 1 is DS1.

Note the following:

- I<sup>2</sup>C pins only support high drive strength (DS1).
- Digital I/Os include ADR1, ADR2, SCK, MISO, MOSI, SIOn, BCLK, SYNC, IRQ, and GPIO7 pins.

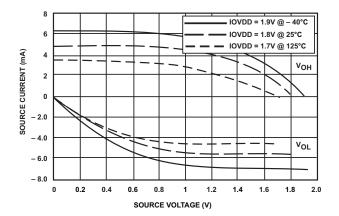



Figure 28. Digital I/O Drivers (DS0, 1.8 V IOVDD)

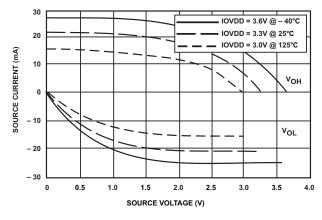



Figure 29. Digital I/O Drivers (DS0, 3.3 V IOVDD)

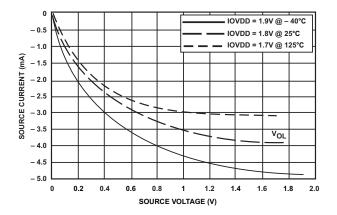



Figure 30.  $l^2C$  Drivers (1.8 V IOVDD)

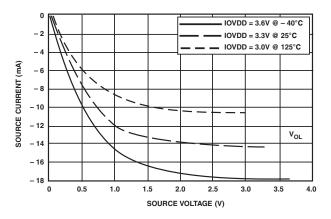



Figure 31. 1<sup>2</sup>C Drivers (3.3 V IOVDD)

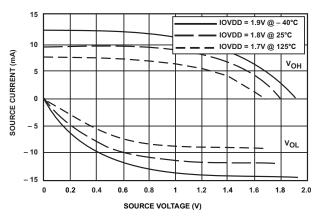



Figure 32. Digital I/O Drivers (DS1, 1.8 V IOVDD)

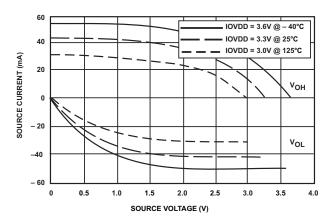



Figure 33. Digital I/O Drivers (DS1, 3.3 V IOVDD)

#### **TEST CONDITIONS**

All timing parameters appearing in this data sheet were measured under the conditions described in this section. Figure 34 shows the measurement point for ac measurements (except output enable/disable). The measurement point,  $V_{\text{MEAS}}$ , is  $V_{\text{IOVDD}}/2$  for  $V_{\text{IOVDD}}$  (nominal) = 3.3 V.



Figure 34. Voltage Reference Levels for AC Measurements (Except Output Enable/Disable)

#### **Output Enable Time Measurement**

Output pins are considered enabled when they make a transition from a high impedance state to the point when they start driving.

The output enable time,  $t_{\rm ENA}$ , is the interval from the point when a reference signal reaches a high or low voltage level to the point when the output starts driving, as shown on the right side of Figure 35. If multiple pins are enabled, the measurement value is that of the first pin to start driving.

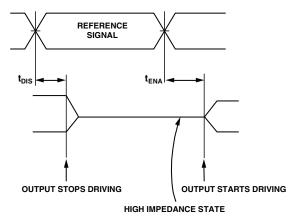
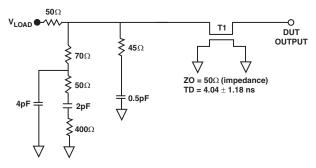



Figure 35. Output Enable/Disable


#### **Output Disable Time Measurement**

Output pins are considered disabled when they stop driving, enter a high impedance state, and start to decay from the output high or low voltage. The output disable time,  $t_{DIS}$ , is the interval from when a reference signal reaches a high or low voltage level to the point when the output stops driving, as shown on the left side of Figure 35.

#### **Capacitive Loading**

Output delays and holds are based on standard capacitive loads of an average of 6 pF on all pins (see Figure 36).  $V_{\rm LOAD}$  is equal to  $V_{\rm IOVDD}/2$ . Figure 37 through Figure 40 show how output rise time varies with capacitance. The delay and hold specifications given must be derated by a factor derived from these figures. The graphs in Figure 37 through Figure 40 cannot be linear outside the ranges shown.

#### TESTER PIN ELECTRONICS



#### NOTES:

THE WORST CASE TRANSMISSION LINE DELAY IS SHOWN AND CAN BE USED FOR THE OUTPUT TIMING ANALYSIS TO REFLECT THE TRANSMISSION LINE EFFECT AND MUST BE CONSIDERED. THE TRANSMISSION LINE (TD) IS FOR LOAD ONLY AND DOES NOT AFFECT THE DATA SHEET TIMING SPECIFICATIONS.

ANALOG DEVICES RECOMMENDS USING THE IBIS MODEL TIMING FOR A GIVEN SYSTEM REQUIREMENT. IF NECESSARY, THE SYSTEM CAN INCORPORATE EXTERNAL DRIVERS TO COMPENSATE FOR ANY TIMING DIFFERENCES.

Figure 36. Equivalent Device Loading for AC Measurements (Includes All Fixtures)

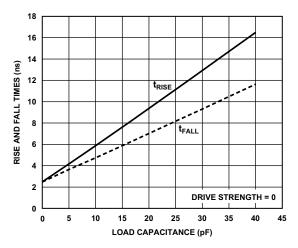



Figure 37. Digital I/O Driver Typical Rise and Fall Times (10% to 90%) vs. Load Capacitance ( $V_{IOVDD} = 1.8 \text{ V}$ ,  $T_J = 25 ^{\circ}\text{C}$ )

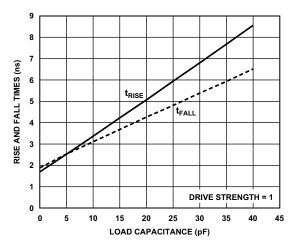



Figure 38. Digital I/O Driver Typical Rise and Fall Times (10% to 90%) vs. Load Capacitance ( $V_{IOVDD} = 1.8 \text{ V}, T_J = 25 ^{\circ}\text{C}$ )



Figure 39. Digital I/O Driver Typical Rise and Fall Times (10% to 90%) vs. Load Capacitance ( $V_{IOVDD} = 3.3 \text{ V}, T_J = 25 ^{\circ}\text{C}$ )

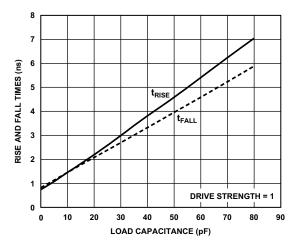



Figure 40. Digital I/O Driver Typical Rise and Fall Times (10% to 90%) vs. Load Capacitance ( $V_{\text{NOVDD}} = 3.3 \text{ V}$ ,  $T_{\text{J}} = 25^{\circ}\text{C}$ )

In Figure 37 through Figure 40, digital I/Os include ADR1, ADR2, SCK, MISO, MOSI, SIOn, BCLK, SYNC, IRQ, and GPIO7 pins.

### PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

Package pin information is shown in Figure 41. The pin function descriptions are shown in Table 20.

All digital inputs and digital outputs are three-stated with inputs disabled during reset.

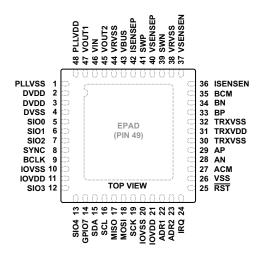



Figure 41. Package Pin Configuration

Table 20. AD2437 Pin Function Descriptions

| Pin No. | Pin Name             | Type | Alternate<br>Functions <sup>1</sup> | Description                                                                                                                                                                                                                                                                                                                                                                               |
|---------|----------------------|------|-------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1       | PLLVSS               | PWR  | None                                | <b>Power supply pin for PLLVDD return currents.</b> This pin must be connected to a low impedance local ground plane.                                                                                                                                                                                                                                                                     |
| 2, 3    | DVDD                 | PWR  | None                                | <b>Power supply pin for digital core logic.</b> This pin must be connected to VOUT1.                                                                                                                                                                                                                                                                                                      |
| 4       | DVSS                 | PWR  | None                                | <b>Power supply pin for DVDD return currents.</b> This pin must be connected to a low impedance local ground plane.                                                                                                                                                                                                                                                                       |
| 5       | SIO0 <sup>2, 3</sup> | D_IO | PDM0<br>GPIO0                       | <b>Serial I/O pin 0.</b> This pin is a I <sup>2</sup> S/TDM receive data pin (DRX0). When PDM functions are enabled, this pin is a microphone input pin (PDM0). When not used for serial input, this pin can be configured as a general-purpose I/O pin (GPIO0).                                                                                                                          |
| 6       | SIO1 <sup>2,3</sup>  | D_IO | PDM1<br>GPIO1                       | <b>Serial I/O pin 1.</b> This pin is a configurable I <sup>2</sup> S/TDM data pin (DRX1 or DTX3). When PDM functions are enabled, this pin is a microphone input pin (PDM1). When not used for serial I/O, this pin can be configured as a general-purpose I/O pin (GPIO1).                                                                                                               |
| 7       | SIO2 <sup>2, 3</sup> | D_IO | ASPISS SPISSEL1 GPIO2               | <b>Serial I/O pin 2.</b> This pin is a configurable I <sup>2</sup> S/TDM data pin (DRX2 or DTX2). When not used for serial I/O, this pin can be configured as the alternate SPI slave-select input pin (ASPISS) or as an SPI slave-select output pin (SPISSEL1). When not used for I <sup>2</sup> S/TDM or SPI purposes, this pin can be configured as a general-purpose I/O pin (GPIO2). |

Table 20. AD2437 Pin Function Descriptions (Continued)

| Pin No. | Pin Name            | Туре    | Alternate<br>Functions <sup>1</sup> | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|---------|---------------------|---------|-------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 8       | SYNC <sup>4</sup>   | D_IO    | None                                | <b>Synchronization signal.</b> This signal frames the multichannel I <sup>2</sup> S/TDM data stream.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|         |                     |         |                                     | For the main transceiver, this pin is a digital input driven by the host. In addition to I <sup>2</sup> S/TDM communication, this signal is also used as a PLL input by the main transceiver. This signal must be continuous and stable because the main transceiver derives all clocking information for itself and for the A <sup>2</sup> B bus from this signal. When this pin stops toggling, the A <sup>2</sup> B bus resets after a delay due to the PLL unlock operation. For more information, see Table 4.                                                                                                                                                       |
|         |                     |         |                                     | For subordinate transceivers, this pin is a digital output. It is driven based on the frame rate (normal, increased, or reduced). In parallel A <sup>2</sup> B bus mode, this pin is a digital input, wherein it accepts the SYNC signal from a paired subordinate transceiver.                                                                                                                                                                                                                                                                                                                                                                                           |
| 9       | BCLK⁴               | D_IO    | PDMCLK                              | <b>Bit clock.</b> This pin is the bit clock for the I <sup>2</sup> S/TDM interface. For the main transceiver, this pin is a digital input (driven by the host) based on the TDM mode and channel size.                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|         |                     |         |                                     | For subordinate transceivers, this pin is a digital output. It is driven based on the frame rate, TDM mode, and channel size configurations. It can also drive the clock for the PDM microphones. In parallel A <sup>2</sup> B bus mode, this pin is a digital input, wherein it accepts the bit clock from a paired subordinate transceiver.                                                                                                                                                                                                                                                                                                                             |
| 10      | IOVSS               | PWR     | None                                | Power supply pin for IOVDD return current.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 11      | IOVDD               | PWR     | None                                | This pin must be connected to a low impedance local ground plane. <b>Power supply pin for digital input and output pins.</b> The digital output pins are supplied from IOVDD, which also sets the highest input voltage that is allowed on the digital input pins. Two I/O voltage ranges are supported (see V <sub>IOVDD</sub> specifications in the Operating Conditions section). The current draw of these pins is variable and depends on the loads of the digital outputs. IOVDD can be sourced by either the VOUT1 or VOUT2 pin. However, if the signals do not originate from logic supplied by the VOUT1 pin or VOUT2 pin, source IOVDD with an external supply. |
| 12      | SIO3 <sup>2,3</sup> | D_IO    | GPIO3                               | <b>Serial I/O pin 3.</b> This pin is a configurable I <sup>2</sup> S/TDM data pin (DRX3 or DTX1). When not used for serial I/O, this pin can be configured as a general-purpose I/O pin (GPIO3).                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 13      | SIO4 <sup>2,3</sup> | D_IO    | GPIO0                               | <b>Serial I/O pin 4.</b> This pin is an I <sup>2</sup> S/TDM transmit data pin (DTX0). When not used for serial I/O, this pin can be configured as a general-purpose I/O pin (GPIO0).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 14      | GPIO7 <sup>2</sup>  | D_IO    | RRSTRB<br>PDMCLK                    | <b>General-purpose I/O pin 7.</b> This pin is a dedicated general-purpose I/O pin (GPIO7). When not used for GPIO, this pin can be configured as a reduced rate strobe pin (RRSTRB) in slave mode or as the alternate PDM clock output pin (PDMCLK).                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 15      | SDA                 | D_IO_OD | GPIO6                               | I <sup>2</sup> C serial data. This pin is a bidirectional open-drain input/output. Place a pull-up resistor on this pin. Consult version 2.1 of the I <sup>2</sup> C bus specification for the proper resistor value. When not used for I <sup>2</sup> C, this pin can be configured as a general-purpose I/O pin (GPIO6). Connect the pin to ground if not used.                                                                                                                                                                                                                                                                                                         |

Table 20. AD2437 Pin Function Descriptions (Continued)

| Pin No. | Pin Name          | Туре    | Alternate<br>Functions <sup>1</sup>           | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|---------|-------------------|---------|-----------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 16      | SCL               | D_IO_OD | GPIO5                                         | Serial clock for I <sup>2</sup> C data transfers. Clock input I <sup>2</sup> C target in A <sup>2</sup> B main node mode. Clock input (I <sup>2</sup> C target) or open-drain clock output (I <sup>2</sup> C controller) in A <sup>2</sup> B subordinate node mode. Place a pull-up resistor on this pin. Consult version 2.1 of the I <sup>2</sup> C bus specification for the proper resistor value. When not used for I <sup>2</sup> C, this pin can be configured as a general-purpose I/O pin (GPIO5). Connect the pin to ground if not used.                                                                                          |
| 17      | MISO <sup>2</sup> | D_IO    | PWM1<br>GPIO5                                 | <b>SPI Master In Slave Out pin.</b> This pin is a serial data pin when SPI is enabled. When not used for SPI purposes, this pin can be configured as a PWM output (PWM1) or as a general-purpose I/O (GPIO5).                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 18      | MOSI⁵             | D_IO    | PWM2<br>GPIO6                                 | SPI Master Out Slave In pin. This pin is a serial data pin when SPI is enabled. When not used for SPI purposes, this pin can be configured as a PWM output (PWM2) or as a general-purpose I/O pin (GPIO6).                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 19      | SCK <sup>5</sup>  | D_IO    | PWM3<br>GPIO0                                 | <b>SPI clock.</b> This pin is the SPI clock pin when SPI is enabled. When not used for SPI purposes, this pin can be configured as a PWM output (PWM3) or as a general-purpose I/O (GPIO0).                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 20      | IOVSS             | PWR     | None                                          | <b>Power supply pin for IOVDD return current.</b> This pin must be connected to a low impedance local ground plane.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 21      | IOVDD             | PWR     | None                                          | <b>Power supply pin for digital input and output pins.</b> This pin is the second IOVDD pin along with Pin 11. Externally connect the two IOVDD pins together                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 22      | ADR1⁵             | D_IO    | SPISS<br>SPISSELO<br>PWMOE<br>CLKOUT<br>GPIO4 | I <sup>2</sup> C address 1 pin. This pin (along with the ADR2 pin) sets the I <sup>2</sup> C target device address immediately after reset deassertion. After power-on, this pin can be configured as the SPI slave-select input (SPISS) pin or as an SPI slave-select output pin (SPISSELO) when SPI functions are enabled. When not used for SPI purposes, this pin can serve as the PWM output enable pin (PWMOE) when PWM functions are enabled. When not used for SPI or PWM purposes, this pin can be programmed as a clock output pin (CLKOUT1) or as a general-purpose                                                              |
| 23      | ADR2 <sup>5</sup> | D_IO    | ASPISS SPISSEL2 CLKOUT GPIO4                  | I/O pin (GPIO4).  I <sup>2</sup> C address 2 pin. This pin (along with the ADR1 pin) sets the I <sup>2</sup> C target device address immediately after reset deassertion. This pin can be configured as the alternate SPI slave-select input pin (ASPISS) or as an SPI slave-select output pin (SPISSEL2) when SPI functions are enabled. When not used for SPI purposes, this pin can be programmed as a clock output pin (CLKOUT2) or as a general-purpose I/O pin (GPIO4).                                                                                                                                                               |
| 24      | IRQ <sup>6</sup>  | D_OUT   | None                                          | Interrupt request digital output. This pin indicates that the A <sup>2</sup> B transceiver is raising an event driven interrupt request towards the host controller. At the main transceiver, this pin indicates bit errors on the A <sup>2</sup> B bus, interrupts from GP inputs, SPI interrupts, VMTR interrupts, mailbox interrupts, and line faults detected by the main and the subordinate transceivers. At the subordinate transceiver, this pin indicates mailbox and SPI related interrupts.  In bus monitor mode, this pin indicates that the A <sup>2</sup> B transceiver has a PLL lock This pin cannot be used as a GPIO pin. |
| 25      | RST               | D_IN    | None                                          | <b>Hardware reset.</b> Resets the transceiver when driven low. When all the power domains are stable, this pin must be driven high externally. This pin must be pulled high with a 10 k $\Omega$ when not used.                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 26      | VSS               | PWR     | None                                          | <b>Power supply pin for return current.</b> This pin must be connected to a low impedance local ground plane.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 27      | ACM               | A_IO    | None                                          | Common-mode bias pin for bidirectional, differential A <sup>2</sup> B line transceiver for A port.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |

Table 20. AD2437 Pin Function Descriptions (Continued)

| Pin No. | Pin Name | Туре  | Alternate<br>Functions <sup>1</sup> | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|---------|----------|-------|-------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 28      | AN       | A_IO  | None                                | <b>Bidirectional inverted data pin for A port, differential A<sup>2</sup>B line driver and receiver.</b> It is directed towards the upstream transceiver on the A <sup>2</sup> B bus. This pin is self biased.                                                                                                                                                                                                                                                                                        |
| 29      | AP       | A_IO  | None                                | <b>Bidirectional noninverted data pin for A port, differential A<sup>2</sup>B line driver and receiver.</b> It is directed towards the upstream transceiver on the A <sup>2</sup> B bus. This pin is self biased.                                                                                                                                                                                                                                                                                     |
| 30      | TRXVSS   | GND   | None                                | <b>Power supply pin for TRXVDD return currents.</b> Connect this pin to a low impedance local ground plane.                                                                                                                                                                                                                                                                                                                                                                                           |
| 31      | TRXVDD   | PWR   | None                                | <b>Power supply pin for A<sup>2</sup>B line driver and receiver circuit.</b> This pin must be connected to VOUT2.                                                                                                                                                                                                                                                                                                                                                                                     |
| 32      | TRXVSS   | GND   | None                                | <b>Power supply pin for TRXVDD return currents.</b> Connect this pin to a low impedance local ground plane.                                                                                                                                                                                                                                                                                                                                                                                           |
| 33      | ВР       | A_IO  | None                                | Noninverted pin of bidirectional, differential A <sup>2</sup> B line driver and receiver B. It is directed towards the next downstream subordinate transceiver on the A <sup>2</sup> B bus. This pin is self biased.                                                                                                                                                                                                                                                                                  |
| 34      | BN       | A_IO  | None                                | Inverted pin of bidirectional, differential A <sup>2</sup> B line driver and receiver B. It is directed towards the next downstream subordinate transceiver on the A <sup>2</sup> B bus. This pin is self biased.                                                                                                                                                                                                                                                                                     |
| 35      | ВСМ      | A_IO  | None                                | Common-mode input for bidirectional, differential A <sup>2</sup> B line transceiver B.                                                                                                                                                                                                                                                                                                                                                                                                                |
| 36      | ISENSEN  | A_IN  | None                                | <b>Low side current sense input pin.</b> Analog input to sense the current returning from the downstream subordinate transceiver. A sense resistor, connected from ISENSEN to VSENSEN, is required to provide sensing of the return current when using a single-pair cable. This pin must be pulled low with a 100 k $\Omega$ when using XLR/DMX and CAT cables.                                                                                                                                      |
| 37      | VSENSEN  | A_IO  | None                                | <b>Low side voltage sense input pin.</b> Analog input to sense the negative power supplied to the next subordinate device when using a single-pair cable. This pin must be pulled low with a 100 k $\Omega$ when using XLR/DMX and CAT cables.                                                                                                                                                                                                                                                        |
| 38      | VRVSS    | PWR   | None                                | Power supply pin for internal voltage regulators (VOUT1 and VOUT2) return current. Connect this pin to a low impedance local ground plane.                                                                                                                                                                                                                                                                                                                                                            |
| 39      | SWN      | A_IO  | None                                | <b>Low side MOSFET switch control pin.</b> This output pin drives the gate of an external low side NMOS when using a single-pair cable. This pin is driven high to turn on a switch to deliver power to the next subordinate device. The pin is driven low by default and when fault conditions occur. This pin requires an external pull-down resistor to keep the external NMOS off during bus initialization. This pin must be pulled low with a 100 k $\Omega$ when using XLR/DMX and CAT cables. |
| 40      | VSENSEP  | A_IO  | None                                | <b>High side voltage sense input pin.</b> Analog input to sense the bus bias voltage supplied to the next subordinate device.                                                                                                                                                                                                                                                                                                                                                                         |
| 41      | SWP      | A_OUT | None                                | High side MOSFET switch control pin. This output pin drives the gate of an external high side NMOS.  When controlling the NMOS, a voltage above VBUS is maintained on this output pin to turn the external NMOS on and keep it powered during normal operation to deliver power to the next subordinate device. The pin is driven low when fault conditions occur.  For the last subordinate node, connect this pin per the reference schematic.                                                      |

Table 20. AD2437 Pin Function Descriptions (Continued)

| Pin No. | Pin Name | Туре | Alternate<br>Functions <sup>1</sup> | Description                                                                                                                                                                                                                                                                          |  |
|---------|----------|------|-------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 42      | ISENSEP  | A_IN | None                                | <b>High side current sense input pin.</b> Analog input to sense the current supplied to the next subordinate device. A sense resistor must be connected between VBUS and ISENSEP.                                                                                                    |  |
| 43      | VBUS     | A_IN | None                                | Analog input pin for sensing bus bias voltage and high side current.                                                                                                                                                                                                                 |  |
| 44      | VRVSS    | PWR  | None                                | Power supply pin for internal voltage regulators (VOUT1 and VOUT2) return current. Connect this pin to a low impedance local ground plane.                                                                                                                                           |  |
| 45      | VOUT2    | PWR  | None                                | Output of the on-chip low dropout voltage regulator 2. This regulated voltage output pin must be connected to the TRXVDD power supply pin. External devices can also be powered by this supply. Refer to the VREG Safe Operating Area section. In LVI mode, connect this pin to VIN. |  |
| 46      | VIN      | PWR  | None                                | Power supply input pin.                                                                                                                                                                                                                                                              |  |
| 47      | VOUT1    | PWR  | None                                | Output of the on-chip low dropout voltage regulator 1. This regulated voltage output pin must be connected to the DVDD and PLLVDD power supply pins. External devices can also be powered by this supply. Refer to the VREG Safe Operating Area section.                             |  |
| 48      | PLLVDD   | PWR  | None                                | Power supply for PLL. This pin must be connected to VOUT1.                                                                                                                                                                                                                           |  |
| 49      | EPAD     | PWR  | None                                | <b>Power supply for return currents.</b> See other VSS description in this table. This pin is the exposed pad on the bottom of the package. This exposed pad must be connected to a low impedance local ground plane.                                                                |  |

 $<sup>^1</sup>$  See the AD2437  $A^2B$  Transceiver Technical Reference for more information about configuring pins for alternate functions.

<sup>&</sup>lt;sup>2</sup> These pins are in the high impedance state until they are configured.

<sup>&</sup>lt;sup>3</sup> Refer to Table 2 for the SIO pin mapped functions.

<sup>&</sup>lt;sup>4</sup> In A<sup>2</sup>B main node mode, the BCLK and SYNC pins are in a high impedance state after reset and are configured as input pins once the PLL locks. In A<sup>2</sup>B subordinate node mode, the BCLK and SYNC pins are in a high impedance state until they are configured.

<sup>&</sup>lt;sup>5</sup> This pin is a digital input after reset.

<sup>&</sup>lt;sup>6</sup> The IRQ pin is in a high impedance state after reset. It is configured as an output after the PLL locks.

### **DESIGNER REFERENCE**

Contact your local Analog Devices representative for the latest schematic circuit recommendations and bill of materials for node configurations. The recommended circuit and component selection must be followed to ensure interoperability between AD2437 systems.

#### **PCB LAYOUT**

The transceivers are highly integrated devices, comprising both digital sections for audio data, clocks, PLL, and analog  $A^2B$  transceiver sections. PCB layout plays an important role in ensuring system performance. For detailed layout guidelines, see the  $A^2B$  System Specification.

#### RECOMMENDED PCB FOOTPRINT

Figure 42 shows the transceiver footprint. Solder the exposed paddle underneath the transceiver effectively to the PCB where it is locally connected to the ground plane.

See "Soldering Considerations for Exposed-Pad Packages (EE-352)", on the Analog Devices web site. The exposed paddle is used for a thermal pathway as well as for electrical connection.

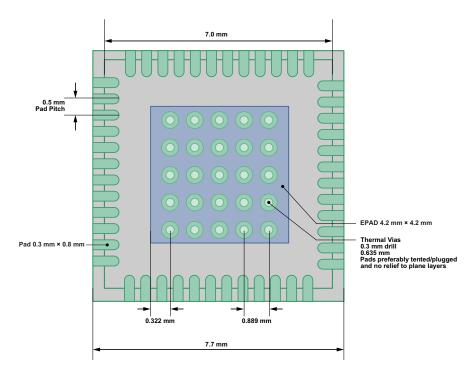
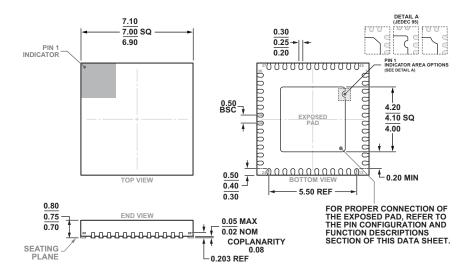




Figure 42. Transceiver Footprint

### **OUTLINE DIMENSIONS**

Figure 43 shows the outline dimensions for the 48-Lead LFCSP (CP-48-26).



COMPLIANT TO JEDEC STANDARDS MO-220-WKKD-2

Figure 43. 48-Lead Frame Chip Scale Package [LFCSP] 7 mm x 7 mm Body and 0.75 mm Package Height (CP-48-26) Dimensions shown in millimeters

#### **ORDERING GUIDE**

| Model <sup>1, 2</sup> | Temperature Range <sup>3</sup> | Package Description                      | Package Option |
|-----------------------|--------------------------------|------------------------------------------|----------------|
| AD2437KCPZY           | 0°C to 105°C                   | 48-Lead Frame Chip Scale Package [LFCSP] | CP-48-26       |
| AD2437KCPZY-RL        | 0°C to 105°C                   | 48-Lead Frame Chip Scale Package [LFCSP] | CP-48-26       |
| AD2437BCPZY           | -40°C to +105°C                | 48-Lead Frame Chip Scale Package [LFCSP] | CP-48-26       |
| AD2437BCPZY-RL        | -40°C to +105°C                | 48-Lead Frame Chip Scale Package [LFCSP] | CP-48-26       |

<sup>&</sup>lt;sup>1</sup> Z = RoHS Compliant Part.

 $I^2C\ refers\ to\ a\ communications\ protocol\ originally\ developed\ by\ Philips\ Semiconductors\ (now\ NXP\ Semiconductors).$ 



<sup>&</sup>lt;sup>2</sup> RL = Supplied on Tape and Reel.

<sup>&</sup>lt;sup>3</sup> Referenced temperature is junction temperature. See the Operating Conditions section for junction temperature (T<sub>j</sub>) specification.

## **Mouser Electronics**

**Authorized Distributor** 

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

### Analog Devices Inc.:

AD2437KCPZY AD2437BCPZY-RL AD2437BCPZY AD2437KCPZY-RL EVAL-AD2437A1MZ EVAL-AD2437A1MZ EVAL-AD2437A1NZ