

Microprocessor-Compatible 12-Bit D/A Converter

AD567

1.1 Scope.

This specification covers the requirements for a high speed 12-bit resolution bipolar current output D/A converter with double buffered latch and high stability buried Zener reference.

1.2 Part Number.

The complete part number per Table 1 of this specification is as follows:

Device

Part Number

-1

AD567SD/883B

1.2.3 Case Outline.

See Appendix 1 of General Specification ADI-M-1000: package outline: D-28.

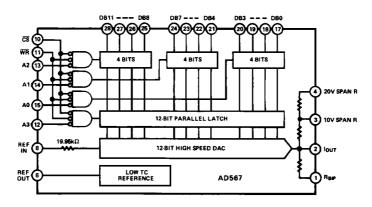
1.3 Absolute Maximum Ratings. (T_A = +25°C unless otherwise noted)

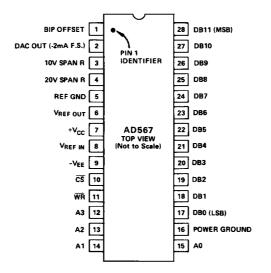
V _{CC} to Power Ground
V _{EE} to Power Ground
Voltage on DAC Output (Pin 2)
Digital Inputs (Pins 10-15, 17-28) to Power Ground
Ref In to Reference Ground
Bipolar Offset to Reference Ground
10V Span R to Reference Ground
20V Span R to Reference Ground
Ref Out
Momentary Short to V_{CC}
Power Dissipation
Storage Temperature Range
Lead Temperature (Soldering 10sec)

1.5 Thermal Characteristics.

Thermal Resistance $\theta_{JC} = 25^{\circ}\text{C/W}$

 $\theta_{JA} = 60^{\circ}\text{C/W}$


AD567—SPECIFICATIONS


Table 1.

Test	Symbol	Device	Design Limit @+25°C	Sub Group 1	Sub Group 2,3	Test Condition ¹	Units
Relative Accuracy	RA	-1	1/2	1/2	3/4	All Bits with Positive Errors On. All Bits with Negative Errors On.	± LSB max
Differential Nonlinearity	DNL	- 1	3/4	3/4	1	Major Carry Errors	± LSB max
Gain Error ²	A _E	-1	0.25	0.25		All Bits On	±% FSR max
Gain Temperature Coefficient	TCA _E	- 1	30		30	All Bits On	± ppm/°C max
Unipolar Offset Error	Vos	-1	0.05	0.05		All Bits Off	±% FSR max
Temperature Coefficient Unipolar Offset	TCV _{OS}	-1	2		2	All Bits Off	± ppm/°C max
Bipolar Zero Error ³	B _{PZE}	- 1	0.15	0.15		MSB On, All Other Bits Off Bipolar	±% FSR max
B/P Zero Temperature Coefficient	TCB _{BZE}	– 1	10		10	MSB On, All Other Bits Off Bipolar	± ppm/°C max
Reference Input Resistance	R _{IN}	-1	15				kΩ min
			25				kΩ max
Output Resistance	R _{OUT}	- 1	6			Exclusive of Span Resistor	kΩ min
			10				kΩ min
Reference Output Voltage	V _{REF}	- 1	9.9	9.9	9.9	Bipolar, 0.1mA External Load	V min
			10.10	10.10	10.10	$V_{CC} = +12V, V_{EE} = -12V^4$	V max
Compliance Voltage	V _{CPL}	-1	1.5				– V min
			10.0				V max
Output Current Settling Time	t _{SL}	1	500			See Figure 1	ns max
Output Current	Iour	-1	1.6	1.6		Unipolar All Bits On	– mA min
			2.4	2.4		V _{IH} + 5.0V	– mA max
			0.8	0.8		Bipolar All Bits On	– mA min
			1.2	1.2		$V_{IH} + 5.0V$	- mA max
Power Supply Rejection Ratio	PSRR	-1	10	10		$+11.4V \le V_{CC} \le +16.5V$	ppm of FSR/ % max
			25	25		$-16.5V \le V_{EE} \le -11.4V$	
Power Supply Current	I _{CC}	-1	5	5		$V_{CC} = +16.5V, V_{EE} = -16.5V$	mA max
	I _{EE}	-1	25	25		All Bits Low	– mA max
Power Dissipation	P _D	-1	495	495		$V_{CC} = +16.5V, V_{EE} = -16.5V$ All Bits Low	mW max
Digital Input High Voltage	V _{IH}	-1	2.0	2.0			V min
			5.5				V max
Digital Input Low Voltage	V_{1L}	-1	0.8	0.8			V max
Digital Input High Current	I _{IH}	-1	300	300		$V_{IH} = 5.5V$	μ.A max
Digital Input Low Current	I _{IL}	-1	100	100		$V_{IL} = 0.0V$	μA max
Write Pulse Width	twR	-1	100			See Note 5	ns min
Data Setup Time	tow	-1	50			See Note 5	ns min
Data Hold Time	t _{DH}	-1	10			See Note 5	ns min
CS Valid to End of WR	t _{CW}	-1	100			See Note 5	ns min
Address Valid End of WR	t _{AW}	-1	100			See Note 5	ns min
Latch Functionality	A _{EΔ}	-1	1	1	1	See Notes 6 and 7	± LSB max
Latch Functionality	Vosa	- i	1	1	1	See Note 6	± LSB max

- $V_{CC} = +15V$, $V_{EE} = -15V$, 50Ω resistor pin 6 to pin 8, $A_0A_1A_2A_3\overline{CS}$, $\overline{WR} = Logic "0"$, $V_{IH} = 2.0V$, $V_{IL} = 0.8V$, Unipolar configuration unless otherwise specified. $V_{IH} = +2.0V$, $V_{IL} = +0.7V$ guaranteed design limits at $-55^{\circ}C$ and $+125^{\circ}C$.
- Unipolar pin 3 connected to amplifier output to utilize 10 volt span.
- Bipolar pin 4 connected to amplifier output to utilize 20 volt span, 50Ω resistor pin 1 to pin 6.
- ²Gain adjustment range $\pm 0.25\%$ min.
- ³Bipolar zero adjustment range ± 0.15% min.
- ⁴In subgroup 1, the reference output is loaded with 0.5mA nominal reference current, 1.0mA bipolar offset current
- and 0.1mA additional current. In subgroups 2 and 3, only the 0.5mA reference input current is applied. The reference must be
- buffered to supply external loads at elevated temperatures.
- ⁵See Figure 1 and Table 2.
- ⁶All bits low, A₀, A₁, A₂, A₃ = Logic "0"; A₀, A₁, A₂, A₃ initialized to Logic "1", each 4-bit register set to Logic "1",
- and Ao, A1, A2 set sequentially to Logic "0" and back to Logic "1" to latch data into first rank.
- ⁷A₃ set to Logic "0" and back to Logic "1" to latch full scale output into second rank.

3.2.1 Functional Block Diagram and Terminal Assignments.

3.2.4 Microcircuit Technology Group.

This microcircuit is covered by technology group (56).

4.2.1 Life Test/Burn-In Circuit.

Steady state life test is per MIL-STD-883 Method 1005. Burn-in is per MIL-STD-883 Method 1015 test condition (B).

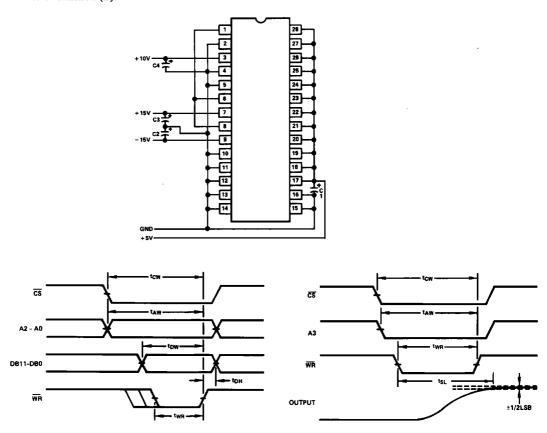


Figure 1.

Table 2. Truth Table

<u>cs</u>	WR	A3	A2	A1	A0	Operation
1	Х	х	х	Х	Х	No Operation
x	1	Х	Х	Х	Х	No Operation
0	0	1	1	1	0	Enable 4 LSBs of First Rank
0	0	1	1	0	1	Enable 4 Middle Bits of First Rank
0	0	1	0	1	1	Enable 4 MSBs of First Rank
0	0	0	1	1	1	Loads Second Rank from First Rank
0	0	0	0	0	0	All Latches Transparent

[&]quot;X" = Don't Care

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Analog Devices Inc.: 5962-8780101XA