

Omnidirectional Microphone with Bottom Port and Digital Output

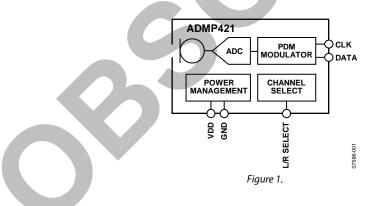
Data Sheet ADMP421

FEATURES

Small and thin 3 mm \times 4 mm \times 1 mm surface-mount package High SNR of 61 dBA High sensitivity of -26 dBFS Flat frequency response from 100 Hz to 15 kHz Low current consumption: <650 μ A Sleep mode for extended battery life High PSR of 80 dBFS Fourth-order Σ - Δ modulator Digital PDM output Compatible with Sn/Pb and Pb-free solder processes RoHS/WEEE compliant

APPLICATIONS

Smartphones and feature phones Teleconferencing systems Digital video cameras Bluetooth headsets Video phones Tablets


GENERAL DESCRIPTION

The ADMP421 is a high performance, low power, digital output bottom-ported omnidirectional MEMS microphone. The ADMP421 consists of a MEMS microphone element and an impedance converter amplifier followed by a fourth-order Σ - Δ modulator. The digital interface allows for the pulse density modulated (PDM) output of two microphones to be timemultiplexed on a single data line using a single clock.

The ADMP421 has a high SNR and high sensitivity, making it an excellent choice for far field applications. The ADMP421 has a flat wideband frequency response, resulting in natural sound with high intelligibility. Low current consumption and a sleep mode enable long battery life for portable applications. A built-in particle filter provides high reliability. The ADMP421 complies with the TIA-920 Telecommunications Telephone Terminal Equipment Transmission Requirements for Wideband Digital Wireline Telephones standard.

The ADMP421 is available in a thin 3 mm \times 4 mm \times 1 mm surface-mount package. It is reflow solder compatible with no sensitivity degradation. The ADMP421 is halide free.

FUNCTIONAL BLOCK DIAGRAM

TABLE OF CONTENT	S
Features	

Features
Applications1
General Description
Functional Block Diagram1
Revision History
Specifications
Timing Characteristics
Absolute Maximum Ratings5
ESD Caution5
Pin Configuration and Function Descriptions6
Typical Performance Characteristics
PCB Land Pattern Layout8
Alternate PCB Land Patterns9
REVISION HISTORY
11/11—Rev. C to Rev. D
Changed PSRR to PSR
Changed Pb-Free Temperature from 245°C to 260°C, Table 4 5
Changes to Figure 8 and Figure 98
Added Alternate PCB Land Patterns Section9
Changes to Temperature Humidity Bias (THB) Description,
Table 6
8/11—Rev. B to Rev. C
Changes to Clock Frequency and Supply Voltage Parameters,
Table 1
Changes to Table 3 and Table 45
Deleted Power-Saving Features Section8
Changes to Figure 9
Added Applications Information Section9
Added Supporting Documents, Evaluation Board User Guides,
Circuit Note, and Application Notes Sections9
Changes to Interfacing with Analog Devices Codecs
Section9
Moved Sleep Mode Section and Power Savings When Disabling
One Microphone in a Multimicrophone Application Section 9
Changes to Figure 109
Change to Pick-and-Place Equipment Section10
Deleted Evaluation Board Section
Deleted Figure 10 and Figure 11; Renumbered Sequentially 10
Deleted Table 6; Renumbered Sequentially
Deleted Figure 12
Change to Temperature Cycle Description, Table 6

Applications Information	10
Interfacing with Analog Devices Codecs	10
Sleep Mode	10
Power Savings When Disabling One Microphone in a	
Multimicrophone Application	10
Supporting Documents	10
Handling Instructions	11
Pick-and-Place Equipment	
Reflow Solder	11
Board Wash	11
Reliability Specifications	
Outline Dimensions	
Ordering Guide	13
6/11—Rev. A to Rev. B	
Changes to Figure 1	1
Changes to Figure 5	
2/11—Rev. 0 to Rev. A	
Changes to Features Section, Applications Section, and	
General Description Section	1
Added Dynamic Range Parameter, Changes to Input	
Characteristics Parameter and Output Characteristics	
Parameter, Deleted Polarity Parameter, Table 1	3
Changes to Table 3	
Changes to Table 5	6
Added Power-Saving Features Section	8
Updated Outline Dimensions	
Changes to Ordering Guide	

4/10—Revision 0: Initial Version

SPECIFICATIONS

 $T_A = 25$ °C, $V_{DD} = 1.8$ V, CLK = 2.4 MHz, unless otherwise noted. All minimum and maximum specifications are guaranteed. Typical specifications are not guaranteed.

Table 1.

Parameter	Symbol	Test Conditions/Comments	Min	Тур	Max	Unit
PERFORMANCE						
Directionality				Omni		
Sensitivity ¹		1 kHz, 94 dB SPL	-29	-26	-23	dBFS
Signal-to-Noise Ratio	SNR	20 kHz bandwidth, A-weighted		61		dBA
Equivalent Input Noise	EIN	20 kHz bandwidth, A-weighted		33		dBA SPL
Dynamic Range		Derived from EIN and maximum acoustic input		87		dB
Frequency Response ²		Low frequency –3 dB point		100		Hz
		High frequency −3 dB point		15		kHz
		Deviation limits from flat response within pass band		-3/+2		dB
Total Harmonic Distortion	THD	105 dB SPL			3	%
Power Supply Rejection	PSR	217 Hz, 100 mV p-p square wave superimposed on V _{DD} = 1.8 V		80		dBFS
Maximum Acoustic Input		Peak		120		dB SPL
INPUT CHARACTERISTICS						
Clock Frequency	CLK		1.0	2.4^{3}	3.3	MHz
Clock Duty Ratio		Clock frequency of 2.4 MHz or less	40		60	%
Input Voltage High	V _{IH}		$0.65 \times V_{DD}$			V
Input Voltage Low	V_{IL}				$0.35 \times V_{DD}$	V
OUTPUT CHARACTERISTICS						
Output Voltage High	V _{OH}	$I_{LOAD} = 0.5 \text{ mA}$	$0.7 \times V_{DD}$	V_{DD}		V
Output Voltage Low	V _{OL}	$I_{LOAD} = 0.5 \text{ mA}$		0	$0.3 \times V_{DD}$	V
Latency				<30		μs
Wake-Up Time		From sleep mode, power on		10		ms
POWER SUPPLY						
Supply Voltage	V_{DD}		1.8		3.3	V
Supply Current	ls	Normal mode			650	μΑ
		Sleep mode ⁴			50	μA

¹ Relative to the rms level of a sine wave with positive amplitude equal to 100% 1s density and negative amplitude equal to 0% 1s density.

² See Figure 5 and Figure 6.

³ The microphone operates at any clock frequency between 1.0 MHz and 3.3 MHz. Some specifications may not be guaranteed at frequencies other than 2.4 MHz.

⁴ The microphone enters sleep mode when the clock is turned off or the clock frequency is less than 1 kHz.

TIMING CHARACTERISTICS

Table 2.

Parameter	Description	Min	Max	Unit
Input				
t _{CLKIN}	Input clock period	310	1000	ns
Output				
t _{1OUTEN}	DATA1 driven after falling clock edge	30		ns
t _{10UTDIS}	DATA1 disabled after rising clock edge		20	ns
t _{2OUTEN}	DATA2 driven after rising clock edge	30		ns
t _{20UTDIS}	DATA2 disabled after falling clock edge		20	ns

Timing Diagram

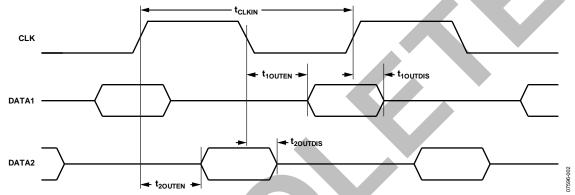


Figure 2. Pulse Density Modulated Output Timing

ABSOLUTE MAXIMUM RATINGS

Table 3.

Parameter	Rating
Supply Voltage	-0.3 V to 3.6 V
Digital Pin Input Voltage	-0.3 V to V_{DD} + 0.3 V or 3.6 V, whichever is less
Sound Pressure Level (SPL)	160 dB
Mechanical Shock	10,000 <i>g</i>
Vibration	Per MIL-STD-883 Method 2007, Test Condition B
Temperature Range	-40°C to +85°C

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

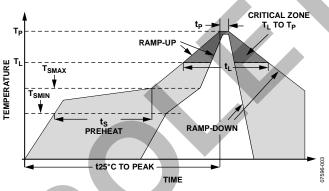


Figure 3. Recommended Soldering Profile Limits

Table 4. Recommended Soldering Profile Limits

Profile Feature	Sn63/Pb37	Pb Free
Average Ramp Rate (T _L to T _P)	1.25°C/sec max	1.25°C/sec max
Preheat		
Minimum Temperature (T _{SMIN})	100°C	100°C
Maximum Temperature (T _{SMAX})	150°C	200°C
Time (T _{SMIN} to T _{SMAX}), t _S	60 sec to 75 sec	60 sec to 75 sec
Ramp-Up Rate (T _{SMAX} to T _L)	1.25°C/sec	1.25°C/sec
Time Maintained Above Liquidous (t _L)	45 sec to 75 sec	~50 sec
Liquidous Temperature (T _L)	183°C	217°C
Peak Temperature (T _P)	215°C +3°C/-3°C	260°C +0°C/-5°C
Time Within 5°C of Actual Peak Temperature (t _P)	20 sec to 30 sec	20 sec to 30 sec
Ramp-Down Rate	3°C/sec max	3°C/sec max
Time 25°C (t25°C) to Peak Temperature	5 minute max	5 minute max

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

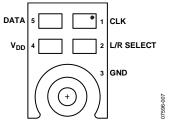


Figure 4. Pin Configuration (Bottom View)

Table 5. Pin Function Descriptions

Pin No.	Mnemonic	Description
1	CLK	Clock Input to Microphone.
2	L/R SELECT	Left Channel or Right Channel Select.
		DATA1 (right): L/R SELECT tied to GND.
		DATA2 (left): L/R SELECT pulled to V _{DD} .
3	GND	Ground.
4	V _{DD}	Power Supply. Placing a 0.1 μ F (100 nF) ceramic type X7R capacitor between Pin 4 (V_{DD}) and ground is strongly recommended for best performance and to avoid potential parasitic artifacts. The capacitor should be placed as close to Pin 4 as possible.
5	DATA	Digital Output Signal (DATA1, DATA2).

TYPICAL PERFORMANCE CHARACTERISTICS

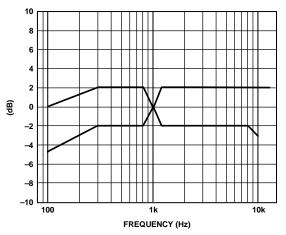


Figure 5. Frequency Response Mask

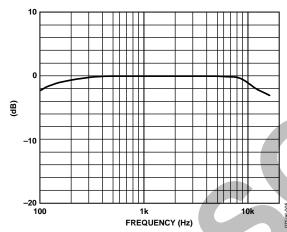


Figure 6. Typical Frequency Response (Measured)

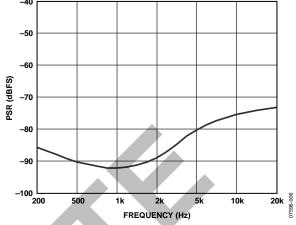


Figure 7. Typical Power Supply Rejection vs. Frequency

PCB LAND PATTERN LAYOUT

The recommended PCB land pattern for the ADMP421 should be laid out to a 1:1 ratio to the solder pads on the microphone package, as shown in Figure 8. Care should be taken to avoid applying solder paste to the sound hole in the PCB. A suggested

solder paste stencil pattern layout is shown in Figure 9. The diameter of the sound hole in the PCB should be larger than the diameter of the sound port of the microphone. A minimum diameter of 0.5 mm is recommended.

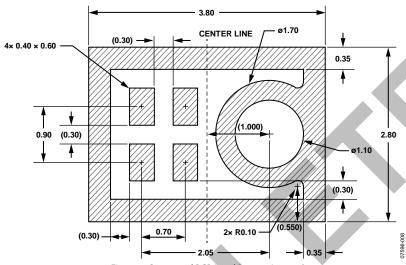


Figure 8. Suggested PCB Land Pattern Layout

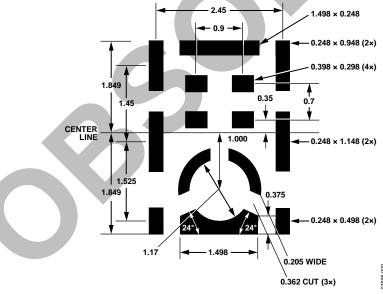


Figure 9. Suggested Solder Paste Stencil Pattern Layout

ALTERNATE PCB LAND PATTERNS

The ADMP421's standard PCB land pattern has a solid ring around the edge of the footprint, which may make routing the microphone signals more difficult in some board designs. This ring is used to improve the RF immunity performance of the ADMP421, but it is not necessary to have this full ring connected for electrical functionality. If a design can tolerate reduced RF immunity then this ring can either be broken or removed completely from the PCB footprint. Figure 10 shows an example land pattern with no enclosing ring around the edge of the part, and Figure 11 shows an example pattern with the ring broken on two sides so that the inner pads can be more easily routed on the PCB.

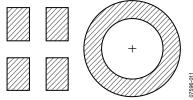


Figure 10. Example PCB Land Pattern with No Enclosing Ring

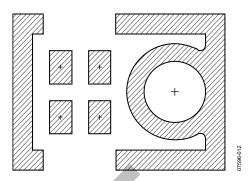


Figure 11. Example PCB Land Pattern with Broken Enclosing Ring

Note that in both of these patterns, the solid ring around the sound port is still present; this ring is needed to ground the microphone and for acoustic performance. The pad on the package connected to this ring is ground and still needs a solid electrical connection to the PCB ground. If a pattern like one of these two examples is used on a PCB, take care that the unconnected ring on the bottom of the ADMP421 is not placed directly over any exposed copper. This ring on the microphone is still at ground and any PCB traces routed underneath it need to be properly masked to avoid short circuits.

APPLICATIONS INFORMATION

INTERFACING WITH ANALOG DEVICES CODECS

Analog Devices ADAU1361, ADAU1761, and ADAU1781 codecs feature digital microphone inputs that support the ADMP421 PDM output data format. See the connection diagrams shown in Figure 12, and refer to the AN-1003 Application Note and the codecs' respective data sheets for more details on the digital microphone interface.

SLEEP MODE

The microphone enters sleep mode when the clock is turned off or the clock frequency falls below 1 kHz. In sleep mode, the microphone data output is in high impedance state and the current consumption is less than 50 $\mu A.$

POWER SAVINGS WHEN DISABLING ONE MICROPHONE IN A MULTIMICROPHONE APPLICATION

The ADMP421 has a unique power-saving feature when used in systems where two or more microphones share the same clock and/or data lines. The microphone is designed to present high impedance on both the clock and data pins when the power supply ($V_{\rm DD}$) pin is at 0 V or floating. This disabled microphone presents no load to and consumes no power from other active microphones.

SUPPORTING DOCUMENTS

Evaluation Board User Guides

UG-118, EVAL-ADMP421Z Bottom Port Digital Output MEMS Microphone Evaluation Board

UG-183, EVAL-ADMP421Z-FLEX: Bottom-Ported Digital Output MEMS Microphone Evaluation Board

Circuit Note

CN-0078, iMEMS Digital Microphone Simplifies the Interface to a SigmaDSP Audio Codec

Application Notes

AN-1003, Recommendations for Mounting and Connecting Analog Devices, Inc., Bottom-Ported MEMS Microphones

AN-1068, Reflow Soldering of the MEMS Microphone

AN-1112, Microphone Specifications Explained

AN-1124, Recommendations for Sealing Analog Devices, Inc., Bottom-Port MEMS Microphones from Dust and Liquid Ingress

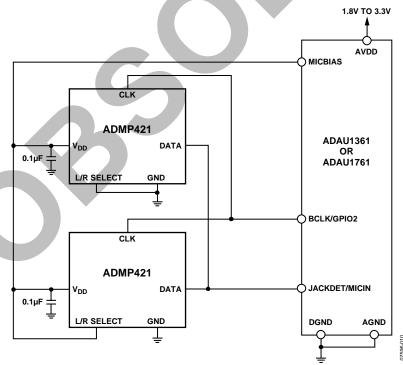


Figure 12. ADAU1361 and ADAU1761 Stereo Interface Block Diagram

HANDLING INSTRUCTIONS

PICK-AND-PLACE EQUIPMENT

The MEMS microphone can be handled using standard pickand-place and chip shooting equipment. Care should be taken to avoid damage to the MEMS microphone structure as follows:

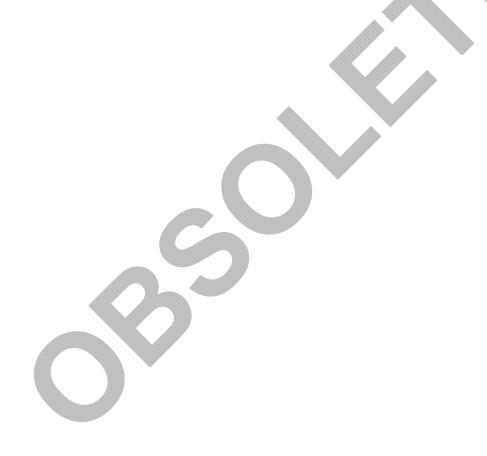
- Use a standard pickup tool to handle the microphone.
 Because the microphone hole is on the bottom of the package, the pickup tool can make contact with any part of the lid surface.
- Use care during pick-and-place to ensure that no high shock events above 10 kg are experienced because such events may cause damage to the microphone.
- Do not pick up the microphone with a vacuum tool that makes contact with the bottom side of the microphone.
 Do not pull air out of or blow air into the microphone port.
- Do not use excessive force to place the microphone on the PCB.

REFLOW SOLDER

For best results, the soldering profile should be in accordance with the recommendations of the manufacturer of the solder paste used to attach the MEMS microphone to the PCB. It is recommended that the solder reflow profile not exceed the limit conditions specified in Figure 3 and Table 4.

BOARD WASH

When washing the PCB, ensure that water does not make contact with the microphone port. Blow-off procedures and ultrasonic cleaning must not be used.



RELIABILITY SPECIFICATIONS

The microphone sensitivity after stress must deviate by no more than 3 dB from the initial value.

Table 6.

Stress Test	Description
Low Temperature Operating Life	–40°C, 500 hours, powered
High Temperature Operating Life	+125°C, 500 hours, powered
Temperature Humidity Bias (THB)	+85°C/85% relative humidity (RH), 500 hours, powered
Temperature Cycle	-40°C/+125°C, one cycle per hour, 1000 cycles
High Temperature Storage	+150°C, 500 hours
Low Temperature Storage	-40°C, 500 hours
Component CDM ESD	All pins, 0.5 kV
Component HBM ESD	All pins, 1.5 kV
Component MM ESD	All pins, 0.2 kV

OUTLINE DIMENSIONS

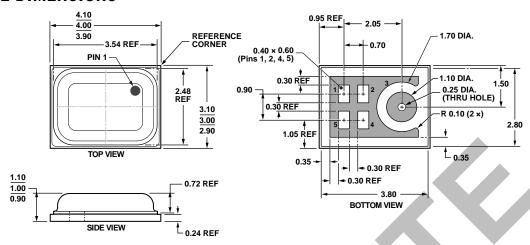


Figure 13. 5-Terminal Chip Array Small Outline No Lead Cavity [LGA_CAV]
4 mm × 3 mm Body
(CE-5-1)
Dimensions shown in millimeters

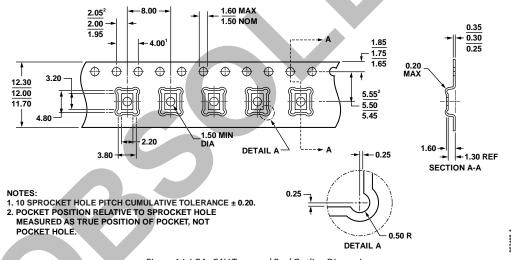


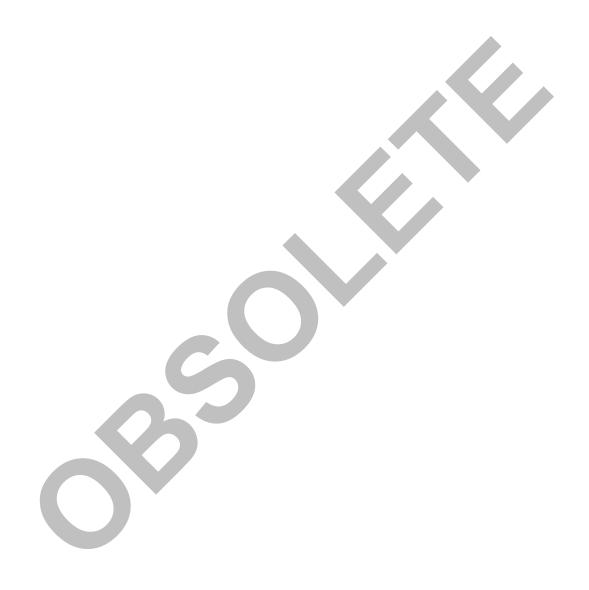
Figure 14. LGA_CAV Tape and Reel Outline Dimensions Dimensions shown in millimeters

ORDERING GUIDE

Model ¹	Temperature Range	Package Description	Package Option ²	Ordering Quantity
ADMP421BCEZ-RL	−40°C to +85°C	5-Terminal LGA_CAV, 13"Tape and Reel	CE-5-1	5,000
ADMP421BCEZ-RL7	−40°C to +85°C	5-Terminal LGA_CAV, 7"Tape and Reel	CE-5-1	1,000
EVAL-ADMP421Z		Evaluation Board		
EVAL-ADMP421Z-FLEX		Flex Evaluation Board		

 $^{^{1}}$ Z = RoHS Compliant Part.

² This package option is halide free.


NOTES

NOTES

NOTES

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Analog Devices Inc.:

EVAL-ADMP421Z EVAL-ADMP421Z-FLEX ADMP421BCEZ-RL