Module for BLDC 7MODULE

TMCM-1690 TMCL"™ Firmware Manual

Firmware Version V1.01 | Rev 0: 01/24

The TMCM-1690 is a single axis FOC servo controller gate driver module for 3-phase BLDC and DC
motors with up to 1.5A gate drive current and +60V (+48 V nominal) supply. It offers UART (RS232-
/RS485-ready), CAN, and EtherCAT® interfaces with TMCL, CANopen, or CANopen-over-EtherCAT
protocol support for communication. TMCM-1690 supports incremental encoders, digital hall sen-
sors, and absolute encoder as position feedback.

Features

* Supply voltage +10V to +60V DC

* FOCservo controller gate driver mod-
ule for BLDC and DC motors

+ 0.5A/1.0A/1.5A gate drive current
+ Up to 120kHz PWM frequency
* Onboard current-sense amplifiers

*+ Supports UART (RS232/RS485-ready),
CAN, and EtherCAT™ interface

* Supportsincremental encoders (ABN),
digital HALL sensors, absolute SPI

encoders
* Reference switch inputs
Applications + Compact size 27mm x 22.5mm
* Robotics + Factory Automation * Industrial BLDC and DC Motor
+ Laboratory Automation + Servo Drives Drives
* Manufacturing * Motorized Tables and Chairs

Simplified Block Diagram

33V 12v VM

RELEEREEERREEERREE eof Joof Jeeccecceccccccccnnnnnn . o

TMCM-1690
REF swncHEs‘G—l ’—dm
S :
splu—D—p : >
SPI14—{ '—} D: LSx %
CAN-an—{j—p . —
uARu—{j—» :
A|N4—|j—> : Ix
: t
i
by
ENCODER
©2024 TRINAMIC Motion Control GmbH & Co. KG, Hamburg, Germany
Terms of delivery and rights to technical change reserved. ANALOG
Download newest version at www.analog.com. DEVICES

) AHEAD OF WHAT’S POSSIBLE™
‘@‘ Read entire documentation.

https://www.analog.com/en/design-center/landing-pages/001/trinamic-support.html

TMCM-1690 TMCL™ Firmware Manual * Firmware Version V1.01 | Rev 0: 01/24 2/135

Contents
1 Features 5
2 First Steps with TMCL 6
2.1 BasiCSetup e e e 6
2.2 Usingthe TMCL Direct Mode e e e e e 6
2.3 Changing Axis Parameters i i i e e e e e 6
2.4 Testing with a Simple TMCL Program i i e e e e e e e e e 7
3 TMCL and the TMCL-IDE — An Introduction 9
3.1 Binary Command Format e e e e 9
3.1.1 Checksum Calculation e e e 10
3.2 Reply Format o e e 10
3.2.1 Status CodeS . . . v o e e 11
3.3 Standalone Applications e 11
3.4 TMCL Command OVEIVIEW v v v e e e e e e e e e e e e e s e e e e 13
3.5 TMCL Commands by Subject e 15
3.5.1 Motion Commands ot e e e 15
3.5.2 Parameter Commands o e e 15
3.5.3 Branch Commands e 16
3.54 [/OPortCommands i e 16
3.5.5 Calculation Commands o e e e 17
3.5.6 Interrupt ProcessingCommands 17
3.5.7 New TMCLComMmMaNdS o v it e e e e e e e e e e e e e s e 20
3.6 Detailed TMCL Command Descriptions o i i et 21
3.6.1 ROR (Rotate Right) e 21
3.6.2 ROL (Rotate Left) o v i e e e e e 22
3.6.3 MST (MOtOr StOP) o o o e e e e e e e e e e 23
3.64 MVP (Move to Position) o e e e e 24
3.6.5 SAP (Set Axis Parameter) e 27
3.6.6 GAP (Get Axis Parameter) e 28
3.6.7 STAP (Store Axis Parameter) i i e e 29
3.6.8 RSAP (Restore Axis Parameter) o e e 30
3.6.9 SGP (Set Global Parameter) e 31
3.6.10 GGP (Get Global Parameter) e e 33
3.6.11 STGP (Store Global Parameter) e e 35
3.6.12 RSGP (Restore Global Parameter) e 36
3.6.13 SIO(Set OUtPpUL) o o e e e 37
3.6.14 GIO(Get Input) o o i e e e e 39
3.6.15 CALC(Calculate). e 42
3.6.16 COMP (Compare) o e e e e e e e e e e e 44
3.6.17 JC(ump Conditional). e 45
3.6.18 JA(UMP AIWAYS) . . . o e e e e 47
3.6.19 CSUB (Call Subroutine) e 48
3.6.20 RSUB (Return from Subroutine) e 49
3.6.21 WAIT (Wait foran Eventto OCCUr) v o v i i i e e e e e e e e e e 50
3.6.22 STOP (Stop TMCL Program Execution - End of TMCL Program) 52
3.6.23 SCO (Set Coordinate) v v v v v i e e e e e e 53
3.6.24 GCO (Get Coordinate) v v i i i e e e e e 54
3.6.25 CCO (Capture Coordinate) v v v v v i e e e e e e e e e e 56
3.6.26 ACO (Accumulator to Coordinate) v v v v i i i e e 57
3.6.27 CALCX (Calculate Using the X Register) 58
3.6.28 AAP (Accumulator to Axis Parameter) e e 60

ANALOG
DEVICES

AHEAD OF WHAT’S POSSIBLE™

TMCM-1690 TMCL™ Firmware Manual * Firmware Version V1.01 | Rev 0: 01/24 3/135

3.6.29 AGP (Accumulator to Global Parameter) 61
3.6.30 CLE(Clear Error Flags) v v v i e e e e e e e e e 62
3.6.31 El(EnablelInterrupt) o 64
3.6.32 DI(Disable Interrupt) o e e e 65
3.6.33 VECT (Define Interrupt Vector) e 66
3.6.34 RETI(Return from Interrupt) i i 68
3.6.35 CALCVV (Calculate Using Two User Variables) 69
3.6.36 CALCVA (Calculate Using a User Variable and the Accumulator Register) 71
3.6.37 CALCAV (Calculate Using the Accumulator Register and a User Variable) 73
3.6.38 CALCVX (Calculate Using a User Variable and the X Register) 75
3.6.39 CALCXV (Calculate Using the X Register and a User Variable) 77
3.6.40 CALCV (Calculate Using a User Variable and a DirectValue) 79
3.6.41 RST(Restart) e e e 81
3.6.42 DJNZ (Decrementand JumpifnotZero). 82
3.6.43 CALL (Conditional Subroutine Call). 83
3.6.44 MVPA (Move to Position Specified by Accumulator Register) 85
3.6.45 ROLA (Rotate Left Using the Accumulator Register) 87
3.6.46 RORA (Rotate Right Using the Accumulator Register) 88
3.6.47 SIV(SetIndexed Variable) 89
3.6.48 GIV (Get Indexed Variable) e 90
3.6.49 AlV (Accumulator to Indexed Variable) 91
3.6.50 Customer Specific Command Extensions (UFO0...UF7 - User Functions) 92
3.6.51 TMCLControlCommands i i i it e e e e e e 93
4 Axis Parameters 95
5 Global Parameters 112
5.1 Bank O e 112
5.2 Bank 2 . . . e 114
6 Motor Regulation 115
6.1 Structure of Motor Control RegulationModes 115
6.2 Current Regulation e e e e 115
6.2.1 Structure of the Current Regulator i 116
6.3 Velocity Regulation e e e 117
6.3.1 Structure of the Velocity Regulator 117
6.4 Velocity Ramp Generator o e e e 118
6.5 Position Regulation e 118
6.5.1 Structure of the Position Regulator 118
6.5.2 Correlation of Axis Parameters 105 and 109, the Target Position and the Position
End Flag . . . o e 119
7 Ramps 120
7.1 Linear Ramp e e e e 120
7.2 SineShaped Ramp 120
8 Module Specific Functions 122
8.1 FIErS . e 122
8.1.1 Biquad Filter (for Future Use) o 123
8.2 Mechanical brake e e 123
8.3 Brake Chopper o 124
8.3.1 PWM Braking o e e e e e e 124
8.3.2 Resistive/Shunt Braking e 124
8.4 T 125
8.5 Lower Velocity Pl o 126
ANALOG
DEVICES

AHEAD OF WHAT’S POSSIBLE™

TMCM-1690 TMCL™ Firmware Manual * Firmware Version V1.01 | Rev 0: 01/24 4/135
9 TMCL Programming Techniques and Structure 127
9.1 Initialization 127
9.2 Main LoOP . . v o o o e e e e e e e e e e 127
9.3 Using Symbolic Constants o e e 127
9.4 Using Variables 128
9.5 Using Subroutines e e e e e 129
9.6 Combining Direct Mode and StandaloneMode 129
9.7 Make the TMCL Program Start Automatically 130
10 Figures Index 131
11 Tables Index 132
12 Supplemental Directives 133
12.1 Producer Information e 133
12.2 Copyright o e e 133
12.3 Trademark Designationsand Symbols 133
124 Target User i e e e e e e e e e e 133
12.5 Disclaimer: Life Support Systems 133
12.6 Disclaimer: Intended Use e 133
12.7 Collateral Documents & TOOIS L o i e e 134
13 Revision History 135
13.1 Firmware Revision e e e e e 135
13.2 Document ReviSion e e e e 135

ANALOG
DEVICES

AHEAD OF WHAT’S POSSIBLE™

TMCM-1690 TMCL™ Firmware Manual * Firmware Version V1.01 | Rev 0: 01/24 5/135

1 Features

The TMCM-1690 is a controller/driver module for BLDC motors. It is highly integrated, offers a convenient
handling, and can be used in many decentralized applications. The module is designed for phase currents
up to 1.5A gate drive current and 60V DC (48V nominal) supply voltage. All motors are controlled using
field oriented control (FOC), using either encoder (ABN or absolute) feedback or hall sensor feedback. The

TMCL firmware allows for both standalone and direct mode operation.

Main characteristics
* Motion and motor controller for single and 3-phase motors:

Field oriented control

On-the-fly modification of motion parameters (example: position, velocity, acceleration).

High performance microcontroller for overall system control and communication protocol han-
dling.

High-efficient operation, low power dissipation.

Supports incremental encoders, absolute encoders, and digital hall sensors.

* Interfaces

- UART (RS485-ready or RS232 with external transceiver)
- CAN interface with external transceiver.
- Two digital inputs, one analog input, and six additional digital inputs/outputs.

Software
TMCL remote controlled operation through UART (RS485-ready/RS232) or CAN interface and/or stan-

dalone operation through TMCL programming. PC-based application development software TMCL-IDE
is available for free.

Electrical data
* Supply voltage: 10V to 60V (48V nominal).
+ Gate drive current: up to 1.5A (programmable).

Also see the separate hardware manual.

ANALOG
DEVICES

AHEAD OF WHAT’S POSSIBLE™

TMCM-1690 TMCL™ Firmware Manual * Firmware Version V1.01 | Rev 0: 01/24 6/135

2 First Steps with TMCL

This chapter provides some hints for the first steps with the TMCM-1690 and TMCL. Skip this chapter if
already familiar with TMCL and the TMCL-IDE.

Requirements
+ ATMCM-1690 module

+ A CAN interface supported by the TMCL-IDE or a UART (RS232/RS485-ready with transceiver) inter-
face connected to the PC.

+ A power supply (24V DC) for the TMCM-1690 module.
* The TMCL-IDE (3.x or higher) already installed on the PC.

A BLDC motor

2.1 Basic Setup

First of all, the basic setup needs a PC with Windows (at least Windows 7) and the latest TMCL-IDE (> V3.0)
installed on it. If the TMCL-IDE is not installed on the PC, download it from the TMCL-IDE product page on
the ADI Trinamic website.

Ensure the TMCM-1690 is properly connected to the power supply and the BLDC motor is properly con-
nected to the module. See the TMCM-1690 hardware manual for instructions on how to do this. Do not
connect or disconnect a motor to or from the module while the module is powered!

Then, start the TMCL-IDE. After that, connect the TMCM-1690 through CAN or UART (RS232-/RS485-ready)
interface and switch on the power supply for the module (while the TMCL-IDE is running on the PC). When
the module is connected properly, it is recognized by the TMCL-IDE and is ready for use.

2.2 Using the TMCL Direct Mode

The TMCL-IDE displays a tree view showing the TMCM-1690 and all tools available for it. Click the Direct
Mode entry of the tool tree. The Direct Mode tool pops up.

In the Direct Mode tool, choose a TMCL command, enter the necessary parameters, and execute the com-
mand. For example, choose the command ROL (rotate left). Then choose the appropriate motor (motor
0 if your motor is connected to the motor 0 connector). Now, enter the desired speed. Try entering 500
rpm as the value and then click the Execute button. The motor will now run. Choose the MST (motor stop)
command and click Execute again to stop the motor.

2.3 Changing Axis Parameters

Next, try changing some settings (also called axis parameters) using the SAP command in the direct mode.
Choose the SAP command. Then choose the parameter type and motor number. Last, enter the desired
value and click Execute to execute the command, which then changes the desired parameter.

The following table points out the most important axis parameters. See chapter 4 for a complete list of
all axis parameters.

ANALOG
DEVICES

AHEAD OF WHAT’S POSSIBLE™

https://www.analog.com/en/design-center/landing-pages/001/trinamic-support.html)

TMCM-1690 TMCL™ Firmware Manual * Firmware Version V1.01 | Rev 0: 01/24 7/135
Most Important Axis Parameters
Number | Axis Parameter | Description Range Access
[Units]
0 Motor type Select the motor type. 0...1 RWEX
0 - three-phase BLDC
1 - single-phase DC
2 Motor pole Number of motor pole pairs. 1...255 RWEX
pairs
13 Commutation Select a commutation mode that fits bestto the | 0...5 RWEX
mode motor’s sensors.
0 - disabled
1 - open loop
2 - digital hall (foc)
3 - digital hall (block)
4 - ABN encoder
5 - ABS encoder
16 Maximum Maximum allowed absolute motor current. This | 0...10000 RWEX
current value can be temporarily exceeded marginally | [mA]
due to the operation of the current regulator.
32 Open loop Motor current for controlled commutation. This | 0...10000 RWEX
current parameter is used in commutation mode 1. [MmA]
94 Maximum Maximum absolute velocity for velocity and po- | 0...200000 | RWEX
velocity sitioning mode. [rpm]
95 Acceleration Acceleration parameter for ROL, ROR, and the | 0...200000 | RWEX
velocity ramp of MVP. [rpm/s]

Table 1: Most important Axis Parameters

2.4 Testing with a Simple TMCL Program

Now, test the TMCL standalone mode with a simple TMCL program. Type in, assemble and download the
program uisng the TMCL creator. This is also a tool that can be found in the tool tree of the TMCL-IDE.
Click the TMCL creator entry to open the TMCL creator. In the TMCL creator, type in the following little
TMCL program:

SAP
SAP
SAP

SAP
SAP
SAP
SAP
SAP

ROR

WAIT TICKS, O,

24, 0, 1868

25, 0, 1866

26, 0, 1866

107, 0, 1000
108, 0, 500

110, 0, 500

95, 0, 10000
13, 0, 5

0, 200

300

//set ADC offsets

//set
//set
//set
//set

position reached distance

position P
acceleration [rpm/s]

//switch to abs encoder mode

//rotate motor

position reached velocity [rpm]

ANALOG
DEVICES

AHEAD OF WHAT’S POSSIBLE™

TMCM-1690 TMCL™ Firmware Manual * Firmware Version V1.01 | Rev 0: 01/24 8/135

15 PositionTest:
MVP ABS, 0O, O

17 WAIT POS, 0, O
MVP ABS, 0, 655360
19 WAIT POS, 0, O

JA PositionTest
After that, follow these steps:

1. Click the Assemble icon (or choose Assemble from the TMCL menu) in the TMCL creator to assemble
the program.

2. Click the Download icon (or choose Download from the TMCL menu) in the TMCL creator to donwload
the program to the module.

3. Click the Run icon (or choose Run from the TMCL menu) in the TMCL creator to run the program on
the module.

Also try out the debugging functions in the TMCL creator:
1. Click Debug to start the debugger.
2. Click Animate to see the single steps of the program.
3. At any time, pause the program, set or reset breakpoints, and resume program execution.

4. To end the debug mode, click Debug again.

ANALOG
DEVICES

AHEAD OF WHAT’S POSSIBLE™

TMCM-1690 TMCL™ Firmware Manual * Firmware Version V1.01 | Rev 0: 01/24 9/135

3 TMCL and the TMCL-IDE — An Introduction

As with most TRINAMIC modules, the software running on the microprocessor of the TMCM-1690 consists
of two parts: a bootloader and the firmware itself. Whereas the boot loader is installed during produc-
tion and testing at TRINAMIC and remains untouched throughout the whole lifetime, the firmware can be
updated. Download new versions free of charge from the ADI Trinamic software and tools website.

The TMCM-1690 supports the TMCL direct mode (binary commands). It also implements standalone TMCL
program execution. This makes it possible to write TMCL programs using the TMCL-IDE and store them
in the memory of the module.

In direct mode, the TMCL communication over RS-232, RS-485, CAN, and USB follows a strict client/server
relationship. That is, a computer (example, PC/PLC) acting as the interface bus host sends a command to
the TMCM-1690. The TMCL interpreter on the module then interprets this command, does the initializa-
tion of the motion controller, and reads inputs and writes outputs or whatever is necessary according to
the specified command. As soon as this step is done, the module sends a reply back over the interface
to the host. The host must not send any next command before the reply for a preceding command is
received.

Normally, the module just switches to transmission and occupies the bus for a reply. Otherwise it stays in
receive mode. It does not send any data over the interface without receiving a command first. This way,
any collision on the bus is avoided when there are more than two nodes connected to a single bus.

The Trinamic Motion Control Language (TMCL) provides a set of structured motion control commands.
Every motion control command can be given by a host computer or can be stored in an EEPROM on the
TMCM module to form programs that run standalone on the module. For this purpose, there are not only
motion control commands but also commands to control the program structure (like conditional jumps,
compare, and calculating).

Every command has a binary representation and a mnemonic. The binary format is used to send com-
mands from the host to a module in direct mode, whereas the mnemonic format is used for easy usage
of the commands when developing standalone TMCL applications using the TMCL-IDE (IDE means inte-
grated development environment).

There is also a set of configuration variables for the axis and for global parameters that allow individual
configuration of nearly every function of a module. This manual gives a detailed description of all TMCL
commands and their usage.

3.1 Binary Command Format

Every command has a mnemonic and a binary representation. When commands are sent from a host
to a module, the binary format has to be used. Every command consists of a one-byte command field, a
one-byte type field, a one-byte motor/bank field, and a four-byte value field. So, the binary representation
of a command always has seven bytes. When a command is to be sent through RS-232, RS-485, RS-422,
or USB interface, it has to be enclosed by an address byte at the beginning and a checksum byte at the
end. In these cases, it consists of nine bytes.

The binary command format with RS-232, RS-485, RS-422, and USB is as follows:

ANALOG
DEVICES

AHEAD OF WHAT’S POSSIBLE™

https://www.analog.com/en/design-center/landing-pages/001/trinamic-support.html)

TMCM-1690 TMCL™ Firmware Manual * Firmware Version V1.01 | Rev 0: 01/24 10/135

TMCL Command Format
Bytes | Meaning
1 Module address
1 Command number
1 Type number
1 Motor or Bank number
4 Value (MSB first!)
1 Checksum

Table 2: TMCL Command Format

O Info The checksum is calculated by accumulating all the other bytes using an 8-bit
addition.
Note When using the CAN interface, leave out the address byte and checksum byte.

With CAN, the CAN-ID is used as the module address and the checksum is not
needed because the CAN bus uses hardware CRC checking.

3.1.1 Checksum Calculation

As mentioned above, the checksum is calculated by adding up all bytes (including the module address
byte) using 8-bit addition. Here is an example on how to do this:

Checksum calculation in C:

unsigned char i, Checksum;
unsigned char Command [9];

//Set the Command array to the desired command
Checksum = Command [0];
for(i=1; i<8; i++)

Checksum+=Command [i];

Command [8]=Checksum; //insert checksum as last byte of the command
//Now, send it to the module

3.2 Reply Format

Every time a command is sent to a module, the module sends a reply. The reply format with RS-232, RS-
485, RS-422, and USB is as follows:

ANALOG
DEVICES

AHEAD OF WHAT’S POSSIBLE™

TMCM-1690 TMCL™ Firmware Manual * Firmware Version V1.01 | Rev 0: 01/24 11/135

TMCL Reply Format
Bytes | Meaning
1 Reply address
1 Module address
1 Status (example, 100 means no error)
1 Command number
4 Value (MSB first!)
1 Checksum

Table 3: TMCL Reply Format

O Info The checksum is also calculated by adding up all the other bytes using an 8-bit
addition. Do not send the next command before having received the reply!

Note When using CAN interface, the reply does not contain an address byte and a
checksum byte. With CAN, the CAN-ID is used as the reply address and the check-
sum is not needed because the CAN bus uses hardware CRC checking.

3.2.1 Status Codes

The reply contains a status code. The status code can have one of the following values:

TMCL Status Codes
Code | Meaning

100 Successfully executed, no error
101 Command loaded into TMCL program EEPROM

1 Wrong checksum

Invalid command

Wrong type

Invalid value
Configuration EEPROM locked

ol h~lWwWN

Command not available

Table 4: TMCL Status Codes

3.3 Standalone Applications

The module is equipped with a TMCL memory for storing TMCL applications. Use the TMCL-IDE for devel-
oping standalone TMCL applications. Download a program into the EEPROM and afterwards it runs on

ANALOG
DEVICES

AHEAD OF WHAT’S POSSIBLE™

TMCM-1690 TMCL™ Firmware Manual * Firmware Version V1.01 | Rev 0: 01/24 12/135

the module. The TMCL-IDE contains an editor and the TMCL assembler, where the commands can be en-
tered using their mnemonic format. They are assembled automatically into their binary representations.

Afterwards, this code can be downloaded into the module to be executed there.

ANALOG
DEVICES

AHEAD OF WHAT’S POSSIBLE™

TMCM-1690 TMCL™ Firmware Manual * Firmware Version V1.01 | Rev 0: 01/24

13/135

3.4 TMCL Command Overview

This section gives a short overview of all TMCL commands.

Overview of All TMCL Commands
Command | Number | Parameter Description
ROR 1 <motor number>, <velocity> Rotate right with specified velocity
ROL 2 <motor number>, <velocity> Rotate left with specified velocity
MST 3 <motor number> Stop motor movement
MVP 4 ABS|REL|COORD, <motor number>, | Move to position (absolute or rela-
<position | offset> tive)
SAP 5 <parameter>, <motor number>, | Set axis parameter (motion control
<value> specific settings)
GAP 6 <parameter>, <motor number> Get axis parameter (read out motion
control specific settings)
STAP 7 <parameter>, ~<motor number>, | Store axis parameter (store motion
<value> control specific settings)
RSAP 8 <parameter>, <motor number> Restore axis parameter (restore mo-
tion control specific settings)
SGP 9 <parameter>, <bank number>, | Set global parameter (module spe-
<value> cific settings). Example: communica-
tion settings or TMCL user variables.
GGP 10 <parameter>, <bank number> Get global parameter (read out mod-
ule specific settings). Example: com-
munication settings or TMCL user
variables.
STGP 11 <parameter>, <bank number> Store global parameter (TMCL user
variables only)
RSGP 12 <parameter>, <bank number> Restore global parameter (TMCL user
variables only)
SIO 14 <port number>, <bank number>, | Set digital output to specified value
<value>
GIO 15 <port number>, <bank number> Get value of analog/digital input
CALC 19 <operation>, <value> Aithmetical operation between accu-
mulator and direct value
COMP 20 <value> Compare accumulator with value
JC 21 <condition>, <jump address> Jump conditional
JA 22 <jump address> Jump absolute
CSsuB 23 <subroutine address> Call subroutine
RSUB 24 Return from subroutine
El 25 <interrupt number> Enable interrupt

ANALOG
DEVICES

AHEAD OF WHAT’S POSSIBLE™

TMCM-1690 TMCL™ Firmware Manual * Firmware Version V1.01 | Rev 0: 01/24

14/135

Command | Number | Parameter Description
DI 26 <interrupt number> Disable interrupt
WAIT 27 <condition>, <motor number>, | Wait with further program execution
<ticks>
STOP 28 Stop program execution
SCO 30 <coordinate number>, <motor num- | Set coordinate
ber>, <position>
GCO 31 <coordinate number>, <motor num- | Get coordinate
ber>
cco 32 <coordinate number>, <motor num- | Capture coordinate
ber>
CALCX 33 <operation> Arithmetical operation between accu-
mulator and X-register
AAP 34 <parameter>, <motor number> Accumulator to axis parameter
AGP 35 <parameter>, <bank number> Accumulator to global parameter
CLE 36 <flag> Clear an error flag
VECT 37 <interrupt number>, <address> Define interrupt vector
RETI 38 Return from interrupt
ACO 39 <coordinate number>, <motor num- | Accumulator to coordinate
ber>
CALCWV 40 <operation>, <uservariable 1>, <user | Arithmetical operation between two
variable 2> user variables
CALCVA 41 <operation>, <user variable> Arithmetical operation between user
variable and accumulator
CALCAV 42 <operation>, <user variable> Arithmetical operation between accu-
mulator and user variable
CALCVX 43 <operation>, <user variable> Arithmetical operation between user
variable and X register
CALCXV 44 <operation>, <user variable> Arithmetical operation between X
register and user variable
CALCV 45 <operation>, <value> Arithmetical operation between user
variable and direct value
MVPA 46 ABS|REL|COORD, <motor number> | Move to position specified by accu-
mulator
RST 48 <jump address> Restart the program from the given
address
DJNZ 49 <user variable>, <jump address> Decrement and jump if not zero
ROLA 50 <motor number> Rotate left, velocity specified by accu-

mulator

ANALOG
DEVICES

AHEAD OF WHAT’S POSSIBLE™

TMCM-1690 TMCL™ Firmware Manual * Firmware Version V1.01 | Rev 0: 01/24 15/135

Command | Number | Parameter Description

RORA 51 <motor number> Rotate right, velocity specified by ac-
cumulator

SIvV 55 <value> Set indexed variable

GIV 56 Get indexed variable

AlV 57 Accumulator to indexed variable

Table 5: Overview of All TMCL Commands

3.5 TMCL Commands by Subject
3.5.1 Motion Commands

These commands control the motion of the motor. They are the most important commands and can be
used in direct mode or standalone mode.

Motion Commands
Mnemonic | Command Number | Meaning
ROL 2 Rotate left
ROR 1 Rotate right
MVP 4 Move to position
MST 3 Motor stop
SCO 30 Store coordinate
cco 32 Capture coordinate
GCO 31 Get coordinate

Table 6: Motion Command's

3.5.2 Parameter Commands

These commands are used to set, read, and store axis parameters or global parameters. Axis parameters
can be set independently for each axis, whereas global parameters control the behavior of the module
itself. These commands can also be used in direct mode and standalone mode.

ANALOG
DEVICES

AHEAD OF WHAT’S POSSIBLE™

TMCM-1690 TMCL™ Firmware Manual * Firmware Version V1.01 | Rev 0: 01/24 16/135

3.5.3

Parameter Commands
Mnemonic | Command Number | Meaning
SAP 5 Set axis parameter
GAP 6 Get axis parameter
STAP 7 Store axis parameter
RSAP 8 Restore axis parameter
SGP 9 Set global parameter
GGP 10 Get global parameter
STGP 11 Store global parameter
RSGP 12 Restore global parameter

Branch Commands

Table 7: Parameter Commands

These commands are used to control the program flow (loops, conditions, jumps, etc.). Using them in
direct mode does not make sense. They are intended for standalone mode only.

3.54

Branch Commands
Mnemonic | Command Number | Meaning
JA 22 Jump always
JC 21 Jump conditional
COMP 20 Compare accumulator with constant value
CSuB 23 Call subroutine
RSUB 24 Return from subroutine
WAIT 27 Wait for a specified event
STOP 28 End of a TMCL program

1/0 Port Commands

Table 8: Branch Commands

These commands control the external I/0 ports and can be used in direct mode as well as standalone

mode.

ANALOG
DEVICES

AHEAD OF WHAT’S POSSIBLE™

TMCM-1690 TMCL™ Firmware Manual * Firmware Version V1.01 | Rev 0: 01/24 17/135

I/0 Port Commands

Mnemonic | Command Number | Meaning
SIO 14 Set output
GIO 15 Get input

Table 9: I/0 Port Commands

3.5.5 Calculation Commands

These commands are intended for calculations within TMCL applications. Although they can also be used
in direct mode, it does not make much sense to do so.

Calculation Commands
Mnemonic | Command Number | Meaning
CALC 19 Calculate using the accumulator and a constant value
CALCX 33 Calculate using the accumulator and the X register
AAP 34 Copy accumulator to an axis parameter
AGP 35 Copy accumulator to a global parameter
ACO 39 Copy accumulator to coordinate

Table 10: Calculation Commands

For calculating purposes, there is an accumulator (also called accu or A register) and an X register. When
executed in a TMCL program (in standalone mode), all TMCL commands that read a value store the result
in the accumulator. The X register can be used as an additional memory when doing calculations. It can
be loaded from the accumulator.

When a command that reads a value is executed in direct mode, the accumulator is not affected. This
means that while a TMCL program is running on the module (standalone mode), a host can still send com-
mands like GAP and GGP to the module (for example, to query the actual position of the motor) without
affecting the flow of the TMCL program running on the module.

Also see chapter 3.5.7 for more calculation commands.

3.5.6 Interrupt Processing Commands

TMCL also contains functions for a simple way of interrupt processing. Using interrupts, many tasks can
be programmed in an easier way.
The following commands are use to define and handle interrupts:

ANALOG
DEVICES

AHEAD OF WHAT’S POSSIBLE™

TMCM-1690 TMCL™ Firmware Manual * Firmware Version V1.01 | Rev 0: 01/24 18/135

Interrupt Processing Commands

Mnemonic | Command Number | Meaning

El 25 Enable interrupt

DI 26 Disable interrupt
VECT 37 Set interrupt vector
RETI 38 Return from interrupt

Table 11: Interrupt Processing Commands

3.5.6.1 Interrupt Types

There are many differentinterrupts in TMCL, like timer interrupts, stop switch interrupts, position reached
interrupts, and input pin change interrupts. Each of these interrupts has its own interrupt vector. Each
interrupt vector is identified by its interrupt number. Use the TMCL include file Interrupts.inc to have
symbolic constants for the interrupt numbers. Table 12 shows all interrupts available on the TMCM-1690.

Interrupt Vectors
Interrupt number | Interrupt type
0 Timer 0
1 Timer 1
2 Timer 2
3 Target position reached 0
27 Left stop switch O
28 Right stop switch 0
39 Input change 0
40 Input change 1
41 Input change 2
255 Global interrupts

Table 12: Interrupt Vectors

3.5.6.2 Interrupt Processing

When an interrupt occurs and this interrupt is enabled, and a valid interrupt vector is defined for that
interrupt, the normal TMCL program flow is interrupted, and the interrupt handling routine is called. Be-
fore an interrupt handling routine gets called, the context of the normal program (that is, accumulator
register, X register, flags) is saved automatically.

There is no interrupt nesting, that is all other interrupts are disabled while an interrupt handling routine
is being executed.

On return from an interrupt handling routine (RETI command), the context of the normal program is
automatically restored and the execution of the normal program is continued.

3.5.6.3 Further Configuration of Interrupts
Some interrupts need further configuration (example, the timer interval of a timer interrupt). This can

ANALOG
DEVICES

AHEAD OF WHAT’S POSSIBLE™

16

18

20

22

TMCM-1690 TMCL™ Firmware Manual * Firmware Version V1.01 | Rev 0: 01/24 19/135

be done using SGP commands with parameter bank 3 (SGP <type>, 3, <value>). See the SGP command
(chapter 3.6.9) for further information about this.

3.5.6.4 Using Interrupts in TMCL
To use an interrupt, the following things have to be done:

+ Define an interrupt handling routine using the VECT command.

* If necessary, configure the interrupt using an SGP <type>, 3, <value> command.
* Enable the interrupt using an El <interrupt> command.

+ Globally enable interrupts using an El 255 command.

+ Aninterrupt handling routine must always end with a RETI command.

+ Do not allow the normal program flow to run into an interrupt handling routine.

The following example shows the use of a timer interrupt:

VECT 0, TimerOIrq //define the interrupt vector

SGP 0, 3, 1000 //configure the interrupt: set its period to 1000ms
EI 0O //enable this interrupt
EI 255 //globally switch on interrupt processing

//Main program: toggles output 3, using a WAIT command for the delay
Loop:

SI1I0 3, 2, 1

WAIT TICKS, 0, 50

S10 3, 2, O

WAIT TICKS, 0, 50

JA Loop

//Here is the interrupt handling routine

TimerOIrq:

GIO 0, 2 //check if 0UTO is high

JC NZ, OutOOff //jump if not

SI0 0, 2, 1 //switch OUTO high

RETI //end of interrupt
OutOO0ff:

SI0O 0, 2, O //switch OUTO low

RETI //end of interrupt

In the example above, the interrupt numbers are being used directly. To make the program better read-
able use the provided include file Interrupts.inc. This file defines symbolic constants for all interrupt
numbers that can be used in all interrupt commands. The beginning of the program above then looks as
follows:
#include Interrupts.inc

VECT TI_TIMERO, TimerOIrq

SGP TI_TIMERO, 3, 1000

EI TI_TIMERO
EI TI_GLOBAL

ANALOG
DEVICES

AHEAD OF WHAT’S POSSIBLE™

TMCM-1690 TMCL™ Firmware Manual * Firmware Version V1.01 | Rev 0: 01/24 20/135

3.5.7 New TMCL Commands

To make several operations easier, the following new commands have been introduced from firmware
version 1.07 on. Using these new commands, many tasks can be programmed in an easier way. This can
save some code, thus making a TMCL program shorter, faster, and easier to understand.

Note that these commands are not available on TMCM-1690 modules with firmware versions before 1.07.
So, make sure that at least firmware version 1.07 is installed before using them.

New TMCL Commands
Mnemonic | Command Number | Meaning
CALCWV 40 Calculate using two user variables
CALCVA 41 Calculate using a user variable and the accumulator
CALCAV 42 Calculate using the accumulator and a user variable
CALCVX 43 Calculate using a user variable and the X register
CALCXV 44 Calculate using the X register and a user variable
CALCV 45 Calculate using a user variable and a direct value
MVPA 46 Move to position specified by accumulator
RST 48 Restart the program
DJNZ 49 Decrement and jump if not zero
CALL 80 Conditional subroutine call
ROLA 50 Rotate left using the accumulator
RORA 51 Rotate right using the accumulator
SIv 55 Set indexed variable
GIV 56 Get indexed variable
AlV 57 Accu to indexed variable

Table 13: New TMCL Commands

ANALOG
DEVICES

AHEAD OF WHAT’S POSSIBLE™

TMCM-1690 TMCL™ Firmware Manual * Firmware Version V1.01 | Rev 0: 01/24 21/135

3.6 Detailed TMCL Command Descriptions

The module specific commands are explained in more detail on the following pages. They are listed
according to their command number.

3.6.1 ROR (Rotate Right)

The motorisinstructed to rotate with a specified velocity in right direction (increasing the position counter).
The velocity is given in rounds per minute (rpm).

Internal function: Velocity mode is selected. Then, the velocity value is transferred to the target velocity.
Related commands: ROL, MST, SAP, GAP

Mnemonic: ROR <axis>, <velocity>

Binary Representation

Instruction | Type | Motor/Bank | Value
1 0 0 -2147483648...2147583647

Reply in Direct Mode

Status Value
100 - OK | Don't care

Example
Rotate right motor 0, velocity 500.
Mnemonic: ROR 0, 500.

Binary Form of ROR 0, 500

Field Value
Target address 01y
Instruction number | 01y
Type 00,
Motor/Bank 00y,
Value (Byte 3) 00y,
Value (Byte 2) 00y,
Value (Byte 1) 01y
Value (Byte 0) Fdn
Checksum F7h

ANALOG
DEVICES

AHEAD OF WHAT’S POSSIBLE™

TMCM-1690 TMCL™ Firmware Manual * Firmware Version V1.01 | Rev 0: 01/24 22/135

3.6.2 ROL (Rotate Left)

The motor is instructed to rotate with a specified velocity in left direction (decreasing the position counter).
The velocity is given in rounds per minute (rpm).

Internal function: Velocity mode is selected. Then, the velocity value is transferred to the target velocity.
Related commands: ROR, MST, SAP, GAP

Mnemonic: ROL <axis>, <velocity>

Binary Representation

Instruction | Type | Motor/Bank | Value
2 0 0 -2147483648...2147583647

Reply in Direct Mode

Status Value
100 - OK | Don't care

Example
Rotate left motor 0O, velocity 500.
Mnemonic: ROL 0, 500.

Binary Form of ROL 0, 500

Field Value
Target address 01y
Instruction number | 02
Type 00y,
Motor/Bank 00y,
Value (Byte 3) 00y,
Value (Byte 2) 00y,
Value (Byte 1) 01,
Value (Byte 0) Fdn
Checksum F8h

ANALOG
DEVICES

AHEAD OF WHAT’S POSSIBLE™

TMCM-1690 TMCL™ Firmware Manual * Firmware Version V1.01 | Rev 0: 01/24

23/135

3.6.3 MST (Motor Stop)

The MST command stops the motor using a soft stop.

Internal function: The velocity mode is selected. Then, the target velocity is set to zero.

Related commands: ROR, ROL, SAP, GAP

Mnemonic: MST <axis>

Binary Representation

Instruction | Type

Motor/Bank

Value

3 0

0

Reply in Direct Mode

Status Value

100 - OK | Don't care

Example
Stop motor O.

Mnemonic: MST 0.

Binary Form of MST 0

Field Value
Target address 01h
Instruction number | 03
Type 00y,
Motor/Bank 00,
Value (Byte 3) 004,
Value (Byte 2) 00y,
Value (Byte 1) 00y,
Value (Byte 0) 00y,
Checksum 04,

ANALOG
DEVICES

AHEAD OF WHAT’S POSSIBLE™

TMCM-1690 TMCL™ Firmware Manual * Firmware Version V1.01 | Rev 0: 01/24 24/135

3.6.4 MVP (Move to Position)

With this command, the motor is instructed to move to a specified relative or absolute position. It uses
the acceleration/deceleration ramp and the positioning speed programmed into the unit. This command
is non-blocking. That is, a reply is sentimmediately after command interpretation and initialization of the
motion controller. Further commands may follow without waiting for the motor reaching its end position.
The maximum velocity and acceleration as well as other ramp parameters are defined by the appropriate
axis parameters. For a list of these parameters, see section 4.

The range of the MVP command is 32-bit signed (-2147483648...2147483647). Positioning can be inter-
rupted using MST, ROL, or ROR commands.

Three operation types are available:
+ Moving to an absolute position in the range from -2147483648...2147483647 (—231...23! —1).

+ Starting a relative movement by means of an offset to the actual position. In this case, the new
resulting position value must not exceed the above mentioned limits, too.

* Moving the motor to a (previously stored) coordinate (refer to SCO for details).

Note The distance between the actual position and the new position must not be more
than 2147483647 (23! — 1) position steps. Otherwise, the motor runs in the op-
posite direction to take the shorter distance (caused by 32-bit overflow).

Related commands: SAP, GAP, SCO, GCO, CCO, ACO, MST

Mnemonic: MVP <ABS|REL|COORD>, <axis>, <position | offset|coordinate>

Binary Representation
Instruction | Type Motor/Bank | Value
0 - ABS - absolute 0 <position>
4 1 - REL - relative 0 <offset>
2 - COORD - coordinate | 0...255 <coordinate number (0..20)>

Reply in Direct Mode

Status Value
100 - OK | Don't care

Example
Move motor 0 to position 90000.
Mnemonic: MVP ABS, 0, 90000

ANALOG
DEVICES

AHEAD OF WHAT’S POSSIBLE™

TMCM-1690 TMCL™ Firmware Manual * Firmware Version V1.01 | Rev 0: 01/24 25/135
Binary Form of MVP ABS, 0, 90000
Field Value
Target address 01y,
Instruction number | 04,
Type 00
Motor/Bank 004,
Value (Byte 3) 00y,
Value (Byte 2) 01,
Value (Byte 1) 5F,
Value (Byte 0) 90y,
Checksum F5h
Example
Move motor 0 from current position 10000 steps backward.
Mnemonic: MVP REL, 0, -10000
Binary Form of MVP REL, 0, -10000
Field Value
Target address 01h
Instruction number | 04,
Type 01h
Motor/Bank 00y,
Value (Byte 3) FFh
Value (Byte 2) FFy,
Value (Byte 1) D8,
Value (Byte 0) FOR,
Checksum CCy
Example
Move motor 0 to stored coordinate #8.
Mnemonic: MVP COORD, 0, 8
ANALOG
DEVICES

AHEAD OF WHAT’S POSSIBLE™

TMCM-1690 TMCL™ Firmware Manual * Firmware Version V1.01 | Rev 0: 01/24 26/135

Binary Form of MVP COORD, 0, 8
Field Value
Target address 01y,
Instruction number | 04,

Type 02y,
Motor/Bank 004,

Value (Byte 3) 00y,

Value (Byte 2) 00,

Value (Byte 1) 00y,

Value (Byte 0) 08y,
Checksum OFy

Note Before moving to a stored coordinate, the coordinate has to be set using an SCO,

CCO, or ACO command.

ANALOG
DEVICES

AHEAD OF WHAT’S POSSIBLE™

TMCM-1690 TMCL™ Firmware Manual * Firmware Version V1.01 | Rev 0: 01/24 27/135

3.6.5 SAP (Set Axis Parameter)

With this command, most of the motion control parameters of the module can be specified. The settings
are stored in SRAM and therefore are volatile. That is, information is lost after power off.

O Info For a table with parameters and values that can be used together with this com-
mand, refer to section 4.

Internal function: The specified value is written to the axis parameter specified by the parameter num-
ber.

Related commands: GAP, AAP
Mnemonic: SAP <parameter number>, <axis>, <value>

Binary representation

Binary Representation

Instruction | Type Motor/Bank | Value

5 See chapter4 | 0 <value>

Reply in Direct Mode

Status Value
100 - OK | Don't care

Example
Set the maximum velocity for motor #0 to 200 rpm.
Mnemonic: SAP 94, 0, 200.

Binary Form of SAP 94, 0, 200

Field Value
Target address 01y
Instruction number | 05,
Type 5Ej
Motor/Bank 00y,
Value (Byte 3) 00y,
Value (Byte 2) 00y,
Value (Byte 1) 00y
Value (Byte 0) COp,
Checksum F9;,

ANALOG
DEVICES

AHEAD OF WHAT’S POSSIBLE™

TMCM-1690 TMCL™ Firmware Manual * Firmware Version V1.01 | Rev 0: 01/24

28/135

3.6.6 GAP (Get Axis Parameter)

Most motion/driver related parameters of the TMCM-1690 can be adjusted using for example, the SAP
command. With the GAP command, these can be read out. In standalone mode, the requested value is
also transferred to the accumulator register for further processing purposes (such as conditional jumps).
In direct mode, the requested value is only returned in the value field of the reply, without affecting the
accumulator.

O Info

For a table with parameters and values that can be used together with this com-
mand, refer to section 4.

Internal function: The specified value gets copied to the accumulator.

Related commands: SAP, AAP

Mnemonic: GAP <parameter number>, <axis>

Binary Representation

Instruction

Type

Motor/Bank

Value

6

See chapter 4

0

<value>

Reply in Direct Mode

Status Value
100 - OK | Value read by this command
Example

Get the actual position of motor #0.
Mnemonic: GAP 106, 0.

Binary Form of GAP 106, 0
Field Value
Target address 01h
Instruction number | 06y
Type 6A
Motor/Bank 00y,
Value (Byte 3) 004,
Value (Byte 2) 00y,
Value (Byte 1) 00,
Value (Byte 0) 00y,
Checksum 3By

ANALOG
DEVICES

AHEAD OF WHAT’S POSSIBLE™

TMCM-1690 TMCL™ Firmware Manual * Firmware Version V1.01 | Rev 0: 01/24

29/135

3.6.7 STAP (Store Axis Parameter)

This command is used to store TMCL axis parameters permanently in the EEPROM of the module. This
command is mainly needed to store the default configuration of the module. The contents of the user

variables can either be automatically or manually restored at power on.

O Info

For a table with parameters and values that can be used together with this com-
mand, refer to section 4.

Internal function: The axis parameter specified by the type and axis number is stored in the EEPROM.

Related commands: SAP, AAP, GAP, RSAP

Mnemonic: STAP <parameter number>, <axis>

Binary Representation

Instruction | Type

Motor/Bank

Value

7 See chapter 4

0

0 (Don't care)

Reply in Direct Mode

Status Value

100 - OK | 0 (don't care)

Example

Store axis parameter #6 of motor #0.
Mnemonic: STAP 6, 0.

Binary Form of STAP 6, 0

Field Value
Target address 01h
Instruction number | 07
Type 064,
Motor/Bank 00,
Value (Byte 3) 004,
Value (Byte 2) 00n
Value (Byte 1) 00,
Value (Byte 0) 00y,
Checksum OEn

ANALOG
DEVICES

AHEAD OF WHAT’S POSSIBLE™

TMCM-1690 TMCL™ Firmware Manual * Firmware Version V1.01 | Rev 0: 01/24 30/135

3.6.8 RSAP (Restore Axis Parameter)

With this command, the contents of an axis parameter can be restored from the EEPROM. By default, all
axis parameters are automatically restored after power up. An axis parameter changed before can be
reset to the stored value by this instruction.

O Info For a table with parameters and values that can be used together with this com-
mand, refer to section 4.

Internal function: The axis parameter specified by the type and axis number is restored from the EEPROM.
Related commands: SAP, AAP, GAP, RSAP

Mnemonic: RSAP <parameter number>, <axis>

Binary Representation

Instruction | Type Motor/Bank | Value

8 See chapter4 | 0 0 (Don't care)

Reply in Direct Mode

Status Value
100-OK | O (Don't care)

Example
Restore axis parameter #6 of motor #0.
Mnemonic: RSAP 6, 0.

Binary Form of RSAP 6, 0

Field Value
Target address 01h
Instruction number | 08
Type 064,
Motor/Bank 00,
Value (Byte 3) 004,
Value (Byte 2) 00n
Value (Byte 1) 00,
Value (Byte 0) 00y,
Checksum OF,

ANALOG
DEVICES

AHEAD OF WHAT’S POSSIBLE™

TMCM-1690 TMCL™ Firmware Manual * Firmware Version V1.01 | Rev 0: 01/24 31/135

3.6.9 SGP (Set Global Parameter)

With this command, most of the module specific parameters not directly related to motion control can
be specified and the TMCL user variables can be changed. Global parameters are related to the host
interface, peripherals, or application specific variables. The different groups of these parameters are or-
ganized in banks to allow a larger total number for future products. Currently, bank 0 is used for global
parameters, and bank 2 is used for user variables. Bank 3 is used for interrupt configuration.

All module settings in bank 0 are automatically stored in the non-volatile memory (EEPROM).

O Info For a table with parameters and values that can be used together with this com-
mand, refer to section 5.

Internal function: The specified value is copied to the global parameter specified by the type and bank
number. Most parameters of bank 0 are automatically stored in the non-volatile memory.

Related commands: GGP, AGP

Mnemonic: SGP <parameter number>, <bank>, <value>

Binary Representation

Instruction | Type Motor/Bank | Value

9 See chapter 5 | 0/2/3 <value>

Reply in Direct Mode

Status Value
100 - OK | Don't care

Example
Set the serial address of the device to 3.
Mnemonic: SGP 66, 0, 3.

ANALOG
DEVICES

AHEAD OF WHAT’S POSSIBLE™

TMCM-1690 TMCL™ Firmware Manual * Firmware Version V1.01 | Rev 0: 01/24

32/135

Binary Form of SGP 66, 0, 3

Field Value
Target address 01y,
Instruction number | 09,
Type 42y,
Motor/Bank 004,
Value (Byte 3) 00y,
Value (Byte 2) 00,
Value (Byte 1) 00y,
Value (Byte 0) 03,
Checksum 4F,

ANALOG
DEVICES

AHEAD OF WHAT’S POSSIBLE™

TMCM-1690 TMCL™ Firmware Manual * Firmware Version V1.01 | Rev 0: 01/24 33/135

3.6.10 GGP (Get Global Parameter)

All global parameters can be read with this function. Global parameters are related to the host interface,
peripherals, or application specific variables. The different groups of these parameters are organized in
banks to allow a larger total number for future products. Currently, bank 0 is used for global parameters,
and bank 2 is used for user variables. Bank 3 is used for interrupt configuration. In standalone mode, the
requested value is also transferred to the accumulator register for further processing purposes (such as
conditional jumps). In direct mode, the requested value is only returned in the value field of the reply,
without affecting the accumulator.

O Info For a table with parameters and values that can be used together with this com-
mand, refer to section 5.

Internal function: The global parameter specified by the type and bank number is read.
Related commands: SGP, AGP

Mnemonic: GGP <parameter number>, <bank>

Binary Representation

Instruction | Type Motor/Bank | Value

10 See chapter 5 | 0/2/3 0 (Don't care)

Reply in Direct Mode

Status Value

100 - OK | Value read by this command

Example
Get the serial address of the device.
Mnemonic: GGP 66, 0.

ANALOG
DEVICES

AHEAD OF WHAT’S POSSIBLE™

TMCM-1690 TMCL™ Firmware Manual * Firmware Version V1.01 | Rev 0: 01/24

34/135

Binary Form of GGP 66, 0

Field Value
Target address 01y,
Instruction number | 0Ay
Type 42y,
Motor/Bank 004,
Value (Byte 3) 00y,
Value (Byte 2) 00,
Value (Byte 1) 00y,
Value (Byte 0) 00y
Checksum 4Dy,

ANALOG
DEVICES

AHEAD OF WHAT’S POSSIBLE™

TMCM-1690 TMCL™ Firmware Manual * Firmware Version V1.01 | Rev 0: 01/24 35/135

3.6.11 STGP (Store Global Parameter)

This command is used to store TMCL global parameters permanently in the EEPROM of the module. This
command is mainly needed to store the TMCL user variables (located in bank 2) in the EEPROM of the mod-
ule, as most other global parameters (located in bank 0) are stored automatically when being modified.
The contents of the user variables can either be automatically or manually restored at power on.

O Info For a table with parameters and values that can be used together with this com-
mand, see section 5.2.

Internal function: The global parameter specified by the type and bank number is stored in the EEPROM.
Related commands: SGP, AGP, GGP, RSGP

Mnemonic: STGP <parameter number>, <bank>

Binary Representation

Instruction | Type Motor/Bank | Value
11 See chapter 5.2 | 2 0 (don't care)

Reply in Direct Mode

Status Value
100-OK | O (Don't care)

Example
Store user variable #42.
Mnemonic: STGP 42, 2.

Binary Form of STGP 42, 2

Field Value
Target address 01y
Instruction number | 0By
Type 2A,
Motor/Bank 02,
Value (Byte 3) 004,
Value (Byte 2) 00y,
Value (Byte 1) 00y
Value (Byte 0) 004,
Checksum 38

ANALOG
DEVICES

AHEAD OF WHAT’S POSSIBLE™

TMCM-1690 TMCL™ Firmware Manual * Firmware Version V1.01 | Rev 0: 01/24

36/135

3.6.12 RSGP (Restore Global Parameter)

With this command, the contents of a TMCL user variable can be restored from the EEPROM. By default,
all user variables are automatically restored after power up. A user variable that has been changed before
can be reset to the stored value by this instruction.

O Info

For a table with parameters and values that can be used together with this com-

mand, see section 5.2.

Internal function: The global parameter specified by the type and bank number is restored from the

EEPROM.

Related commands: SGP, AGP, GGP, STGP

Mnemonic: RSGP <parameter number>, <bank>

Binary Representation

Instruction

Type

Motor/Bank

Value

12

See chapter 5.2

2

0 (don't care)

Reply in Direct Mode

Status Value
100-OK | O (Don't care)
Example

Restore user variable #42.
Mnemonic: RSGP 42, 2.

Binary Form of RSGP 42, 2

Field Value
Target address 01y
Instruction number | 0C,
Type 2A,
Motor/Bank 02,
Value (Byte 3) 004,
Value (Byte 2) 00y,
Value (Byte 1) 00y
Value (Byte 0) 004,
Checksum 39,

ANALOG
DEVICES

AHEAD OF WHAT’S POSSIBLE™

TMCM-1690 TMCL™ Firmware Manual * Firmware Version V1.01 | Rev 0: 01/24

37/135

3.6.13 SIO (Set Output)

This command sets the states of the general purpose digital outputs.

Internal function: The state of the output line specified by the type parameter is set according to the

value passed to this

command.

Related commands: GIO.

Mnemonic: SIO <port number>, <bank number>, <value>

Binary Representation

Instruction | Type

Motor/Bank

Value

14 <port number> | <bank number> (2)

01

Reply in Direct Mode

Status Value

100 - OK | 0 (don't care)

Example Set output 2 (bank 2) to high.

Mnemonic: SIO 2, 2,

1.

Binary Form of SIO 2, 2, 1

Field Value
Target address 01h
Instruction number | OE,
Type 02y,
Motor/Bank 024,
Value (Byte 3) 004,
Value (Byte 2) 00y,
Value (Byte 1) 00y,
Value (Byte 0) 01h
Checksum 12,

Bank 2 - Digital Outputs

The following output lines can be set by the SIO command using bank 2.

ANALOG
DEVICES

AHEAD OF WHAT’S POSSIBLE™

TMCM-1690 TMCL™ Firmware Manual * Firmware Version V1.01 | Rev 0: 01/24 38/135
Digital Outputs in Bank 2

Port Command Range

GPIO_2 | SIO 2, 2, <value> | 0/1

GPIO_3 | SIO 3, 2, <value> | 0/1

GPIO_4 | SIO 4, 2, <value> | 0/1

GPIO_5 | SIO 5, 2, <value> | 0/1

GPIO_6 | SIO 6, 2, <value> | 0/1

GPIO_7 | SIO 7, 2, <value> | 0/1
ANALOG
DEVICES

AHEAD OF WHAT’S POSSIBLE™

TMCM-1690 TMCL™ Firmware Manual * Firmware Version V1.01 | Rev 0: 01/24

39/135

3.6.14 GIO (Get Input)

With this command, the status of the available general purpose outputs of the module can be read. The
function reads a digital or an analog input port. Digital lines read as 0 or 1, while the ADC channels deliver
their 12 bit result in the range of 0...4095. In standalone mode, the requested value is copied to the ac-
cumulator register for further processing purposes such as conditional jumps. In direct mode, the value
is only returned in the value field of the reply, without affecting the accumulator. The actual status of a

digital output line can also be read.

Internal function: The state of the I/0 line specified by the type parameter and bank parameter is read.

Related commands: SIO.

Mnemonic: GIO <port number>, <bank number>

Binary Representation

Instruction | Type Motor/Bank Value

15 <port number> | <bank number> | 0 (don't care)

Reply in Direct Mode

Status Value
100 - OK | Status of the port

Example
Get the value of ADC channel 0.
Mnemonic: GIO 0, 1.

Binary Form of GIO 0, 1

Field Value
Target address 01h
Instruction number | OF,
Type 00,
Motor/Bank 01y
Value (Byte 3) 00y,
Value (Byte 2) 00y
Value (Byte 1) 004,
Value (Byte 0) 00y,
Checksum 11,

ANALOG
DEVICES

AHEAD OF WHAT’S POSSIBLE™

TMCM-1690 TMCL™ Firmware Manual * Firmware Version V1.01 | Rev 0: 01/24 40/135

Reply (Status = No Error, Value = 302)
Field Value
Host address 02,

Target address | 01y,
Status 64,

Instruction OFy,
Value (Byte 3) 00y,
Value (Byte 2) 00y,
Value (Byte 1) 01y
Value (Byte 0) 2E,
Checksum A5,

Bank 0 - Digital Inputs
The analog input lines can be read as digital or analog inputs at the same time. The digital input states
can be accessed in bank 0.

Digital Inputs in Bank 0

Port Command | Range
REF_R | GIOO, 0 0/1
REF_L | GIO1,0 0/1

Bank 1 - Analog Inputs
The analog input lines can be read back as digital or analog inputs at the same time. The analog values
can be accessed in bank 1.

Analog Inputs in Bank 1

Port Command | Range

ACU_U GIO O, 1 0...4095
ADC_V GIO 1,1 0...4095
ADC_W GIO 2,1 0...4095
ADC_VOLTAGE | GIO 3,1 0...4095
ADC_TEMP GIO 4,1 0...4095
ADC_AIN GIO 5,1 0...4095

Bank 2 - States of the Digital Outputs

The states of the output lines (set by SIO commands) can be read back using bank 2.

ANALOG
DEVICES

AHEAD OF WHAT’S POSSIBLE™

TMCM-1690 TMCL™ Firmware Manual * Firmware Version V1.01 | Rev 0: 01/24 41/135
Digital Outputs in Bank 2
Port Command | Range
GPIO_2 | GIO 2,2 0/1
GPIO_3 | GIO 3,2 0/1
GPIO_4 | GIO 4,2 0/1
GPIO_5 | GIO 5,2 0/1
GPIO_6 | GIO 6, 2 0/1
GPIO_7 | GIO 7,2 0/1
ANALOG
DEVICES

AHEAD OF WHAT’S POSSIBLE™

TMCM-1690 TMCL™ Firmware Manual * Firmware Version V1.01 | Rev 0: 01/24

42/135

3.6.15 CALC (Calculate)

A value in the accumulator variable, previously read by a function such as GAP (get axis parameter) can
be modified with this instruction. Nine different arithmetic functions can be chosen and one constant
operand value must be specified. The result is written back to the accumulator, for further processing
like comparisons or data transfer. This command is mainly intended for use in standalone mode.

Related commands: CALCX, COMP, AAP, AGP, GAP, GGP, GIO

Mnemonic:

CALC <operation>, <operand>

Binary representation

Binary Representation

Instruction

Type

Motor/Bank

Value

19

0 ADD - add to accumulator

1 SUB - subtract from accumulator

2 MUL - multiply accumulator by

3 DIV - divide accumulator by

4 MOD - modulo divide accumulator by
5 AND - logical and accumulator with

6 OR - logical or accumulator with

7 XOR - logical exor accumulator with

8 NOT - logical invert accumulator

9 LOAD - load operand into accumulator

0 (don't care)

<operand>

Reply in Direct Mode

Status Value
100 - OK | The operand (don't care)
Example

Multiply accumulator by -5000.
Mnemonic: CALC MUL, -5000

ANALOG
DEVICES

AHEAD OF WHAT’S POSSIBLE™

TMCM-1690 TMCL™ Firmware Manual * Firmware Version V1.01 | Rev 0: 01/24

43/135

Binary Form of CALC MUL, -5000

Field Value
Target address 01y,
Instruction number | 13,
Type 02y,
Motor/Bank 004,
Value (Byte 3) FF,
Value (Byte 2) FFy,
Value (Byte 1) ECh
Value (Byte 0) 78,
Checksum 78,

Reply (Status = No error, value = -5000:

Field Value
Host address 02,
Target address | 01y,
Status 64,
Instruction 134
Value (Byte 3) FF,
Value (Byte 2) FF,
Value (Byte 1) ECh
Value (Byte 0) 78,
Checksum DCy

ANALOG
DEVICES

AHEAD OF WHAT’S POSSIBLE™

TMCM-1690 TMCL™ Firmware Manual * Firmware Version V1.01 | Rev 0: 01/24 44/135

3.6.16 COMP (Compare)

The specified number is compared to the value in the accumulator register. The result of the comparison
can, for example, be used by the conditional jump (JC) instruction. This command is intended for use in
standalone operation only.

Internal function: The accumulator register is compared with the specified value. The internal arithmetic
status flags are set according to the result of the comparison. These can then control, for example, a con-
ditional jump.

Related commands: JC, GAP, GGP, GIO, CALC, CALCX

Mnemonic: COMP <operand>

Binary Representation

Instruction | Type Motor/Bank | Value
20 0 (don't care) | O (don't care) | <operand>
Example

Jump to the address given by the label when the position of motor #0 is greater than or equal to 1000.

+ GAP 106, 0 //get actual position of motor O
COMP 1000 //compare actual value with 1000
s JC GE, Label //jump to Label if greater or equal to 1000

Binary Form of COMP 1000

Field Value
Target address 01y
Instruction number | 14,
Type 00
Motor/Bank 004,
Value (Byte 3) 00y,
Value (Byte 2) 00y
Value (Byte 1) 03,
Value (Byte 0) E8h
Checksum 00y,

ANALOG
DEVICES

AHEAD OF WHAT’S POSSIBLE™

TMCM-1690 TMCL™ Firmware Manual * Firmware Version V1.01 | Rev 0: 01/24 45/135

3.6.17 JC (Jump Conditional)
The JC instruction enables a conditional jump to a fixed address in the TMCL program memory, if the

specified condition is met. The conditions refer to the result of a preceding comparison. Refer to COMP
instruction for examples. This command is intended for standalone operation only.

Internal function: The TMCL program counter is set to the value passed to this command if the status
flags are in the appropriate states.

Related commands: JA, COMP, WAIT, CLE

Mnemonic: JC <condition>, <label>

Binary Representation

Instruction | Type Motor/Bank | Value

21 0 ZE - zero 0 (don't care) | <jump address>
1 NZ - not zero
2 EQ - equal

3 NE - not equal

4 GT - greater

5 GE - greater/equal
6 LT - lower

7 LE - lower/equal

8 ETO - time out error
9 EAL - external alarm

10 EDV - deviation error

11 EPO - position error

Example
Jump to the address given by the label when the position of motor #0 is greater than or equal to 1000.

+ GAP 106, 0 //get actual position of motor O
COMP 1000 //compare actual value with 1000
s JC GE, Label //jump to Label if greater or equal to 1000

s Label: ROL 0, 1000

ANALOG
DEVICES

AHEAD OF WHAT’S POSSIBLE™

TMCM-1690 TMCL™ Firmware Manual * Firmware Version V1.01 | Rev 0: 01/24

46/135

Binary Form of “JC GE, Label”
Assuming Label at Address 10

Field Value
Target address 01h
Instruction number | 15,
Type 05h
Motor/Bank 00,
Value (Byte 3) 00y,
Value (Byte 2) 00y
Value (Byte 1) 004,
Value (Byte 0) 0A;,
Checksum 25,

ANALOG
DEVICES

AHEAD OF WHAT’S POSSIBLE™

TMCM-1690 TMCL™ Firmware Manual * Firmware Version V1.01 | Rev 0: 01/24

47/135

3.6.18 JA (Jump Always)

Jump to a fixed address in the TMCL program memory. This command is intended for standalone operation

only.

Internal function: The TMCL program counter is set to the value passed to this command.

Related commands: |JC, WAIT, CSUB

Mnemonic: JA <label>

Binary Representation

Instruction | Type

Motor/Bank

Value

22 0 (don't care) | 0 (don't care)

<jump address>

Example

An infinite loop in TMCL:

1+ Loop:
MVP ABS, 0

5

1200

3 WAIT POS, 0, O

MVP ABS, O,
5 WAIT POS, O,
JA Loop

Binary form of the JA Loop command when the label Loop is at address 10:

0

0

Binary Form of “JA Loop” (As-
suming Loop at Address 10)
Field Value
Target address 01h
Instruction number | 16y
Type 00y,
Motor/Bank 00y,
Value (Byte 3) 004,
Value (Byte 2) 00y,
Value (Byte 1) 00,
Value (Byte 0) 0A;,
Checksum 21h

ANALOG
DEVICES

AHEAD OF WHAT’S POSSIBLE™

8

10

TMCM-1690 TMCL™ Firmware Manual * Firmware Version V1.01 | Rev 0: 01/24 48/135

3.6.19 CSUB (Call Subroutine)

This function calls a subroutine in the TMCL program memory. /It is intended for standalone operation only.
Internal function: The actual TMCL program counter value is saved to an internal stack, afterwards over-
written with the passed value. The number of entries in the internal stack is limited to 8. This also limits
nesting of subroutine calls to 8. The command is ignored if there is no more stack space left.

Related commands: RSUB, JA

Mnemonic: CSUB <label>

Binary Representation

Instruction | Type Motor/Bank | Value
23 0 (don't care) | 0 (don't care) | <subroutine address>
Example

Call a subroutine:

Loop:
MVP ABS, 0, 10000
CSUB SubW //Save program counter and jump to label SubW
MVP ABS, 0, O
CSUB SubW //Save program counter and jump to label SubW
JA Loop

SubW:
WAIT POS, 0, O
WAIT TICKS, 0, 50
RSUB //Continue with the command following the CSUB command

Binary form of “CSUB SubW"
(Assuming SubW at Address

100)

Field Value
Target address 01y
Instruction number | 17
Type 00y,
Motor/Bank 00y,
Value (Byte 3) 00,
Value (Byte 2) 00y,
Value (Byte 1) 00y
Value (Byte 0) 64y,
Checksum 7Ch

ANALOG
DEVICES

AHEAD OF WHAT’S POSSIBLE™

TMCM-1690 TMCL™ Firmware Manual * Firmware Version V1.01 | Rev 0: 01/24

49/135

3.6.20 RSUB (Return from Subroutine)

Return from a subroutine to the command after the CSUB command. This command is intended for use in
standalone mode only.

Internal function: The TMCL program counter is set to the last value saved on the stack. The command
is ignored if the stack is empty.

Related commands: CSUB

Mnemonic: RSUB

Binary Representation

Instruction

Type

Motor/Bank

Value

24

0 (don't care)

0 (don't care)

0 (don't care)

Example

See the CSUB example (section 3.6.19).

Binary form:

Binary Form of RSUB

Field Value
Target address 01y
Instruction number | 18,
Type 00,
Motor/Bank 004,
Value (Byte 3) 00y,
Value (Byte 2) 00y
Value (Byte 1) 00y,
Value (Byte 0) 00y
Checksum 19,

ANALOG
DEVICES

AHEAD OF WHAT’S POSSIBLE™

TMCM-1690 TMCL™ Firmware Manual * Firmware Version V1.01 | Rev 0: 01/24 50/135

3.6.21 WAIT (Wait for an Event to Occur)

This instruction interrupts the execution of the TMCL program until the specified condition is met. This
command is intended for standalone operation only.
There are five different wait conditions that can be used:

+ TICKS: Wait until the number of timer ticks specified by the <ticks> parameter has been reached.

« POS: Wait until the target position of the motor specified by the <motor> parameter has been
reached. An optional timeout value (0 for no timeout) must be specified by the <ticks> parameter.

+ REFSW: Wait until the reference switch of the motor specified by the <motor> parameter has been
triggered. An optional timeout value (0 for no timeout) must be specified by the <ticks> parameter.

« LIMSW: Wait until a limit switch of the motor specified by the <motor> parameter has been triggered.
An optional timeout value (0 for no timeout) must be specified by the <ticks> parameter.

Special case for the <ticks> parameter: When this parameter is set to -1, the contents of the accumulator
register are taken for this value. So, for example, WAIT TICKS, 0, -1 waits as long as specified by the value
stored in the accumulator. The accumulator must not contain a negative value when using this option.

The timeout flag (ETO) is set after a timeout limit is reached. Then, use a JC ETO command to check for
such errors or clear the error using the CLE command.

Internal function: The TMCL program counter is held at the address of this WAIT command until the
condition is met or the timeout has expired.

Related commands: JC, CLE

Mnemonic: WAIT <condition>, <motor number>, <ticks>

Binary Representation

Instruction | Type Motor/Bank Value

0 TICKS - timer ticks 0 (don't care) <no. of ticks to wait 1>

1 POS - target position reached | <motor number> | <no. of ticks for timeout !>

0 for no timeout

2 REFSW - reference switch <motor number> | <no. of ticks for timeout!>
27 0 for no timeout
3 LIMSW - limit switch <motor number> | <no. of ticks for timeout !>

0 for no timeout

Example
Wait for motor 0 to reach its target position, without timeout.
Mnemonic: WAIT POS, 0, 0

1 one tick is 10 milliseconds

ANALOG
DEVICES

AHEAD OF WHAT’S POSSIBLE™

TMCM-1690 TMCL™ Firmware Manual * Firmware Version V1.01 | Rev 0: 01/24

51/135

Binary Form of WAIT POS, 0, 0

Field Value
Target address 01y,
Instruction number | 1By,
Type 01h
Motor/Bank 004,
Value (Byte 3) 00y,
Value (Byte 2) 00,
Value (Byte 1) 00y,
Value (Byte 0) 00y
Checksum 1Dy,

ANALOG
DEVICES

AHEAD OF WHAT’S POSSIBLE™

TMCM-1690 TMCL™ Firmware Manual * Firmware Version V1.01 | Rev 0: 01/24

52/135

3.6.22 STOP (Stop TMCL Program Execution - End of TMCL Program)

This command stops the execution of a TMCL program. It is intended for use in standalone operation only.

Internal function: Execution of a TMCL program in standalone mode is stopped.

Related commands: None

Mnemonic: STOP

Binary Representation

Instruction | Type

Motor/Bank

Value

28 0 (don't care)

0 (don't care)

0 (don't care)

Example
Mnemonic: STOP

Binary Form of STOP

Field Value
Target address 01y
Instruction number | 1C,
Type 00y,
Motor/Bank 00y,
Value (Byte 3) 00y
Value (Byte 2) 004,
Value (Byte 1) 00y,
Value (Byte 0) 00,
Checksum 1Dy,

ANALOG
DEVICES

AHEAD OF WHAT’S POSSIBLE™

TMCM-1690 TMCL™ Firmware Manual * Firmware Version V1.01 | Rev 0: 01/24 53/135

3.6.23 SCO (Set Coordinate)

Up to 20 position values (coordinates) can be stored for every axis for use with the MVP COORD com-
mand. This command sets a coordinate to a specified value. Depending on the global parameter 84, the
coordinates are only stored in RAM or also stored in the EEPROM and copied back on start up (with the
default setting, the coordinates are stored in RAM only).

Note Coordinate #0 is always stored in RAM only.

Internal function: The passed value is stored in the internal position array.
Related commands: GCO, CCO, ACO, MVP COORD

Mnemonic: SCO <coordinate number>, <motor number>, <position>

Binary Representation
Instruction | Type Motor/Bank Value
30 <coordinate number> | <motor number> | <position>
0...20 0 =231 .23 1
Example

Set coordinate #1 of motor #0 to 1000.
Mnemonic: SCO 1, 0, 1000

Binary Form of SCO 1, 0, 1000

Field Value
Target address 01y
Instruction number | 1E,
Type 01h
Motor/Bank 004,
Value (Byte 3) 00y,
Value (Byte 2) 00y
Value (Byte 1) 03,
Value (Byte 0) E8h
Checksum 0By,

Two special functions of this command have been introduced to copy all coordinates or one selected
coordinate to the EEPROM. These functions can be accessed using the following special forms of the SCO
command:

+ SCO 0, 255, 0 copies all coordinates (except coordinate number 0) from RAM to the EEPROM.

+ SCO <coordinate number>, 255, 0 copies the coordinate selected by <coordinate number> to the
EEPROM. The coordinate number must be a value between 1 and 20.

ANALOG
DEVICES

AHEAD OF WHAT’S POSSIBLE™

TMCM-1690 TMCL™ Firmware Manual * Firmware Version V1.01 | Rev 0: 01/24 54/135

3.6.24 GCO (Get Coordinate)

Using this command, a previously stored coordinate can be read back. In standalone mode, the requested
value is copied to the accumulator register for further processing purposes such as conditional jumps. In
direct mode, the value is only returned in the value field of the reply, without affecting the accumulator.
Depending on the global parameter 84, the coordinates are only stored in RAM or also stored in the
EEPROM and copied back on start up (with the default setting, the coordinates are stored in RAM only).

Note Coordinate #0 is always stored in RAM only.

Internal function: The desired value is read out of the internal coordinate array, copied to the accumu-
lator register and, in direct mode, returned in the value field of the reply.

Related commands: SCO, CCO, ACO, MVP COORD

Mnemonic: GCO <coordinate number>, <motor number>

Binary Representation

Instruction | Type Motor/Bank Value
31 <coordinate number> | <motor number> | 0 (don't care)
0...20 0

Reply in Direct Mode

Status Value
100 - OK | Value read by this command

Example
Get coordinate #1 of motor #0.
Mnemonic: GCO 1,0

Binary Form of GCO 1, 0

Field Value
Target address 01y,
Instruction number | 1F,
Type 01h
Motor/Bank 00y,
Value (Byte 3) 00,
Value (Byte 2) 00y,
Value (Byte 1) 00y
Value (Byte 0) 004,
Checksum 21h

ANALOG
DEVICES

AHEAD OF WHAT’S POSSIBLE™

TMCM-1690 TMCL™ Firmware Manual * Firmware Version V1.01 | Rev 0: 01/24 55/135

Two special functions of this command have been introduced to copy all coordinates or one selected
coordinate from the EEPROM to the RAM.
These functions can be accessed using the following special forms of the GCO command:

* GCO 0, 255, 0 copies all coordinates (except coordinate number 0) from the EEPROM to the RAM.

+ GCO <coordinate number>, 255, 0 copies the coordinate selected by <coordinate number> from the
EEPROM to the RAM. The coordinate number must be a value between 1 and 20.

ANALOG
DEVICES

AHEAD OF WHAT’S POSSIBLE™

TMCM-1690 TMCL™ Firmware Manual * Firmware Version V1.01 | Rev 0: 01/24

56/135

3.6.25 CCO (Capture Coordinate)

This command copies the actual position of the axis to the selected coordinate variable. Depending on
the global parameter 84, the coordinates are only stored in RAM or also stored in the EEPROM and copied
back on start up (with the default setting, the coordinates are stored in RAM only). See the SCO and GCO
commands on how to copy coordinates between RAM and EEPROM.

Note

Coordinate #0 is always stored in RAM only.

Internal function: The actual position of the selected motor is copied to selected coordinate array entry.

Related commands: SCO, GCO, ACO, MVP COORD

Mnemonic: CCO <coordinate number>, <motor number>

Binary Representation

Instruction

Type Motor/Bank

Value

32

<coordinate number> | <motor number>
0...20 0

0 (don't care)

Reply in Direct Mode

Status Value
100 - OK | Value read by this command
Example

Store current position of motor #0 to coordinate array entry #3.

Mnemonic: CCO 3,0

Binary Form of CCO 3, 0
Field Value
Target address 01h
Instruction number | 20,
Type 01h
Motor/Bank 004,
Value (Byte 3) 00y,
Value (Byte 2) 00y
Value (Byte 1) 004,
Value (Byte 0) 00y
Checksum 224

ANALOG
DEVICES

AHEAD OF WHAT’S POSSIBLE™

TMCM-1690 TMCL™ Firmware Manual * Firmware Version V1.01 | Rev 0: 01/24

57/135

3.6.26 ACO (Accumulator to Coordinate)

With the ACO command, the actual value of the accumulator is copied to a selected coordinate of the
motor. Depending on the global parameter 84, the coordinates are only stored in RAM or also stored
in the EEPROM and copied back on start up (with the default setting, the coordinates are stored in RAM

only).

Note

Coordinate #0 is always stored in RAM only.

Internal function: The actual position of the selected motor is copied to the selected coordinate array

entry.

Related commands: SCO, GCO, CO, MVP COORD

Mnemonic: ACO <coordinate number>, <motor number>

Binary Representation

Instruction

Type

Motor/Bank

Value

39

<coordinate number>
0...20

<motor number>
0

0 (don't care)

Reply in Direct Mode

Status Value
100 - OK | Don't care
Example

Copy the actual value of the accumulator to coordinate #1 of motor #0.

Mnemonic: ACO 1, 0

Binary Form of ACO 1, 0
Field Value
Target address 01y,
Instruction number | 27,
Type 01h
Motor/Bank 00y,
Value (Byte 3) 00,
Value (Byte 2) 00y,
Value (Byte 1) 00y
Value (Byte 0) 004,
Checksum 29,

ANALOG
DEVICES

AHEAD OF WHAT’S POSSIBLE™

TMCM-1690 TMCL™ Firmware Manual * Firmware Version V1.01 | Rev 0: 01/24 58/135

3.6.27 CALCX (Calculate Using the X Register)

This instruction is very similar to CALC, but the second operand comes from the X register. The X register
can be loaded with the LOAD or the SWAP type of this instruction. The result is written back to the accu-
mulator for further processing like comparisons or data transfer. This command is mainly intended for use
in standalone mode.

Related commands: CALC, COMP, |C, AAP, AGP, GAP, GGP, GIO

Mnemonic: CALCX <operation>

Binary Representation

Instruction | Type Motor/Bank | Value

33 0 ADD - add X register to accumulator 0 (don't care) | 0 (don't care)
1 SUB - subtract X register from accumulator

2 MUL - multiply accumulator by X register

3 DIV - divide accumulator by X register

4 MOD - modulo divide accumulator by X register
5 AND - logical and accumulator with X register

6 OR - logical or accumulator with X register

7 XOR - logical exor accumulator with X register

8 NOT - logical invert X register

9 LOAD - copy accumulator to X register

10 SWAP - swap accumulator and X register

Reply in Direct Mode

Status Value
100 - OK | Don't care

Example
Multiply accumulator and X register.
Mnemonic: CALCX MUL

ANALOG
DEVICES

AHEAD OF WHAT’S POSSIBLE™

TMCM-1690 TMCL™ Firmware Manual * Firmware Version V1.01 | Rev 0: 01/24

59/135

Binary Form of CALCX MUL

Field Value
Target address 01y,
Instruction number | 21,
Type 02y,
Motor/Bank 004,
Value (Byte 3) 00y,
Value (Byte 2) 00,
Value (Byte 1) 00y,
Value (Byte 0) 00y
Checksum 24,

ANALOG
DEVICES

AHEAD OF WHAT’S POSSIBLE™

TMCM-1690 TMCL™ Firmware Manual * Firmware Version V1.01 | Rev 0: 01/24 60/135

3.6.28 AAP (Accumulator to Axis Parameter)

The content of the accumulator register is transferred to the specified axis parameter. For practical usage,
the accumulator has to be loaded, example, by a preceding GAP instruction. The accumulator may have
been modified by the CALC or CALCX (calculate) instruction. This command is mainly intended for use in
standalone mode.

O Info For a table with parameters and values that can be used together with this com-
mand, see to section 4.

Related commands: AGP, SAP, GAP, SGP, GGP, GIO, CALC, CALCX

Mnemonic: AAP <parameter number>, <motor number>

Binary Representation

Instruction | Type Motor/Bank | Value

34 See chapter4 | 0 <value>

Reply in Direct Mode

Status Value
100 - OK | Don't care

Example
Position motor #0 by a potentiometer connected to analog input #0:
1 Start:
GIO 0,1 //get value of analog input line 0
3 CALC MUL, 4 //multiply by 4
AAP 105,0 //transfer result to target position of motor O
5 JA Start //jump back to start

Binary Form of AAP 105, 0

Field Value
Target address 014
Instruction number | 22
Type 69
Motor/Bank 00y,
Value (Byte 3) 004,
Value (Byte 2) 00y,
Value (Byte 1) 00y,
Value (Byte 0) 00y,
Checksum 55,

ANALOG
DEVICES

AHEAD OF WHAT’S POSSIBLE™

TMCM-1690 TMCL™ Firmware Manual * Firmware Version V1.01 | Rev 0: 01/24 61/135

3.6.29 AGP (Accumulator to Global Parameter)

The content of the accumulator register is transferred to the specified global parameter. For practical
usage, the accumulator has to be loaded, example, by a preceding GAP instruction. The accumulator may
have been modified by the CALC or CALCX (calculate) instruction. This command is mainly intended for use
in standalone mode.

O Info For an overview of parameter and bank indices that can be used with this com-
mand, see section 5.

Related commands: AAP, SGP, GGP, SAP, GAP, GIO

Mnemonic: AGP <parameter number>, <bank number>

Binary Representation

Instruction | Type Motor/Bank Value

35 <parameter number> | 0/2/3 <bank number> | 0 (don't care)

Reply in Direct Mode

Status Value
100 - OK | Don't care

Example
Copy accumulator to user variable #42:
Mnemonic: AGP 42, 2

Binary Form of AGP 42, 2

Field Value
Target address 01h
Instruction number | 23,
Type 2A,
Motor/Bank 02,
Value (Byte 3) 00y,
Value (Byte 2) 00y
Value (Byte 1) 004,
Value (Byte 0) 00y,
Checksum 504

ANALOG
DEVICES

AHEAD OF WHAT’S POSSIBLE™

TMCM-1690 TMCL™ Firmware Manual * Firmware Version V1.01 | Rev 0: 01/24

62/135

3.6.30 CLE

(Clear Error Flags)

This command clears the internal error flags. It is mainly intended for use in standalone mode.
The following error flags can be cleared by this command (determined by the <flag> parameter):

* ALL: clear all error flags.

+ ETO: clear the timeout flag.

* EAL: clear the external alarm flag.

+ EDV: clear the deviation flag.

* EPO: clear the position error flag.

Related commands: JC, WAIT

Mnemonic: CLE <flags>
Binary Representation
Instruction | Type Motor/Bank | Value
36 0 ALL - all flags 0 (don't care) | 0 (don't care)

1 - (ETO) timeout flag

2 - (EAL) alarm flag

3 - (EDV) deviation flag
4 - (EPO) position flag
5 - (ESD) shutdown flag

Reply in Direct Mode

Status Value
100 - OK | Don't care
Example

Reset the timeout flag.
Mnemonic: CLE ETO

ANALOG
DEVICES

AHEAD OF WHAT’S POSSIBLE™

TMCM-1690 TMCL™ Firmware Manual * Firmware Version V1.01 | Rev 0: 01/24

63/135

Binary Form of CLE ETO

Field Value
Target address 01y,
Instruction number | 24,
Type 01h
Motor/Bank 004,
Value (Byte 3) 00y,
Value (Byte 2) 00,
Value (Byte 1) 00y,
Value (Byte 0) 00y
Checksum 264

ANALOG
DEVICES

AHEAD OF WHAT’S POSSIBLE™

TMCM-1690 TMCL™ Firmware Manual * Firmware Version V1.01 | Rev 0: 01/24

64/135

3.6.31 El (Enable Interrupt)

The El command enables an interrupt. It needs the interrupt number as parameter. Interrupt number
255 globally enables interrupt processing. This command is mainly intended for use in standalone mode.

O Info

See table 12 for a list of interrupts that can be used on the TMCM-1690 module.

Related commands: DI, VECT, RETI

Mnemonic: El <interrupt number>

Binary Representation

Instruction

Type

Motor/Bank

Value

25

<interrupt number>

0 (don't care)

0 (don't care)

Reply in Direct Mode

Status Value
100 - OK | Don't care
Example

Globally enable interrupt processing:

Mnemonic: El 255

Binary Form of El 255

Field Value
Target address 01y
Instruction number | 19,
Type FFh
Motor/Bank 004,
Value (Byte 3) 00y,
Value (Byte 2) 00y
Value (Byte 1) 004,
Value (Byte 0) 00y
Checksum 19,

ANALOG
DEVICES

AHEAD OF WHAT’S POSSIBLE™

TMCM-1690 TMCL™ Firmware Manual * Firmware Version V1.01 | Rev 0: 01/24

65/135

3.6.32 DI (Disable Interrupt)

The DI command disables an interrupt. It needs the interrupt number as parameter. Interrupt number
255 globally disables interrupt processing. This command is mainly intended for use in standalone mode.

O Info

See table 12 for a list of interrupts that can be used on the TMCM-1690 module.

Related commands: El, VECT, RETI

Mnemonic: DI <interrupt number>

Binary Representation

Instruction

Type

Motor/Bank

Value

26

<interrupt number>

0 (don't care)

0 (don't care)

Reply in Direct Mode

Status Value
100 - OK | Don't care
Example

Globally disable interrupt processing:

Mnemonic: DI 255

Binary Form of DI 255

Field Value
Target address 01y
Instruction number | 1A,
Type FFh
Motor/Bank 004,
Value (Byte 3) 00y,
Value (Byte 2) 00y
Value (Byte 1) 004,
Value (Byte 0) 00y
Checksum 1A,

ANALOG
DEVICES

AHEAD OF WHAT’S POSSIBLE™

1

3

5

7

9

TMCM-1690 TMCL™ Firmware Manual * Firmware Version V1.01 | Rev 0: 01/24

66/135

3.6.33 VECT (Define Interrupt Vector)

The VECT command defines an interrupt vector. It takes an interrupt number and a label (just like with
JA, JC, and CSUB commands) as parameters. The label must be the entry point of the interrupt handling
routine for this interrupts. Interrupt vectors can also be redefined. This command is intended for use in
standalone mode only.

O Info

See table 12 for a list of interrupts that can be used on the TMCM-1690 module.

Related commands: El, DI, RETI

Mnemonic: VECT <interrupt number>, <label>

Binary Representation

Instruction

Type

Motor/Bank

Value

37

<interrupt number> | 0 (don't care)

<label>

Reply in Direct Mode

Status Value

100 - OK | Don't care

Example

Define interrupt vector for timer #0 interrupt:

VECT O,
Loofg‘

jA‘Loop
Timé%éIrq:

SI0 O,
RETI

TimerOIrq

2,

1

ANALOG
DEVICES

AHEAD OF WHAT’S POSSIBLE™

TMCM-1690 TMCL™ Firmware Manual * Firmware Version V1.01 | Rev 0: 01/24

67/135

Binary Form of VECT (Assum-
ing Label is at Address 50)

Field Value
Target address 01h
Instruction number | 25,
Type FFy,
Motor/Bank 00,
Value (Byte 3) 00y,
Value (Byte 2) 00y
Value (Byte 1) 004,
Value (Byte 0) 324
Checksum 58,

ANALOG
DEVICES

AHEAD OF WHAT’S POSSIBLE™

TMCM-1690 TMCL™ Firmware Manual * Firmware Version V1.01 | Rev 0: 01/24

68/135

3.6.34 RETI (Return from Interrupt)

This command terminates an interrupt handling routine. Normal program flow is continued then. This

command is intended for use in standalone mode only.

An interrupt routine must always end with a RETI command. Do not allow the normal program flow to
run into an interrupt routine.

Internal function: The saved registers (accumulator, X registers, flags, and program counter) are copied
back so that normal program flow continues.

Related commands: El, DI, VECT

Mnemonic: RETI
Binary Representation
Instruction | Type Motor/Bank | Value
38 <interrupt number> | 0 (don't care) | 0 (don't care)
Reply in Direct Mode
Status Value
100 - OK | Don't care
Example

Return from an interrupt handling routine.
Mnemonic: RETI

Binary Form of RETI

Field Value
Target address 01h
Instruction number | 26y
Type FFy,
Motor/Bank 00,
Value (Byte 3) 00y,
Value (Byte 2) 00y
Value (Byte 1) 004,
Value (Byte 0) 00y,
Checksum 27h

ANALOG
DEVICES

AHEAD OF WHAT’S POSSIBLE™

TMCM-1690 TMCL™ Firmware Manual * Firmware Version V1.01 | Rev 0: 01/24 69/135

3.6.35 CALCVV (Calculate Using Two User Variables)

The CALCVV instruction directly uses the contents of two user variables for an arithmetic operation, stor-
ing the result in the first user variable. This eliminates the need for using the accumulator register and/or
X register for such purposes. The parameters of this command are the arithmetic function, the index
of the first user variable (0...255), and the index of the second user variable (0...255). This command is
mainly intended for use in standalone mode.

Related commands: CALCVA, CALCAV, CALCVX, CALCXV, CALCV
Mnemonic: CALCVV <operation>, <var1>, <var2>

Binary representation

Binary Representation
Instruction | Type Motor/Bank Value

40 0 ADD - add <var2> to <var1> 0 <var1>(0...255) | <var2>(0...255)

1 SUB - subtract <var2> from <var1>

2 MUL - multiply <var2> with <var1>

3 DIV - divide <var2> by <var1>

4 MOD - modulo divide <var2> by <var1>

5 AND - logical and <var2> with <var1>

6 OR - logical or <var2> with <var1>

7 XOR - logical exor <var2> with <var1>

8 NOT - copy logical inverted <var2> to <var1>
9 LOAD - copy <var2>to <var1>

10 SWAP - swap contents of <var1> and <var2>

11 COMP - compare <var1> with <var2>

Reply in Direct Mode

Status Value
100 - OK | Don't care

Example
Subtract user variable #42 from user variable #65.
Mnemonic: CALCVV SUB, 65, 42

ANALOG
DEVICES

AHEAD OF WHAT’S POSSIBLE™

TMCM-1690 TMCL™ Firmware Manual * Firmware Version V1.01 | Rev 0: 01/24 70/135

Binary Form of CALCVV SUB, 65, 42

Field Value

Target address 01y,

Instruction number | 28,

Type 01h

Motor/Bank 41y

Value (Byte 3) 00y,

Value (Byte 2) 00,

Value (Byte 1) 00y,

Value (Byte 0) 2An

Checksum 95,

Reply (Status = No Error, Value = 0:

Field Value

Host address 02,

Target address | 01y,

Status 64,

Instruction 28

Value (Byte 3) 004,

Value (Byte 2) 00y,

Value (Byte 1) 00y,

Value (Byte 0) 00y,

Checksum 8Fh
ANALOG
DEVICES

AHEAD OF WHAT’S POSSIBLE™

TMCM-1690 TMCL™ Firmware Manual * Firmware Version V1.01 | Rev 0: 01/24

71/135

3.6.36 CALCVA (Calculate Using a User Variable and the Accumulator Register)

The CALCVA instruction directly modifies a user variable using an arithmetical operation and the contents
of the accumulator register. The parameters of this command are the arithmetic function and the index
of a user variable (0...255). This command is mainly intended for use in standalone mode.

Related commands: CALCV, CALCAV, CALCVX, CALCXV, CALCWV

Mnemonic: CALCVA <operation>, <var>
Binary representation
Binary Representation
Instruction | Type Motor/Bank Value
41 0 ADD - add accumulator to <var> 0 <var>(0...255) | 0 (don't care)
1 SUB - subtract accumulator from <var>
2 MUL - multiply <var> with accumulator
3 DIV - divide <var> by accumulator
4 MOD - modulo divide <var> by accumulator
5 AND - logical and <var> with accumulator
6 OR - logical or <var> with accumulator
7 XOR - logical exor <var> with accumulator
8 NOT - copy logical inverted accumulator to <var>
9 LOAD - copy accumulator to <var>
10 SWAP - swap contents of <var> and accumulator
11 COMP - compare <var> with accumulator
Reply in Direct Mode
Status Value
100 - OK | Don't care
Example

Subtract acc

umulator from user variable #27.

Mnemonic: CALCVA SUB, 27

ANALOG
DEVICES

AHEAD OF WHAT’S POSSIBLE™

TMCM-1690 TMCL™ Firmware Manual * Firmware Version V1.01 | Rev 0: 01/24 72/135

Binary Form of CALCVA SUB, 27

Field Value

Target address 01y,

Instruction number | 29,

Type 01h

Motor/Bank 1By

Value (Byte 3) 00y,

Value (Byte 2) 00,

Value (Byte 1) 00y,

Value (Byte 0) 00y

Checksum 46y,

Reply (Status = No Error, Value=0:

Field Value

Host address 02,

Target address | 01y,

Status 64,

Instruction 29,

Value (Byte 3) 004,

Value (Byte 2) 00y,

Value (Byte 1) 00y,

Value (Byte 0) 00y,

Checksum 90y,
ANALOG
DEVICES

AHEAD OF WHAT’S POSSIBLE™

TMCM-1690 TMCL™ Firmware Manual * Firmware Version V1.01 | Rev 0: 01/24

73/135

3.6.37 CALCAV (Calculate Using the Accumulator Register and a User Variable)

The CALCAV instruction modifies the accumulator register using an arithmetical operation and the con-
tents of a user variable. The parameters of this command are the arithmetic function and the index of a
user variable (0...255). This command is mainly intended for use in standalone mode.

Related commands: CALCV, CALCAV, CALCVX, CALCXV, CALCWV

Mnemonic:

CALCAYV <operation>, <var>

Binary representation

Binary Representation

Instruction

Type

Motor/Bank Value

42

0 ADD - add <var> to accumulator

1 SUB - subtract <var> from accumulator

2 MUL - multiply accumulator with <var>

3 DIV - divide accumulator by <var>

4 MOD - modulo divide accumulator by <var>

5 AND - logical and accumulator with <var>

6 OR - logical or accumulator with <var>

7 XOR - logical exor accumulator with <var>

8 NOT - copy logical inverted <var> to accumulator
9 LOAD - copy <var> to accumulator

10 SWAP - swap contents of <var> and accumulator

11 COMP - compare accumulator with <var>

0 <var>(0...255) | 0 (don't care)

Reply in Di

rect Mode

Status

Value

100 - OK

Don't care

Example
Subtract use
Mnemonic: C

r variable #27 from accumulator.
ALCXV SUB, 27

ANALOG
DEVICES

AHEAD OF WHAT’S POSSIBLE™

TMCM-1690 TMCL™ Firmware Manual * Firmware Version V1.01 | Rev 0: 01/24 74/135

Binary Form of CALCXV SUB, 27

Field Value

Target address 01y,

Instruction number | 2Ay

Type 01h

Motor/Bank 1By

Value (Byte 3) 00y,

Value (Byte 2) 00,

Value (Byte 1) 00y,

Value (Byte 0) 00y

Checksum 47y

Reply (Status = No Error, Value = 0:

Field Value

Host address 02,

Target address | 01y,

Status 64,

Instruction 2A,

Value (Byte 3) 004,

Value (Byte 2) 00y,

Value (Byte 1) 00y,

Value (Byte 0) 00y,

Checksum 914
ANALOG
DEVICES

AHEAD OF WHAT’S POSSIBLE™

TMCM-1690 TMCL™ Firmware Manual * Firmware Version V1.01 | Rev 0: 01/24

75/135

3.6.38 CALCVX (Calculate Using a User Variable and the X Register)

The CALCVX instruction directly modifies a user variable using an arithmetical operation and the contents
of the X register. The parameters of this command are the arithmetic function and the index of a user
variable (0...255). This command is mainly intended for use in standalone mode.

Related commands: CALCV, CALCAV, CALCVA, CALCXV, CALCWV

Mnemonic:

CALCVX <operation>, <var>

Binary representation

Binary Representation

Instruction

Type

Motor/Bank Value

43

0 ADD - add X register to <var>

1 SUB - subtract X register from <var>

2 MUL - multiply <var> with X register

3 DIV - divide <var> by X register

4 MOD - modulo divide <var> by X register

5 AND - logical and <var> with X register

6 OR - logical or <var> with X register

7 XOR - logical exor <var> with X register

8 NOT - copy logical inverted X register to <var>
9 LOAD - copy X register to <var>

10 SWAP - swap contents of <var> and X register

11 COMP - compare <var> with X register

0 <var>(0...255) | 0 (don't care)

Reply in Di

rect Mode

Status

Value

100 - OK

Don't care

Example

Subtract X register from user variable #27.

Mnemonic: C

ALCVX SUB, 27

ANALOG
DEVICES

AHEAD OF WHAT’S POSSIBLE™

TMCM-1690 TMCL™ Firmware Manual * Firmware Version V1.01 | Rev 0: 01/24 76/135

Binary Form of CALCVX SUB, 27

Field Value

Target address 01y,

Instruction number | 2By,

Type 01h

Motor/Bank 1By

Value (Byte 3) 00y,

Value (Byte 2) 00,

Value (Byte 1) 00y,

Value (Byte 0) 00y

Checksum 48,

Reply (Status = No Error, Value = 0:

Field Value

Host address 02,

Target address | 01y,

Status 64,

Instruction 2By,

Value (Byte 3) 004,

Value (Byte 2) 00y,

Value (Byte 1) 00y,

Value (Byte 0) 00y,

Checksum 92,
ANALOG
DEVICES

AHEAD OF WHAT’S POSSIBLE™

TMCM-1690 TMCL™ Firmware Manual * Firmware Version V1.01 | Rev 0: 01/24

77/135

3.6.39 CALCXV (Calculate Using the X Register and a User Variable)

The CALCXV instruction modifies the X register using an arithmetical operation and the contents of a user
variable. The parameters of this command are the arithmetic function and the index of a user variable
(0...255). This command is mainly intended for use in standalone mode.

Related commands: CALCV, CALCAV, CALCVA, CALCVX, CALCWV

Mnemonic:

CALCXV <operation>, <var>

Binary representation

Binary Representation

Instruction

Type

Motor/Bank Value

44

0 ADD - add <var> to X register

1 SUB - subtract <var> from X register

2 MUL - multiply X register with <var>

3 DIV - divide X register by <var>

4 MOD - modulo divide X register by <var>

5 AND - logical and X register with <var>

6 OR - logical or X register with <var>

7 XOR - logical exor X register with <var>

8 NOT - copy logical inverted <var> to X register
9 LOAD - copy <var> to X register

10 SWAP - swap contents of <var> and X register

11 COMP - compare X register with <var>

0 <var>(0...255) | 0 (don't care)

Reply in Di

rect Mode

Status

Value

100 - OK

Don't care

Example
Subtract use
Mnemonic: C

r variable #27 from X register.
ALCXV SUB, 27

ANALOG
DEVICES

AHEAD OF WHAT’S POSSIBLE™

TMCM-1690 TMCL™ Firmware Manual * Firmware Version V1.01 | Rev 0: 01/24 78/135

Binary Form of CALCXV SUB, 27

Field Value

Target address 01y,

Instruction number | 2C

Type 01h

Motor/Bank 1By

Value (Byte 3) 00y,

Value (Byte 2) 00,

Value (Byte 1) 00y,

Value (Byte 0) 00y

Checksum 49,

Reply (Status = No Error, Value = 0:

Field Value

Host address 02,

Target address | 01y,

Status 64,

Instruction 2C,

Value (Byte 3) 004,

Value (Byte 2) 00y,

Value (Byte 1) 00y,

Value (Byte 0) 00y,

Checksum 93,
ANALOG
DEVICES

AHEAD OF WHAT’S POSSIBLE™

TMCM-1690 TMCL™ Firmware Manual * Firmware Version V1.01 | Rev 0: 01/24

79/135

3.6.40 CALCV (Calculate Using a User Variable and a Direct Value)

The CALCV directly modifies a user variable using an arithmetical operation and a direct value. This elim-
inates the need of using the accumulator register for such a purpose and thus can make the program
shorter and faster. The parameters of this command are the arithmetic function, the index of a user vari-
able (0...255), and a direct value. This command is mainly intended for use in standalone mode.

Related commands: CALCVA, CALCAV, CALCVX, CALCXV, CALCVV

Mnemonic: CALCV <operation>, <var>, <value>
Binary representation
Binary Representation
Instruction | Type Motor/Bank Value
45 0 ADD - add <value> to <var> 0 <var>(0...255) | <value>

1 SUB - subtract <value> from <var>

2 MUL - multiply <var> with <value>

3 DIV - divide <var> by <value>

4 MOD - modulo divide <var> by <value>

5 AND - logical and <var> with <value>

6 OR - logical or <var> with <value>

7 XOR - logical exor <var> with <value>

8 NOT - logical invert <var> (<value> ignored)
9 LOAD - copy <value> to <var>

11 COMP - compare <var> with <value>

Reply in Direct Mode

Status Value
100 - OK | Don't care
Example

Subtract 5000 from user variable #27.
Mnemonic: CALCV SUB, 27, 5000

ANALOG
DEVICES

AHEAD OF WHAT’S POSSIBLE™

TMCM-1690 TMCL™ Firmware Manual * Firmware Version V1.01 | Rev 0: 01/24 80/135

Binary Form of CALCV SUB, 27, 5000

Field Value
Target address 01y,
Instruction number | 2Dy,
Type 01h
Motor/Bank 1By
Value (Byte 3) 00y,
Value (Byte 2) 00,
Value (Byte 1) 13,
Value (Byte 0) 88y,
Checksum E5h

Reply (Status= No Error, Value = 5000:

Field Value

Host address 02,

Target address | 01y,

Status 64,

Instruction 2Dy,

Value (Byte 3) 004,

Value (Byte 2) 00y,

Value (Byte 1) 134

Value (Byte 0) 884

Checksum 2F;

ANALOG
DEVICES

AHEAD OF WHAT’S POSSIBLE™

-

TMCM-1690 TMCL™ Firmware Manual * Firmware Version V1.01 | Rev 0: 01/24

81/135

3.6.41 RST (Restart)

Stop the program, reset the TMCL interpreter, and then restart the program at the given label. This com-
mand can be used to restart the TMCL program from anywhere in the program, and also out of subrou-

tines or interrupt rotuines. This command is intended for standalone operation only.

Internal function: The TMCL interpreter is reset (the subroutine stack, interrupt stack, and registers are
cleared) and then the program counter is set to the value passed to this command.

Related commands: JA, CSUB, STOP

Mnemonic: RST <label>

Binary Representation

Instruction | Type Motor/Bank | Value
48 0 (don't care) | 0 (don't care) | <restart address>
Example

Restart the program from a label, out of a subroutine:

Entry:

MVP ABS, 0, 51200
CSUB Subroutine

Subroutine:

RST Entry

RSUB

Binary form of the RST Entry command when the label Entry is at address 10:

Binary Form of RST Entry (As-
suming ‘Entry’ at Address 10)
Field Value
Target address 01y,
Instruction number | 304
Type 00,
Motor/Bank 004,
Value (Byte 3) 00y,
Value (Byte 2) 00y
Value (Byte 1) 00y,
Value (Byte 0) 0A,
Checksum 3An

ANALOG
DEVICES

AHEAD OF WHAT’S POSSIBLE™

IS

TMCM-1690 TMCL™ Firmware Manual * Firmware Version V1.01 | Rev 0: 01/24

82/135

3.6.42 DJNZ (Decrement and Jump if not Zero)

Decrement a given user variable and jump to the given address if the user variable is greater than zero.
This command can, for example, be used to easily program a counting loop, using any user variable as
the loop counter. This command is intended for standalone operation only.

Internal function: The user variable passed to this command is decremented. If it is not zero, then the
TMCL program counter is set to the value passed to this command.

Related commands: JC, WAIT, CSUB

Mnemonic: DJNZ <var>, <label>

Binary Representation

Instruction | Type Motor/Bank | Value
49 <user variable> (0...255) | 0 (don't care) | <jump address>
Example

A counting loop in TMCL, using user variable #42:

SGP 42, 2, 100
Loop:

MVP ABS, REL, 51200

WAIT POS, 0, O

WAIT TICKS, 0, 500

DIJNZ 42, Loop

Binary form of the DINZ 42, Loop command when the label Loop is at address 1:

Binary Form of DJNZ Loop (As-
suming ‘Loop’ at Address 1)

Field Value
Target address 01y,
Instruction number | 31y
Type 64,
Motor/Bank 00y,
Value (Byte 3) 00y
Value (Byte 2) 004,
Value (Byte 1) 00y,
Value (Byte 0) 01y
Checksum 97h

ANALOG
DEVICES

AHEAD OF WHAT’S POSSIBLE™

TMCM-1690 TMCL™ Firmware Manual * Firmware Version V1.01 | Rev 0: 01/24 83/135

3.6.43 CALL (Conditional Subroutine Call)

The CALL command calls a subroutine in the TMCL program, but only if the specifed condition is met.
Otherwise, the program execution is continued with the next command following the CALL command.
The conditions refer to the result of a preceding comparison or assignment. This command is intended for
standalone operation only.

Internal function: When the condition is met, the actual TMCL program counter value is saved to an in-
ternal stack. Afterwards, the program counter is overwritten with the address supplied to this command.
The number of entries in the internal stack is limited to 8. This also limits nesting of subroutine calls to 8.
The command is ignored if there is no more stack space left.

Related commands: RSUB, JC

Mnemonic: CALL <condition>, <label>

Binary Representation

Instruction | Type Motor/Bank | Value

21 0 ZE - zero 0 (don't care) | <jump address>
1 NZ - not zero

2 EQ - equal

3 NE - not equal

4 GT - greater

5 GE - greater/equal

6 LT - lower

7 LE - lower/equal

8 ETO - time out error
9 EAL - external alarm

10 EDV - deviation error

11 EPO - position error

Example
Call a subroutine if a condition is met:
Loop:
2 GIO 0, 1 //read analog value
CALC SUB, 512 //subtract 512
a COMP 0 //compare with =zero
CALL LT, RunLeft //Call routine "RunLeft" if accu<O
6 CALL ZE, MotorStop //Call routine "MotosStop" if accu=0
CALL GT, RunRight //Call routine "RunRight" if accu>0
8 JA Loop
1o RunLeft:
CALC MUL, -1
12 ROLA O
RSUB

ANALOG
DEVICES

AHEAD OF WHAT’S POSSIBLE™

16

20

22

24

TMCM-1690 TMCL™ Firmware Manual * Firmware Version V1.01 | Rev 0: 01/24 84/135
RunRight:
RORA O
RSUB
MotorStop:
GAP 2, O
JC ZE, MotorIsStopped
MST O
MotorIsStopped:
RSUB
Binary Form of
CALL LT, RunLeft
(Assuming ‘RunLeft’ at Address
100)
Field Value
Target address 01h
Instruction number | 50,
Type 06y
Motor/Bank 004,
Value (Byte 3) 00y,
Value (Byte 2) 00y
Value (Byte 1) 004,
Value (Byte 0) 64
Checksum BB,
ANALOG
DEVICES

AHEAD OF WHAT’S POSSIBLE™

TMCM-1690 TMCL™ Firmware Manual * Firmware Version V1.01 | Rev 0: 01/24 85/135

3.6.44 MVPA (Move to Position Specified by Accumulator Register)

With this command, the motor is instructed to move to a specified relative or absolute position. The
contents of the accumulator register are used as the target position. This command is non-blocking, which
means that a reply is sent immediately after command interpretation and initialization of the motion
controller. Further commands may follow without waiting for the motor reaching its end position. The
maximum velocity and acceleration as well as other ramp parameters are defined by the appropriate axis
parameters. For a list of these parameters, see section 4.

Positioning can be interrupted using MST, ROL or ROR commands.

Three operation types are available:
* Moving to an absolute position specified by the accumulator register contents.
+ Starting a relative movement by means of an offset to the actual position.

* Moving the motor to a (previously stored) coordinate (refer to SCO for details).

Note The distance between the actual position and the new position must not be more
than 2147483647 (23! — 1) microsteps. Otherwise, the motor runs in the opposite
direction to take the shorter distance (caused by 32 bit overflow).

Related commands: MVPXA, SAP, GAP, SCO, GCO, CCO, ACO, MST

Mnemonic: MVPA <ABS|REL|COORD>, <axis>

Binary Representation
Instruction | Type Motor/Bank | Value
0 - ABS - absolute 0 0 (don't care)
46 1 - REL - relative 0 0 (don't care)
2 - COORD - coordinate | 0...255 0 (don't care)

Reply in Direct Mode

Status Value
100 - OK | Don't care

Example
Move motor 0 to position specified by accumulator.
Mnemonic: MVPA ABS, 0

ANALOG
DEVICES

AHEAD OF WHAT’S POSSIBLE™

TMCM-1690 TMCL™ Firmware Manual * Firmware Version V1.01 | Rev 0: 01/24

86/135

Binary Form of MVPA ABS, 0

Field Value
Target address 01y,
Instruction number | 2Ey
Type 00
Motor/Bank 004,
Value (Byte 3) 00y,
Value (Byte 2) 00,
Value (Byte 1) 00y,
Value (Byte 0) 00y
Checksum 2Fh

ANALOG
DEVICES

AHEAD OF WHAT’S POSSIBLE™

TMCM-1690 TMCL™ Firmware Manual * Firmware Version V1.01 | Rev 0: 01/24

87/135

3.6.45 ROLA (Rotate Left Using the Accumulator Register)

Rotate in left direction (decreasing the position counter) using the velocity specified by the contents of

the accumulator register. The velocity is given in rounds per minute (rpm).

Related commands: RORA, MST, SAP, GAP

Mnemonic: ROLA <axis>

Binary Representation

Instruction | Type

Motor/Bank

Value

50 0 (don't care)

0 (don't care)

0 (don't care)

Reply in Direct Mode

Status Value

100 - OK | Don't care

Example

Rotate left motor 0O, velocity specified by accumulator.

Mnemonic: ROLA 0.

Binary Form of ROLA 0
Field Value
Target address 01y
Instruction number | 324
Type 00,
Motor/Bank 00y,
Value (Byte 3) 00y,
Value (Byte 2) 00y
Value (Byte 1) 00y,
Value (Byte 0) 00y,
Checksum 335

ANALOG
DEVICES

AHEAD OF WHAT’S POSSIBLE™

TMCM-1690 TMCL™ Firmware Manual * Firmware Version V1.01 | Rev 0: 01/24

88/135

3.6.46 RORA (Rotate Right Using the Accumulator Register)

Rotate in right direction (increasing the position counter) using the velocity specified by the contents of

the accumulator register. The velocity is given in rounds per minute (rpm).

Related commands: ROLA, MST, SAP, GAP

Mnemonic: ROLA <axis>

Binary Representation

Instruction | Type

Motor/Bank

Value

51 0 (don't care)

0 (don't care)

0 (don't care)

Reply in Direct Mode

Status Value

100 - OK | Don't care

Example

Rotate right motor 0, velocity specified by accumulator.

Mnemonic: RORA 0.

Binary Form of RORA 0
Field Value
Target address 01y
Instruction number | 33,
Type 00,
Motor/Bank 00y,
Value (Byte 3) 00y,
Value (Byte 2) 00y
Value (Byte 1) 00y,
Value (Byte 0) 00y,
Checksum 335

ANALOG
DEVICES

AHEAD OF WHAT’S POSSIBLE™

TMCM-1690 TMCL™ Firmware Manual * Firmware Version V1.01 | Rev 0: 01/24

89/135

3.6.47 SIV (Set Indexed Variable)

This command copies a direct value to a TMCL user variable. The index of the user variable (0...255) is
specified by the content of the X register. Therefore, the value in the X register must not be lower than
zero or greater than 255. Otherwise, this command is ignored. This command is mainly intended for use in
standalone mode.

Internal function: The direct value supplied to this command is copied to the user variable specified by

the X register.

Related commands: AlV, GIV

Mnemonic: SIV

Binary Representation

Instruction | Type

Motor/Bank

Value

55

0 (don't care)

0 (don't care)

<value>

Reply in Direct Mode

Status Va

lue

100 - OK | Don't care

Example

Copy the value 3 to the user variable indexed by the X register.

Mnemonic: SIV 3.

Binary Form of SIV 3

Field Value
Target address 01y
Instruction number | 37,
Type 00y
Motor/Bank 004,
Value (Byte 3) 00y,
Value (Byte 2) 00y,
Value (Byte 1) 00y,
Value (Byte 0) 03,
Checksum 3By,

ANALOG
DEVICES

AHEAD OF WHAT’S POSSIBLE™

TMCM-1690 TMCL™ Firmware Manual * Firmware Version V1.01 | Rev 0: 01/24

90/135

3.6.48 GIV (Get Indexed Variable)

This command reads a TMCL user variable and copies its content to the accumulator register. The index
of the user variable (0...255) is specified by the X register. Therefore, the content of the X register must
not be lower than zero or greater than 255. Otherwise, this command is ignored. This command is mainly
intended for use in standalone mode.

Internal function: The user variable specified by the x register is copied to the accumulator register.

Related commands: SIV, AlV

Mnemonic: GIV
Binary Representation
Instruction | Type Motor/Bank | Value
55 0 (don't care) | 0 (don't care) | 0 (don't care)

Reply in Direct Mode

Status Value
100 - OK | Don't care
Example

Read the user variable indexed by the X register.
Mnemonic: GIV.

Binary Form of GIV

Field Value
Target address 01y,
Instruction number | 38,
Type 00y,
Motor/Bank 00y,
Value (Byte 3) 00y
Value (Byte 2) 004,
Value (Byte 1) 00y,
Value (Byte 0) 03p
Checksum 39,

ANALOG
DEVICES

AHEAD OF WHAT’S POSSIBLE™

TMCM-1690 TMCL™ Firmware Manual * Firmware Version V1.01 | Rev 0: 01/24

91/135

3.6.49 AIV (Accumulator to Indexed Variable)

This command copies the content of the accumulator to a TMCL user variable. The index of the user
variable (0...255) is specified by the content of the X register. Therefore, the value in the X register must
not be lower than zero or greater than 255. Otherwise, this command is ignored. This command is mainly
intended for use in standalone mode.

Internal function: The accumulator is copied to the user variable specified by the X register.

Related commands: SIV, GIV

Mnemonic: AlV

Binary Representation

Instruction | Type

Motor/Bank

Value

55

0 (don't care)

0 (don't care)

<value>

Reply in Direct Mode

Status Va

lue

100 - OK | Don't care

Example

Copy the accumulator to the user variable indexed by the X register.

Mnemonic: AlV.

Binary Form of AIV

Field Value
Target address 01y,
Instruction number | 39,
Type 00y,
Motor/Bank 00y,
Value (Byte 3) 00y
Value (Byte 2) 004,
Value (Byte 1) 00y,
Value (Byte 0) 00n
Checksum 3An

ANALOG
DEVICES

AHEAD OF WHAT’S POSSIBLE™

TMCM-1690 TMCL™ Firmware Manual * Firmware Version V1.01 | Rev 0: 01/24 92/135

3.6.50 Customer Specific Command Extensions (UFO...UF7 - User Functions)

These commands are used for customer-specific extensions of TMCL. They are implemented in C by Tri-
namic. Contact the sales department of Trinamic Motion Control GmbH & Co KG for a customized TMCL
firmware.

Related commands: None

Mnemonic: UFO...UF7

Binary Representation

Instruction | Type Motor/Bank Value

64...71 <user defined> | 0 <user defined> | 0 <user defined>

Reply in Direct Mode

Status Value
100 - OK | User defined

ANALOG
DEVICES

AHEAD OF WHAT’S POSSIBLE™

TMCM-1690 TMCL™ Firmware Manual * Firmware Version V1.01 | Rev 0: 01/24

93/135

3.6.51 TMCL Control Commands

There is a set of TMCL commands that are called TMCL control commands. These commands can only be
used in direct mode and not in a standalone program. So, they only have opcodes, but no mnemonics.
Most of these commands are only used by the TMCL-IDE (to implement, example, the debugging func-
tions in the TMCL creator). Some of them are also interesting for use in custom host applications, for
example, to start a TMCL routine on a module, when combining direct mode and standalone mode (also
see section 9.6). The following table lists all TMCL control commands.

The motor/bank parameter is not used by any of these functions and thus is not listed in the table. It
should always be set to 0 with these commands.

TMCL Control Commands

Instruction

Description

Type

Value

128 - stop application

Stop a running TMCL
application.

0 (don't care)

0 (don't care)

129 - run application

Start or continue
TMCL program
execution.

0 - from current
address

1 - from specific
address

0 (don't care)

Starting ad-
dress

130 - step application

Execute only the next
TMCL command.

0 (don't care)

0 (don't care)

131 - reset application

Stop a running TMCL
program.

Reset program
counter and stack
pointer to zero.
Reset accumulator
and X register to
zero.

Reset all flags.

0 (don't care)

0 (don't care)

132 - enter download mode

All following
commands (except
control commands)
are not executed but
stored in the TMCL
memory.

0 (don't care)

Start address
for download

133 - exit download mode

End the download
mode. All following
commands are
executed normally
again.

0 (don't care)

0 (don't care)

134 - read program memory

Return contents of
the specified
program memory
location (special
reply format).

0 (don't care)

Address of
memory loca-
tion

ANALOG
DEVICES

AHEAD OF WHAT’S POSSIBLE™

TMCM-1690 TMCL™ Firmware Manual * Firmware Version V1.01 | Rev 0: 01/24

94/135

Instruction

Description

Type

Value

135 - get application status

Return information
about the current
status, depending on
the type field.

0 - return mode,
wait flag, memory
pointer

1 - return mode,
wait flag, program
counter

2 -return
accumulator
3-return X
register

0 (don't care)

136 - get firmware version

Return firmware
version in string
format (special reply)
or binary format).

0 - string format
1 - binary format

0 (don't care)

137 - restore factory settings

Reset all settings in
the EEPROM to their
factory defaults.
This command does
not send a reply.

0 (don't care)

Setto 1234

255 - software reset

Restart the CPU of
the module (like a
power cycle).

The reply of this
command might not
always get through.

0 (don't care)

Setto 1234

Table 14: TMCL Control Command's

The commands 128, 129, 131, 136, and 255 are interesting for use in custom host applications. The other

control commands are mainly being used by the TMCL-IDE.

ANALOG
DEVICES

AHEAD OF WHAT’S POSSIBLE™

TMCM-1690 TMCL™ Firmware Manual * Firmware Version V1.01 | Rev 0: 01/24

95/135

4 Axis Parameters

Most motor controller features of the TMCM-1690 module are controlled by axis parameters. Axis param-
eters can be modified or read using SAP, GAP, and AAP commands. Some axis parameters can also be
stored to or restored from the EEPROM using STAP and RSAP commands. This chapter describes all axis
parameters that can be used on the TMCM-1690 module.

There are different parameter access types, like read only or read/write. Table 15 shows the different
parameter access types used in the axis parameter tables.

Meaning of the Letters in the Access Column
Access Type | Command | Description
R GAP Parameter readable
W SAP, AAP Parameter writable
E STAP, RSAP | Parameter can be stored in the EEPROM

Table 15: Meaning of the Letters in the Access Column

Axis 0 Parameters of the TMCM-1690 Module
Number | Axis Parameter | Description Range [Units] Default Access
0 Motor type Select the motor type: 0...1 0 RWEX
0 - three phase BLDC
1 - single phase DC
1 Motor family Select the motor family: 0...1 0 RWEX
0 - Rotary
1 - Linear
2 Motor pole Number of motor poles pairs. 0...255 4 RWEX
pairs
3 Motor pole Distance between motor poles forlin- | 1...65535[pm1] | 10 RWEX
pair distance ear motor.
4 Motor nominal | Motor nominal current. 0...10000 [mA] | 3470 RWEX
current
5 Motor peak Motor peak current. 0...10000 [MA] | 10000 RWEX
current
6 Motor line to Motor line to line resistance. 1...65535[mQ | 720 RWEX
line resistance]
7 Motor line to Motor line to line inductance. 1...65535 [uH] | 1200 RWEX
line inductance
8 Motor torque Motor torque constant. 1...65535 30 RWEX
constant [MmMNmM/A]
9 Motor inertia Motor inertia. 1...65535 480 RWEX
[gcm?]

ANALOG
DEVICES

AHEAD OF WHAT’S POSSIBLE™

TMCM-1690 TMCL™ Firmware Manual * Firmware Version V1.01 | Rev 0: 01/24

96/135

Number

Axis Parameter

Description

Range [Units]

Default

Access

11

Motor ramp
type

Type of ramp for motor (linear and
sine).

0 - linear

1-sine

0...1

RWE

12

Motor
direction

Set motor direction.
0 - Rotate clockwise.
1 - Rotate counter-clockwise.

RWEX

13

Commutation
mode

Select a commutation mode that fits
best to the motor’'s sensors.

0 - disabled

1 - open loop

2 - digital hall (foc)

3 - digital hall (block)

4 - abn encoder

5 - absolute encoder

RWEX

14

Motor
peripherals

Sensors, gearbox and brakes
attached to the motor

0201 - Motor side encoder (ABN, ABS,
ABN2)

0202 - Hall sensor

0204 - Gearbox

0208 - Load side encoder (ABS, ABN2)
0210 - Mechanical brake

0220 - Brake chopper

34

RWEX

15

Current sensor
selection

Select current measurement type to
commutate the motor.
0 - bottom shunt

16

Max current

Max. allowed absolute motor cur-
rent. This value can be temporarily
exceeded marginally due to the oper-
ation of the current regulator.

0...10000 [MA]

4000

RWEX

17

PWM scheme

PWM scheme.
0 - center aligned
1 - down counting

RWEX

18

PWM
frequency

Frequency of the PWM used for com-
mutation.

0 - 20kHz pwm frequeny

1 - 40kHz pwm frequeny

2 - 60kHz pwm frequeny

3 - 80kHz pwm frequeny

4 - 100kHz pwm frequeny

5 - 120kHz pwm frequeny

RWEX

19

PWM dead
time

PWM dead (break before make) time.

0...100 [ms]

RWEX

21

ADC_u_raw

Raw ADC measurement of the
phase_A shunt

0...4095

ANALOG
DEVICES

AHEAD OF WHAT’S POSSIBLE™

TMCM-1690 TMCL™ Firmware Manual * Firmware Version V1.01 | Rev 0: 01/24 97/135
Number | Axis Parameter | Description Range [Units] Default Access
22 ADC v_raw Raw ADC measurement of the 0...4095 0 R

phase_B shunt
23 ADC w_raw Raw ADC measurement of the 0...4095 0 R
phase_C shunt
24 ADC_u_offset Manually set/get the bottom-shunt 0...4095 2047 RWEX
phase_A offset.
25 ADC_v_offset Manually set/get the bottom-shunt 0...4095 2047 RWEX
phase_B offset.
26 ADC_w_offset Manually set/get the bottom-shunt 0...4095 2047 RWEX
phase_C offset.
27 ADC_u Calculated current measurement for | —32768...32767 | 0 R
phase_A shunt and used offset
28 ADC v Calculated current measurement for | —32768...32767 | 0 R
phase_B shunt and used offset
29 ADC w Calculated current of phase_C —32768 ...32767 | 0 R
from phase_A and
phase_B measurements
31 Open loop Actual controlled angle value. —32768 ...32767 | 0 R
commutation
angle
32 Open loop Motor current for controlled commu- | 0...10000 [mA] | 2000 RWEX
current tation. This parameteris used in com-
mutation mode 1.
33 Open loop Actual open loop velocity value. —2147483648 0 R
velocity ...2147483647
34 Open loop The open loop position counter. —2147483648 0 RW
position ...2147483647
36 Digital hall Actual digital hall angle value. —32768...32767 | 0 R
commutation
angle
37 Digital Actual digital hall and open loop an- | —32768...32767 | 0 R
hall/open loop | gle difference.
commutation
angle diff
38 Digital hall Actual digital hall velocity value. —2147483648 0 R
velocity ...2147483647
39 Digital hall The actual digital hall position —2147483648 0 RW
position counter. ...2147483647
DEVICES

AHEAD OF WHAT’S POSSIBLE™

TMCM-1690 TMCL™ Firmware Manual * Firmware Version V1.01 | Rev 0: 01/24 98/135
Number | Axis Parameter | Description Range [Units] Default Access
40 Digital hall Hall sensor sector offset. 0...5 0 RWEX

sector offset 0 - 0° sector offset
1 - 60° sector offset
2 - 120° sector offset
3 - 180° sector offset
4 - 240° sector offset
5 - 300° sector offset
41 Digital hall Hall sensor direction. 0...1 0 RWEX
direction 0 - standard
1 - inverted
42 Digital hall Hall sensor interpolation. 0...1 0 RWEX
interpolation 0 - off
1-on
43 Digital hall Offset for electrical angle hall_phi_e | —32768...32767 | 0 RWEX
phi_e offset of hall sensor.
44 Digital hall Raw hall sensor inputs. 0...7 0 R
inputs
45 Digital hall Hall sensor auto configuration trig- | 0...2 0 RW
auto ger.
configuration 0 - Standby
trigger 1 - Direction estimation
2 - Sector offset estimation
46 ABN encoder Actual ABN encoder angle value. —32768 ...32767 | 0 R
commutation
angle
47 ABN Actual ABN encoder and open loop | —32768...32767 | O R
encoder/open | angle difference.
loop
commutation
angle
difference
48 ABN encoder Actual ABN encoder velocity value. —2147483648 0 R
velocity ...2147483647
49 ABN encoder The actual ABN encoder position —2147483648 0 RW
position counter. ...2147483647
50 ABN encoder ABN encoder steps per full motor ro- | 0...16777215 4096 RWEX
steps tation.
51 ABN encoder Set the ABN encoder direction 0...1 0 RWEX
direction in a way that ROR increases
position counter.
0 - standard
1 - inverted

ANALOG
DEVICES

AHEAD OF WHAT’S POSSIBLE™

TMCM-1690 TMCL™ Firmware Manual * Firmware Version V1.01 | Rev 0: 01/24 99/135
Number | Axis Parameter | Description Range [Units] Default Access
52 ABN encoder Select an ABN encoder init modethat | 0...3 0 RWEX

init mode fits best to the motor's sensors.
0 - estimate offset
1 - estimate offset (shake)
2 - use offset
3 - use hall
53 ABN encoder Actual state of ABN encoder initializa- | 0...3 0 R
init state tion.
0 - nothing to do
1 - start_init
2 - wait_init_time
3 - estimate_offset
54 ABN encoder Duration for encodersine initial-| 0...10000 [ms] | 1000 RWEX
init delay ization sequence. This parameter
should be set in a way that the motor
has stopped mechanical oscillations
after the specified time.
55 ABN encoder Init velocity for ABN encoder initializa- | —200000 200 RWEX
init velocity tion with encoder N-channel. ...200000 [rpm]
56 ABN encoder This value represents the internal | 0...65535 0 RWE
offset commutation offset. (0..max. en-
coder steps per rotation).
57 Clear on null Clear the position counteronABNen- | 0...1 0 RW
coder N channel.
0 - do not clear position counter at
next N channel event
1 - set position counter to zero at next
N channel event
58 Clear once Clear the position counter on en-|0...1 0 RW
coder N channel.
0 - clear position counter always at an
N channel event
1 - set position counter to zero only
once
59 ABN encoder Raw ABN encoder inputs. 0...7 0 R
inputs Enc_A = Bit_0, Enc_B =Bit_1, Enc_N =
bit_2
Bit_x = 1 - Encoder channel signal is
high
Bit_x = 0 - Encoder channel signal is
low
60 ABN encoder Raw ABN encoder counter value. 0...16777215 0 R
value
61 ABN encoder Select side of the gearbox the | 0...1 0 RWEX
side enocder is mounted on:
0 - disabled
1 - motor side

ANALOG
DEVICES

AHEAD OF WHAT’S POSSIBLE™

TMCM-1690 TMCL™ Firmware Manual * Firmware Version V1.01 | Rev 0: 01/24 100/135
Number | Axis Parameter | Description Range [Units] Default Access
62 ABN encoder 2 | Actual ABN encoder 2 velocity value. | —2147483648 0 R

velocity ...2147483647
63 ABN encoder 2 | The actual ABN encoder 2 position | —2147483648 0 RW
position counter. ...2147483647
64 ABN encoder 2 | ABN encoder 2 steps per full motor | 0...16777215 4096 RWEX
steps rotation.
65 ABN encoder 2 | Set the ABN encoder 2 direction in | 0...1 0 RWEX
direction a way that ROR increases position
counter.
0 - standard
1 - inverted
66 ABN encoder 2 | Raw abn encoder 2 inputs. 0...7 0 R
inputs Enc_A = Bit_0, Enc_B = Bit_1, Enc_N =
bit_2
Bit x = 1 - Encoder channel signal is
high
Bit_x = 0 - Encoder channel signal is
low
67 ABN Encoder 2 | Select side of the gearbox the | 0...2 0 RWEX
Side enocder is mounted on:
0 - disabled
1 - motor side
2 - load side
68 Absolute Actual absolute encoder angle value. | —32768...32767 | 0 R
encoder
commutation
angle
69 Absolute Actual absolute encoder and open | —32768...32767 | 0 R
encoder/open | loop angle difference.
loop
commutation
angle diff
70 Absolute Actual absolute encoder velocity | —2147483648 0 R
encoder value. ...2147483647
velocity
71 Absolute The actual absolute encoder counter. | —2147483648 0 RW
encoder ...2147483647
position
72 Absolute Select the used absolute encoder: 0...2 0 RWEX
encoder type 0 - disabled
1 - AM4096
2 - ADA4573
DEVICES

AHEAD OF WHAT’S POSSIBLE™

TMCM-1690 TMCL™ Firmware Manual * Firmware Version V1.01 | Rev 0: 01/24 101/135
Number | Axis Parameter | Description Range [Units] Default Access
73 Absolute Select the used absolute encoderinit | 0...2 0 RWEX

encoder init mode:
0 - estimate offset
1 - estimate offset (shake)
2 - use offset
74 Absolute Set the absolute encoder direction | 0...1 0 RWEX
encoder in a way that ROR increases position
direction counter.
0 - standard
1 - inverted
75 Absolute This value represents the internal | 0...65535 0 RWE
encoder offset | commutation offset. (0..max. en-
coder steps per rotation).
76 Absolute Select side of the gearbox the | 0...2 0 RWEX
encoder side enocder is mounted on:
0 - disabled
1 - motor side
2 - load side
77 Target torque Get desired target current or set tar- | —10000...10000 | 0 RW
get current to activate current regu- | [mA]
lation mode. (+= turn motor in right
direction; -= turn motor in left direc-
tion)
78 Actual torque The actual motor current. —2147483648 0 R
...2147483647
[mA]
79 Target flux Get desired target flux or set tar- | —10000...10000 | O RW
get flux to activate current regulation | [mA]
mode.
80 Actual flux The actual motor flux. —2147483648 0 R
...2147483647
[MA]
82 Torque offset The desired torque offset. —4700...4700 0 RW
[MA]
83 Torque P P parameter for current PID regula- | 0...32767 300 RWEX
tor.
84 Torque | | parameter for current PID regulator. | 0...32767 600 RWEX
85 Torque Pl error | Sum of errors of current Pl regulator. | —2147483648 0 R
sum ...2147483647
86 Flux Pl error Sum of errors of flux Pl regulator. —2147483648 0 R
sum ...2147483647
87 Torque Pl error | Error of torque Pl regulator. —2147483648 0 R
...2147483647

ANALOG
DEVICES

AHEAD OF WHAT’S POSSIBLE™

TMCM-1690 TMCL™ Firmware Manual * Firmware Version V1.01 | Rev 0: 01/24 102/135
Number | Axis Parameter | Description Range [Units] Default Access
88 Flux Pl error Error of flux Pl regulator. —2147483648 0 R

... 2147483647
90 Velocity sensor | Select a commutation mode that fits | 0...4 0 RWEX
selection best to the motor's sensors.
0 - same as commutation
1 - digital hall
2 - abn encoder
3 -abn encoder 2
4 - abs encoder
91 Velocity unit Select mechanical or electrical veloc- | 0...1 0 RWEX
selection ity unit.
0 - mechanical rpm
1 - electrical rpm
92 Target velocity | The desired target velocity. —200000 0 RW
...200000 [rpm]
93 Actual velocity | The actual velocity of the motor. —2147483648 0 R
... 2147483647
[rpm]
94 Max velocity Max. absolute velocity for velocity | 0...200000 4000 RWEX
and positioning mode. [rpm]
95 Acceleration Acceleration parameter for ROL, ROR, | 0...200000 2000 RWEX
and the velocity ramp of MVP. [rpm/s]
96 Motor halted If the actual velocity is below this | 0...200000 10 RWEX
velocity value, the motor halted flag is set. [rpm]
98 Velocity offset | The desired velocity offset. —200000 0 RW
...200000 [rpm]
99 Velocity P P parameter for velocity PID regula- | 0...32767 600 RWEX
tor.
100 Velocity | | parameter for velocity PID regulator | 0...32767 300 RWEX
101 Velocity Pl Sum of errors of velocity Pl regulator. | —2147483648 0 R
error sum ...2147483647
102 Velocity PI Error of velocity Pl regulator. —2147483648 0 R
error ...2147483647
104 Position sensor | Select a commutation mode that fits | 0...4 0 RWEX
selection best to the motor's sensors.
0 - same as commutation
1 - digital hall
2 - abn encoder
3 -abn encoder 2
4 - abs encoder
105 Target position | The target position of a currently ex- | —2147483648 0 RW
ecuted ramp. ...2147483647
106 Actual position | The actual position counter. —2147483648 0 RW
... 2147483647

ANALOG
DEVICES

AHEAD OF WHAT’S POSSIBLE™

TMCM-1690 TMCL™ Firmware Manual * Firmware Version V1.01 | Rev 0: 01/24 103/135
Number | Axis Parameter | Description Range [Units] Default Access
107 Position Maximum distance at which the posi- | 0...100000 50 RWEX

reached tion end flag is set.
distance
108 Position Max. velocity at which end position | 0...200000 500 RWEX
reached flag can be set. Prevents issuing of | [rpm]
velocity end position flag when the target is
passed at high velocity.
109 Position This flag is set when actual positon | 0...1 0 R
reached flag and velocity matches target position
window.
0 - Position window not reached
1 - Position window reached
110 Position P P parameter for position PID regula- | 0...32767 20 RWEX
tor.
111 Position PI Error of position Pl regulator. —2147483648 0 R
error ... 2147483647
113 Gearbox Select the transmission type of the | 0...1 0 RWEX
transmission Gearbox.
type 0 - Rotary to rotary
1 - Rotary to linear
114 Gearbox input | The input displacement to the gear- | 1...2147483647 | 1 RWEX
displacement box.
115 Gearbox The output displacement to the gear- | 1...2147483647 | 1 RWEX
output box.
displacement
116 Gearbox invert | Gearbox inverts the direction of mo-| 0...1 0 RWEX
direction tion:
0 - Direction not inverted
1 - Direction inverted
118 Thermal Thermal winding time constant for | 1000 ...60000 30000 RWEX
winding time the used motor. Used for It monitor- | [ms]
constant (1) ing.
119 It limit (1) An actual It sum that exceeds | 0...54000000 10300000 RWEX
this limit leads to trigger the
lIt_exceed_flag_1.
120 It sum (1) Actual sum of the llt monitor_1. 0...4294967295 | O R
121 Thermal Thermal winding time constant for | 1000 ...60000 30000 RWEX
winding time the used motor. Used for IIt monitor- | [ms]
constant (2) ing.
122 It limit (2) An actual it sum that exceeds | 0...54000000 10300000 RWEX
this limit leads to trigger the
lIt_exceed_flag_1.
123 It sum (2) Actual sum of the llt monitor_2. 0...4294967295 | O R
DEVICES

AHEAD OF WHAT’S POSSIBLE™

TMCM-1690 TMCL™ Firmware Manual * Firmware Version V1.01 | Rev 0: 01/24 104/135
Number | Axis Parameter | Description Range [Units] Default Access
124 Clear It Clear the flags that indicates that the | 0...0 0 RW

exceeded flags | Ilt sum has exceeded the It limit.
126 Velocity A velocity window error occurs, if | 0...65535 500 RWEX
window the difference between ramp velocity
and actual velocity is bigger than this
window.
127 Clear velocity Clear the flag that indicates that the | 0...0 0 RW
window error velocity window has been left.
128 Position A position window error occurs, if | 0...2147483647 | 1638400 RWEX
window the difference between ramp posi-
tion and actual velocity is bigger than
this window.
129 Clear position Clear the flag that indicates that the | 0...0 0 RW
window error position window has been left.
131 Ramp The actual acceleration used for mea- | —200000 0 R
acceleration suring velocity and position. ...200000
[rpm/s]
132 Ramp velocity | The actual velocity of the velocity | —200000 0 R
ramp used for positioning and veloc- | ...200000 [rpm]
ity mode.
133 Enable velocity | An activated ramp allows a defined | 0...1 1 RWEX
ramp acceleration for velocity and position
mode.
0 - Deactivate velocity ramp genera-
tor.
1 - Activate velocity ramp generator.
134 Enable velocity | An activated velocity feed forward al- | 0...1 1 RWEX
feed forward lows to use the velocity computed by
the position ramp generator to be
used as feed forward value for the ve-
locity controller.
0 - Deactivate velocity feed forward.
1 - Activate velocity feed forward.
135 Ramp position | The actual position of the position | —2147483648 0 R
ramp used for positioning mode. ...2147483647
137 Homing mode 0 - HOMING_OFF 0...4 0 RWX
1 - Single ended HARD_STOP_CW
2 - Single ended HARD_STOP_CCW
3 - Double ended HARD_STOP_CW
4 - Double ended HARD_STOP_CCW

ANALOG
DEVICES

AHEAD OF WHAT’S POSSIBLE™

TMCM-1690 TMCL™ Firmware Manual * Firmware Version V1.01 | Rev 0: 01/24 105/135
Number | Axis Parameter | Description Range [Units] Default Access
138 Homing state 0-NOT_HOMED 0...255 0 RW

1-HOMED
2 - START
3 - MOVE_TO_END_POSITION
4 - CHECK_NEGATIVE_STOP
5 - CHECK_POSITIVE_STOP
252 - STOP_ERROR
253 - STOP_TORQUE
254 - STOP_VELOCITY
255 - STOP_POSITION
139 Homing fast The velocity is used to drive to the po- | 0...65535 1000 RWEX
velocity sition limit at the end of the homing
function.
140 Homing slow The velocity is used during homingto | 0...65535 500 RWEX
velocity search the hard stops or N-channels.
141 Homing Current threshold value to detect the | 0...10000 [mA] | 2000 RWEX
current hard stops.
threshold
142 Position offset | Absolute position offset between | 0...2147483647 | 0 RWEX
cw clockwise hardstop/N-channel and
max position limit.
143 Position offset | Absolute position offset between | 0...2147483647 | 0 RWEX
ccw counterclockwise hardstop/N-
channel and min position limit.
144 Min position Min position limit for positioning | —2147483648 —2147483648 | RWEX
limit tasks. ...2147483647
145 Max position Max position limit for positioning | —2147483648 2147483647 RWEX
limit tasks. ...2147483647
146 teach position | Teach position limit 0...3 0 RW
limit 0. Do not teach position
1. Teach left position
2. Teach Right position
3. Rescale to 16 bit
148 Target torque Target-torque filter type. 0...2 1 RWEX
filter type 0 - disabled
1 - average
2 - biquad
149 Target torque Target-torque simple-filter size, value | 1...8 1 RWEX
simple filter entered is the order of the filter n,
size where sample size = 2™
150 Target torque | Target-torque biquad-filter aCoeff_1. | —2147483648 0 RWEX
biquad filter ...2147483647
aCoeff 1
ANALOG
DEVICES

AHEAD OF WHAT’S POSSIBLE™

TMCM-1690 TMCL™ Firmware Manual * Firmware Version V1.01 | Rev 0: 01/24 106/135
Number | Axis Parameter | Description Range [Units] Default Access
151 Target torque | Target-torque biquad-filter aCoeff_2. | —2147483648 0 RWEX

biquad filter ...2147483647
aCoeff 2
152 Target torque | Target-torque biquad-filter bCoeff_0. | —2147483648 0 RWEX
biquad filter ...2147483647
bCoeff 0
153 Target torque | Target-torque biquad-filter bCoeff_1. | —2147483648 0 RWEX
biquad filter ...2147483647
bCoeff 1
154 Target torque | Target-torque biquad-filter bCoeff_2. | —2147483648 0 RWEX
biquad filter ...2147483647
bCoeff_2
156 Actual current | Actual-current filter type. 0...2 1 RWEX
filter type 0 - disabled
1 - average
2 - biquad
157 Actual current | Actual-torque simple-filter size, value | 1...8 1 RWEX
simple filter entered is the order of the filter n,
size where sample size = 2™
158 Actual current | Actual-current biquad-filter aCoeff_1. | —2147483648 0 RWEX
biquad filter ... 2147483647
aCoeff 1
159 Actual current | Actual-current biquad-filter aCoeff_2. | —2147483648 0 RWEX
biquad filter ...2147483647
aCoeff_2
160 Actual current | Actual-current biquad-filter bCo- | —2147483648 0 RWEX
biquad filter eff_0. ...2147483647
bCoeff_0
161 Actual current | Actual-current biquad-filter bCo- | —2147483648 0 RWEX
biquad filter eff_1. ...2147483647
bCoeff 1
162 Actual current | Actual-current biquad-filter bCo- | —2147483648 0 RWEX
biquad filter eff_2. ...2147483647
bCoeff 2
164 Target velocity | Target-velocity filter type. 0...2 1 RWEX
filter type 0 - disabled
1-average
2 - biquad
165 Target velocity | Target-velocity simple-filter size, | 1...8 1 RWEX
simple filter value entered is the order of the
size filter n, where sample size = 2"
166 Target velocity | Target-velocity biquad-filter aCo- | —2147483648 0 RWEX
biquad filter eff_1. ...2147483647
aCoeff 1
ANALOG
DEVICES

AHEAD OF WHAT’S POSSIBLE™

TMCM-1690 TMCL™ Firmware Manual * Firmware Version V1.01 | Rev 0: 01/24 107/135
Number | Axis Parameter | Description Range [Units] Default Access
167 Target velocity | Target-velocity biquad-filter aCo- | —2147483648 0 RWEX

biquad filter eff_2. ...2147483647
aCoeff_2
168 Target velocity | Target-velocity biquad-filter bCo- | —2147483648 0 RWEX
biquad filter eff_0. ...2147483647
bCoeff 0
169 Target velocity | Target-velocity biquad-filter bCo- | —2147483648 0 RWEX
biquad filter eff_1. ...2147483647
bCoeff_1
170 Target velocity | Target-velocity biquad-filter bCo- | —2147483648 0 RWEX
biquad filter eff_2. ...2147483647
bCoeff_2
172 Actual velocity | Actual-velocity filter type. 0...2 1 RWEX
filter type 0 - disabled
1 - average
2 - biquad
173 Actual velocity | Actual-velocity simple-filter size, | 1...8 1 RWEX
simple filter value entered is the order of the
size filter n, where sample size = 2»
174 Actual velocity | Actual-velocity biquad-filter aCo- | —2147483648 0 RWEX
biquad filter eff_1. ...2147483647
aCoeff_1
175 Actual velocity | Actual-velocity biquad-filter aCo- | —2147483648 0 RWEX
biquad filter eff_2. ...2147483647
aCoeff_2
176 Actual velocity | Actual-velocity biquad-filter bCo- | —2147483648 0 RWEX
biquad filter eff_0. ...2147483647
bCoeff 0
177 Actual velocity | Actual-velocity biquad-filter bCo- | —2147483648 0 RWEX
biquad filter eff_1. ...2147483647
bCoeff 1
178 Actual velocity | Actual-velocity biquad-filter bCo- | —2147483648 0 RWEX
biquad filter eff_2. ...2147483647
bCoeff 2
180 Target position | Target position filter type. 0...2 1 RWEX
filter type 0 - disabled
1-average
2 - biquad
181 Target position | Target-position simple-filter size, | 1...8 1 RWEX
simple filter value entered is the order of the
size filter n, where sample size = 2"
182 Target position | Target-position biquad-filter aCo- | —2147483648 0 RWEX
biquad filter eff_1. ...2147483647
aCoeff 1
ANALOG
DEVICES

AHEAD OF WHAT’S POSSIBLE™

TMCM-1690 TMCL™ Firmware Manual * Firmware Version V1.01 | Rev 0: 01/24 108/135
Number | Axis Parameter | Description Range [Units] Default Access
183 Target position | Target-position biquad-filter aCo- | —2147483648 0 RWEX

biquad filter eff_2. ...2147483647
aCoeff 2
184 Target position | Target-position biquad-filter bCo- | —2147483648 0 RWEX
biquad filter eff_0. ...2147483647
bCoeff 0
185 Target position | Target-position biquad-filter bCo- | —2147483648 0 RWEX
biquad filter eff_1. ...2147483647
bCoeff_1
186 Target position | Target-position biquad-filter bCo- | —2147483648 0 RWEX
biquad filter eff_2. ...2147483647
bCoeff 2
188 Release brake | Controls the external brake of the | 0...1 0 RW
module.
0 - brake PWM deactivated.
1 - brake PWM activated.
189 Brake Controls the duty cycle of the first | 0...100 [%] 75 RWEX
releasing duty | PWM phase for releasing the brake.
cycle
190 Brake holding Controls the duty cycle of the second | 0...100 [%] 11 RWEX
duty cycle PWM phase to hold the brake.
191 Brake Controls the duration the brake PWM | 0...65535[ms] | 1000 RWEX
releasing uses the first duty cycle.
duration
192 Enable brake Enables the brake functionality. 0...1 0 RWEX
output 0 - brake functionality enabled
1 - brake functionality disabled
193 Invert brake Inverts the brake output. 0...1 0 RWEX
output 0 - brake output inverted
1 - brake output normal
194 Brake supply Brake supply voltage. 0...65535 240 RWEX
voltage [0.1V]
195 Brake Brake resistance. 0...65535[MQ | 440 RWEX
resistance]
197 Enable brake Enable brake chopper functionality. | 0...1 0 RWE
chopper 0 - deactivate brake chopper.
1 - activate brake chopper.
198 Brake chopper | If the brake chopper is enabled and | 50...1000 300 RWE
voltage limit supply voltage exceeds this value, the | [0.1V]
brake chopper output is activated.
199 Brake chopper | An activated brake chopper is dis-| 0...50[0.1V] 5 RWE
hysteresis abled if the actual supply voltage is
lower than (limit voltage-hysteresis).
ANALOG
DEVICES

AHEAD OF WHAT’S POSSIBLE™

TMCM-1690 TMCL™ Firmware Manual * Firmware Version V1.01 | Rev 0: 01/24 109/135
Number | Axis Parameter | Description Range [Units] Default Access
200 Brake chopper | Type of brake chopper. 0...1[0.1V] 0 RWEX

type 0 - PWM braking
1 - shunt braking
201 Brake chopper | A value unequal to zero indicatesan | 0...1 0 R
active active brake chopper.
202 Brake chopper | Brake supply voltage. 0...65535 240 RWEX
supply voltage [0.1V]
203 Brake chopper | Brake resistance. 0...65535[mQ | 22000 RWEX
resistance]
205 Reference REF_L =Bit_1, REF_R =Bit_0 0...3 0 RWEX
switch enable Bit_x = 1 - Reference switch function-
ality is enabled.
Bit_x = 0 - Reference switch function-
ality is disabled.
206 Reference REF_L = Bit_1, REF_R = Bit_0 0...3 0 RWEX
switch polarity | Bit_x =1 - Reference switch is high ac-
tive.
Bit_x = 0 - Reference switch is low ac-
tive.
207 Right reference | 0-rightreference switch deactivated. | 0...1 0 R
switch active 1 - right reference switch activated.
208 Left reference | O - left reference switch deactivated. | 0...1 0 R
switch active 1 - left reference switch activated.
210 Status flags Actual status flags. 0...4294967295 | 0 R
0200000001 - OVERCURRENT
0200000002 - UNDERVOLTAGE
0200000004 - OVERVOLTAGE
0200000008 - OVERTEMPERATURE
0200000010 - MOTORHALTED
0200000020 - HALLERROR
0200000040 - DRIVER_ERROR
0200000080 - INIT_ERROR
0200000100 - STOP_MODE
0200000200 - VELOCITY_MODE
0200000400 - POSITION_MODE
0200000800 - TORQUE_MODE
0200001000 - VELOCITY_WINDOW
0200002000 - POSITION_WINDOW
0200004000 - POSITION_END
0200008000 - MODULE_INITIALIZED
0204000000 - MODULE_ENABLED
0200020000 - IT_EXCEEDED (1)
0200040000 - IIT_EXCEEDED(2)
211 Supply voltage | The actual supply voltage. 0...1000[0.1V] | O R
212 Supply voltage | The supply voltage threshold. 0...1000 [0.1V] | 480 RWEX
threshold
ANALOG
DEVICES

AHEAD OF WHAT’S POSSIBLE™

TMCM-1690 TMCL™ Firmware Manual * Firmware Version V1.01 | Rev 0: 01/24 110/135
Number | Axis Parameter | Description Range [Units] Default Access
213 Driver The actual temperature of the motor | —20...150[°C] | 0 R

temperature driver.
214 Driver The temperature threshold at which | —20...136[°C] | 0 RWEX
temperature the motor driver is shut down.
threshold
216 ABN encoder 2 | ABN encoder 2 angle value. —32768 ...32767 | O R
angle
217 ABN encoder Linear resolution of the encoder per | 1...65535 [nm] | 500 RWE
linear increment.
resolution
220 Switch Over P parameter for lower velocity PID | 0...32767 0 RWEX
velocity for Pl regulator.
parameter
221 Velocity P for P parameter for lower velocity PID | 0...32767 0 RWEX
lower velocity regulator.
222 Velocity | for | parameter for lower velocity PID reg- | 0...32767 0 RWEX
lower velocity ulator.
223 Linear Max. absolute velocity for velocity | 0...2147483647 | 2147483647 RW
maximum and positioning mode. [m/s]
speed
224 Linear Acceleration parameter for ROL, ROR, | 0...2147483647 | 2147483647 RWEX
acceleration and the velocity ramp of MVP, [pm/s?]
225 Linear target Target velocity. —2147483648 0 RW
velocity ...2147483647
[pm/s]
226 Linear actual Actual velocity. —2147483648 0 R
velocity ...2147483647
[pm/s]
227 Linear target Target position. —2147483648 0 RW
position ...2147483647
[pm]
228 Linear actual Actual multi-turn position for posi- | —2147483648 0 RW
position tioning. ...2147483647
[pm]
229 Linear ramp The actual velocity of the velocity | —2147483648 0 R
velocity ramp used for positioning and veloc- | ...2147483647
ity mode. [um/s]
230 Linear ramp The actual position of the position | —2147483648 0 R
position ramp used for positioning mode. ...2147483647
[pm]
238 Driver status Information regarding the current | 0...65535 0 R
register status of the driver.
DEVICES

AHEAD OF WHAT’S POSSIBLE™

TMCM-1690 TMCL™ Firmware Manual * Firmware Version V1.01 | Rev 0: 01/24 111/135
Number | Axis Parameter | Description Range [Units] Default Access
239 Clear driver Check/clear the driver error flag 0...1 0 RW

error flag
240 Main loops Main loops per second. 0...4294967295 | 0 R
[1/s]
241 PWM loops Torque loops per second. 0...4294967295 | 0 R
[1/s]
242 Torque loops Torque loops per second. 0...4294967295 | 0 R
[1/s]
243 Velocity loops | Velocity loops per second. 0...4294967295 | 0 R
[1/s]
244 debugvalue 0 | Free used debugging value. —2147483648 0 RW
...2147483647
245 debug value 1 Free used debugging value. —2147483648 0 RW
...2147483647
246 debug value 2 | Free used debugging value. —2147483648 0 RW
... 2147483647
247 debug value 3 | Free used debugging value. —2147483648 0 RW
...2147483647
248 debugvalue 4 | Free used debugging value. —2147483648 0 RW
... 2147483647
249 debugvalue5 | Free used debugging value. —2147483648 0 RW
... 2147483647
250 debug value 6 | Free used debugging value. —2147483648 0 RW
...2147483647
251 debug value 7 | Free used debugging value. —2147483648 0 RW
... 2147483647
252 debug value 8 | Free used debugging value. —2147483648 0 RW
... 2147483647
253 debugvalue 9 | Free used debugging value. —2147483648 0 RW
... 2147483647
254 Reinit bldc Reinit bldc regulation. 0...1 0 W
regulation
255 Enable driver Enables the motor driver (enabled by | 0...1 1 RW
default):
0 - driver disabled
1 - driver enabled
Table 16: All TMCM-1690 Axis 0 Parameters
ANALOG
DEVICES

AHEAD OF WHAT’S POSSIBLE™

TMCM-1690 TMCL™ Firmware Manual * Firmware Version V1.01 | Rev 0: 01/24 112/135

5 Global Parameters

The following sections describe all global parameters that can be used with the SGP, GGP, AGP, STGP, and
RSGP commands. Global parameters are grouped into banks:

+ Bank 0: Global configuration of the module.

* Bank 2: TMCL user variables.

5.1 BankO

Global parameters in bank 0 configure all settings that affect the overall behaviour of a module. These
are things like the serial address, RS485 baud rate, or CAN bit rate (where appropriate). Change these
parameters per needs. The best and easiest way to do this is to use the appropriate functions of the
TMCL-IDE. The parameters with numbers between 64 and 128 are automatically stored in the EEPROM.

Note * An SGP command on such a parameter always stores it permanently and

no extra STGP command is needed.

Take care when changing these parameters, and use the appropriate func-
tions of the TMCL-IDE to do it in an interactive way.

+ Some configurations of the interface (for example, baud rates not sup-
ported by the PC) may lead to a situation in which the module cannot be
reached any more. In such a case refer to the TMCM-1690 hardware man-
ual on how to reset all parameters to factory default settings.

+ Some settings (especially interface bit rate settings) do not take effect im-
mediately. For those settings, power cycle the module after changing them
to make the changes take effect.

There are different parameter access types, like read only or read/write. Table 17 shows the different
parameter access types used in the global parameter tables.

Meaning of the Letters in the Access Column

Access Type | Command | Description

R GGP Parameter readable

W SGP, AGP Parameter writable

E STGP, RSGP | Parameter can be stored in the EEPROM
A SGP Automatically stored in the EEPROM

Table 17: Meaning of the Letters in the Access Column

ANALOG
DEVICES

AHEAD OF WHAT’S POSSIBLE™

TMCM-1690 TMCL™ Firmware Manual * Firmware Version V1.01 | Rev 0: 01/24

113/135

All Global Parameters of the TMCM-1690 Module in Bank 0

Number

Global Parameter

Description

Range [Units]

Default | Access

65

Serial baud rate

RS485/RS232 baud rate:

0 - 9600 [kBit/s]

1 - 14400 [kBit/s]
2 - 19200 [KBit/s]
3 - 28800 [KBit/s]
4 - 38400 [KBit/s]
5 - 57600 [kBit/s]
6 - 76800 [kBit/s]
7 - 115200 [kBit/s]

0...7

7 RW

66

Serial address

The module (target) address for
RS485, RS232, and virtual COM port.

1...255

1 RWX

69

CAN bit rate

CAN bit rate:

2 - 20 [kBit/s]
3-50 [kBit/s]

4 - 100 [kBit/s]
5-125 [kBit/s]
6 - 250 [kBit/s]
7 - 500 [kBit/s]
8 - 1000 [kBit/s]

70

CAN send ID

The CAN send ID of the module.

0...255

2 RWX

71

CAN receive ID

The CAN receive ID of the module.

0...255

1 RWX

75

Telegram pause
time

Pause time before the reply through
RS485/RS232 is sent.

0...255[ms]

0 RWX

76

Serial host
address

Host address used in the reply tele-
grams sent back via RS485/RS232.

1...255

2 RWX

77

Auto start mode

Use automatic TMCL application start
after power up.

0 - do not start TMCL application af-
ter power up

1 - start TMCL application automati-
cally after power up

1 RWX

78

|0 direction mask

10 direction for selecting GPIOs as in-
puts or outputs

0...511

0 RWX

79

10 output mask

Mask for digital I10s

0...511

0 RWX

128

Application
status

Actual TMCL application status.
0 - stop

1-run

2 -step

3 -reset

130

Program counter

TMCL program counter.

0
...4294967295

ANALOG
DEVICES

AHEAD OF WHAT’S POSSIBLE™

TMCM-1690 TMCL™ Firmware Manual * Firmware Version V1.01 | Rev 0: 01/24

114/135

Number | Global Parameter | Description Range [Units] | Default | Access
132 Tick timer TMCL tick timer. 0 0 RW
...2147483647
Table 18: All Global Parameters of the TMCM-1690 Module in Bank 0
5.2 Bank2

Bank 2 contains general purpose 32 bit variables for use in TMCL applications. They are located in RAM
and the first 56 variables can also be stored permanently in the EEPROM. After booting, their values are
automatically restored to the RAM. Up to 256 user variables are available. See table 17 for an explanation
of the different parameter access types.

User Variables in Bank 2

Number | Global Parameter | Description Range [Units] Access

0...55 user variables | TMCL user variables -2147483648 ... | RWE
#0...#55 2147483647

56...255 | user variables | TMCL user variables -2147483648 ... | RWE
#56...#255 2147483647

Table 19: User Variables in Bank 2

ANALOG
DEVICES

AHEAD OF WHAT’S POSSIBLE™

TMCM-1690 TMCL™ Firmware Manual * Firmware Version V1.01 | Rev 0: 01/24 115/135

6 Motor Regulation

6.1 Structure of Motor Control Regulation Modes

The TMCM-1690 supports a current, velocity, and position Pl regulation mode for motor control in dif-
ferent application areas. Figure 1 shows these regulation modes. Individual modes are explained in the
following subsections.

Current
Offset

Target q’
Maximum Actual Current
Current Current Sensors
(RMS)

Target Voltage (PWM)

h

Motor

Velocity .
Offset g
Target Target Current
VE'B(ity %_‘ : N
Motor
Maxi mum I Actual Velocity
Velocity

Target Velocity

—

h i

Motor

S

Figure 1: Motion Regulation

Target b
Position

It can be seen that the target current signal is first limited by maximum current. There is an option for
having a filter (average or biquad) to this signal. This is followed by having an impact of P and | parameters
to the signal and the target voltage (PWM) is fed to the motor. There is a feedback coming from the actual
current forming a closed loop. In the same fashion, the velocity and position regulation are performed.

6.2 Current Regulation

The current regulation mode uses a field-oriented current (FOC) and flux regulator to adjust a desired
motor current. The current loop is running typically at 20KHz and the PWM loop is variable and can be
set using AP 18. The PWM frequency ranges from 20KHz to 120KHz. The target current can be set by axis
parameter 77. The maximal target current is limited by axis parameter 16. The current regulation uses

ANALOG
DEVICES

AHEAD OF WHAT’S POSSIBLE™

TMCM-1690 TMCL™ Firmware Manual * Firmware Version V1.01 | Rev 0: 01/24 116/135

two basic parameters: the P and | parameters.

6.2.1 Structure of the Current Regulator

Praran/ 256
X
| pARAM/ 65536
Qi ai ai
p p p
| TARGET > e + » SVPWM
L UM
I viax lap | -32768..
+32767
| AcruaL

Figure 2: Current Regulation (See Parameter Descriptions in Table 20)

Current Regulation Parameters

Parameter | Description

lacTU AL Actual current (GAP 78)

lTARGET Target current (SAP 77)

I Max Max. target current (SAP 16)
esuM Error sum for integral calculation
Pparam Current P parameter (SAP 83)
lpARAM Current | parameter (SAP 84)

Table 20: Current Regulation Parameters

6.2.1.1 Parametrizing the Current Regulator Set

Parametrizing the current regulator set is preferably done with the Pl tuning tool using auto tuning. Fur-
ther details can be seen in the TMCL-IDE documentation under the section Pl tuning. However, it can be
done manually as well without the tool. To parameterize the current regulator set properly, do as follows:

1. Set the P parameter and the | parameter to zero.
2. Start the motor by using a low target flux (example, 1000mA).

3. Modify the current P parameter. Start from a low value and go to a higher value, until the actual
current nearly reaches 70% of the desired target current.

4. Do the same with the current | parameter.

For all tests, set the motor current limitation to a realistic value, so that the power supply does not become
overloaded during acceleration phases. If the power supply reaches current limitation, the unit may reset
or undetermined regulation results may occur.

ANALOG
DEVICES

AHEAD OF WHAT’S POSSIBLE™

TMCM-1690 TMCL™ Firmware Manual * Firmware Version V1.01 | Rev 0: 01/24 117/135

6.3 Velocity Regulation

Based on the current regulation, the motor velocity can be controlled by the velocity Pl regulator. The
velocity regulation runs in the velocity loop clocked at 2KHz.

6.3.1 Structure of the Velocity Regulator

| param / 65536
L_Qip dip_|
VRavPGEN |——> €sum | TARGer
Viviax lap
VaCTuAL

Figure 3: Velocity Regulation (See Parameter Descriptions in Table 21)

Velocity Regulation Parameters

Parameter | Description

VaicTuar Actual motor velocity (GAP 93)

Vrampaen | Target velocity of ramp generator (SAP 92)

Viazx Max. target velocity (SAP 94)

esuM Error sum for integral calculation

Pparanm Velocity P parameter (SAP 99)

lpPARAM Velocity | parameter (SAP 100)

Fy Max. target current (SAP 16)

Table 21: Velocity Regulation Parameters

6.3.1.1 Parametrizing the Velocity Regulator Set

Parametrizing the velocity regulator set is preferably done with the PI tuning tool using auto tuning. Fur-
ther details can be seen in the TMCL-IDE documentation under the section Pl tuning. However, it can be
done manually as well without the tool. To parameterize the velocity regulator set properly, do as follows:

1. Set the velocity | parameter to zero.
2. Start the motor by using a medium target velocity (example, 2000 rpm).
3. Modify the current P parameter.

(a) Start from a low value and go to a higher value, until the actual motor speed reaches 80% or
90% of the target velocity.

(b) The lasting 10% or 20% speed difference can be reduced by slowly increasing the velocity |
parameter.

ANALOG
DEVICES

AHEAD OF WHAT’S POSSIBLE™

TMCM-1690 TMCL™ Firmware Manual * Firmware Version V1.01 | Rev 0: 01/24 118/135

6.4 Velocity Ramp Generator

For a controlled startup of the motor’s velocity, a velocity ramp generator can be activated/deactivated
by axis parameter 133. The ramp generator uses the maximal allowed motor velocity (axis parameter
94), the acceleration (axis parameter 95), and the desired target velocity (axis parameter 92) to calculate
a ramp generator velocity for the following velocity Pl regulator.

6.5 Position Regulation

Based on current and velocity regulators, the TMCM-1690 supports a positioning mode based on encoder
(ABN or absolute) or hall sensor position. During positioning, the velocity ramp generator can be activated
to enable motor positioning with controlled acceleration or it can be disabled to support motor position-
ing with maximum allowed speed.

The position regulation uses only one basic parameter: the P regulation parameter

6.5.1 Structure of the Position Regulator

NTARGET Pearan/ 256
I Qip di
NacruaL - E— —> Vrarcer
#5535 Viax

Figure 4: Positioning Regulation (See Parameter Descriptions in Table 22)

Position Regulation Parameters

Parameter | Description

NACTUAL Actual motor position (GAP 106)

NTARGET Target motor position (SAP 105)

Pparanm Position P parameter (SAP 110)

Virax Max. allowed velocity (SAP 94)

VrArRGET New target velocity for the ramp generator

Table 22: Position Regulation Parameters

6.5.1.1 Parametrizing the Position Regulation

Based on the velocity regulator, only the position regulator P has to be parameterized.

Parametrizing the position regulator is preferably done with the PI tuning tool using auto tuning. Further
details can be seen in the TMCL-IDE documentation under the section Pl tuning. However, it can be done
manually as well without the tool. To parameterize the position regulator, do as follows:

1. Disable the velocity ramp generator and set position P parameter to zero.

2. Choose a target position and increase the position P parameter until the motor reaches the target
position approximately.

ANALOG
DEVICES

AHEAD OF WHAT’S POSSIBLE™

TMCM-1690 TMCL™ Firmware Manual * Firmware Version V1.01 | Rev 0: 01/24 119/135

3. Switch on the velocity ramp generator. Based on the maximum positioning velocity (axis parameter
94) and the acceleration value (axis parameter 95), the ramp generator automatically calculates the
slow down point, that is, the point at which the velocity has to be reduced to stop at the desired
target position.

4. Reaching the target position is signaled by setting the position end flag.

To minimize the time until this flag becomes set, the positioning tolerance MVP target reached distance
can be chosen with axis parameter 107.

Since the motor typically is assumed not to signal target reached when the target is just passed in a
short moment at a high velocity, additionally, the maximum target reached velocity (MVP target reached
velocity) can be defined by axis parameter 108.

A value of zero for axis parameter 108 is the most universal, since it implies that the motor stands still
at the target. But when a fast rising of the position end flag is desired, a higher value for the MVP target
reached velocity parameter saves a lot of time. The best value should be tried out in the actual application.

6.5.2 Correlation of Axis Parameters 105 and 109, the Target Position and the Position End Flag

MVP target reached distance

[Velocity] A
Max. positioning
velocity
Motor regulated by
Velocity PID
Acceleration
MVP target Yy e \EESY
reached velocity 4 Motor regulated by
combination of
Velocity and Position
vy PD >
Position

Target position Target reached flag
(set via MVP) only set when velodity
and position are in
this area.

Figure 5: Positioning Algorithm

Depending on motor and mechanics, a low oscillation is normal. This can be reduced to at least +/-1 steps.
Without oscillation the regulation cannot keep the position!

ANALOG
DEVICES

AHEAD OF WHAT’S POSSIBLE™

TMCM-1690 TMCL™ Firmware Manual * Firmware Version V1.01 | Rev 0: 01/24 120/135

7 Ramps

TMCM-1690 supports two forms of ramps for motion control:
* Linear ramp

+ Sine shaped ramp

7.1 Linear Ramp

A linear ramp or a trapezoidal ramp predicts the acceleration rates using a constant gradient. This con-
stant gradient results in constant increase in the velocity. The acceleration and velocity are limited by the
AP 95 (maximum acceleration) and 94 (maximum velocity) respectively. This ramp can be used to perform
positioning tasks as well. There are some resonances in the system but for many systems they can be
ignored. The linear ramp is selected by setting 0 to AP 11

7.2 Sine Shaped Ramp

In contrast to linear shaped ramps, the sine shape ramps follow a constant increase in the acceleration
as it is one order higher. This results in a smoother response with far less resonances in the system. Sine
shaped ramp is selected by setting 1 to AP 11. Figure 6 below gives an impression of how s shaped ramp
looks like and how it is different than linear ramp. In the figure, desired position Pt is reached with the
maximum acceleration and maximum velocity.

A(t) A(t)
A A
Amax Amax
time \—/ time
V(t) V(t)
A A
Vmax Vmax
Vtime “time
P(t) P(t)
A A
Pt Pt
time time

Figure 6: Linear Shaped Ramp (Left) S Shaped Ramp (Right)

It can be seen that s shaped ramps provide smoother operation as the acceleration is changed linearly
compared to abrupt change of acceleration as in the linear ramp. This results from controling a finite
amount of jerk at the time when the ramp is accelerating or deccelerating

After the ramp type is selected, the motor can be turned in both velocity and position mode. For turning
the motor in velocity mode, the target velocity (AP 92) is set to the desired velocity. The ramp tries to
reach its desired value with fastest acceleration limited by the parameter maximum acceleration (AP 95).

ANALOG
DEVICES

AHEAD OF WHAT’S POSSIBLE™

TMCM-1690 TMCL™ Firmware Manual * Firmware Version V1.01 | Rev 0: 01/24 121/135

For turning the motor with position mode, the target position is set with the parameter AP 105. The ramp
is calculated that it tries to reach its desired position with the fastest accelration (which is also limited by

(AP 95)) and fastest velocity (limited by maximum velocity (AP 94)).

TMCM-1690 supports all three modes (torque, velocitye and position mode) with both linear and sine
shaped ramps. The parameters such as maximum velocity, maximum acceleration, target velocity, and
target position can be changed on the fly, and the ramp is adjusted accordingly.

ANALOG
DEVICES

AHEAD OF WHAT’S POSSIBLE™

TMCM-1690 TMCL™ Firmware Manual * Firmware Version V1.01 | Rev 0: 01/24 122/135

8 Module Specific Functions

8.1 Filters

This module supports software filters for five signals, as shown in Figure 7. Each signal can be filtered
using either a biquad filter or an averaging filter. Of course, there is the option to not filter at all. The
averaging filter averages over the last number of samples, in exponents of 2, up to 28. The biquad filter,
on the other hand, can be configured as a lowpass filter of the 1st and 2nd orders, and also as resonance-
anitresonance filter. As the equation determining the biquad filter is the same, only a different set of
coefficients is required to alter its behaviour. See section 8.1.1 for more details.

iti Filtered
Target position . -
value Filter —— target position
value
i Filtered
Target velocity . _
value Filter |— target velocity
value
Target current _ Filtered
—» Filter |—— target current
value
value
Actual current Filter tFl|Iter6d :
value — actual curren
value
Actual velocity Filter tFIIIter(Td)
value — actual velocity
value

Figure 7: Filter Blocks

The filter for the target position value is intended to smoothen the position input to the control structure.
Itis evaluated at every tenth PWM cycle. The filter for the target velocity value is intended to smoothen the
velocity input from an external master or the position controller. It is also evaluated at every tenth PWM
cycle. The filter for the target torque value is intended to smoothen the torque input from an external
master or the velocity controller. It is also evaluated at every tenth PWM cycle. The filter for the actual
current value is intended to smoothen the measured actual current value. It is evaluated at every PWM
cycle. Thefilter for the actual velocity value is intended to smoothen the measured actual velocity value. It
is evaluated at every tenth PWM cycle. It can be used as a low-pass filter for bandwidth limitation and noise
suppression. Moreover, it can be designed to suppress a resonance or anti-resonance. Same statements
are correct for all the filters.

There are a total of seven axis-paramters for each signal. To set the type of filter for target torque, for
example, AP 148 can be set to values 0, 1, or 2. Where 0 disables the filter, 1 enables the averaging
filter, and 2 enables the biquad filter. AP 149 sets the sample size for the averaging filter. APs 150 to 154

ANALOG
DEVICES

AHEAD OF WHAT’S POSSIBLE™

TMCM-1690 TMCL™ Firmware Manual * Firmware Version V1.01 | Rev 0: 01/24 123/135

correspond to the biquad filter coefficients in Q3.29 format. A similar layout of filter settings is followed
by all five signals. See the axis-parameters table.

8.1.1 Biquad Filter (for Future Use)

The biquad filters implemented inside of TMCM-1690 use standard biquad filters (standard IIR filter of
second order, Wikipedia Article) in the following structure.

Y(n) =X(n) x b_0+X(n-1) x b_1 + X(n-2) x b_2 +Y(n-1) x a_1 + Y(n-2) x a_2 (1

In this equation, X(n) is the actual input sample, while Y(n-1) is the filter output of the last cycle. All coeffi-
cients are S32 values and are normalized to a Q3.29 format. Take care of correct parametrization of the
filter. There is no built-in plausibility or stability check. Biquad state variables are reset when parameters
are changed. The TRINAMIC IDE supports parametrization with the Control Settings tool.

A standard biquad filter has the following transfer function in the Laplace-Domain:

b 2 contxs®>+b_1 contxs+b_ 0 cont
G(s) = 5
a_2_contxs?+a_1_contxs-+a_0_cont

2)

The transfer function needs to be transformed to time discrete domain by Z-Transformation and coeffi-
cients need to be normalized. This is done by the following equations.

b_2_z = (b_0_cont x T?+2xb 1 cont xT+4x b_2_cont)/ (T2 —2xa_l_cont x T + 4 x a_2_cont) 3)
b1 z=(2xb_0_cont xT?—8 x b_2_cont)/(T2 —2xa_l_cont x T +4 X a_2_cont) (4)
b 0_z = (b_0_cont x T> =2 x b_1_cont x T +4 x b_2_cont)/(T? — 2 x a_l_cont x T + 4 x a_2_cont) (5)
a2 z= (T2 +2xa_l contxT+4 x (1_2_007115)/(T2 —2xa_l_cont x T +4 X a_2_cont) (6)
a_l_z=(2xT?*—8xa_2_cont)/(T* —2 x a_l_cont x T + 4 x a_2_cont) (7)
b_0 = round(b_0_z x 229) (8)
b_1 = round(b_1_z x 2*%) (9)
b_2 = round(b_2_z x 2%9) (10)
a_l = round(—a_l_z X 229) n
a_2 = round(—a_2_z x 2%9) (12)

while T is the sampling time according to PWM_MAX_COUNT x 10 ns and variables with index z are auxil-
iary variables.

A standard second order lowpass filter with given cutoff frequency w. and damping factor D has the fol-
lowing transfer function in the Laplace-Domain:

1
><52—|—2w—D><5—|—1

(13)

GLP(S) =

2
we

Determine filter coefficients with the equations above by comparing coefficients of both transfer func-
tions.

8.2 Mechanical brake

The TMCM-1690 also supports a mechanical brake that can have a seperate power source. As the brake is
operated by MOSFET on the baseboard, there is an upper limit to the current it can handle. Thus, provide
the brake's electrical resistance and supply voltage to set the upper limit of PWM duty cycle.

ANALOG
DEVICES

AHEAD OF WHAT’S POSSIBLE™

https://en.wikipedia.org/wiki/Digital_biquad_filter

TMCM-1690 TMCL™ Firmware Manual * Firmware Version V1.01 | Rev 0: 01/24 124/135

For setup, first provide the supply voltage (AP 194) and brake's resistance (195). Then provide the duty
cycles that the brake has on on release (AP 189) and as hold (AP 190), while also providing release duration
(AP 191). Setting AP 192 enables the brake to be used. Now, the brake can be released by setting AP 188.
This causes the brake line to output a PWM signal with release duty cycle for the release duration. After
the release duration, the PWM signal goes to holding duty cycle. See Figure 8.

PR
Enable Brake L

Release Brake

0 — | -

Release %
Brake (Duty %) Hold %
0 %

>
Release duration

Figure 8: Mechanical Brake Settings

8.3 Brake Chopper

A servo system feeds back energy to the power supply line during deceleration and load control. The
energy can lead to a voltage rise on the power supply system if it is not dissipated. The voltage overshoot
of a system without brake chopper depends on the motor deceleration time, kinetic energy, and the
servo module buffer capacity. The brake chopper dissipates this energy from the system, and thus avoids
system damage. TMCM-1690 supports two kinds of brake chopper

* PWM braking
* Resistive/Shunt braking

8.3.1 PWM Braking

In PWM braking, the motor coils are used to perform the dissipation of the energy from the system. This
is done by applying 50 % duty cycle on all three phases of the motor. For enabling PWM braking, AP 200
is set to 0. Additionally, the voltage limits (AP 198) is selected such that the supply voltage is larger than it.
After that the brake is enabled by setting AP 197. This results in the extra regenerative energy produced
due to slowing down dissipated through the coils of the motor.

8.3.2 Resistive/Shunt Braking

TMCM-1690 provides a continuous motor voltage monitoring as well as brake chopper output. The brake
resistor is connected between the supply voltage and brake output. For setup, first provide the supply
voltage (AP202) and brake's resistance (AP 203). Shunt braking is selected by setting AP 200 to 1. The
voltage limits and hysteresis are selected using the AP 198 and 199, respectively. Lastly, the brake is
enabled by setting AP 197. For a full speed ramp stop, the brake resistor should be able to dissipate the
complete kinetic energy fed back during deceleration phase. The following figure shows an example of
brake chopper schematic

ANALOG
DEVICES

AHEAD OF WHAT’S POSSIBLE™

TMCM-1690 TMCL™ Firmware Manual * Firmware Version V1.01 | Rev 0: 01/24 125/135

VM VM
Pl ~
/ \
\ > , Gate D Brake _ﬂ—
—l ate Driver — Software voltage threshold
\ T - — Software hysteresis
TMCM-1690

Figure 9: Brake Chopper Example Schematic

84 IIT

The lIT monitor provides a check on the energy consumption. The actual current is being monitored, and
these values are being squared and summed up periodically over the configured winding time using a
1ms cycle. If one of the limits gets exceeded during this time, the motor is stopped and the lIT error flag is
set. The lIT error flag can be reset by writing any value to axis-parameter 124. There are two IIT windows
(see Figure 10). The first one directly uses the actual current, and the second one uses the actual current
divided by v/2 (less power over longer time). Axis-parameters 119 and 122 are limits for the two windows.
Axis-parameters 120 and 123 show the actual integration sums.

Figure 10: IIt Monitor Windows

ANALOG
DEVICES

AHEAD OF WHAT’S POSSIBLE™

TMCM-1690 TMCL™ Firmware Manual * Firmware Version V1.01 | Rev 0: 01/24 126/135

8.5 Lower Velocity PI

The TMCM-1690 supports having different Pl parameters for lower velocities. This provides a better con-
trol and smoother operation. It is possible to have a stronger set of Pl parameters for the lower velocities
and a relatively weaker set for the higher velocities. It is good to have the set of both Pl parameters and
the velocity to perform the switch (to get the parameters, Pl tuning tool can be used). The velocity at which
the switch is performed can be set using the axis parameter 220 (default value is 0). After that, P and |
parameters can be set using the axis parameters 221 and 222, respectively. These are the Pl parameters
for the velocities less than the switch over velocity. Parameters for higher velocities are set using the axis
parameters 99 and 100 for P and |, respectively.

ANALOG
DEVICES

AHEAD OF WHAT’S POSSIBLE™

TMCM-1690 TMCL™ Firmware Manual * Firmware Version V1.01 | Rev 0: 01/24 127/135

9 TMCL Programming Techniques and Structure

9.1 Initialization

The first task in a TMCL program (like in other programs also) is to initialize all parameters where different
values than the default values are necessary. For this purpose, SAP and SGP commands are used.

9.2 Main Loop

Embedded systems normally use a main loop that runs infinitely. This is also the case in a TMCL applica-
tion running standalone. Normally, the auto start mode of the module should be turned on. After power
up, the module then starts the TMCL program, which first does all necessary initializations and then en-
ters the main loop, which does all necessary tasks and never ends (only when the module is powered off
or reset).

There are exceptions to this, for example, when TMCL routines are called from a host in direct mode.

So, most (but not all) standalone TMCL programs look like this:

//Initialization
2 SAP 94, 0, 5000 //define maximum positioning speed
SAP 95, 0, 1000 //define maximum acceleration

MainLoop:
6 //do something, in this example just running between two positions
MVP ABS, 0, 5000
8 WAIT POS, O, O
MVP ABS, 0, O
10 WAIT POS, O, O
JA MainLoop //end of the main loop => run infinitely

9.3 Using Symbolic Constants

To make the program better readable and understandable, symbolic constants should be taken for all
important numerical values used in the program. The TMCL-IDE provides an include file with symbolic
names for all important axis parameters and global parameters. Consider the following example:

1 //Define some constants
#include TMCLParam.tmc
s MaxSpeed = 50000
MaxAcc = 10000
s PositionO = 0
Positionl = 500000

//Initialization
9 SAP APMaxPositioningSpeed, Motor0O, MaxSpeed
SAP APMaxAcceleration, MotorO, MaxAcc

MainLoop:
13 MVP ABS, MotorO, Positioni
WAIT POS, MotorO, O
15 MVP ABS, MotorO, PositionO
WAIT POS, MotorO, O

ANALOG
DEVICES

AHEAD OF WHAT’S POSSIBLE™

-

@

El

©

TMCM-1690 TMCL™ Firmware Manual * Firmware Version V1.01 | Rev 0: 01/24 128/135

JA MainLoop

Go through the file TMCLParam.tmc provided with the TMCL-IDE. It contains symbolic constants that de-
fine all important parameter numbers.

Using constants for other values makes it easier to change them when they are used more than once in
a program. Change the definition of the constant and do not change all occurrences of it in the program.

9.4 Using Variables

The user variables can be used if variables are needed in the program. They can store temporary values.
The commands SGP, GGP, and AGP as well as STGP and RSGP are used to work with user variables:

* SGP is used to set a variable to a constant value (example, during initialization phase).

* GGP is used to read the contents of a user variable and to copy it to the accumulator register for
further usage.

+ AGP can be used to copy the contents of the accumulator register to a user variable, for example, to
store the result of a calculation.

* The STGP command stores the contents of a user varaible in the EEPROM.
* The RSGP command copies the value stored in the EEPROM back to the user variable.

* Global parameter 85 controls if user variables are restored from the EEPROM automatically on
startup (default setting) or not (user variables are then initialized with 0 instead).
See the following example:

MyVariable = 42
//Use a symbolic name for the user variable
//(This makes the program better readable and understandable.)

SGP MyVariable, 2, 1234 //Initialize the variable with the value 1234

GGP MyVariable, 2 //Copy contents of variable to accumulator register
CALC MUL, 2 //Multiply accumulator register with two
AGP MyVariable, 2 //Store contents of accumulator register to variable

Furthermore, these variables can provide a powerful way of communication between a TMCL program
running on a module and a host. The host can change a variable by issuing a direct mode SGP command
(remember that while a TMCL program is running, direct mode commands can still be executed, without
interfering with the running program). If the TMCL program polls this variable regularly, it can react on
such changes of its contents.

The host can also poll a variable using GGP in direct mode and see if it has been changed by the TMCL
program.

ANALOG
DEVICES

AHEAD OF WHAT’S POSSIBLE™

2

4

6

TMCM-1690 TMCL™ Firmware Manual * Firmware Version V1.01 | Rev 0: 01/24 129/135

9.5 Using Subroutines

The CSUB and RSUB commands provide a mechanism for using subroutines. The CSUB command branches
to the given label. When an RSUB command is executed, the control goes back to the command that fol-
lows the CSUB command that called the subroutine.

This mechanism can also be nested. From a subroutine called by a CSUB command, other subroutines
can be called. In the current version of TMCL, eight levels of nested subroutine calls are allowed.

9.6 Combining Direct Mode and Standalone Mode

Direct mode and standalone mode can also be combined. When a TMCL program is being executed in
standalone mode, direct mode commands are also processed (and they do not disturb the flow of the
program running in standalone mode). So, it is also possible to query, example, the actual position of the
motor in direct mode while a TMCL program is running.

Communication between a program running in standalone mode and a host can be done using the TMCL
user variables. The host can then change the value of a user variable (using a direct mode SGP command)
which is regularly polled by the TMCL program (example, in its main loop) and so the TMCL program can
react on such changes. Vice versa, a TMCL program can change a user variable polled by the host (using
a direct mode GGP command).

A TMCL program can be started by the host using the run command in direct mode. This way, also a set
of TMCL routines can be defined that are called by a host. In this case, it is recommended to place JA
commands at the beginning of the TMCL program that jump to the specific routines. This assures that
the entry addresses of the routines do not change even when the TMCL routines are changed (so, when
changing the TMCL routines, the host program does not have to be changed).

Example:

//Jump commands to the TMCL routines
Funcl: JA FunclStart
Func?2: JA Func2Start
Func3: JA Func3Start

FunclStart:
MVP ABS, 0, 1000
WAIT POS, 0, O
MVP ABS, 0, O
WAIT POS, 0, O
STOP

Func2Start:
ROL 0, 500
WAIT TICKS, 0, 100
MST O
STOP

Func3Start:
ROR 0, 1000
WAIT TICKS, 0, 700
MST O
STOP

ANALOG
DEVICES

AHEAD OF WHAT’S POSSIBLE™

TMCM-1690 TMCL™ Firmware Manual * Firmware Version V1.01 | Rev 0: 01/24 130/135

This example provides three very simple TMCL routines. They can be called from a host by issuing a run
command with address 0 to call the first function, or a run command with address 1 to call the second
function, or a run command with address 2 to call the third function. See the addresses of the TMCL labels
(needed for the run commands) using the "Generate symbol file function” of the TMCL-IDE.

9.7 Make the TMCL Program Start Automatically

For standalone operation, the module has to start the TMCL program in its memory automatically after
power-on. To achieve this, switch on the Autostart option of the module. This is controlled by global
parameter #77. There are different ways to switch on the Autostart option:

+ Execute the command SGP 77, 0, 1 in direct mode (using the Direct Mode tool in the TMCL-IDE).
+ Use the Global Parameters tool in the TMCL-IDE to set global parameter #77 to 1.

+ Use the Autostart entry in the TMCL menu of the TMCL creator in the TMCL-IDE. Go to the Autostart
entry in the TMCL menu and select "On".

ANALOG
DEVICES

AHEAD OF WHAT’S POSSIBLE™

TMCM-1690 TMCL™ Firmware Manual * Firmware Version V1.01 | Rev 0: 01/24

131/135

10 Figures Index

u M W N =

Motion Regulation 115
Current Regulation 116
Velocity Regulation 117
Positioning Regulation 118
Positioning Algorithm 119

()}

= O 00

Linear Shaped Ramp (Left) S Shaped

Ramp (Right) 120
Filter Blocks 122
Mechanical Brake Settings 124
Brake Chopper Example Schematic . 125
[It Monitor Windows 125
ANALOG
DEVICES

AHEAD OF WHAT’S POSSIBLE™

TMCM-1690 TMCL™ Firmware Manual * Firmware Version V1.01 | Rev 0: 01/24

132/135

11 Tables Index

OoNOTUTA~WN =

Most important Axis Parameters . . . 7
TMCL Command Format 10
TMCL Reply Format 11
TMCL Status Codes 11
Overview of All TMCL Commands .. 15
Motion Commands 15
Parameter Commands 16
Branch Commands 16
/0O Port Commands 17
Calculation Commands 17
Interrupt Processing Commands . . . 18
Interrupt Vectors 18
New TMCL Commands 20
TMCL Control Commands 94

16
17

18

19
20
21
22
23
24

Meaning of the Letters in the Access
Column 95

All TMCM-1690 Axis 0 Parameters . . 111
Meaning of the Letters in the Access

Column.................. 112
All Global Parameters of the TMCM-

1690 ModuleinBankO 114
User VariablesinBank2 114
Current Regulation Parameters. . . . 116
Velocity Regulation Parameters 117
Position Regulation Parameters . .. 118
Firmware Revision 135
Document Revision 135

ANALOG
DEVICES

AHEAD OF WHAT’S POSSIBLE™

TMCM-1690 TMCL™ Firmware Manual * Firmware Version V1.01 | Rev 0: 01/24 133/135

12 Supplemental Directives

12.1 Producer Information

12.2 Copyright

ADI Trinamic/Trinamic Motion Control GmbH & Co. KG owns the content of this user manual in its entirety,
including but not limited to pictures, logos, trademarks, and resources.

Redistribution of sources or derived formats (for example, Portable Document Format or Hypertext Markup
Language) must retain the above copyright notice, and the complete data sheet, user manual, and doc-

umentation of this product including associated application notes; and a reference to other available

product-related documentation.

12.3 Trademark Designations and Symbols

Trademark designations and symbols used in this documentation indicate that a product or feature is
owned and registered as trademark and/or patent either by ADI Trinamic or by other manufacturers,
whose products are used or referred to in combination with ADI Trinamic's products and ADI Trinamic's
product documentation.

This TMCL™ Firmware Manual is a non-commercial publication that seeks to provide concise scientific
and technical user information to the target user. Thus, trademark designations and symbols are only
entered in the Short Spec of this document that introduces the product at a quick glance. The trademark
designation /symbol is also entered when the product or feature name occurs for the first time in the
document. All trademarks and brand names used are property of their respective owners.

12.4 Target User

The documentation provided here, is for programmers and engineers only, who are equipped with the
necessary skills and have been trained to work with this type of product.

The Target User knows how to responsibly make use of this product without causing harm to himself or
others, and without causing damage to systems or devices, in which the user incorporates the product.

12.5 Disclaimer: Life Support Systems

ADI Trinamic/Trinamic Motion Control GmbH & Co. KG does not authorize or warrant any of its products
for use in life support systems, without the specific written consent of ADI Trinamic/Trinamic Motion Con-
trol GmbH & Co. KG.

Life support systems are equipment intended to support or sustain life, and whose failure to perform,
when properly used in accordance with instructions provided, can be reasonably expected to result in
personal injury or death.

Information given in this document is believed to be accurate and reliable. However, no responsibility
is assumed for the consequences of its use nor for any infringement of patents or other rights of third
parties which may result from its use. Specifications are subject to change without notice.

12.6 Disclaimer: Intended Use

The data specified in this user manual is intended solely for the purpose of product description. No rep-
resentations or warranties, either express or implied, of merchantability, fitness for a particular purpose

ANALOG
DEVICES

AHEAD OF WHAT’S POSSIBLE™

TMCM-1690 TMCL™ Firmware Manual * Firmware Version V1.01 | Rev 0: 01/24 134/135

or of any other nature are made hereunder with respect to information/specification or the products to
which information refers and no guarantee with respect to compliance to the intended use is given.

In particular, this also applies to the stated possible applications or areas of applications of the product.
TRINAMIC products are not designed for and must not be used in connection with any applications where
the failure of such products would reasonably be expected to result in significant personal injury or death
(safety-Critical Applications) without ADI Trinamic's/Trinamic Motion Control GmbH & Co. KG specific writ-
ten consent.

ADI Trinamic/Trinamic Motion Control GmbH & Co. KG products are not designed nor intended for use
in military or aerospace applications or environments or in automotive applications unless specifically
designated for such use by ADI Trinamic/Trinamic Motion Control GmbH & Co. KG.

ADI Trinamic/Trinamic Motion Control GmbH & Co. KG conveys no patent, copyright, mask work right or
other trade mark right to this product. ADI Trinamic/Trinamic Motion Control GmbH & Co. KG assumes
no liability for any patent and/or other trade mark rights of a third party resulting from processing or
handling of the product and/or any other use of the product.

12.7 Collateral Documents & Tools

This product documentation is related and/or associated with additional tool kits, firmware and other
items, as provided on the product page at: www.analog.com.

ANALOG
DEVICES

AHEAD OF WHAT’S POSSIBLE™

http://www.analog.com

TMCM-1690 TMCL™ Firmware Manual * Firmware Version V1.01 | Rev 0: 01/24 135/135
13 Revision History
13.1 Firmware Revision
Version | Date | Description
1.00 06/23 | Firstrelease
1.01 07/23 | New release:
* Fixed on-the-fly change of motion parameters
+ Fixed issue with the block hall
Table 23: Firmware Revision
13.2 Document Revision
Version | Date | Description
0 01/24 | First release
Table 24: Document Revision
ANALOG
DEVICES

AHEAD OF WHAT’S POSSIBLE™

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Analog Devices Inc.:

TMCM-1690-COE TMCM-1690-CAN-T TMCM-1690-COE-T TMCM-1690-CANOPEN

https://www.mouser.com/maxim-integrated
https://www.mouser.com/access/?pn=TMCM-1690-COE
https://www.mouser.com/access/?pn=TMCM-1690-CAN-T
https://www.mouser.com/access/?pn=TMCM-1690-COE-T
https://www.mouser.com/access/?pn=TMCM-1690-CANOPEN

	1 Features
	2 First Steps with TMCL
	2.1 Basic Setup
	2.2 Using the TMCL Direct Mode
	2.3 Changing Axis Parameters
	2.4 Testing with a Simple TMCL Program

	3 TMCL and the TMCL-IDE — An Introduction
	3.1 Binary Command Format
	3.1.1 Checksum Calculation

	3.2 Reply Format
	3.2.1 Status Codes

	3.3 Standalone Applications
	3.4 TMCL Command Overview
	3.5 TMCL Commands by Subject
	3.5.1 Motion Commands
	3.5.2 Parameter Commands
	3.5.3 Branch Commands
	3.5.4 I/O Port Commands
	3.5.5 Calculation Commands
	3.5.6 Interrupt Processing Commands
	3.5.7 New TMCL Commands

	3.6 Detailed TMCL Command Descriptions
	3.6.1 ROR (Rotate Right)
	3.6.2 ROL (Rotate Left)
	3.6.3 MST (Motor Stop)
	3.6.4 MVP (Move to Position)
	3.6.5 SAP (Set Axis Parameter)
	3.6.6 GAP (Get Axis Parameter)
	3.6.7 STAP (Store Axis Parameter)
	3.6.8 RSAP (Restore Axis Parameter)
	3.6.9 SGP (Set Global Parameter)
	3.6.10 GGP (Get Global Parameter)
	3.6.11 STGP (Store Global Parameter)
	3.6.12 RSGP (Restore Global Parameter)
	3.6.13 SIO (Set Output)
	3.6.14 GIO (Get Input)
	3.6.15 CALC (Calculate)
	3.6.16 COMP (Compare)
	3.6.17 JC (Jump Conditional)
	3.6.18 JA (Jump Always)
	3.6.19 CSUB (Call Subroutine)
	3.6.20 RSUB (Return from Subroutine)
	3.6.21 WAIT (Wait for an Event to Occur)
	3.6.22 STOP (Stop TMCL Program Execution – End of TMCL Program)
	3.6.23 SCO (Set Coordinate)
	3.6.24 GCO (Get Coordinate)
	3.6.25 CCO (Capture Coordinate)
	3.6.26 ACO (Accumulator to Coordinate)
	3.6.27 CALCX (Calculate Using the X Register)
	3.6.28 AAP (Accumulator to Axis Parameter)
	3.6.29 AGP (Accumulator to Global Parameter)
	3.6.30 CLE (Clear Error Flags)
	3.6.31 EI (Enable Interrupt)
	3.6.32 DI (Disable Interrupt)
	3.6.33 VECT (Define Interrupt Vector)
	3.6.34 RETI (Return from Interrupt)
	3.6.35 CALCVV (Calculate Using Two User Variables)
	3.6.36 CALCVA (Calculate Using a User Variable and the Accumulator Register)
	3.6.37 CALCAV (Calculate Using the Accumulator Register and a User Variable)
	3.6.38 CALCVX (Calculate Using a User Variable and the X Register)
	3.6.39 CALCXV (Calculate Using the X Register and a User Variable)
	3.6.40 CALCV (Calculate Using a User Variable and a Direct Value)
	3.6.41 RST (Restart)
	3.6.42 DJNZ (Decrement and Jump if not Zero)
	3.6.43 CALL (Conditional Subroutine Call)
	3.6.44 MVPA (Move to Position Specified by Accumulator Register)
	3.6.45 ROLA (Rotate Left Using the Accumulator Register)
	3.6.46 RORA (Rotate Right Using the Accumulator Register)
	3.6.47 SIV (Set Indexed Variable)
	3.6.48 GIV (Get Indexed Variable)
	3.6.49 AIV (Accumulator to Indexed Variable)
	3.6.50 Customer Specific Command Extensions (UF0…UF7 – User Functions)
	3.6.51 TMCL Control Commands

	4 Axis Parameters
	5 Global Parameters
	5.1 Bank 0
	5.2 Bank 2

	6 Motor Regulation
	6.1 Structure of Motor Control Regulation Modes
	6.2 Current Regulation
	6.2.1 Structure of the Current Regulator

	6.3 Velocity Regulation
	6.3.1 Structure of the Velocity Regulator

	6.4 Velocity Ramp Generator
	6.5 Position Regulation
	6.5.1 Structure of the Position Regulator
	6.5.2 Correlation of Axis Parameters 105 and 109, the Target Position and the Position End Flag

	7 Ramps
	7.1 Linear Ramp
	7.2 Sine Shaped Ramp

	8 Module Specific Functions
	8.1 Filters
	8.1.1 Biquad Filter (for Future Use)

	8.2 Mechanical brake
	8.3 Brake Chopper
	8.3.1 PWM Braking
	8.3.2 Resistive/Shunt Braking

	8.4 IIT
	8.5 Lower Velocity PI

	9 TMCL Programming Techniques and Structure
	9.1 Initialization
	9.2 Main Loop
	9.3 Using Symbolic Constants
	9.4 Using Variables
	9.5 Using Subroutines
	9.6 Combining Direct Mode and Standalone Mode
	9.7 Make the TMCL Program Start Automatically

	10 Figures Index
	11 Tables Index
	12 Supplemental Directives
	12.1 Producer Information
	12.2 Copyright
	12.3 Trademark Designations and Symbols
	12.4 Target User
	12.5 Disclaimer: Life Support Systems
	12.6 Disclaimer: Intended Use
	12.7 Collateral Documents & Tools

	13 Revision History
	13.1 Firmware Revision
	13.2 Document Revision

