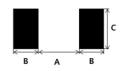


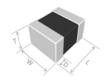
High Efficiency Power Inductor (HEPI) Specification Sheet

CIGT201610UMR47MNE (2016 / EIA 0806)

APPLICATION


Mobile Phones, Tablet, LCD & AMOLED Display, Storage etc

FEATURES


High Current Type Low DC resistance Magnetically shielded structure Free of all RoHS-regulated substances Monolithic structure for high reliability

RECOMMENDED LAND PATTERN

	Unit : mm
TYPE	2016
A	0.8
В	0.8
С	1.8

DIMENSION

TYPE	Dimension [mm]							
TIFE	L	W	T	D				
2016	2.0±0.2	1.6±0.2	1.0 max	0.5±0.2				

DESCRIPTION

Part no.	Size Thickness [mm] (max)	Thickness	Inductance	Inductance tolerance	DC Resist	ance [mΩ]	Rated DC Cu	rrent (Isat) [A]	Rated DC C	urrent (Irms) A]
		[uH]	(%)	Max.	Тур.	Max.	Тур.	Max.	Тур.	
CIGT201610UMR47MNE	0806/2016	1.0	0.47	±20	36	30	4.5	5.2	3.2	3.6

- * Inductance : Measured with a LCR meter 4991A(Agilent) or equivalent (Test Freq. 1MHz, Level 0.1V)
- * DC Resistance : Measured with a Resistance HI-TESTER 3541(HIOKI) or equivalent
- * Maximum allowable DC current: Value defined when DC current flows and the initial value of inductance has decreased by 30% or

when current flows and temperature has risen to 40°C whichever is smaller. (Reference: ambient temperature is 25°C±10)

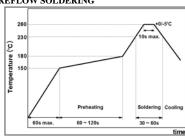
(Isat): Allowable current in DC saturation: The DC saturation allowable current value is specified when the decrease of

the initial inductance value at 30% (Reference: ambient temperature is 25°C±10)

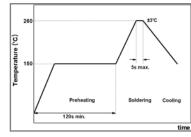
(Irms): Allowable current of temperature rise: The temperature rise allowable current value is specified when temperature of

the inductor is raised 40°C by DC current. (Reference: ambient temperature is 25°C±10)

- * Absolute maximum voltage : Absolute maximum voltage DC 20V.
- * Operating temperature range : -40 to +125°C (Including self-temperature rise)


PRODUCT IDENTIFICATION

<u>CIG</u>	<u>T</u>	<u>2016</u>	<u>10</u>	$\underline{\mathbf{U}}\mathbf{M}$	<u>R47</u>	$\underline{\mathbf{M}}$	<u>N</u>	$\mathbf{\underline{E}}$
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)


- (1) Power Inductor
- (3) Dimension (2016: 2.0mm ×1.6 mm)
- (5) Remark (Characterization Code)
- (7) Tolerance (M:±20%)
- (8) Internal Code
- (9) Packaging (C:paper tape, E:embossed tape)
- (T: Thin Film Type)
- (4) Thickness (10: 1.0mm)
- (6) Inductanc (R47: 0.47 uH)

RECOMMENDED SOLDERING CONDITION

REFLOW SOLDERING

FLOW SOLDERING

IRON SOLDERING

Temperature of Soldering Iron Tip	280℃ max.
Preheating Temperature	150℃ min.
Temperature Differential	ΔT≤130°C
Soldering Time	3sec max.
Wattage	50W max.

PACKAGING

Packaging Style	Quantity(pcs/reel)
Embossed Taping	3000 pcs

Item	Specified Value	Test Condition			
Solderability	More than 90% of terminal electrode should be soldered newly.	After being dipped in flux for 4±1 seconds, and preheated at 150 ~180 ℃ for 2 ~3 min, the specimen shall be immersed in solder at 245±5 ℃ for 4±1 seconds.			
Resistance to Soldering	No mechanical damage. Remaining terminal Electrode: 75% min. Inductance change to be within ±20% to the initial.	After being dipped in flux for 4 \pm 1 seconds, and preheated at 150 \sim 180 $^{\circ}$ C for 2 \sim 3 min, the specimen shall be immersed in solder at 260 \pm 5 $^{\circ}$ C for 10 \pm 0.5 seconds.			
Thermal Shock (Temperature Cycle test)	No mechanical damage Inductance change to be within ±20% to the initial.	Repeat 100 cycles under the following conditions. -40±3°C for 30 min → 85±3°C for 30 min			
High Temp. Humidity Resistance Test	No mechanical damage Inductance change to be within ±20% to the initial	$85\pm2^\circ\!$			
Low Temperature Test	No mechanical damage Inductance change to be within ±20% to the initial.	Solder the sample on PCB. Exposure at -55±2°C for 500±12 hours. Measure the test items after leaving at normal temperature and humidity for 24hours.			
High Temperature Test	No mechanical damage Inductance change to be within ±20% to the initial.	Solder the sample on PCB. Exposure at 125±2°C for 500±12 hours. Measure the test items after leaving at normal temperature and humidity for 24hours.			
High Temp. Humidity Resistance Loading Test	No mechanical damage Inductance change to be within ±20% to the initial	85±2°C, 85%RH, Rated Current for 500±12 hours. Measure the test items after leaving at normal temperature and humidity for 24 hours.			
High Temperature Loading Test	No mechanical damage Inductance change to be within ±20% to the initial	85±2°C, Rated Current for 500±12 hours. Measure the test items after leaving at normal temperature and humidity for 24 hours.			
Reflow Test	No mechanical damage Inductance change to be within ±20% to the initial	Peak 260±5℃, 3 times			
Vibration Test	No mechanical damage Inductance change to be within ±20% to the initial.	Solder the sample on PCB. Vibrate as apply 10~55Hz, 1.5mm amplitude for 2 hours in each of three(X,Y,Z) axis (total 6 hours).			
	No mechanical damage	Bending Limit; 2mm Test Speed; 1.0mm/sec. Keep the test board at the limit point in 5 sec. PCB thickness: 1.6mm			
Bending Test	45	20 Unit :mm R340 #2			
	No indication of peeling shall occur on the terminal electrode.	W(kgf) TIME(sec)			
		0.5 10±1			
Terminal Adhesion Test		── w			
Drop Test	No mechanical damage Inductance change to be within ±20% to the initial.	Random Free Fall test on concrete plate. 1 meter, 10 drops			
Ipeak (AC+DC Load Life)	No mechanical damage Inductance change to be within ±20% to the initial	85±2°C, 85%RH, Load(Ipeak) for 120 hours. (Frequncy:1MHz, Load(Ipeak):1.5hr on / 0.5hr off) Measure the test items after leaving at normal temperature al humidity for 24 hours. * Load(Ipeak) = Irms(max)×1.4			

High Efficiency Power Inductor (HEPI) Data Sheet

1. Model: CIGT201610UMR47MNE

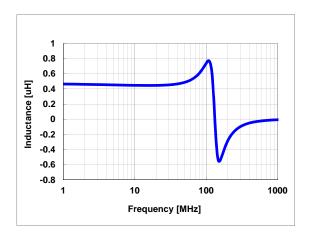
2. Description

Part no.	Size	Thickness	Inductance Inductance	DC Resist	ance [mΩ]	Rated DC Cu	rrent (Isat) [A]	Rated DC C		
Fait no.	[inch/mm]	[mm] (max)	[uH]	tolerance (%)	Max.	Тур.	Max.	Typ.	Max.	Тур.
CIGT201610UMR47MNE	0806/2016	1.0	0.47	±20	36	30	4.5	5.2	3.2	3.6

- * Inductance : Measured with a LCR meter 4991A(Agilent) or equivalent (Test Freq. 1MHz, Level 0.1V)
- * DC Resistance : Measured with a Resistance HI-TESTER 3541(HIOKI) or equivalent
- * Maximum allowable DC current: Value defined when DC current flows and the initial value of inductance has decreased by 30% or when current flows and temperature has risen to 40°C whichever is smaller. (Reference: ambient temperature is 25°C±10)

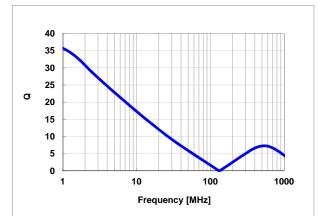
(Isat) : Allowable current in DC saturation : The DC saturation allowable current value is specified when the decrease of

the initial inductance value at 30% (Reference: ambient temperature is 25°C±10)

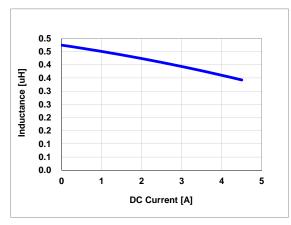

(Irms) : Allowable current of temperature rise : The temperature rise allowable current value is specified when temperature of the inductor is raised 40℃ by DC current. (Reference: ambient temperature is 25℃±10)

- * Absolute maximum voltage : Absolute maximum voltage DC 20V.
- * Operating temperature range : -40 to +125°C (Including self-temperature rise)

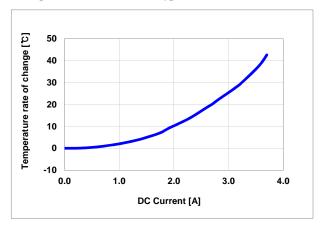
3. Characteristics data


1) Frequency characteristics (Ls)

Agilent E4294A +E4991A, 1MHz to 1,000MHz



2) Frequency characteristics (Q)


Agilent E4294A +E4991A , 1MHz to 1,000MHz

3) DC Bias characteristics (Typ.)

4)Temperature characteristics (Typ.)

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Samsung Electro-Mechanics: CIGT201610UMR47MNE