
Current Transducer HLSR-P series

*I*_{PN} = 10 ... 50 A

Ref: HLSR 10-P, HLSR 16-P, HLSR 20-P, HLSR 32-P, HLSR 40-P, HLSR 50-P

For the electronic measurement of current: DC, AC, pulsed..., with galvanic separation between the primary and the secondary circuit.

Features

- Open loop multi-range current transducer
- Voltage output
- Single supply +5 V
- Galvanic separation between primary and secondary
- Low power consumption
- Compact design for through-hole PCB mounting
- Factory calibrated
- High bandwidth, very low loss magnetic core.

Advantages

- Extremely low profile: h = 12 mm
- Low foot-print
- Low offset drift
- Over-drivable U_{ref}.

Applications

- · AC variable speed and servo motor drives
- Static converters for DC motor drives
- Battery supplied applications
- Uninterruptible Power Supplies (UPS)
- Switched Mode Power Supplies (SMPS)
- Power supplies for welding applications
- Combiner box
- MPPT.

Standards

- EN 50178: 1997
- IEC 61010-1: 2010
- IEC 61326-1: 2012
- UL 508: 2010.

Application Domain

• Industrial.

 $N^{\circ}97.J3.13.000.0, N^{\circ}97.J3.J5.000.0, N^{\circ}97.J3.17.000.0, N^{\circ}97.J3.J3.000.0, N^{\circ}97.J3.23.000.0, N^{\circ}97.J3.25.000.0, N^{\circ}97$

Absolute maximum ratings

Parameter	Symbol	Unit	Value
Supply voltage (not destructive)	U _c	V	8
Supply voltage (not entering non standard modes)	U _c	V	6.5
Primary conductor temperature	T _B	°C	120
Electrostatic discharge voltage (HBM - Human Body Model)	$U_{\rm ESD\;HBM}$	kV	2

Stresses above these ratings may cause permanent damage. Exposure to absolute maximum ratings for extended periods may degrade reliability.

UL 508: Ratings and assumptions of certification

File # E189713 Volume: 2 Section: 5

Standards

- CSA C22.2 NO. 14-10 INDUSTRIAL CONTROL EQUIPMENT Edition 11 Revision Date 2011/08/01
- UL 508 STANDARD FOR INDUSTRIAL CONTROL EQUIPMENT Edition 17 Revision Date 2010/04/15

Ratings

Parameter	Symbol	Unit	Value
Primary involved potential		V AC/DC	600
Ambient operating temperature	T _A	°C	105
Primary current	I _P	A	According to series primary current
Secondary supply voltage	Uc	V DC	5
Output voltage	$U_{\rm out}$	V	0 to 5

Conditions of acceptability

- 1 These devices have been evaluated for overvoltage category III and for use in pollution degree 2 environment.
- 2 A suitable enclosure shall be provided in the end-use application.
- 3 The terminals have not been evaluated for field wiring.
- 4 These devices are intended to be mounted on a printed wiring board of end use equipment. The suitability of the connections (including spacings) shall be determined in the end-use application.
- 5 Primary terminals shall not be straightened since assembly of housing case depends upon bending of the terminals.
- 6 Any surface of polymeric housing have not been evaluated as insulating barrier.
- 7 Low voltage control circuit shall be supplied by an isolating source (such as a transformer, optical isolator, limiting impedance or electro-mechanical relay).

Marking

Only those products bearing the UR Mark should be considered to be Listed or Recognized and covered under UL's Follow-Up Service. Always look for the Mark on the product.

Insulation coordination

Parameter	Symbol	Unit	Value	Comment
RMS voltage for AC insulation test, 50/60 Hz, 1 min	$U_{\rm d}$	kV	4.3	
Impulse withstand voltage 1.2/50 µs	U _{Ni}	kV	8	
Clearance (pri sec.)	d _{CI}	mm	> 8	Shortest distance through air
Creepage distance (pri sec.)	d _{Cp}	mm	> 8	Shortest path along device body
Clearance (pri sec.)	d _{CI}	mm	8	When mounted on PCB with recommended layout
Case material	-	-	V0	According to UL 94
Comparative tracking index	CTI	-	600	
Application example	-	V	600	Reinforced insulation, CAT III, PD 2, non uniform field according to EN 50178, IEC 61010
Application example	-	V	1000	Basic insulation, CAT III, PD 2, non uniform field according to EN 50178, IEC 61010
Application example	-	V	1500	Basic insulation, CAT III, PD 2, according to IEC 62109-1 Altitude ≤ 3000 m
Application example	-	V	600	CAT III, PD 2, according to UL 508

Environmental and mechanical characteristics

Parameter	Symbol	Unit	Min	Тур	Мах	Comment
Ambient operating temperature	T _A	°C	-40		105	
Ambient storage temperature	T _{Ast}	°C	-40		105	
Mass	т	g			5	

Electrical data HLSR 10-P

At $T_{\rm A}$ = 25 °C, $U_{\rm C}$ = +5, $R_{\rm L}$ = 10 k Ω unless otherwise noted (see Min, Max, typ. definition paragraph in page 10).

Parameter	Symbol	Unit	Min	Тур	Max	Comment
Primary nominal RMS current	I _{pn}	A		10		
Primary current, measuring range	I _{PM}	A	-25		25	For U _c > 4.6 V
Number of primary turns	N _P			1		
Resistance of primary jumper @ T_A = 25 °C	R _P	mΩ		0.21		
Resistance of primary jumper @ T_A = 105 °C	R _P	mΩ		0.29		<i>T</i> jumper = 120 °C
Supply voltage 1)	Uc	V	4.5	5	5.5	
Current consumption	I _c	mA		19	25	
Reference voltage (output)	$U_{\rm ref}$	V	2.48	2.5	2.52	Internal reference
Reference voltage (input)	$U_{\rm ref}$	V	0.5		2.65	External reference
Output voltage range @ $I_{\rm PM}$	$U_{\rm out}$ – $U_{\rm ref}$	V	-2		2	Over operating temperature range
$\overline{U_{\mathrm{ref}}}$ output resistance	R _{ref}	Ω	130	200	300	series
$\overline{U_{\mathrm{out}}}$ output resistance	R _{out}	Ω		2	5	series
Capacitive loading	CL	nF	0		6	
Electrical offset voltage @ $I_p = 0$	U _{oe}	mV	-5		5	$U_{\text{out}} - U_{\text{ref}}$ @ $U_{\text{ref}} = 2.5 \text{ V}$
Electrical offset current, referred to primary	I _{oe}	mA	-62.5		62.5	
Temperature coefficient of $U_{\rm ref}$	TCU _{ref}	ppm/K	-170		170	−40 °C … 105 °C
Temperature coefficient of $U_{\rm OE}$	TCU _{OE}	mV/K	-0.075		0.075	−40 °C … 105 °C
Temperature coefficient of I_{OE}	TCI _{OE}	mA/K	-0.94		0.94	−40 °C 105 °C
External detection threshold sensitivity	S _{Th}	mV/A		80		800 mV @ I _{P N}
Sensitivity error	ε_{s}	%	-0.5		0.5	Factory adjustment
Temperature coefficient of S	TCS	ppm/K	-200		200	−40 °C 105 °C
Linearity error 0 I _{PN}	ε _L	% of $I_{\rm PN}$	-0.5		0.5	
Linearity error 0 I _{PM}	ε _L	% of $I_{\rm PM}$	-0.5		0.5	
Magnetic offset current (@ $10 \times I_{PN}$) referred to primary	I _{om}	А	-0.25		0.25	
Noise voltage spectral density 100 Hz 100 kHz	u _{no}	µV/√Hz			28	
RMS noise voltage DC 10 kHz DC 100 kHz DC 1 MHz	$U_{\sf no}$	mVpp		17.5 46.1 65.7		
Delay time @ 10 % of the final output value I_{PN} step	t _{D 10}	μs			2	@ 50 A/µs
Delay time @ 90 % of the final output value I_{PN} step	t _{D 90}	μs			2.5	@ 50 A/µs
Frequency bandwidth (-3 dB)	BW	kHz		400		
Sum of sensitivity and linearity @ I _{PN}	e _{sl}	% of $I_{\rm PN}$	-1		1	
Sum of sensitivity and linearity @ I_{PN} @ T_{A} = +85 °C	^Є S L 85	% of $I_{\rm PN}$	-2.9		2.9	See formula note ²⁾
Sum of sensitivity and linearity @ I_{PN} @ T_{A} = +105 °C		% of $I_{\rm PN}$	-3.4		3.4	See formula note ²⁾
Notes: ¹⁾ 3.3 V SP version available; ²⁾ $\mathcal{E}_{SL}(T_A) = \mathcal{E}_{SL}$	25 + TCS +	$\left(\frac{TCI_{OE}}{I}\right) \times T $	_A – 25			

Notes: ¹⁾ 3.3 V SP version available; ²⁾
$$\mathcal{E}_{SL}(T_A) = \mathcal{E}_{SL25} + \left(\frac{TCS + \frac{CL}{I_{PN}}}{I_{PN}}\right) \times |T_A - 25|$$

Page 4/13 LEM International SA Route du Nant-d'Avril, 152 1217 Meyrin www.lem.com

Electrical data HLSR 16-P

At $T_{\rm A}$ = 25 °C, $U_{\rm C}$ = +5, $R_{\rm L}$ = 10 k Ω unless otherwise noted (see Min, Max, typ. definition paragraph in page 10).

Parameter	Symbol	Unit	Min	Тур	Мах	Comment
Primary nominal RMS current	I _{PN}	A		16		
Primary current, measuring range	I _{PM}	A	-40		40	For U _c > 4.6 V
Number of primary turns	N _P			1		
Resistance of primary jumper @ T_A = 25 °C	R _P	mΩ		0.21		
Resistance of primary jumper @ T_A = 105 °C	R _P	mΩ		0.29		<i>T</i> jumper = 120 °C
Supply voltage 1)	U _c	V	4.5	5	5.5	
Current consumption	I _C	mA		19	25	
Reference voltage (output)	U _{ref}	V	2.48	2.5	2.52	Internal reference
Reference voltage (input)	U _{ref}	V	0.5		2.65	External reference
Dutput voltage range @ $I_{_{PM}}$	U _{out} – U _{ref}	V	-2		2	Over operating temperature range
/ _{ref} output resistance	R _{ref}	Ω	130	200	300	series
J _{out} output resistance	R _{out}	Ω		2	5	series
Capacitive loading		nF	0		6	
Electrical offset voltage @ $I_p = 0$	U _{OE}	mV	-5		5	$U_{\text{out}} - U_{\text{ref}}$ @ $U_{\text{ref}} = 2.5 \text{ V}$
Electrical offset current, referred to primary	I _{oe}	mA	-100		100	
emperature coefficient of $U_{\rm ref}$	TCU _{ref}	ppm/K	-170		170	−40 °C 105 °C
Temperature coefficient of $U_{\rm OE}$	TCU _{OE}	mV/K	-0.075		0.075	−40 °C 105 °C
emperature coefficient of I _{OE}	TCI _{OE}	mA/K	-1.5		1.5	−40 °C 105 °C
External detection threshold sensitivity	S _{Th}	mV/A		50		800 mV @ I _{PN}
Sensitivity error	ε _s	%	-0.5		0.5	Factory adjustmen
emperature coefficient of S	TCS	ppm/K	-200		200	−40 °C 105 °C
inearity error 0 I _{PN}	ε _L	% of $I_{\rm PN}$	-0.5		0.5	
inearity error 0 I _{PM}	ε _L	% of $I_{\rm PM}$	-0.5		0.5	
Лagnetic offset current (@ 10 × I _{P N}) eferred to primary	I _{om}	A	-0.25		0.25	
loise voltage spectral density 00 Hz 100 kHz	u _{no}	µV/√Hz			28	
RMS noise voltage DC 10 kHz DC 100 kHz DC 1 MHz	$U_{\rm no}$	mVpp		11.3 28.6 41.2		
Delay time @ 10 % of the final output value $I_{_{\rm PN}}$ step	t _{D 10}	μs			2	@ 50 A/µs
Delay time @ 90 % of the final output value $I_{_{\rm PN}}$ step	t _{D 90}	μs			2.5	@ 50 A/µs
requency bandwidth (-3 dB)	BW	kHz		400		
Sum of sensitivity and linearity @ $I_{_{PN}}$	€ _{SL}	% of $I_{\rm PN}$	-1		1	
Sum of sensitivity and linearity @ I_{PN} @ T_{A} = +85 °C	^Е S L 85	% of $I_{\rm PN}$	-2.9		2.9	See formula note ²
Sum of sensitivity and linearity @ I_{PN} @ T_{A} = +105 °C	[€] S L 105	% of I _{PN}	-3.4		3.4	See formula note ²

Electrical data HLSR 20-P

At $T_A = 25 \text{ °C}$, $U_C = +5$, $R_L = 10 \text{ k}\Omega$ unless otherwise noted (see Min, Max, typ. definition paragraph in page 10).

Parameter	Symbol	Unit	Min	Тур	Мах	Comment
Primary nominal RMS current	I _{pn}	A		20		
Primary current, measuring range	I _{PM}	A	-50		50	For U _c > 4.6 V
Number of primary turns	N _P			1		
Resistance of primary jumper @ T_A = 25 °C	R _P	mΩ		0.21		
Resistance of primary jumper @ T_A = 105 °C	R _P	mΩ		0.29		<i>T</i> jumper = 120 °C
Supply voltage 1)	U _c	V	4.5	5	5.5	
Current consumption	I _C	mA		19	25	
Reference voltage (output)	U _{ref}	V	2.48	2.5	2.52	Internal reference
Reference voltage (input)	U _{ref}	V	0.5		2.65	External reference
Output voltage range @ I _{P M}	$U_{\rm out}$ – $U_{\rm ref}$	V	-2		2	Over operating temperature range
U _{ref} output resistance	R _{ref}	Ω	130	200	300	series
U _{out} output resistance	R _{out}	Ω		2	5	series
Capacitive loading		nF	0		6	
Electrical offset voltage @ $I_{\rm P}$ = 0	U _{OE}	mV	-5		5	$U_{\text{out}} - U_{\text{ref}}$ @ $U_{\text{ref}} = 2.5 \text{ V}$
Electrical offset current, referred to primary	I _{oe}	mA	-125		125	
Temperature coefficient of U_{ref}	TCU _{ref}	ppm/K	-170		170	−40 °C 105 °C
Temperature coefficient of $U_{0,F}$	TCU _{OE}	mV/K	-0.075		0.075	−40 °C 105 °C
Femperature coefficient of I	TCI _{OE}	mA/K	-1.88		1.88	−40 °C 105 °C
External detection threshold sensitivity	S _{Th}	mV/A		40		800 mV @ I _{PN}
Sensitivity error	ε_s	%	-0.5		0.5	Factory adjustment
Femperature coefficient of S	TCS	ppm/K	-200		200	−40 °C 105 °C
inearity error 0 I _{PN}	ε _L	% of $I_{\rm PN}$	-0.5		0.5	
inearity error 0 I _{PM}	ε _L	% of <i>I</i> _{PM}	-0.5		0.5	
Magnetic offset current (@ 10 × I_{PN}) eferred to primary	I _{om}	А	-0.25		0.25	
Noise voltage spectral density 100 Hz… 100 kHz	u _{no}	µV/√Hz			14	
RMS noise voltage DC 10 kHz DC 100 kHz DC 1 MHz	$U_{\rm no}$	mVpp		9.2 22.8 33		
Delay time @ 10 % of the final output value I_{PN} step	t _{D 10}	μs			2	@ 50 A⁄µs
Delay time @ 90 % of the final output value $I_{_{\rm PN}}$ step	t _{D 90}	μs			2.5	@ 50 A/µs
Frequency bandwidth (-3 dB)	BW	kHz		400		
Sum of sensitivity and linearity @ $I_{_{\rm PN}}$	€ _{SL}	% of $I_{\rm PN}$	-1		1	
Sum of sensitivity and linearity @ I_{PN} @ T_{A} = +85 °C	^Є S L 85	% of $I_{\rm PN}$	-2.9		2.9	See formula note 2)
		% of $I_{\rm PN}$	-3.4		3.4	See formula note ²⁾

Electrical data HLSR 32-P

At $T_A = 25$ °C, $U_C = +5$, $R_L = 10 \text{ k}\Omega$ unless otherwise noted (see Min, Max, typ. definition paragraph in page 10).

Parameter	Symbol	Unit	Min	Тур	Мах	Comment
Primary nominal RMS current	I _{pn}	A		32		
Primary current, measuring range	I _{PM}	A	-80		80	For U _c > 4.6 V
Number of primary turns	N _P			1		
Resistance of primary jumper @ T_A = 25 °C	R _P	mΩ		0.21		
Resistance of primary jumper @ T_A = 105 °C	R _P	mΩ		0.29		<i>T</i> jumper = 120 °C
Supply voltage 1)	U _c	V	4.5	5	5.5	
Current consumption	I _c	mA		19	25	
Reference voltage (output)	$U_{\rm ref}$	V	2.48	2.5	2.52	Internal reference
Reference voltage (input)	$U_{\rm ref}$	V	0.5		2.65	External reference
Output voltage range @ $I_{_{PM}}$	$U_{\rm out}$ – $U_{\rm ref}$	V	-2		2	Over operating temperature range
U _{ref} output resistance	R _{ref}	Ω	130	200	300	series
$U_{\rm out}$ output resistance	R _{out}	Ω		2	5	series
Capacitive loading	CL	nF	0		6	
Electrical offset voltage @ $I_{\rm P}$ = 0	U _{oe}	mV	-5		5	$\begin{array}{c} U_{\text{out}} - U_{\text{ref}} \\ \textcircled{O} U_{\text{ref}} = 2.5 \text{ V} \end{array}$
Electrical offset current, referred to primary	I _{oe}	mA	-200		200	
Temperature coefficient of U _{ref}	TCU _{ref}	ppm/K	-170		170	−40 °C 105 °C
Temperature coefficient of U_{OE}	TCU _{OE}	mV/K	-0.075		0.075	−40 °C 105 °C
Temperature coefficient of I _{OE}	TCI _{OE}	mA/K	-3		3	−40 °C 105 °C
External detection threshold sensitivity	S _{Th}	mV/A		25		800 mV @ I _{PN}
Sensitivity error	ε_s	%	-0.5		0.5	Factory adjustment
Temperature coefficient of S	TCS	ppm/K	-200		200	−40 °C 105 °C
Linearity error 0 I _{PN}	ε _L	% of $I_{\rm PN}$	-0.5		0.5	
Linearity error 0 I _{PM}	ε _L	% of $I_{\rm PM}$	-0.5		0.5	
Magnetic offset current (@ $10 \times I_{PN}$) referred to primary	I _{om}	A	-0.25		0.25	
Noise voltage spectral density 100 Hz 100 kHz	u _{no}	µV/√Hz			8.75	
RMS noise voltage DC 10 kHz DC 100 kHz DC 1 MHz	$U_{\sf no}$	mVpp		6.2 14 20.7		
Delay time @ 10 % of the final output value I_{PN} step	t _{D 10}	μs			2	@ 50 A/µs
Delay time @ 90 % of the final output value $I_{\rm PN}$ step	t _{D 90}	μs			2.5	@ 50 A/µs
Frequency bandwidth (−3 dB)	BW	kHz		400		
Sum of sensitivity and linearity @ I _{PN}	ε _{sL}	% of $I_{\rm PN}$	-1		1	
Sum of sensitivity and linearity @ I_{PN} @ T_{A} = +85 °C	^Е S L 85	% of $I_{\rm PN}$	-2.9		2.9	See formula note ²⁾
Sum of sensitivity and linearity @ I_{PN} @ T_{A} = +105 °C	[€] S L 105	% of $I_{\rm PN}$	-3.4		3.4	See formula note ²⁾
<u>Notes</u> : ¹⁾ 3.3 V SP version available; ²⁾ $\mathcal{E}_{SL}(T_A) = \mathcal{E}_{SL}$	$L_{25} + \left(TCS + -\right)$	$\frac{TCI_{OE}}{I_{PN}} \times I $	A − 25			Page 7/1

Electrical data HLSR 40-P

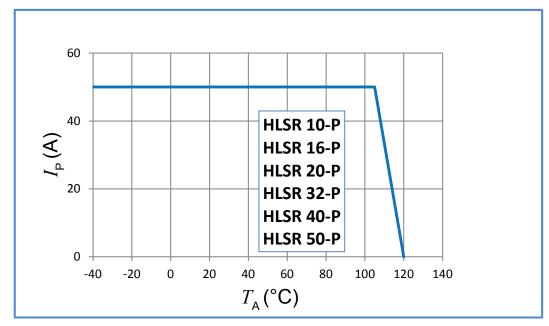
At $T_A = 25 \text{ °C}$, $U_C = +5$, $R_L = 10 \text{ k}\Omega$ unless otherwise noted (see Min, Max, typ. definition paragraph in page 10).

Parameter	Symbol	Unit	Min	Тур	Max	Comment
Primary nominal RMS current	I _{pn}	A		40		
Primary current, measuring range	I _{PM}	A	-100		100	For U _c > 4.6 V
Number of primary turns	N _P			1		
Resistance of primary jumper @ T_A = 25 °C	R _P	mΩ		0.21		
Resistance of primary jumper @ T_A = 105 °C	R _P	mΩ		0.29		<i>T</i> jumper = 120 °C
Supply voltage 1)	U _c	V	4.5	5	5.5	
Current consumption	I _c	mA		19	25	
Reference voltage (output)	$U_{\rm ref}$	V	2.48	2.5	2.52	Internal reference
Reference voltage (input)	$U_{\rm ref}$	V	0.5		2.65	External reference
Output voltage range @ I_{PM}	$U_{\rm out}$ – $U_{\rm ref}$	V	-2		2	Over operating temperature range
U _{ref} output resistance	R _{ref}	Ω	130	200	300	series
U _{out} output resistance	R _{out}	Ω		2	5	series
Capacitive loading	CL	nF	0		6	
Electrical offset voltage @ $I_{\rm P}$ = 0	U _{oe}	mV	-5		5	$U_{\text{out}} - U_{\text{ref}}$ @ $U_{\text{ref}} = 2.5 \text{ V}$
Electrical offset current, referred to primary	I _{oe}	mA	-250		250	
Temperature coefficient of U _{ref}	TCU _{ref}	ppm/K	-170		170	−40 °C 105 °C
Temperature coefficient of U _{OE}	TCU _{OE}	mV/K	-0.075		0.075	−40 °C 105 °C
Temperature coefficient of I _{OE}	TCI _{OE}	mA/K	-3.75		3.75	−40 °C 105 °C
External detection threshold sensitivity	S _{Th}	mV/A		20		800 mV @ I _{PN}
Sensitivity error	ε_s	%	-0.5		0.5	Factory adjustment
Temperature coefficient of S	TCS	ppm/K	-200		200	−40 °C 105 °C
Linearity error 0 I _{PN}	ε _L	% of $I_{\rm PN}$	-0.5		0.5	
Linearity error 0 I _{PM}	ε _L	% of $I_{\rm PM}$	-0.5		0.5	
Magnetic offset current (@ $10 \times I_{PN}$) referred to primary	I _{OM}	A	-0.25		0.25	
Noise voltage spectral density 100 Hz 100 kHz	u _{no}	µV/√Hz			7	
RMS noise voltage DC 10 kHz DC 100 kHz DC 1 MHz	U _{no}	mVpp		5.1 11.1 16.6		
Delay time @ 10 % of the final output value I_{PN} step	t _{D 10}	μs			2	@ 50 A/µs
Delay time @ 90 % of the final output value $I_{\rm PN}$ step	t _{D 90}	μs			2.5	@ 50 A/µs
Frequency bandwidth (-3 dB)	BW	kHz		400		
Sum of sensitivity and linearity @ $I_{_{PN}}$	e _{s L}	% of $I_{\rm PN}$	-1		1	
Sum of sensitivity and linearity @ I_{PN} @ T_{A} = +85 °C	^Є S L 85	% of $I_{\rm PN}$	-2.9		2.9	See formula note ²⁾
Sum of sensitivity and linearity @ I_{PN} @ T_{A} = +105 °C		% of $I_{\rm PN}$	-3.4		3.4	See formula note ²⁾

Notes: ¹⁾ 3.3 V SP version available; ²⁾
$$\varepsilon_{SL}(T_A) = \varepsilon_{SL25} + \left(TCS + \frac{TCT_{OE}}{I_{PN}}\right) \times |T_A - 25|$$

Page 8/13

Electrical data HLSR 50-P


At $T_A = 25 \text{ °C}$, $U_C = +5$, $R_L = 10 \text{ k}\Omega$ unless otherwise noted (see Min, Max, typ. definition paragraph in page 10).

Parameter	Symbol	Unit	Min	Тур	Max	Comment
Primary nominal RMS current	I _{pn}	A		50		
Primary current, measuring range	I _{PM}	A	-125		125	For U _c > 4.6 V
Number of primary turns	N _P			1		
Resistance of primary jumper @ $T_A = 25 \degree C$	R _P	mΩ		0.21		
Resistance of primary jumper @ T_A = 105 °C	R _P	mΩ		0.29		<i>T</i> jumper = 120 °C
Supply voltage 1)	Uc	V	4.5	5	5.5	
Current consumption	I _c	mA		19	25	
Reference voltage (output)	$U_{\rm ref}$	V	2.48	2.5	2.52	Internal reference
Reference voltage (input)	$U_{\rm ref}$	V	0.5		2.65	External reference
Output voltage range @ I _{PM}	$U_{\rm out}$ – $U_{\rm ref}$	V	-2		2	Over operating temperature range
U _{ref} output resistance	R _{ref}	Ω	130	200	300	series
U _{out} output resistance	R _{out}	Ω		2	5	series
Capacitive loading	CL	nF	0		6	
Electrical offset voltage @ $I_{\rm P}$ = 0	U _{oe}	mV	-5		5	$U_{out} - U_{ref}$ @ $U_{ref} = 2.5 V$
Electrical offset current, referred to primary	I _{oe}	mA	-313		313	
Temperature coefficient of $U_{\rm ref}$	TCU _{ref}	ppm/K	-170		170	−40 °C 105 °C
Temperature coefficient of U_{OE}	TCU _{OE}	mV/K	-0.05		0.05	−40 °C 105 °C
Temperature coefficient of I _{OE}	TCI _{OE}	mA/K	-3.125		3.125	−40 °C 105 °C
External detection threshold sensitivity	S _{Th}	mV/A		16		800 mV @ I _{P N}
Sensitivity error	ε_s	%	-0.5		0.5	Factory adjustment
Temperature coefficient of S	TCS	ppm/K	-200		200	−40 °C 105 °C
Linearity error 0 I _{PN}	ε _L	% of $I_{\rm PN}$	-0.5		0.5	
Linearity error 0 I _{PM}	ε _L	% of $I_{\rm PM}$	-0.5		0.5	
Magnetic offset current (@ 10 × I_{PN}) referred to primary	I _{om}	А	-0.25		0.25	
Noise voltage spectral density 100 Hz 100 kHz	u _{no}	µV/√Hz			5.6	
RMS noise voltage DC 10 kHz DC 100 kHz DC 1 MHz	$U_{\sf no}$	mVpp		4.3 8.8 13.3		
Delay time @ 10 % of the final output value I_{PN} step	t _{D 10}	μs			2	@ 50 A⁄µs
Delay time @ 90 % of the final output value I_{PN} step	t _{D 90}	μs			2.5	@ 50 A⁄µs
Frequency bandwidth (−3 dB)	BW	kHz		400		
Sum of sensitivity and linearity @ $I_{_{PN}}$	€ _{SL}	% of $I_{\rm PN}$	-1		1	
Sum of sensitivity and linearity @ I_{PN} @ T_{A} = +85 °C	^Е S L 85	% of $I_{\rm PN}$	-2.7		2.7	See formula note 2)
	1	% of I _{PN}	-3.1		1	See formula note 2)

Notes: ¹⁾ 3.3 V SP version available; ²⁾
$$\varepsilon_{SL}(T_A) = \varepsilon_{SL25} + \left(\frac{TCS + \frac{1}{I_{PN}}}{I_{PN}}\right) \times |T_A - 25|$$

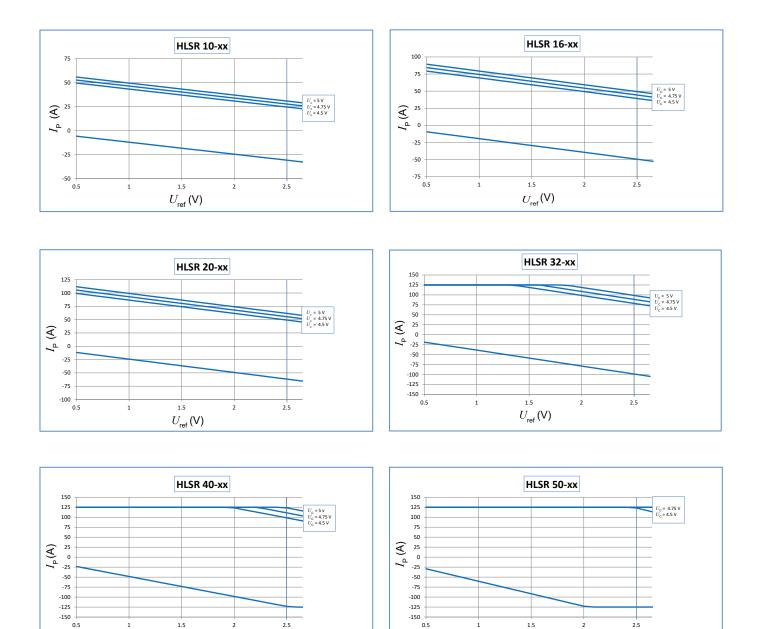
Maximum continuous DC current

Important notice: whatever the usage and/or application, the transducer jumper temperature shall not go above the maximum ratings of 120 °C as stated in page 2 of this datasheet.

Definition of typical, minimum and maximum values

Minimum and maximum values for specified limiting and safety conditions have to be understood as such as well as values shown in "typical" graphs.

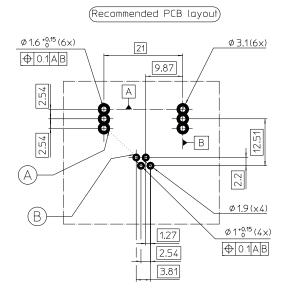
On the other hand, measured values are part of a statistical distribution that can be specified by an interval with upper and lower limits and a probability for measured values to lie within this interval.


Unless otherwise stated (e.g. "100 % tested"), the LEM definition for such intervals designated with "min" and "max" is that the probability for values of samples to lie in this interval is 99.73 %.

For a normal (Gaussian) distribution, this corresponds to an interval between -3 sigma and +3 sigma. If "typical" values are not obviously mean or average values, those values are defined to delimit intervals with a probability of 68.27 %, corresponding to an interval between -sigma and +sigma for a normal distribution.

Typical, maximal and minimal values are determined during the initial characterization of the product.

Measuring range versus external reference voltage



 $U_{\rm ref}({\sf V})$

 $U_{\rm ref}({\rm V})$

PCB footprint (in mm)

	$d_{ m CI}$ (mm)	$d_{\sf Cp}$ (mm)
A-B	9.42	9.42

Assembly on PCB

- Recommended PCB hole diameter
- 1.6 mm for primary pins 1 mm for secondary pins 2.4 mm maximum 260 °C for 10 s
- Maximum PCB thickness
 Wave soldering profile No clean process only.

Safety

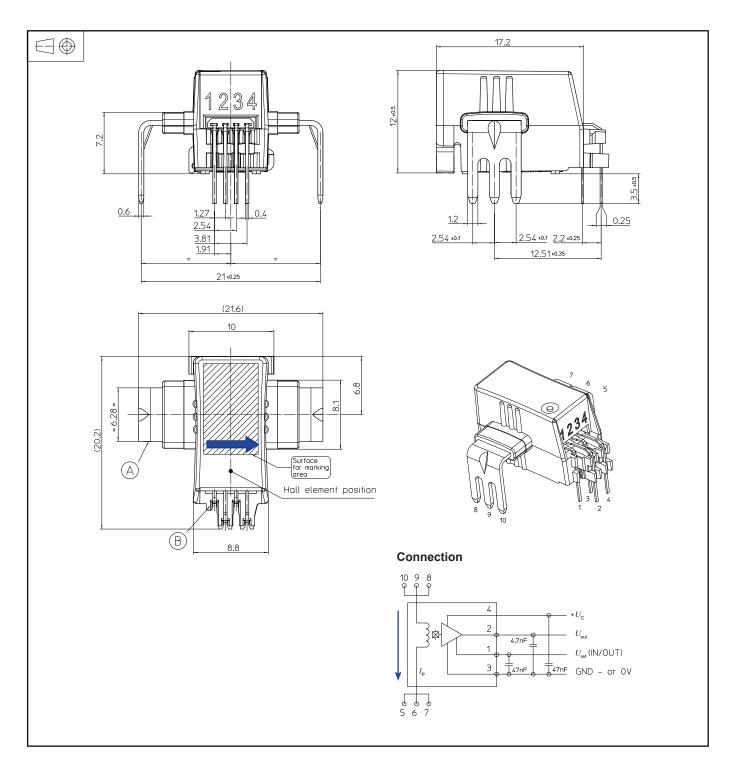
This transducer must be used in limited-energy secondary circuits according to IEC 61010-1.

This transducer must be used in electric/electronic equipment with respect to applicable standards and safety requirements in accordance with the manufacturer's operating instructions.

Caution, risk of electrical shock

When operating the transducer, certain parts of the module can carry hazardous voltage (e.g. primary busbar, power supply). Ignoring this warning can lead to injury and/or cause serious damage.

This transducer is a build-in device, whose conducting parts must be inaccessible after installation.


A protective housing or additional shield could be used. Main supply must be able to be disconnected.

Remarks

- U_{out} is positive with respect to U_{ref} when positive I_{p} flows in direction of the arrow shown on the drawing above
- Installation of the transducer must be done unless otherwise specified on the datasheet, according to LEM Transducer Generic Mounting Rules. Please refer to LEM document N°ANE120504 available on our Web site: <u>https://www.lem.com/en/file/3137/download/</u>.

Dimensions (in mm. General linear tolerance ±0.2 mm)

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

LEM:

HLSR 40-P HLSR 20-P HLSR 16-P HLSR 50-P HLSR 32-P HLSR 10-P