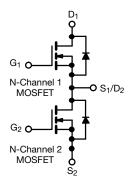

HALOGEN FREE

Vishay Siliconix

Dual N-Channel 30 V (D-S) MOSFETs

PRODUCT SUMMARY							
	V _{DS} (V)	$R_{DS(on)}\left(\Omega\right)$	I _D (A) ^a	Q _g (Typ.)			
Channel-1	30	0.0240 at V _{GS} = 10 V	11	3.5 nC			
Chamilei-1	30	0.0320 at $V_{GS} = 4.5 \text{ V}$	11	3.5 110			
Channel-2	30	0.0110 at V _{GS} = 10 V	28	6.8 nC			
Onamie-2	30	0.0165 at $V_{GS} = 4.5 \text{ V}$	28	0.0110			


Ordering Information: SiZ300DT-T1-GE3 (Lead (Pb)-free and Halogen-free)

FEATURES

- PowerPAIR Optimizes High-Side and Low-Side MOSFETs for Synchronous Buck Converters
- TrenchFET® Power Mosfets
- 100 % R_{α} and UIS Tested
- Material categorization: For definitions of compliance please see www.vishay.com/doc?99912

APPLICATIONS

- Computing System Power
- Synchronous Buck Converter

Parameter		Symbol	Channel-1	Channel-2	Unit	
Drain-Source Voltage		V _{DS}	30		V	
Gate-Source Voltage		V _{GS}	± 20			
	T _C = 25 °C	,	11 ^a	28 ^a		
Continuous Drain Current (T _{.1} = 150 °C)	T _C = 70 °C		11 ^a	28 ^a	A	
Continuous Diam Current (1) = 130 C)	T _A = 25 °C	I _D	9.8 ^{b, c}	14.9 ^{b, c}		
	T _A = 70 °C		7.8 ^{b, c}	11.9 ^{b, c}		
Pulsed Drain Current (t = 300 μs)		I _{DM}	30	40		
Continuous Source Drain Diode Current	T _A = 25 °C	IS	11 ^a	26		
Continuous Source Diain Diode Current	T _A = 25 °C		3.2 ^{b, c}	3.8 ^{b, c}		
Avalanche Current		I _{AS}	12	15		
Single Pulse Avalanche Energy L = 0.1 mH		E _{AS}	7	11	mJ	
	T _C = 25 °C		16.7	31	w	
Maximum Power Dissination	T _C = 70 °C	P _D	10.7	20		
Maximum Power Dissipation	T _A = 25 °C	' D	3.7 ^{b, c}	4.2 ^{b, c}		
	T _A = 70 °C		2.4 ^{b, c}	2.7 ^{b, c}		
Operating Junction and Storage Temperature Rai	T _J , T _{stg}	- 55 to 150		°C		
Soldering Recommendations (Peak Temperature		260				

- a. Package limited.
- b. Surface mounted on 1" x 1" FR4 board.
- d. See solder profile (www.vishay.com/doc?73257). The PowerPAIR is a leadless package. The end of the lead terminal is exposed copper (not plated) as a result of the singulation process in manufacturing. A solder fillet at the exposed copper tip cannot be guaranteed and is not required to ensure adequate bottom side solder interconnection.
- e. Rework conditions: manual soldering with a soldering iron is not recommended for leadless components.

Document Number: 67715 S12-1361-Rev. D, 11-Jun-12 For technical questions, contact: pmostechsupport@vishav.com

Vishay Siliconix

THERMAL RESISTANCE RATINGS							
			Chan	nel-1	Chan	nel-2	
Parameter		Symbol	Тур.	Max.	Тур.	Max.	Unit
Maximum Junction-to-Ambient ^{a, b}	t ≤ 10 s	R _{thJA}	27	34	24	30	°C/W
Maximum Junction-to-Case (Drain)	Steady State	R_{thJC}	6	7.5	3.2	4	O/ VV

Notes:

- a. Surface mounted on 1" x 1" FR4 board.
- b. Maximum under steady state conditions is 69 °C/W for channel-1 and 64 °C/W for channel-2.

Parameter	SPECIFICATIONS (T _J = 25 °C, unless otherwise noted)										
	Symbol	Test Conditions		Min.	Тур.	Max.	Unit				
Static	ı		1	T	1	T	1				
Drain-Source Breakdown Voltage	V _{DS}	$V_{GS} = 0, I_D = 250 \mu A$	Ch-1	30			V				
Ziani etailee Zieanaenni tenage	55	$V_{GS} = 0 \text{ V}, I_D = 250 \mu\text{A}$	Ch-2	30							
V _{DS} Temperature Coefficient	$\Delta V_{DS}/T_{.1}$	I _D = 250 μA	Ch-1		24		mV/°C				
- D3	_ D3 · 3	I _D = 250 μA	Ch-2		30						
V _{GS(th)} Temperature Coefficient	$\Delta V_{GS(th)}/T_J$	I _D = 250 μA	Ch-1		- 4.1						
· GS(III) remperature econoccin	- GS(iii) · G	I _D = 250 μA	Ch-2		- 5						
Gate Threshold Voltage	V _{GS(th)}	$V_{DS} = V_{GS}$, $I_D = 250 \mu A$	Ch-1	1		2.4	V				
Gate Theshold Voltage	VGS(th)	$V_{DS} = V_{GS}$, $I_D = 250 \mu A$	Ch-2	1		2.2	V				
Gate Source Leakage	loos	$V_{DS} = 0 \text{ V}, V_{GS} = \pm 20 \text{ V}$	Ch-1			± 100	nA				
date Source Leakage	I _{GSS}	VDS - 0 V, VGS - ± 20 V	Ch-2			± 100	ПА				
		$V_{DS} = 30 \text{ V}, V_{GS} = 0 \text{ V}$	Ch-1			1					
Zara Cata Valtaga Drain Current	l	$V_{DS} = 30 \text{ V}, V_{GS} = 0 \text{ V}$	Ch-2			1					
Zero Gate Voltage Drain Current	I _{DSS}	$V_{DS} = 30 \text{ V}, V_{GS} = 0 \text{ V}, T_{J} = 55 ^{\circ}\text{C}$	Ch-1			5	μΑ				
		$V_{DS} = 30 \text{ V}, V_{GS} = 0 \text{ V}, T_{J} = 55 ^{\circ}\text{C}$	Ch-2			5					
h		$V_{DS} \ge 5 \text{ V}, V_{GS} = 10 \text{ V}$	Ch-1	10							
On-State Drain Current ^D	I _{D(on)}	$V_{DS} \ge 5 \text{ V}, V_{GS} = 10 \text{ V}$	Ch-2	10			Α				
Drain-Source On-State Resistance ^b	R _{DS(on)}	V _{GS} = 10 V, I _D = 9.8 A	Ch-1		0.0200	0.0240	Ω				
		V _{GS} = 10 V, I _D = 15 A	Ch-2		0.0090	0.0110					
		V _{GS} = 4.5 V, I _D = 8.5 A	Ch-1		0.0265	0.0320					
		V _{GS} = 4.5 V, I _D = 12 A	Ch-2		0.0135	0.0165					
		V _{DS} = 15 V, I _D = 9.8 A	Ch-1		30		_				
Forward Transconductance ^b	9 _{fs}	V _{DS} = 15 V, I _D = 15 A	Ch-2		30		S				
Dynamic ^a		20 , 5	<u> </u>	L	1	l					
			Ch-1		400		1				
Input Capacitance	C _{iss}	Channel-1	Ch-2		730		- - pF				
		$V_{DS} = 15 \text{ V}, V_{GS} = 0 \text{ V}, f = 1 \text{ MHz}$	Ch-1		125						
Output Capacitance	C _{oss}	Channel-2	Ch-2		155						
		V _{DS} = 15 V, V _{GS} = 0 V, f = 1 MHz	Ch-1		25						
Reverse Transfer Capacitance	C_{rss}	VDS = 10 V, VGS = 0 V, 1 = 1 WH 12	Ch-2		65						
		$V_{DS} = 15 \text{ V}, V_{GS} = 10 \text{ V}, I_D = 9.8 \text{ A}$	Ch-1		7.4	12	-				
	_	V _{DS} = 15 V, V _{GS} = 10 V, I _D = 15 A	Ch-2		14.2	22					
Total Gate Charge	Q _g Q _{gs}	<u> </u>	Ch-1		3.5	5.3					
		Channel-1	Ch-2		6.8	11					
		$V_{DS} = 15 \text{ V}, V_{GS} = 4.5 \text{ V}, I_D = 9.8 \text{ A}$	Ch-1		1.5		nC				
Gate-Source Charge		Ohan a la	Ch-2		2.2						
		Channel-2 $V_{DS} = 15 \text{ V}, V_{GS} = 4.5 \text{ V}, I_{D} = 15 \text{ A}$	Ch-1		1.1						
		VDS - 10 V, VGS = 4.0 V, ID = 10 A			-	 	1				
Gate-Drain Charge	Q_{gd}		Ch-2		2.3						
Gate-Drain Charge Gate Resistance	R _q	f = 1 MHz	Ch-2 Ch-1	0.5	2.3	5.2	Ω				

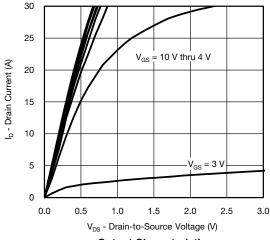
Notes:

- a. Guaranteed by design, not subject to production testing.
- b. Pulse test; pulse width \leq 300 μ s, duty cycle \leq 2 %.

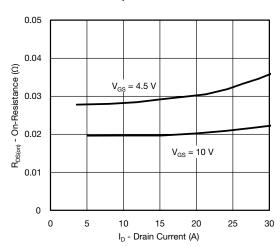
Vishay Siliconix

Dynamic ^a t _{d(on)} Channel-1 V _{DD} = 15 V, R _L = 1.9 Ω I _D = 8 A, V _{GEN} = 4.5 V, R _g = 1 Ω Ch-1 Ch-2 Ch-2 Ch-2 Ch-2 Ch-2 Ch-1 Ch-1 Ch-2 So So Ch-1 Ch-1 Ch-2 So So Ch-1 Ch-1 Ch-2 So So Ch-1 Ch-1 Ch-2 Ch-2 Ch-2 Ch-2 Ch-2 Ch-2 Ch-2 Ch-2	Unit	Max.	Тур.	Min.		Test Conditions	Parameter		
Turn-On Delay Time t _d (on) Channel-1 V _{DD} = 15 V, R _L = 1.9 Ω (h-2) Ch-1 Ch-1 (h-2) 25 50 50 Rise Time t _r I _D ≅ 8 A, V _{GEN} = 4.5 V, R _g = 1 Ω Ch-1 (h-2) 45 90 60-2 80 160 160 Turn-Off Delay Time t _d (off) Channel-2 V _{DD} = 15 V, R _L = 1.5 Ω Ch-1 (h-1) 10 20 20 40 Turn-On Delay Time t _d (on) Channel-1 V _{DD} = 15 V, R _L = 1.9 Ω Ch-1 (h-1) 5 10 Ch-2 (h-1) 5 10 Ch-2 (h-1) 5 10 Ch-2 (h-1) 5 10 Ch-1 (h-1) 5 10 Ch-1 (h-1) 5 10 Ch-1 (h-1) 5 10 Ch-1 (h-1) 10 20 Ch-2 (h-2) 20 40 40 80 60 Ch-2 (h-1) 5 10 Ch-1 (h-1) 5 10 Ch-1 (h-1) 10 20 Ch-1 (h-1) 10 20 Ch-1 (h-1) 10 20 Ch-2 (h-2) 20 40 Ch-2 (h-2) 20 40 Ch-2 (h-2) 20 40 Ch-2 (h-2) Ch-2 (h-2) 20 40 Ch-2 (h-2) Ch-2 (h-2) <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>Dynamic^a</th>								Dynamic ^a	
Rise Time t _r V _{DD} = 15 V, R _{II} = 1.9 Ω Ch-1 45 90 Ch-2 80 160 Ch-2 Ch-2 80 160 Ch-2 Ch-2 80 160 Ch-2 Ch-2 Ch-2 20 40 Ch-2 Ch			_		_	Channel 4	t _{d(on)}	Turn-On Delay Time	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		50					-u(OII)	Tall Oli Bolay Timo	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			_		_		t _r	Rise Time	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$									
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	_		_		_		t _{d(off)}	Turn-Off Delay Time	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	4		_			7	- (,		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		_	_		_	$I_D \cong 10 \text{ A}, V_{GEN} = 4.5 \text{ V}, R_g = 1 \Omega$	t _f	Fall Time	
	ns								
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	-	_	_		_	Channel-1	t _{d(on)}	Turn-On Delay Time	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	-		_			$V_{DD} = 15 \text{ V}, R_{L} = 1.9 \Omega$			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	+	_	_		_	$I_D \cong 8 \text{ A}, V_{GEN} = 10 \text{ V}, R_g = 1 \Omega$	t _r	Rise Time	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1		_			Ohamad 0			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		30			Ch-2		t _{d(off)}	Turn-Off Delay Time	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		15	7		Ch-1	7	1	Fall Time	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		20	10		Ch-2	B - , GEN - , g	Гf	Fall Time	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	•						s	Drain-Source Body Diode Characteristic	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		11			Ch-1	To = 25 °C	2	Continuous Source-Drain Diode Current	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	A	26			Ch-2	.0 20 0	.5	Continuous Course Brain Blode Carrent	
					_		Ism	Pulse Diode Forward Current ^a	
							OIVI	T disc Blode Forward Current	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	V		0.84		Ch-1	5.5	Ven	Body Diode Voltage	
Body Diode Reverse Recovery Time t_{rr} Channel-1 Ch-2 20 40 Body Diode Reverse Recovery Charge Q_{rr} $I_F = 8 \text{ A}$, $dI/dt = 100 \text{ A/μs}$, $T_J = 25 \text{ °C}$ $Ch-1$ 9 20 Ch-2 14 30 Channel-2 Ch-1 9.5 Ch-2 I _F = 10 A, $dI/dt = 100 \text{ A/μs}$, $T_J = 25 \text{ °C}$ Ch-2 12.5		1.2	0.82		Ch-2	I _S = 10 A, V _{GS} = 0 V	OD		
Body Diode Reverse Recovery Charge Q_{rr} Channel-1 Ch-1 9 20 Reverse Recovery Fall Time t_a Channel-2 Ch-1 9.5 14 30 L _F = 10 A, dl/dt = 100 A/μs, T _J = 25 °C Ch-2 12.5 12.5 12.5	ns				Ch-1		trr	Body Diode Reverse Recovery Time	
Body Diode Reverse Recovery Charge Q_{rr} $I_F = 8$ A, dl/dt = 100 A/μs, $T_J = 25$ °C $Ch-1$ 9 20 Ch-2 14 30 Reverse Recovery Fall Time t_a Channel-2 Ch-1 9.5 $I_F = 10$ A, dl/dt = 100 A/μs, $T_J = 25$ °C Ch-2 12.5						Channel 1	11	Body Blode Heverse Hecovery Time	
Reverse Recovery Fall Time t_a Channel-2 $I_F = 10 \text{ A}$, $dI/dt = 100 \text{ A}/\mu \text{s}$, $T_J = 25 \text{ °C}$ Ch-2 12.5	nC				_		Q_{rr}	Body Diode Reverse Recovery Charge	
Reverse Recovery Fall Time t_a $I_F = 10 \text{ A}$, $dI/dt = 100 \text{ A}/\mu \text{s}$, $T_J = 25 \text{ °C}$ $Ch-2$ 12.5		30				1	"		
i _f = 107t, αι/αt = 1007τμο, 1 _j = 20 0	4						ta	Reverse Recovery Fall Time	
	ns					$I_F = 10 \text{ A}, \text{ dI/dt} = 100 \text{ A/}\mu\text{s}, T_J = 25 °\text{C}$			
Reverse Recovery Rise Time	-						t _b	Reverse Recovery Rise Time	

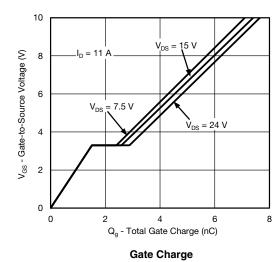
Notes:

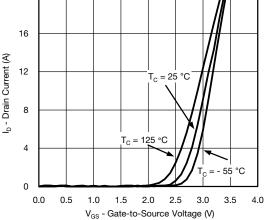

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

a. Guaranteed by design, not subject to production testing.

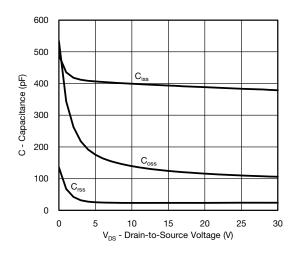

b. Pulse test; pulse width \leq 300 μ s, duty cycle \leq 2 %.

Vishay Siliconix

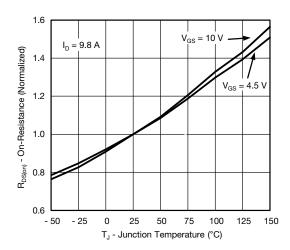

CHANNEL-1 TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)



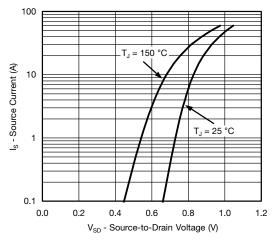
Output Characteristics

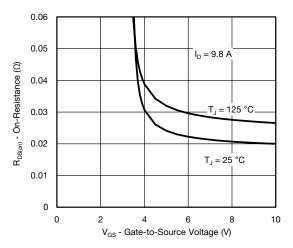


On-Resistance vs. Drain Current

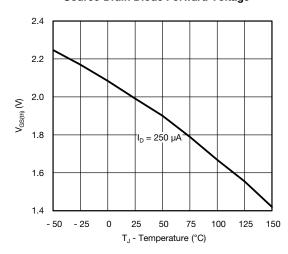


Transfer Characteristics

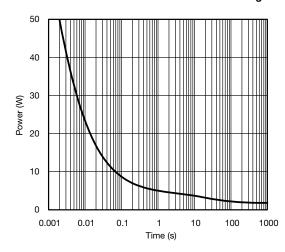

Capacitance



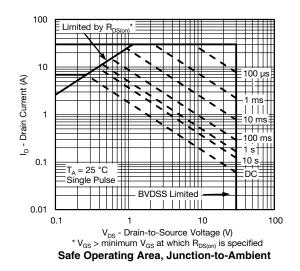
On-Resistance vs. Junction Temperature



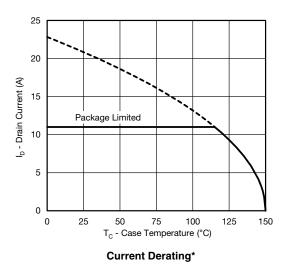
CHANNEL-1 TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)

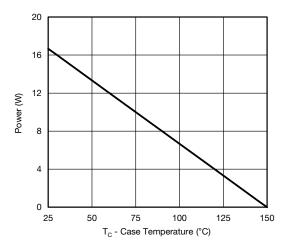


Source-Drain Diode Forward Voltage



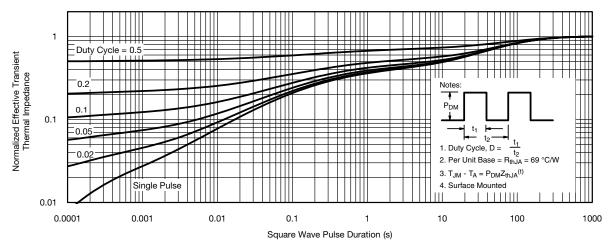
On-Resistance vs. Gate-to-Source Voltage


Threshold Voltage

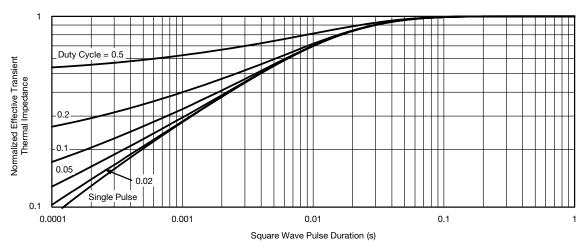

Single Pulse Power

Vishay Siliconix

CHANNEL-1 TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)

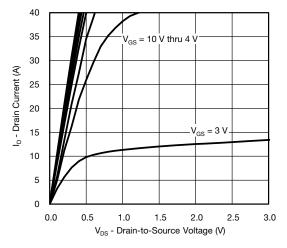


Power, Junction-to-Case

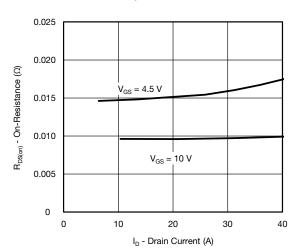

^{*} The power dissipation P_D is based on $T_{J(max)}$ = 150 °C, using junction-to-case thermal resistance, and is more useful in settling the upper dissipation limit for cases where additional heatsinking is used. It is used to determine the current rating, when this rating falls below the package limit.

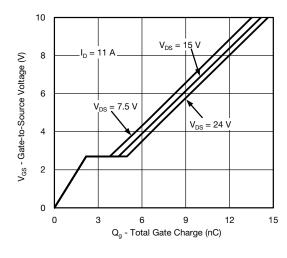
CHANNEL-1 TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)

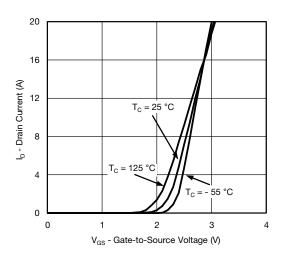
Normalized Thermal Transient Impedance, Junction-to-Ambient

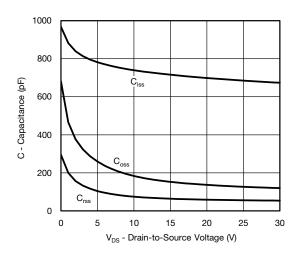


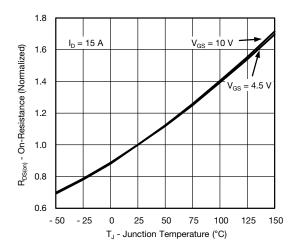
Normalized Thermal Transient Impedance, Junction-to-Case


Vishay Siliconix

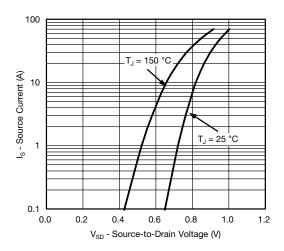

CHANNEL-2 TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)

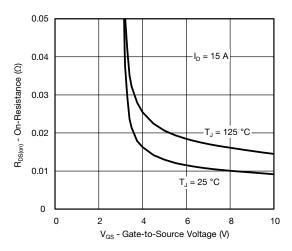

Output Characteristics


On-Resistance vs. Drain Current

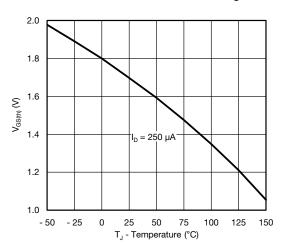

Gate Charge

Transfer Characteristics

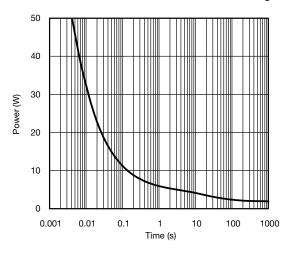

Capacitance



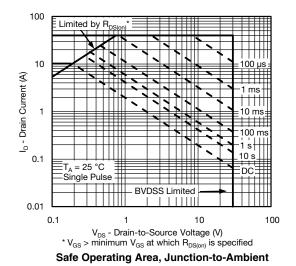
On-Resistance vs. Junction Temperature



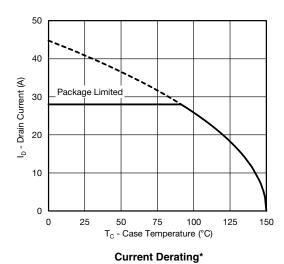
CHANNEL-2 TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)

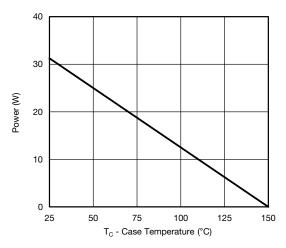


Source-Drain Diode Forward Voltage



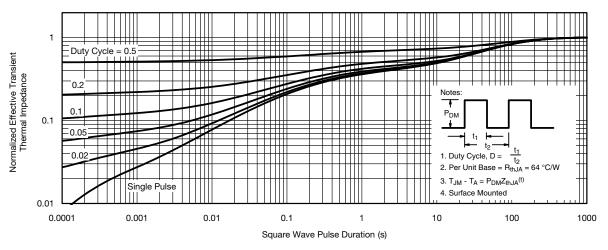
On-Resistance vs. Gate-to-Source Voltage


Threshold Voltage

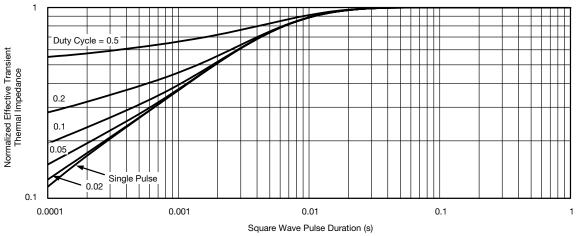


Vishay Siliconix

CHANNEL-2 TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)



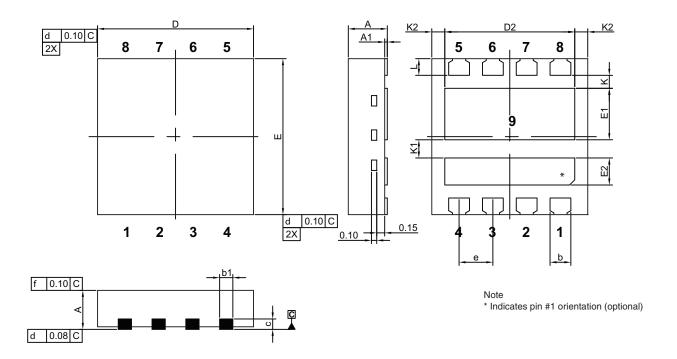
Power, Junction-to-Case


^{*} The power dissipation P_D is based on $T_{J(max)}$ = 150 °C, using junction-to-case thermal resistance, and is more useful in settling the upper dissipation limit for cases where additional heatsinking is used. It is used to determine the current rating, when this rating falls below the package limit.

CHANNEL-2 TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)

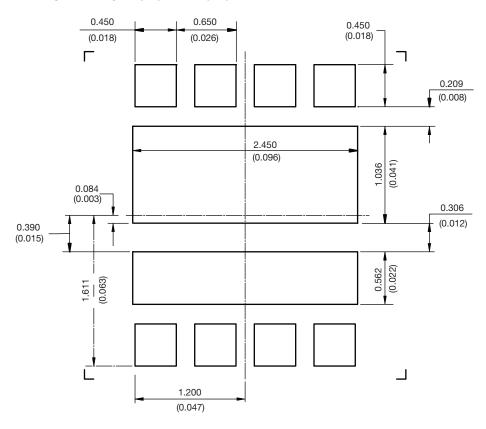


Normalized Thermal Transient Impedance, Junction-to-Ambient


Normalized Thermal Transient Impedance, Junction-to-Case

Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and reliability data, see www.vishay.com/ppg?67715.

PowerPAIR® 3 x 3 Case Outline



		MILLIMETERS			INCHES	
DIM.	MIN.	NOM.	MAX.	MIN.	NOM.	MAX.
Α	0.70	0.75	0.80	0.028	0.030	0.031
A1	0.00		0.05	0.000		0.002
b	0.35	0.40	0.45	0.014	0.016	0.018
b1	0.20	0.25	0.38	0.008	0.010	0.015
С	0.18	0.20	0.23	0.007	0.008	0.009
D	2.90	3.00	3.10	0.114	0.118	0.122
D2	2.35	2.40	2.45	0.093	0.094	0.096
E	2.90	3.00	3.10	0.114	0.118	0.122
E1	0.94	0.99	1.04	0.037	0.039	0.041
E2	0.47	0.52	0.57	0.019	0.020	0.022
е		0.65 BSC			0.026 BSC	
K		0.25 typ.			0.010 typ.	
K1	0.35 typ. 0.014 typ.					
K2	0.30 typ. 0.012 typ.					
L	0.27	0.32	0.37	0.011	0.013	0.015

DWG: 5998

RECOMMENDED MINIMUM PAD FOR PowerPAIR® 3 x 3

Recommended PAD for PowerPAIR 3 x 3

Dimensions in millimeters (inches)

Keep-Out 3.5 mm x 3.5 mm for non terminating traces

Legal Disclaimer Notice

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and/or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

Material Category Policy

Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as RoHS-Compliant fulfill the definitions and restrictions defined under Directive 2011/65/EU of The European Parliament and of the Council of June 8, 2011 on the restriction of the use of certain hazardous substances in electrical and electronic equipment (EEE) - recast, unless otherwise specified as non-compliant.

Please note that some Vishay documentation may still make reference to RoHS Directive 2002/95/EC. We confirm that all the products identified as being compliant to Directive 2002/95/EC conform to Directive 2011/65/EU.

Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as Halogen-Free follow Halogen-Free requirements as per JEDEC JS709A standards. Please note that some Vishay documentation may still make reference to the IEC 61249-2-21 definition. We confirm that all the products identified as being compliant to IEC 61249-2-21 conform to JEDEC JS709A standards.

Revision: 02-Oct-12 Document Number: 91000

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Vishay:

SIZ300DT-T1-GE3