


RECOMMENDED PC BOARD MOUNTING DIMENSIONS FOR .063 [1.60] THICK PC BOARD AND .012 [.305] STENCIL THICK.

- 1 ASSEMBLY MAY BE BROKEN TO THE DESIRED NUMBER OF POSITIONS.
- TRUE POSITION TOLERANCE OF THE POST TIPS APPLIES WHEN THE HEADERS ARE HELD FLAT AGAINST THE PRINTED CIRCUIT BOARD.

0.000381 [.000015] GOLD IN CONTACT AREA, 0.00254-0.00508 [.0000100-.0000200] MATTE TIN-LEAD ON SOLDER TAIL, ALL OVER 0.00127 [.000050] NICKEL.

MATERIAL: HOUSING — LCP, COLOR: BLACK.
POSTS — COPPER ALLOY.

0.000381 [.000015] GOLD IN CONTACT AREA, 0.00254-0.00508 [.0000100-.0000200] MATTE TIN ON SOLDER TAIL, ALL OVER 0.00127 [.000050] NICKEL.

OBSOLETE PARTS: OBSOLETE CIS STREAMLINING PER D.RENAUD/D.SINISI.

\wedge	101.19	99.06	7.0	4.0	0 4 4 0 0 0 0 0	<u> </u>	[.284]	[.200] 99.06	2	3	5-146280-3
<u>/</u> 5	[3.984]	[3.900] 96.52	39	40	9-146280-	/ / /	[3.984] 98.65	[3.900] 96.52	39	40	4-146280-0
<u> </u>	[3.884]	[3.800]	38	39	8-146280	3	[3.884]	[3.800]	38	39	3 146280 9
5	96.11 [3.784]	93.98 [3.700]	37	38	8-146280	3	96.11 [3.784]	93.98 [3.700]	37	38	6 3 146280 8
<u></u>	93.57 [3.684]	91.44	36	37	6-8-146280-	7	93.57	91.44	36	37	6 3 146280 7
<u> </u>	91.03	88.90 [3.500]	35	36	8-146280-	$\sqrt{3}$	91.03	88.90 [3.500]	35	36	△ 3-146280-6
<u></u>	88.49 [3.484]	86.36 [3.400]	34	35	<u> </u>		88.49	86.36 [3.400]	34	35	
\wedge	85.95	83.82	33	34	<u> </u>	4	[3.484] 85.95	83.82	33	34	<u> </u>
<u>/5\</u>	[3.384] 83.41	[3.300] 81.28	32	33	/6\ \ <u>-8-146280-</u>	Z / /	[3.384] 83.41	[3.300] 81.28	32	33	√6\
<u>/5\</u>	[3.284] 80.87	[3.200] 78.74	31	32	/6\	73	[3.284] 80.87	[3.200] 78.74	31	32	/6\
<u>/5\</u>	[3.184] 78.33	[3.100] 76.20			8-146280		[3.184] 78.33	[3.100] 76.20			3-146280-2
<u></u>	[3.084]	[3.000]	30	31	8-146280-	1 /3	[3.084]	[3.000]	30	31	6 3 146280 1
25	75.79 [2.984]	73.66 [2.900]	29	30	8-146280-) 3	75.79 [2.984]	73.66 [2.900]	29	30	6 3 146280 0
5	73.25 [2.884]	71.12	28	29	6 -7 -146280 -)	73.25 [2.884]	71.12	28	29	6 2-146280-9
<u></u>	70.71 [2.784]	68.58 [2.700]	27	28	7-146280	3 3	70.71	68.58 [2.700]	27	28	6 2-146280-8
<u></u>	68.17	66.04	26	27	<u> </u>		68.17	66.04	26	27	<u> </u>
\wedge	[2.684]	[2.600]	25	26	7-146280-		[2.684] 65.63	[2.600] 63.5	25	26	√6\ ↑ 2-146280-6
<u>/5\</u>	[2.584] 63.09	[2.500] 60.96	24	25	\(\sigma \) -7-146280-	3	[2.584] 63.09	[2.500] 60.96	24	25	√6\ ↑ 2 146280 5
<u> </u>	[2.484] 60.55	[2.400] 58.42			/6\		[2.484] 60.55	[2.400] 58.42	23		/6\
<u> </u>	[2.384] 58.01	[2.300] 55.88	23	24	6 7-146280-	/3	[2.384] 58.01	[2.300] 55.88		24	6 2 146280 4
25	[2.284]	[2.200]	22	23	6 7-146280-	3	[2.284]	[2.200]	22	23	6 2-146280-3
<u></u>	55.47 [2.184]	53.34 [2.100]	21	22	6 7 146280	2 3	55.47 [2.184]	53.34 [2.100]	21	22	6 2 146280 2
<u> </u>	52.93 [2.084]	50.80 [2.000]	20	21	7-146280-	1— 3	52.93 [2.084]	50.80 [2.000]	20	21	6 2-146280-1
<u></u>	50.39	48.26	19	20	7-146280		50.39	48.26 [1.900]	19	20	<u> </u>
<u></u>	47.85 [1.884]	45.72 [1.800]	18	19	<u> </u>		47.85	45.72 [1.800]	18	19	/6\ /\ -1-146280-9
\wedge	45.31	43.18	17	18	<u> </u>		[1.884]	43.18	17	18	<u> </u>
<u>/5\</u>	[1.784] _42.77_	[1.700]	16	17	√6\	7	[1.784] 42.77	[1.700]	16	 17	\(\sqrt{6} \) \(\sqrt{-1-146280-7} \)
<u> </u>	[1.684] 40.23	[1.600] 38.10	15	16	/6\		[1.684]	[1.600] 38.10	15	16	/6\
<u>/5\</u>	[1.584] 37.69	[1.500] 35.56			6 6 146280		[1.584] 37.69	[1.500] 35.56			6 1-146280-6
<u></u>	[1.484]	[1.400]	14	15	6-146280-	3	[1.484]	[1.400]	14	15	6 1 1 4 6 2 8 0 - 5
25	35.15 [1.384]	33.02 [1.300]	13	14	6-146280-	1 3	35.15 [1.384]	33.02 [1.300]	13	14	6 1-146280-4
<u> </u>	32.61 [1.284]	30.48	12	13	6 -6 -146280	3 3	32.61 [1.284]	30.48 [1.200]	12	13	6 1-146280-3
<u> </u>	30.07 [1.184]	27.94 [1.100]	11	12	6-146280-	2 3	30.07 [1.184]	27.94 [1.100]	11	12	6 1-146280-2
25	27.53 [1.084]	25.40 [1.000]	10	11	6-146280-		27.53	25.40 [1.000]	10	11	1-146280-1
\wedge	24.99	22.86	9	10	6-146280-		24.99	22.86	9	10	<u> </u>
<u>/</u> 5\	[.984]	[.900]	8	9	5-146280-	3	[.984]	[.900]	8	9	√6\
<u>/5\</u>	[.884] 19.91	[.800] 17.78	7	8	5-146280-	73	[.884]	[.800] 17.78	7	 	146280-8
<u> </u>	[.784] 17.37	[.700]					[.784]	[.700] 15.24	/		
<u>/5</u>	[.684]	[.600]	6	7	5-146280-	7	[.684]	[.600]	6	7	6 146280 7
5	14.83	12.70	5	6	5-146280-	3	[.584]	[.500]	5	6	146280-6
<u></u>	12.29 [.484]	10.16	4	5	5-146280-	3	12.29 [.484]	10.16 [.400]	4	5	6 146280 5
<u></u>	9.75 [.384]	7.62 [.300]	3	4	5-146280-	4 3	9.75	7.62	3	4	146280-4
<u></u>	7.21	5.08	2	3	5-146280-		7.21	5.08	2	3	<u> </u>
\wedge	4.67	2.54	1	2	5-146280-		4.67	2.54	1	2	146280-2
<u>/5</u> \	[.184]	[.100]	0	1	5-146280-	1 /3	[.184]	[.100]	0	1	<u> </u>
<u> </u>	[.084]			NO OF			[.084]			NO. OF	6
LATING	\subset	В	A	NO. OF POSITIONS	PART NUMBE	R PLATING		В		POSITIONS	PART NUMBER

mm [INCHES]

JSTOMER DRAWING

± -± 0.51 [.02] ± 0.127 [.005] APPLICATION SPEC ± 0.0127 [.0005] HDR ASSY, MOD II, BREAKWAY, SINGLE ROW, HIGH TEM, VERTICAL

W/.025 SQ POSTS, .100 Q

SIZE CAGE CODE DRAWING NO

4805 (1/15)

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

TE Connectivity: 6-146280-1