OPB950Z

Obsolete (OPB951)

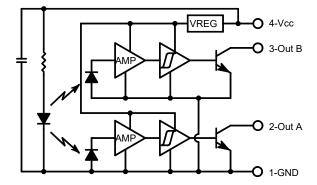
Features:

- Dual channel outputs for Quadrature Output
- Open collector inverter outputs
- 0.010" (0.254 mm) sensor apertures for high resolution
- Snap mount

Description:

The OPB950Z consists of an infrared Light Emitting Diode (LED) and a monolithic integrated circuit which incorporates two independent photodiodes, linear amplifiers, Schmitt trigger circuits and output transistors. It features a dual open-collector output that is compatible with TTL/LSTTL and can drive up to 8 TTL loads.

Applications include linear and rotary encoders with high resolution provided by internal 0.010" (0.254 mm) apertures located in front of each Photologic® sensor on 0.040" (1.02 mm) center line spacing.


Custom electrical, wire, cabling and connectors are available. Contact your local representative or OPTEK for more information.

Applications:

- Mechanical switch replacement
- Speed and direction indication
- Mechanical limit indication
- Rotary encoders
- Edge sensing
- Sliding Door Automotive and Liftgate applications

Ordering Information										
Part Number			Slot Width / Depth	Aperture Emitter/ Sensor	Connector					
OPB950Z					Wellpex					
OPB951 Obsolete	890 nm	Dual TTL	0.200" / 0.350"	0.05" / 0.01"	C25002WS-04-LF					

OPB950Z

RoHS

OPB950Z

Obsolete (OPB951)

Electrical Specifications

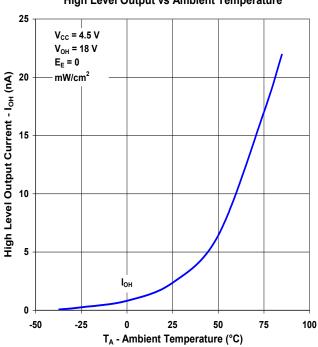
Absolute Maximum Ratings (T_A = 25° C unless otherwise noted)

Storage & Operating Temperature Range	-40° C to +85° C
Input Diode	
Forward DC Current	50 mA
Reverse DC Voltage	2.0 V
Power Dissipation	100 mW
Output Photologic®	
Supply Voltage, V _{CC}	5.5 V
Voltage at Output	16 V
Power Dissipation	200 mW
Sinking Output Current	40 mA

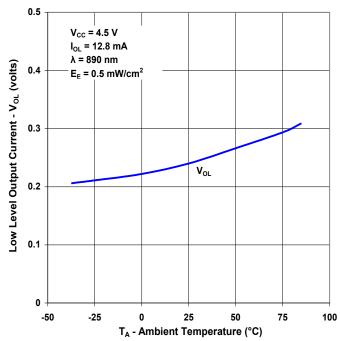
Electrical Characteristics ($T_A = 25^{\circ}$ C and $V_{CC} = +5$ Volts unless otherwise noted)

SYMBOL	PARAMETER	MIN	TYP	MAX	UNITS	TEST CONDITIONS
V _{cc}	Operating Supply Voltage		-	5.5	V	-
E _{ET} (+)/E _{ET} (-)	Hysteresis Ratio	1.1	1.5	2	-	-
МАТСН	CH Channel Match $E_{ET}^{(+A)}/E_{ET}^{(+B)}$		1	1.5	-	-
I _{CCL}	Supply Current, Both Outputs Low (LED On, No Target)	-	8.5	12	mA	$E_E = 0.5 \text{ mW/cm}^2 \text{ (no load on output)}$
I _{ссн}	Supply Current, Both Outputs High (LED Off)	-	3.5	6	mA	E _E = 0 mW/cm ² (no load on output)
I _{CCM}	Supply Current, Mixed Output States (one high, one low)	-	6	-	mA	$E_E = 0 \text{ mW/cm}^2 \text{ and } 0.5 \text{ mW/cm}^2$
l _{oh}	High Level Output Current	-	1	30	μΑ	$E_E = 0 \text{ mW/cm}^2$, $V_{OH} = 16 \text{ V}$
V _{OL}	Low Level Output Voltage	-	0.21	0.4	V	$E_E = 0 \text{ mW/cm}^2$, $I_{OL} = 12.8 \text{ mA}$
T _{PHL} T _{PLH}	Propagation Delay Output High to Low Output Low to High	-	2 10	1	μs μs	V_{CC} = 5 V, R_L = 360 Ω E_E = 0 or 0.5 mW/cm ² , f = 10 kHz, D.C. = 50%
t _r t _f	Output Rise Time Output Fall Time	-	20 15	1	ns ns	-

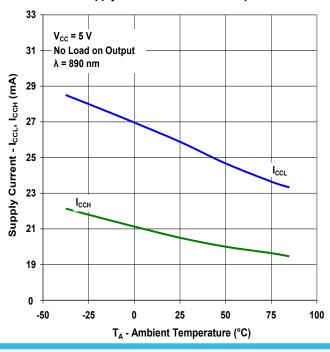
Rev B 04/2023 Page 2


OPB950Z

Obsolete (OPB951)

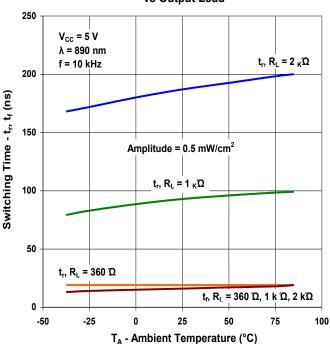


Performance

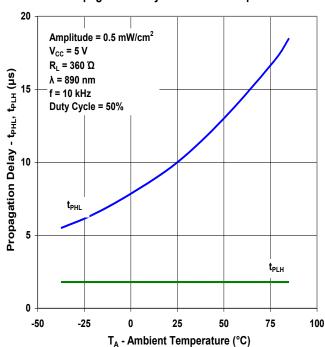

High Level Output vs Ambient Temperature

Low Level Output vs Ambient Temperature

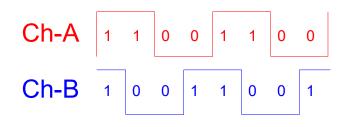
Supply Current vs Ambient Temperature

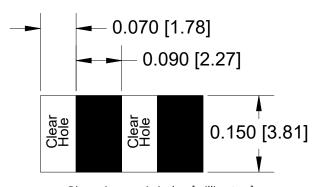

OPB950Z

Obsolete (OPB951)



Performance


Rise and Fall Time vs Ambient Temperature vs Output Load

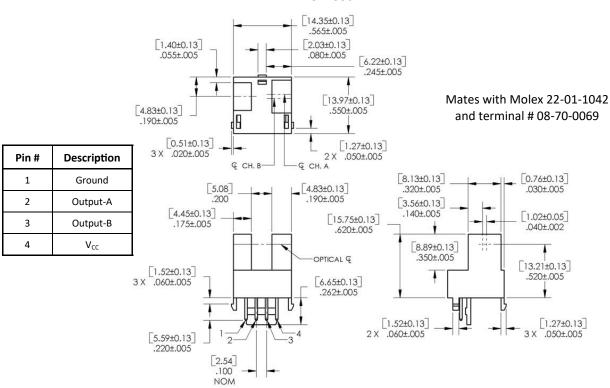

Propagation Delay vs Ambient Temperature

Sensor Output(s)

Ideal Target Size & Spacing For Linear or Circular Targets

Dimensions are in inches [millimeters]

Please consult OPTEK for target design and sensor location relative to the target.


OPB950Z

Obsolete (OPB951)

Packaging

OPB950Z

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

TT Electronics:

OPB950Z