**Dual Relay** 



A Unit of Teledyne Electronic Technologies

**Part Number** Description LPBD100 .25A, 100Vdc dual solid-state relay

### **MECHANICAL SPECIFICATION**

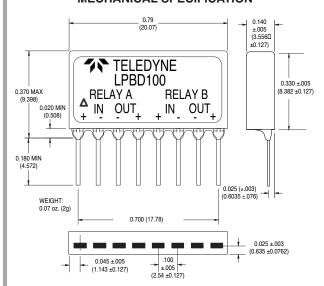
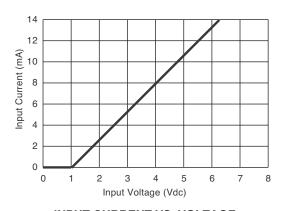




Figure 1 – LPBD100 relay; dimensions in inches (mm)

### **INPUT (CONTROL) SPECIFICATIONS**

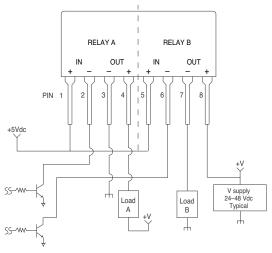
|                                      | Min | Max | Units |
|--------------------------------------|-----|-----|-------|
| Control Voltage Range                | 4.0 | 7.0 | Vdc   |
| (See Note 1)                         |     |     |       |
| Input Current @ 5 Vdc (See Figure 2) |     | 12  | mAdc  |
| Must Turn-On Voltage                 |     | 0.8 | Vdc   |
| Must Turn-Off Voltage                | 4.0 |     | Vdc   |
| Must Turn-On Current                 |     | 50  | μAdc  |
| Reverse Voltage                      | 7   |     | Vdc   |



**INPUT CURRENT VS. VOLTAGE** Figure 2



#### FEATURES/BENEFITS


- · Compact SIP plastic package
- · Dual output: two relays in one package
- · Normally closed output
- Low voltage drop

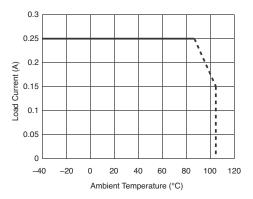
### **DESCRIPTION**

The LPBD100 is a dual-output 100Vdc plastic relay. The relay output-switch contacts are normally closed and will conduct the load current until a voltage is applied to the relay input. With 4 volts or more at the relay input, the output-switch contacts open and the relay no longer conducts. The LPBD100 assembly contains two independent relays, completely isolated from each other, in a single in-line package (SIP). The relays provide optical isolation between input and output terminals. Each relay output circuit uses a pair of depletion-mode MOSFETs for reliable operation.

### **APPLICATIONS**

- · Interface applications
- · Aircraft flight control systems
- A.T.E
- · 28Vdc aircraft instrumentation systems




TYPICAL WIRING DIAGRAM Figure 3

A Unit of Teledyne Electronic Technologies

| <b>OUTPUT (LOAD) SPECIFICATION</b>   |      |              |  |  |  |
|--------------------------------------|------|--------------|--|--|--|
| Min                                  | Max  | Units        |  |  |  |
| Load Voltage Rating                  | 100  | Vdc          |  |  |  |
| Load Current Range (See Figure 5)    | 0.25 | Adc          |  |  |  |
| Transient Blocking Voltage           | 200  | Vdc          |  |  |  |
| Output Capacitance@ 25Vdc            | 120  | pF           |  |  |  |
| On-State Voltage Drop (See Figure 4) | 1.25 | Vdc          |  |  |  |
| On Resistance                        | 5.0  | Ohm          |  |  |  |
| Off-State Leakage Current (100 Vdc)  | 10   | μ <b>Adc</b> |  |  |  |
| Turn-On Time                         | 0.5  | ms           |  |  |  |
| Turn-Off Time                        | 2.5  | ms           |  |  |  |

### 350 300 300 200 150 100 50 0 0.2 0.4 0.6 0.8 1 Output Voltage Drop (V)

## OUTPUT CURRENT VS. VOLTAGE DROP Figure 4



# LOAD CURRENT VS. AMBIENT TEMPERATURE Figure 5

### **ENVIRONMENTAL SPECIFICATION**

Min

May

Unite

|                     |                         | Min             | Max       | Units |
|---------------------|-------------------------|-----------------|-----------|-------|
| Operating Tempera   | iture                   | -40             | +85       | °C    |
| Storage Temperatu   | re                      | <b>-</b> 55     | +100      | °C    |
| Junction Temperatu  | ire                     |                 | 125       | °C    |
| Thermal Resistanc   | е                       |                 |           |       |
| (Junction to Ambier | nt) each                | relay           | 120       | °C/W  |
| Shock               |                         |                 | 1500      | g     |
| Vibration           |                         |                 | 100       | g     |
| Dielectric Strength |                         | 500             |           | Vac   |
| Insulation Resistan | ce                      |                 |           |       |
| (@500 Vdc)          |                         | 10 <sup>9</sup> |           | Ohm   |
| Input to Output Cap | acitano                 | е               | 5         | pF    |
| Resistance to       |                         |                 |           |       |
| Soldering Heat      | MIL S                   | TD 202, m       | ethod 210 |       |
| Solderability       | MIL STD 202, method 208 |                 |           |       |
| Thermal Shock       | MIL S                   | TD 202, m       | ethod 107 |       |
| Altitude            |                         | 55,000          |           | ft    |
| HAST                | JDEC Test Method A110   |                 |           |       |
|                     | 130°C 85% RH, no power  |                 |           |       |
|                     |                         |                 |           |       |

applied, 50 hours

### NOTES:

- For input voltages greater than 7 volts, use an external resistor in series with the relay input. Rext. = (Vin-7 Vdc)/0.012 Amps
- Unless otherwise specified: conformance testing is at room temperature; the input voltage is 5Vdc or zero volts as required; the output load is 48Vdc, 0.25 amp.
- 3. Relay input voltage transitions should be less than 1.0 millisecond.
- 4. Maximum load current ratings are with the relay in free air and soldered to a printed circuit board.
- Timing is measured from the input voltage transition to the 10% or 90% point on the output voltage off-to-on or on-to-off transition. Rise and fall times are from the 10% to 90% points on the output voltage transition.



### **FUNCTIONAL BLOCK DIAGRAM**

Figure 6

### **Mouser Electronics**

**Authorized Distributor** 

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Teledyne Relays: LPBD100