

EPCOS Data Book 2017

Ferrites and Accessories

Ferrites and accessories

The following applies to all products named in this publication:

- 1. Some parts of this publication contain **statements about the suitability of our products for certain areas of application**. These statements are based on our knowledge of typical requirements that are often placed on our products in the areas of application concerned. We nevertheless expressly point out **that such statements cannot be regarded as binding statements about the suitability of our products for a particular customer application.** As a rule, EPCOS is either unfamiliar with individual customer applications or less familiar with them than the customers themselves. For these reasons, it is always ultimately incumbent on the customer to check and decide whether an EPCOS product with the properties described in the product specification is suitable for use in a particular customer application.
- 2. We also point out that **in individual cases, a malfunction of electronic components or failure before the end of their usual service life cannot be completely ruled out in the current state of the art, even if they are operated as specified.** In customer applications requiring a very high level of operational safety and especially in customer applications in which the malfunction or failure of an electronic component could endanger human life or health (e.g. in accident prevention or life-saving systems), it must therefore be ensured by means of suitable design of the customer application or other action taken by the customer (e.g. installation of protective circuitry or redundancy) that no injury or damage is sustained by third parties in the event of malfunction or failure of an electronic component.
- 3. **The warnings, cautions and product-specific notes must be observed**.
- 4. In order to satisfy certain technical requirements, **some of the products described in this publication may contain substances subject to restrictions in certain jurisdictions (e.g. because they are classed as hazardous)**. Useful information on this will be found in our Material Data Sheets on the Internet (www.epcos.com/material). Should you have any more detailed questions, please contact our sales offices.
- 5. We constantly strive to improve our products. Consequently, **the products described in this publication may change from time to time**. The same is true of the corresponding product specifications. Please check therefore to what extent product descriptions and specifications contained in this publication are still applicable before or when you place an order.

We also **reserve the right to discontinue production and delivery of products**. Consequently, we cannot guarantee that all products named in this publication will always be available. The aforementioned does not apply in the case of individual agreements deviating from the foregoing for customer-specific products.

- 6. Unless otherwise agreed in individual contracts, **all orders are subject to the current version of the "General Terms of Delivery for Products and Services in the Electrical Industry" published by the German Electrical and Electronics Industry Association (ZVEI)**.
- 7. The trade names EPCOS, CeraDiode, CeraLink, CeraPad, CeraPlas, CSMP, CSSP, CTVS, DeltaCap, DigiSiMic, DSSP, ExoCore, FilterCap, FormFit, LeaXield, MiniBlue, MiniCell, MKD, MKK, MotorCap, PCC, PhaseCap, PhaseCube, PhaseMod, PhiCap, PowerHap, PQSine, PQvar, SIFERRIT, SIFI, SIKOREL, SilverCap, SIMDAD, SiMic, SIMID, SineFormer, SIOV, SIP5D, SIP5K, TFAP, ThermoFuse, WindCap are **trademarks registered or pending** in Europe and in other countries. Further information will be found on the Internet at www.epcos.com/trademarks.

公TDK

Contents

5 1/17

Please read *Important notes* on page 2 and *Cautions and warnings* on page 674

Please read *Important notes* on page 2 and *Cautions and warnings* on page 674

10 1/17

RM cores

¹⁾ Height above mounting plane

RM cores (continued)

¹⁾ Height above mounting plane

PQ cores

¹⁾ Height above mounting plane

PM cores

¹⁾ Height above mounting plane

EP cores

¹⁾ Height above mounting plane

P cores (pot cores)

¹⁾ Height above mounting plane

P cores (pot cores) (continued)

¹⁾ Height above mounting plane

P core halves and PS cores

E cores

 $\overline{1}$) The E core designations have been brought into line with IEC; the previous designations are given in parentheses.

2) Height above mounting plane

E cores (continued)

 $\overline{1}$) The E core designations have been brought into line with IEC; the previous designations are given in parentheses.

2) Height above mounting plane

E cores with distributed air gap

ELP cores

EQ cores

ER planar cores

ER cores

¹⁾ Height above mounting plane

ETD cores

¹⁾ Height above mounting plane

EFD, EV cores

EFD cores

EV cores

¹⁾ Height above mounting plane

U, UI cores

Toroids (ring cores)

Double-aperture cores

FPC film

(In numerical order)

29 1/17

30 1/17

32 1/17

Based on IEC 60401-3, the data specified here are typical data for the material in question, which have been determined principally on the basis of toroids (ring cores).

The purpose of such characteristic material data is to provide the user with improved means for comparing different materials.

There is no direct relationship between characteristic material data and the data measured using other core shapes and/or core sizes made of the same material. In the absence of further agreements with the manufacturer, only those specifications given for the core shape and/or core size in question are binding.

1 Material application survey

1) Not for new design

2 Material properties

Material properties (continued)

1) For threaded cores μ_i = 600 \pm 20%

2) Not for new design, to be replaced by N48

Material properties (continued)

1) Not for new design

Material properties (continued)

1) Not for new design

Material properties (continued)

1) Material values defined on the basis of small toroids (≤R10)

Material properties (continued)

Material properties (continued)

1) Not for new design

Material properties (continued)

Material properties (continued)

1) Not for new design

Material properties (continued)

1) $T = 23$ °C and 50% relative humidity

3 Measuring conditions

The following measuring conditions, which correspond largely to IEC 60401-3, apply for the material properties given in the table:

The following properties are given only for materials for power applications:

1) Higher temperature than specified by IEC (40 °C)

4 Specific material data

DC magnetic bias

$$
H_{DC} = \frac{I_{DC} \cdot N}{I_e}
$$

- H_{DC} DC field strength (A/m)
- I_{DC} Direct current (A)
- N Number of turns
- I_{a} Effective magnetic path length (m)

The curves of $\mu_{\text{rev}} = f(H_{\text{DC}})$ allow an approximate calculation of the variation in reversible permeability (μ_{rev}) and A_{L} value caused by magnetic bias. These curves are of particular interest for cores for transformers and chokes, since magnetic bias should be avoided if possible with inductors requiring high stability (filter inductors etc.). In the case of geometrically similar cores (i.e. in particular the same A_{min}/A_e ratio) the effective permeability of the core in question in conjunction with the given curves suffices to determine the reversible permeability to a close approximation.

Inductors for resonant circuits and proximity switches

Relative loss factor versus frequency

(measured with ring cores, measuring flux density $\hat{B} \le 0.25$ mT)

Broadband transformers

Relative inductance component versus frequency (measured with ring cores, measuring flux density $\hat{B} \le 0.25$ mT)

Power transformers

Performance factor versus frequency

(measured with ring cores R29, $T = 100 °C$, PV = 300 kW/m³)

For definition of performance factor see page 132.

Broadband and filter applications

Standardized hysteresis material constant versus temperature

For definition of performance factor [see page 134.](#page-134-0)

Normalized impedance

Please read *Important notes* on page 2

and *Cautions and warnings* on page 674

K1

Complex permeability versus frequency (measured on R10 toroids, $\hat{B} \le 0.25$ mT)

Permeability factor versus temperature (measured on P and RM cores, $\overline{\mathsf{B}}$ ≤0.25 mT), μ_i ≈ 80

Initial permeability μ_i and relative loss factor tan δ/μ_i versus temperature $\overline{\mathsf{B}}$ ≤0.25 mT) (measured on R10 toroids, $\overline{\mathsf{B}}$ ≤0.25 mT)

Dynamic magnetization curves (typical values) $(f = 10 \text{ kHz}, T = 25 \text{ °C})$

Dynamic magnetization curves (typical values) $(f = 10 \text{ kHz}, T = 100 \degree \text{C})$

Complex permeability versus frequency (measured on R10 toroids, $\hat{B} \le 0.25$ mT)

Dynamic magnetization curves (typical values)

Initial permeability μ_i and relative loss factor tan δ/μ_i versus temperature $\overline{\mathsf{B}}$ ≤0.25 mT) (measured on R10 toroids, $\overline{\mathsf{B}}$ ≤0.25 mT)

Dynamic magnetization curves (typical values)

 $(f = 10$ kHz, T = 100 °C)

Please read *Important notes* on page 2 and *Cautions and warnings* on page 674

Complex permeability versus frequency (measured on R10 toroids, $\overline{B} \le 0.25$ mT)

Permeability factor versus temperature (measured on P and RM cores, $\overline{\mathsf{B}}$ ≤0.25 mT), μ_i ≈ 750

Initial permeability μ_i and relative loss factor tan δ/μ_i versus temperature (measured on R10 toroids, $\overline{B} \le 0.25$ mT)

DC magnetic bias of P and RM cores (typical values)

 $(B ≤ 0.25 mT, f = 10 kHz, T = 25 °C)$

Dynamic magnetization curves (typical values) $(f = 10 \text{ kHz}, T = 25 \text{ }^{\circ}\text{C})$

Dynamic magnetization curves (typical values) $(f = 10 \text{ kHz}, T = 100 \degree \text{C})$

Complex permeability versus frequency (measured on R10 toroids, $\hat{B} \le 0.25$ mT)

Dynamic magnetization curves (typical values) $(f = 10$ kHz, T = 25 °C)

Initial permeability μ_i and relative loss factor tan δ/μ_i versus temperature $\overline{\mathsf{B}}$ ≤0.25 mT) (measured on R10 toroids, $\overline{\mathsf{B}}$ ≤0.25 mT)

 $(f = 10$ kHz, T = 100 °C)

Complex permeability versus frequency (measured on R10 toroids, $\hat{B} \le 0.25$ mT)

Amplitude permeability versus AC field flux density

(measured on ungapped E cores)

Initial permeability μ_i versus temperature (measured on R10 toroids, $\hat{B} \le 0.25$ mT)

Dynamic magnetization curves (typical values) $(f = 10$ kHz, T = 25 °C)

DC magnetic bias measured on ETD cores $(B \le 0.25 \text{ mT}, f = 10 \text{ kHz}, T = 25 \text{ }^{\circ}\text{C})$

Dynamic magnetization curves (typical values) $(f = 10$ kHz, T = 100 °C)

Please read *Important notes* on page 2 and *Cautions and warnings* on page 674

Relative core losses versus AC field flux density (measured on R16 toroids)

Relative core losses versus frequency (measured on R16 toroids)

Relative core losses versus temperature (measured on R16 toroids)

Please read *Important notes* on page 2 and *Cautions and warnings* on page 674

Complex permeability versus frequency (measured on R10 toroids, $\overline{B} \le 0.25$ mT)

Variation of initial permeability with temperature (measured on R10 toroids, $\hat{\mathsf{B}} \leq 0.25 \text{ mT}$)

Initial permeability μ. versus temperature (measured on R10 toroids, $\overline{B} \le 0.25$ mT)

Relative loss factor versus frequency (measured on R20 toroids, $\hat{B} \le 0.25$ mT)

Please read *Important notes* on page 2 and *Cautions and warnings* on page 674

64 1/17

Dynamic magnetization curves (typical values) $(f = 10$ kHz, T = 25 °C)

DC magnetic bias of RM cores (typical values) (B ≤0.25 mT, f = 10 kHz, T = 25 °C)

Dynamic magnetization curves (typical values) $(f = 10$ kHz, T = 100 °C)

Please read *Important notes* on page 2 and *Cautions and warnings* on page 674

N41

Complex permeability versus frequency (measured with R10 ring cores, $\hat{B} \le 0.25$ mT)

Amplitude permeability versus AC field flux density (measured on ungapped E cores)

Initial permeability μ_i versus temperature (measured with R10 ring cores, $\hat{B} \le 0.25$ mT)

Dynamic magnetization curves (typical values) $(f = 10$ kHz, T = 25 °C)

DC magnetic bias of P and RM cores

Dynamic magnetization curves (typical values) $(f = 10$ kHz, T = 100 °C)

Relative core losses versus AC field flux density (measured on R16 toroids)

Relative core losses versus frequency (measured on R16 toroids)

Relative core losses versus temperature (measured on R16 toroids)

Complex permeability versus frequency (measured on R29 toroids, $\overline{B} \le 0.25$ mT)

Variation of initial permeability with temperature (measured on R29 toroids, $\hat{\mathsf{B}} \leq 0.25 \text{ mT}$)

Initial permeability μ_i versus temperature (measured on R29 toroids, $\overline{B} \le 0.25$ mT)

Relative loss factor versus frequency (measured on R29 toroids, $\hat{B} \le 0.25$ mT)

Dynamic magnetization curves (typical values) $(f = 10$ kHz, T = 25 °C)

DC magnetic bias of P and RM cores (typical values)

(B ≤0.25 mT, f = 10 kHz, T = 25 °C)

Dynamic magnetization curves (typical values) $(f = 10$ kHz, T = 100 °C)

Complex permeability versus frequency (measured on R10 toroids, $\overline{B} \le 0.25$ mT)

Permeability factor versus temperature (measured on P and RM cores, $\hat{B} \le 0.25$ mT), μ _i \approx 2300

Initial permeability μ_i and relative loss factor tan δ/μ_i versus temperature (measured on R10 toroids, $\overline{B} \le 0.25$ mT)

Relative loss factor tan δ/μⁱ versus frequency (measured on R29 toroids)

Please read *Important notes* on page 2 and *Cautions and warnings* on page 674

Dynamic magnetization curves (typical values) $(f = 10$ kHz, T = 25 °C)

DC magnetic bias (measured on ETD cores, typical values)

Dynamic magnetization curves (typical values) $(f = 10$ kHz, T = 100 °C)

Complex permeability versus frequency (measured on R34 toroids, $\hat{B} \le 0.25$ mT)

Amplitude permeability versus AC field flux density (measured on R34 toroids, $\hat{\mathsf{B}} \leq 0.25 \text{ mT}$)

Initial permeability μ_i versus temperature $\overline{\mathsf{B}}$ ≤0.25 mT) (measured on R34 toroids, $\overline{\mathsf{B}}$ ≤0.25 mT)

Dynamic magnetization curves (typical values) $(f = 10$ kHz, T = 100 °C)

DC magnetic bias measured on ETD cores $(\hat{B} \le 0.25$ mT, f = 10 kHz, T = 100 °C)

Relative core losses versus AC field flux density (measured on R34 toroids)

Relative core losses versus frequency (measured on R34 toroids)

Relative core losses versus temperature (measured on R34 toroids)

Complex permeability versus frequency (measured on R34 toroids, $\hat{B} \le 0.25$ mT)

Amplitude permeability versus AC field flux density (measured on R34 toroids, $\hat{\mathsf{B}} \leq 0.25 \text{ mT}$)

Initial permeability μ_i versus temperature $\overline{\mathsf{B}}$ ≤0.25 mT) (measured on R34 toroids, $\overline{\mathsf{B}}$ ≤0.25 mT)

Dynamic magnetization curves (typical values) $(f = 10$ kHz, T = 25 °C)

DC magnetic bias measured on E cores (B ≤0.25 mT, f = 10 kHz, T = 25 °C)

Dynamic magnetization curves (typical values) $(f = 10$ kHz, T = 100 °C)

Relative core losses versus AC field flux density (measured on R34 toroids)

Relative core losses versus temperature (measured on R34 toroids)

Relative core losses versus frequency (measured on R34 toroids)

Relative core losses versus temperature (measured on R34 toroids)

Please read *Important notes* on page 2 and *Cautions and warnings* on page 674

N72

Complex permeability versus frequency (measured on R29 toroids, $\hat{B} \le 0.25$ mT)

Amplitude permeability versus AC field flux density

(measured on ungapped U cores)

Initial permeability μ_i versus temperature (measured on R29 toroids, $\hat{B} \le 0.25$ mT)

Dynamic magnetization curves (typical values) $(f = 10 \text{ kHz}, T = 25 \text{ °C})$

DC magnetic bias measured on E cores $(\hat{B} \le 0.25$ mT, f = 10 kHz, T = 25 °C)

Dynamic magnetization curves (typical values) $(f = 10$ kHz, T = 100 °C)

DC magnetic bias measured on E cores $(B \le 0.25$ mT, f = 10 kHz, T = 100 °C)

Relative core losses versus AC field flux density (measured on R29 toroids)

Relative core losses versus frequency (measured on R29 toroids)

Relative core losses versus temperature (measured on R29 toroids)

Complex permeability versus frequency (measured on R34 toroids, $\hat{B} \le 0.25$ mT)

Amplitude permeability versus AC field flux density (measured on R34 toroids, $\hat{\mathsf{B}} \leq 0.25 \text{ mT}$)

Initial permeability μ_i versus temperature $\overline{\mathsf{B}}$ ≤0.25 mT) (measured on R34 toroids, $\overline{\mathsf{B}}$ ≤0.25 mT)

Dynamic magnetization curves (typical values) $(f = 10$ kHz, T = 100 °C)

DC magnetic bias of P, RM, PM and E cores $(\hat{B} \le 0.25$ mT, f = 10 kHz, T = 100 °C)

Relative core losses versus AC field flux density (measured on R34 toroids)

Relative core losses versus frequency (measured on R34 toroids)

Relative core losses versus temperature (measured on R34 toroids)

Complex permeability versus frequency (measured on R34 toroids, $\hat{B} \le 0.25$ mT)

Amplitude permeability versus AC field flux density (measured on R34 toroids, f < 10 kHz)

Initial permeability μ_i versus frequency (measured on R34 toroids, $\hat{B} \le 0.25$ mT)

Dynamic magnetization curves (typical values) $(f = 10$ kHz, T = 25 °C)

Dynamic magnetization curves (typical values) $(f = 10$ kHz, T = 140 °C)

Dynamic magnetization curves (typical values) $(f = 10$ kHz, T = 100 °C)

DC Magnetic bias measured on ETD29 cores $(\hat{B} \le 0.25$ mT, f = 10 kHz, T = 100 °C)

Relative core losses versus AC field flux density (measured on R34 toroids)

Relative core losses versus frequency (measured on R34 toroids)

Relative core losses versus temperature (measured on R34 toroids, $f = 100$ kHz)

Complex permeability versus frequency (measured on R34 toroids, $\hat{B} \le 0.25$ mT)

Amplitude permeability versus AC field flux density (measured on R34 toroids, $\hat{\mathsf{B}} \leq 0.25 \text{ mT}$)

Initial permeability μ_i versus temperature $\overline{\mathsf{B}}$ ≤0.25 mT) (measured on R34 toroids, $\overline{\mathsf{B}}$ ≤0.25 mT)

Dynamic magnetization curves (typical values) $(f = 10$ kHz, T = 25 °C)

DC magnetic bias measured on ETD cores $(\hat{B} \le 0.25$ mT, f = 10 kHz, T = 25 °C)

Dynamic magnetization curves (typical values) $(f = 10$ kHz, T = 100 °C)

DC magnetic bias measured on ETD cores $(\hat{B} \le 0.25$ mT, f = 10 kHz, T = 100 °C)

Relative core losses versus AC field flux density (measured on R34 toroids)

Relative core losses versus frequency (measured on R34 toroids)

Relative core losses versus temperature (measured on R34 toroids)

Complex permeability versus frequency (measured on R34 toroids, $\hat{B} \le 0.25$ mT)

Amplitude permeability versus AC field flux density (measured on R34 toroids, $\hat{\mathsf{B}} \leq 0.25 \text{ mT}$)

Initial permeability μ_i versus temperature $\overline{\mathsf{B}}$ ≤0.25 mT) (measured on R34 toroids, $\overline{\mathsf{B}}$ ≤0.25 mT)

Dynamic magnetization curves (typical values) $(f = 10$ kHz, T = 25 °C)

DC magnetic bias measured on ETD cores $(\hat{B} \le 0.25$ mT, f = 10 kHz, T = 25 °C)

Dynamic magnetization curves (typical values) $(f = 10$ kHz, T = 100 °C)

DC magnetic bias measured on ETD cores $(\hat{B} \le 0.25$ mT, f = 10 kHz, T = 100 °C)

Relative core losses versus AC field flux density (measured on R34 toroids)

Relative core losses versus temperature (measured on R34 toroids)

Relative core losses versus frequency (measured on R34 toroids)

Complex permeability versus frequency (measured on R34 toroids, $\hat{B} \le 0.25$ mT)

Amplitude permeability versus AC field flux density (measured on R34 toroids, f < 10kHz)

Initial permeability μ_i versus temperature (measured on R34 toroids, $\hat{B} \le 0.25$ mT)

Dynamic magnetization curves (typical values) $(f = 10$ kHz, T = 25 °C)

DC Magnetic bias measured on EQ30 cores $(\hat{B} \le 0.25$ mT, f = 10 kHz, T = 25 °C)

Dynamic magnetization curves (typical values) $(f = 10$ kHz, T = 100 °C)

DC Magnetic bias measured on EQ30 cores $(B \le 0.25$ mT, f = 10 kHz, T = 100 °C)

Relative core losses versus AC field flux density (measured on R34 toroids)

Relative core losses versus frequency (measured on R34 toroids)

Relative core losses versus temperature $(R34$ toroids, $f = 100$ kHz)

Complex permeability versus frequency (measured on R34 toroids, $\hat{B} \le 0.25$ mT)

Amplitude permeability versus AC field flux density (measured on R34 toroids, $\hat{\mathsf{B}} \leq 0.25 \text{ mT}$)

Initial permeability μ_i versus temperature $\overline{\mathsf{B}}$ ≤0.25 mT) (measured on R34 toroids, $\overline{\mathsf{B}}$ ≤0.25 mT)

Dynamic magnetization curves (typical values) $(f = 10$ kHz, T = 25 °C)

DC magnetic bias measured on ETD cores $(\hat{B} \le 0.25$ mT, f = 10 kHz, T = 25 °C)

Dynamic magnetization curves (typical values) $(f = 10$ kHz, T = 100 °C)

DC magnetic bias measured on ETD cores $(\hat{B} \le 0.25$ mT, f = 10 kHz, T = 100 °C)

Relative core losses versus AC field flux density (measured on R34 toroids)

Relative core losses versus frequency (measured on R34 toroids)

Relative core losses versus temperature (measured on R34 toroids)

Complex permeability versus frequency (measured on R34 toroids, $\hat{B} \le 0.25$ mT)

Amplitude permeability versus AC field flux density (measured on R34 toroids, f ≤10 kHz)

Initial permeability μ_i versus temperature (measured on R34 toroids, $\hat{B} \le 0.25$ mT)

Dynamic magnetization curves (typical values) $(f = 10 \text{ kHz}, T = 25 \text{ }^{\circ}\text{C})$

Dynamic magnetization curves (typical values) $(f = 10 \text{ kHz}, T = 100 \text{ °C})$

Relative core losses versus AC field flux density (measured on R20 toroids)

Relative core losses versus temperature

(measured on R20 toroids, $f = 1000$ kHz)

Relative core losses versus frequency (measured on R20 toroids)

Relative core losses versus temperature (measured on R20 toroids, $f = 2000$ kHz)

Please read *Important notes* on page 2 and *Cautions and warnings* on page 674

Performance factor measured frequency $(T = 100 °C, P_V = 300 kW/m³)$ FAL0884-9 80000 PC200 kHz mT $f - B_{max}$ 60000 50000 PC200 R20 イ PC200 R34 40000 30000 20000 N49 R34 N87 R34 10000 $\overline{0}$ 10^{1} $5 \t10^2$ $5 \t10^3$ kHz 1 -1

T35

Complex permeability versus frequency (measured on R10 toroids, $\overline{B} \le 0.25$ mT)

Variation of initial permeability with temperature (measured on R16 toroids, $\hat{\mathsf{B}} \leq 0.25 \text{ mT}$)

Initial permeability μ. versus temperature (measured on R16 toroids, $\overline{B} \le 0.25$ mT)

Relative loss factor versus frequency (measured on R16 toroids, $\hat{B} \le 0.25$ mT)

Please read *Important notes* on page 2 and *Cautions and warnings* on page 674

T35 SIFERRIT materials

Dynamic magnetization curves (typical values) $(f = 10$ kHz, T = 25 °C)

DC magnetic bias (measured on RM cores, typical values)

(B ≤0.25 mT, f = 10 kHz, T = 25 °C)

Dynamic magnetization curves (typical values) $(f = 10$ kHz, T = 100 °C)

T36

Complex permeability versus frequency (measured on R22 toroids, $\overline{B} \le 0.25$ mT)

Variation of initial permeability with temperature (measured on R22 toroids, $\hat{\mathsf{B}} \leq 0.25 \text{ mT}$)

Initial permeability μ_i versus temperature (measured on R22 toroids, $\overline{B} \le 0.25$ mT)

Relative loss factor versus frequency (measured on R22 toroids, $\hat{B} \le 0.25$ mT)

T36 SIFERRIT materials

Dynamic magnetization curves (typical values) $(f = 10$ kHz, T = 25 °C)

Dynamic magnetization curves (typical values) $(f = 10 \text{ kHz}, T = 100 \text{ °C})$

SIFERRIT materials

T37

Complex permeability versus frequency (measured on R16 toroids, $\overline{B} \le 0.25$ mT)

Variation of initial permeability with temperature (measured on R22 toroids, $\hat{\mathsf{B}} \leq 0.25 \text{ mT}$)

Initial permeability μ. versus temperature (measured on R22 toroids, $\overline{B} \le 0.25$ mT)

Relative loss factor versus frequency (measured on R16 toroids, $\hat{B} \le 0.25$ mT)

Please read *Important notes* on page 2 and *Cautions and warnings* on page 674

T37 SIFERRIT materials

Dynamic magnetization curves (typical values) $(f = 10$ kHz, T = 25 °C)

DC magnetic bias

(measured on RM cores, typical values) (B ≤0.25 mT, f = 10 kHz, T = 25 °C)

Dynamic magnetization curves (typical values) $(f = 10$ kHz, T = 100 °C)

Please read *Important notes* on page 2 and *Cautions and warnings* on page 674

SIFERRIT materials

T38

Complex permeability versus frequency (measured on R10 toroids, $\overline{B} \le 0.25$ mT)

Variation of initial permeability with temperature (measured on R10 toroids, $\hat{\mathsf{B}} \leq 0.25 \text{ mT}$)

Initial permeability μ. versus temperature (measured on R10 toroids, $\overline{B} \le 0.25$ mT)

Relative loss factor versus frequency (measured on R10 toroids, $\hat{B} \le 0.25$ mT)

Please read *Important notes* on page 2 and *Cautions and warnings* on page 674

T38 SIFERRIT materials

Dynamic magnetization curves (typical values) $(f = 10$ kHz, T = 25 °C)

DC magnetic bias (measured on RM cores, typical values) (B ≤0.25 mT, f = 10 kHz, T = 25 °C)

Dynamic magnetization curves (typical values) $(f = 10$ kHz, T = 100 °C)

SIFERRIT materials

T46

Complex permeability versus frequency (measured on R9.5 toroids, $\overline{B} \le 0.25$ mT)

Variation of initial permeability with temperature (measured on R9.5 toroids, $\hat{B} \le 0.25$ mT)

Initial permeability μ. versus temperature (measured on R9.5 toroids, $\overline{B} \le 0.25$ mT)

Relative loss factor versus frequency (measured on R9.5 toroids, $\overline{B} \le 0.25$ mT)

Please read *Important notes* on page 2 and *Cautions and warnings* on page 674

T46 SIFERRIT materials

Dynamic magnetization curves (typical values) $(f = 10$ kHz, T = 25 °C)

DC magnetic bias (measured on RM cores, typical values) (B ≤0.25 mT, f = 10 kHz, T = 25 °C)

Dynamic magnetization curves (typical values) $(f = 10$ kHz, T = 100 °C)

Please read *Important notes* on page 2 and *Cautions and warnings* on page 674

T57 SIFERRIT materials

Complex permeability versus frequency (measured on R17 toroids, $\overline{B} \le 0.25$ mT)

Variation of initial permeability with temperature (measured on R17 toroids, $\hat{\mathsf{B}} \leq 0.25 \text{ mT}$)

Initial permeability μ. versus temperature (measured on R17 toroids, $\overline{B} \le 0.25$ mT)

Relative loss factor versus frequency (measured on R17 toroids, $\hat{B} \le 0.25$ mT)

Please read *Important notes* on page 2 and *Cautions and warnings* on page 674

T57 SIFERRIT materials

Dynamic magnetization curves (typical values) $(f = 10$ kHz, T = 25 °C)

Reversible permeability versus temperature (measured on toroids at $f = 100$ kHz, H_{DC} = 27.5 A/m, \hat{B} = 6 mT)

Dynamic magnetization curves (typical values) $(f = 10$ kHz, T = 100 °C)

T65 SIFERRIT materials

Complex permeability versus frequency (measured on R29 toroids, $\overline{B} \le 0.25$ mT)

Variation of initial permeability with temperature (measured on R29 toroids, $\hat{\mathsf{B}} \leq 0.25 \text{ mT}$)

Initial permeability μ. versus temperature (measured on R29 toroids, $\overline{B} \le 0.25$ mT)

Relative loss factor versus frequency (measured on R29 toroids, $\hat{B} \le 0.25$ mT)

T65 SIFERRIT materials

Dynamic magnetization curves (typical values) $(f = 10$ kHz, T = 25 °C)

DC magnetic bias (measured on RM cores, typical values) (B ≤0.25 mT, f = 10 kHz, T = 25 °C)

Dynamic magnetization curves (typical values) $(f = 10$ kHz, T = 100 °C)

SIFERRIT materials

T66

Complex permeability versus frequency (measured on R9.5 toroids, $\overline{B} \le 0.25$ mT)

Variation of initial permeability with temperature (measured on R9.5 toroids, $\hat{B} \le 0.25$ mT)

Initial permeability μ_i versus temperature (measured on R9.5 toroids, $\overline{B} \le 0.25$ mT)

Relative loss factor versus frequency (measured on R9.5 toroids, $\overline{B} \le 0.25$ mT)

Please read *Important notes* on page 2 and *Cautions and warnings* on page 674

T66 SIFERRIT materials

Dynamic magnetization curves (typical values) $(f = 10$ kHz, T = 25 °C)

DC magnetic bias

(measured on RM cores, typical values) $(B \le 0.25$ mT, f = 10 kHz, T = 25 °C)

Plastic materials

5 Plastic materials, manufacturers and UL numbers

- RM, EP, EFD and PQ coil formers of thermosetting plastic, color code black (post-inserted pins): Sumikon PM 9630® [E41429 (M)], SUMITOMO BAKELITE CO LTD Sumikon PM 9820® [E41429 (M)], SUMITOMO BAKELITE CO LTD
- EP and EFD coil formers of thermosetting plastic, color code green (post-inserted pins): Vyncolit/X611® [E167521 (M)], VYNCOLIT NV
- RM power, P, PS, PM, E, ETD, ER coil formers and terminal carriers P9×5, P11×7, P36×22 (Polyterephthalate): Valox 420-SE0® [E45329 (M)], SABIC INNOVATIVE PLASTICS Valox 420-SE0® [E207780 (M)], SABIC INNOVATIVE PLASTICS Valox 420-SE0® [E121562 (M)], SABIC INNOVATIVE PLASTICS Durethan BKV 30H, [E 245249 (M)], LANXESS AG Ultramid A3X2G5 [E41871 (M)], BASF AKTIENGESELLSCHAFT Ultramid A3X2G7 [E41871 (M)], BASF AKTIENGESELLSCHAFT Ultradur 4090G6 [E41871 (M)], BASF SE Crastin SK 645 FR [E41938 (M)], E I DUPONT DE NEMOURS & CO INC Pocan B4235® [E245249 (M)], LANXESS AG Rynite FR 530® [E41938 (M)], E I DUPONT DE NEMOURS & CO INC
- Terminal carriers P14×8, P18×11, P26×16, P30×19, P22×13 (Polyterephthalate): Pocan B4235® [E245249 (M)], LANXESS AG
- PM114 coil former and terminal carrier P7×4 (PPS) Ryton R-4-230, [E95746 (M)], SOLVAY SPECIALITY POLYMERS Ryton R-4-230, [E95746 (M)], SOLVAY SPECIALITY POLYMERS
- SMD coil formers (Liquid cristal polymer): Sumika Super E4008® [E54705 (M)], SUMITOMO CHEMICAL CO LTD Zenite 7130® [E344082 (M)], CELANESE INTERNATIONAL CORP. Vectra C 130 [E106764 (M)], POLYPLASTICS CO LTD Vectra E 130i [E106764 (M)], POLYPLASTICS CO LTD Vectra E 130i [E83005 (M)], CELANESE INTERNATIONAL CORP. Stanyl TW250F6 [E47960 (M)], DSM ENGINEERING PLASTICS B V
- Insulating washers: Makrofol FR7-2, [E168120 (M)], COVESTRO AG Aryphan F685, [E167358 (M)], LOFO HIGH TECH FILM GMBH
- Adjusting screws and threaded sleeves: Pocan B3235® [E245249 (M)], LANXESS AG Rilsan BZM30, [E45228 (M)], ARKEMA SA (for threaded sleeves)
- PQ coil formers: Phenolic T375 J [E59481 (M)], CHANG CHUN PLASTICS CO LTD
- Ring core housings: Makrolon 9415 [E41613 (M)] COVESTRO AG

Rights to change material reserved.

Further information is given on the packing label.

Plastic materials

The trade names are registered trademarks of the listed manufacturers.

Further information to the UL certifications are available in the internet under http//:www.UL.com Here you get the newest update of the yellow card.

EPCOS is an assigned molder with the UL file no. E178263 (M).

The assigned designation is A1770.

Definitions

1 Hysteresis

The special feature of ferromagnetic and ferrimagnetic materials is that spontaneous magnetization sets in below a material-specific temperature (Curie point). The elementary atomic magnets are then aligned in parallel within macroscopic regions. These so-called Weiss' domains are normally oriented so that no magnetic effect is perceptible. But it is different when a ferromagnetic body is placed in a magnetic field and the flux density B as a function of the magnetic field strength H is measured with the aid of a test coil. Proceeding from $H = 0$ and $B = 0$, the so-called initial magnetization curve is first obtained. At low levels of field strength, those domains that are favorably oriented to the magnetic field grow at the expense of those that are not. This produces what are called wall displacements. At higher field strength, whole domains overturn magnetically – this is the steepest part of the curve – and finally the magnetic moments are moved out of the preferred states given by the crystal lattice into the direction of the field until saturation is obtained, i.e. until all elementary magnets in the material are in the direction of the field. If H is now reduced again, the B curve is completely different. The relationship shown in the hysteresis loop (figure 1) is obtained.

1.1 Hysteresis loop

and *Cautions and warnings* on page 674

Definitions

General relationship between B and H:

 $B = \mu_0 \cdot \mu_r(H) \cdot H$ Magnetic field constant μ_{0} 1.257 \cdot 10^{–6} $\left[\frac{\mathsf{V}\mathsf{s}}{\mathsf{A}\mathsf{m}}\right]$ μ_r Relative permeability

In a vacuum, $\mu_r = 1$; in ferromagnetic or ferrimagnetic materials the relation B(H) becomes nonlinear and the slope of the hysteresis loop μ_r >> 1.

1.2 Basic parameters of the hysteresis loop

1.2.1 Initial magnetization curve

The initial magnetization curve describes the relationship $B = \mu_r \mu_0 H$ for the first magnetization following a complete demagnetization. By joining the end points of all "sub-loops", from H = 0 to $H = H_{\text{max}}$, (as shown in figure 1), we obtain the so-called commutation curve (also termed normal or mean magnetization curve), which, for magnetically soft ferrite materials, coincides with the initial magnetization curve.

1.2.2 Saturation magnetization B_s

The saturation magnetization $B_{\rm S}$ is defined as the maximum flux density attainable in a material (i.e. for a very high field strength) at a given temperature; above this value B_s, it is not possible to further increase B(H) by further increasing H.

Technically, B_S is defined as the flux density at a field strength of H = 1200 A/m. As is confirmed in the actual magnetization curves in the chapter on "Materials", the B(H) characteristic above 1200 A/m remains roughly constant (applies to all ferrites with high initial permeability, i.e. where $\mu \geq 1000$).

1.2.3 Remanent flux density B_R(H)

The remanent flux density (residual magnetization density) is a measure of the degree of residual magnetization in the ferrite after traversing a hysteresis loop. If the magnetic field H is subsequently reduced to zero, the ferrite still has a material-specific flux density $B_P \neq 0$ (see figure 1: intersection with the ordinate $H = 0$).

1.2.4 Coercive field strength H_c

The flux density B can be reduced to zero again by applying a specific opposing field $-H_C$ (see figure 1: intersection with the abscissa $B = 0$).

The demagnetized state can be restored at any time by:

- a) traversing the hysteresis loop at a high frequency and simultaneously reducing the field strength H to $H = 0$.
- b) by exceeding the Curie temperature T_{C} .

Definitions

2 Permeability

Different relative permeabilities μ are defined on the basis of the hysteresis loop for the various electromagnetic applications.

2.1 Initial permeability μ**ⁱ**

$$
\mu_i = \frac{1}{\mu_0} \cdot \frac{\Delta B}{\Delta H} \tag{ \Delta H \to 0}
$$

The initial permeability μ_i defines the relative permeability at very low excitation levels and constitutes the most important means of comparison for soft magnetic materials. According to IEC 60401-3, μi is defined using closed magnetic circuits (e.g. a closed ring-shaped cylindrical coil) for $f \le 10$ kHz, B < 0.25 mT, T = 25 °C.

2.2 Effective permeability μ_ρ

Most core shapes in use today do not have closed magnetic paths (only ring, double E or doubleaperture cores have closed magnetic circuits), rather the circuit consists of regions where $\mu_i \neq 1$ (ferrite material) and μ_i = 1 (air gap). Figure 3 shows the shape of the hysteresis loop of a circuit of this type.

In practice, an effective permeability $\mu_{\rm e}$ is defined for cores with air gaps.

 $\sum \frac{1}{6}$ Form factor

- L = Inductance
- N = Number of turns

It should be noted, for example, that the loss factor tan δ and the temperature coefficient for gapped cores reduce in the ratio μ_{e}/μ_{i} compared to ungapped cores.

Figure 3 Comparison of hysteresis loops for a core with and without an air gap

Definitions

The following approximation applies for an air gap $s \ll l_e$:

$$
\mu_e = \frac{\mu_i}{1 + \frac{s}{l_e} \cdot \mu_i}
$$

s Width of air gap

l Effective magnetic path length

For more precise calculation methods, see for example E.C. Snelling, "Soft ferrites", 2nd edition.

2.3 Apparent permeability μ_{app}

 $\mu_{\sf app} = \frac{\mathsf{L}}{\mathsf{L}}$ $=\frac{L}{L_0}=\frac{\text{inductance with core}}{\text{inductance without core}}$

The definition of μ_{ann} is particularly important for specification of the permeability for coils with tubular, cylindrical and threaded cores, since an unambiguous relationship between initial permeability μ_{i} and effective permeability μ_{e} is not possible on account of the high leakage inductances. The design of the winding and the spatial correlation between coil and core have a considerable influence on μ_{ann} . A precise specification of μ_{ann} requires a precise specification of the measuring coil arrangement.

2.4 Complex permeability μ

To enable a better comparison of ferrite materials and their frequency characteristics at very low field strengths (in order to take into consideration the phase displacement between voltage and current), it is useful to introduce μ as a complex operator, i.e. a complex permeability $\overline{\mu}$, according to the following relationship:

$$
\overline{\mu} = \mu_s' - j \cdot \mu_s''
$$

where, in terms of a series equivalent circuit, (see figure 5) $\mu_{\rm s}$ ' is the relative real (inductance) component of $\overline{\mu}$ and μ_s " is the relative imaginary (loss) component of μ .

Using the complex permeability $\overline{\mu}$, the (complex) impedance of the coil can be calculated:

 \overline{Z} = j ω \overline{u} L₀

where L_0 represents the inductance of a core of permeability $\mu_r = 1$, but with unchanged flux distribution.

(cf. also section 4.1: information on tan δ)

Figure 4 Complex permeability versus frequency (measured on R10 toroids, N48 material, measuring flux density $\hat{B} \le 0.25$ mT)

Figure 4 shows the characteristic shape of the curves of μ_s ' and μ_s " as functions of the frequency, using N48 material as an example. The real component μ_{s} ' is constant at low frequencies, attains a maximum at higher frequencies and then drops in approximately inverse proportion to f. At the same time, μ" rises steeply from a very small value at low frequencies to attain a distinct maximum and, past this, also drops as the frequency is further increased.

The region in which μ' decreases sharply and where the μ" maximum occurs is termed the cut-off frequency f_{cutoff}. This is inversely proportional to the initial permeability of the material (Snoek's law).

2.5 Reversible permeability μ_{rev}

 $\mu_{rev} = \frac{1}{1}$ $=\frac{1}{\mu_0} \cdot \lim_{\Delta H \to 0} \left(\frac{\Delta B}{\Delta H} \right)$

(Permeability with superimposed DC field H_{DC})

In order to measure the reversible permeability μ_{rev} , a small measuring alternating field is superimposed on a DC field. In this case μ_{rev} is heavily dependent on H_{DC} , the core geometry and the temperature.

Important application areas for DC field-superimposed, i.e. magnetically biased coils are broadband transformer systems (feeding currents with signal superimposition) and power engineering (shifting the operating point) and the area known as "nonlinear chokes" (cf. chapter on RM cores). For the magnetic bias curves as a function of the excitation H_{DC} see the chapter on "SIFERRIT materials".

Definitions

2.6 Amplitude permeability μ_{a} , A_{L1} value

$$
\mu_a = \frac{\hat{B}}{\mu_0 \hat{H}}
$$

(Permeability at high excitation)

- Peak value of flux density $\hat{\mathsf{B}}$
- Peak value of field strength \hat{H}

For frequencies well below cut-off frequency, μ_a is not frequency-dependent but there is a strong dependence on temperature. The amplitude permeability is an important definition quantity for power ferrites. It is defined for specific core types by means of an A_{L1} value for f ≤10 kHz, B = 320 mT (or 200 mT), $T = 100 °C$.

$$
A_{L1} = \frac{\mu_0 \cdot \mu_a}{\sum \frac{1}{A}}
$$

Definitions

3 Magnetic core shape characteristics

Permeabilities and also other magnetic parameters are generally defined as material-specific quantities. For a particular core shape, however, the magnetic data are influenced to a significant extent by the geometry. Thus, the inductance of a slim-line ring core coil is defined as:

$$
L = \mu_r \cdot \mu_0 \cdot N^2 \cdot \frac{A}{l}
$$

Due to their geometry, soft magnetic ferrite cores in the field of such a coil change the flux parameters in such a way that it is necessary to specify a series of effective core shape parameters in each data sheet. The following are defined:

 $V_e = A_e \cdot I_e$ Effective magnetic volume

With the aid of these parameters, the calculation for ferrite cores with complicated shapes can be reduced to the considerably more simple problem of an imaginary ring core with the same magnetic properties. The basis for this is provided by the methods of calculation according to IEC 60205, which allow to calculate the effective core shape parameters of different core shapes.

3.1 Form factor

$$
\sum \frac{I}{A} = \frac{I_e}{A_e}
$$

The inductance L can then be calculated as follows:

$$
L = \frac{\mu_e \cdot \mu_0 \cdot N^2}{\sum \frac{I}{A}}
$$

where μ_e denotes the effective permeability or another permeability $\mu_{\sf rev}$ or $\mu_{\sf a}$ (or $\mu_{\sf i}$ for cores with a closed magnetic path) adapted for the B/H range in question.

3.2 Inductance factor, A_L value

$$
A_L = \frac{L}{N^2} = \frac{\mu_e \cdot \mu_0}{\sum_{A} \frac{1}{A}}
$$

 A_l is the inductance referred to number of turns = 1. Therefore, for a defined number of turns N:

 $L = A_1 \cdot N^2$

Definitions

3.3 Tolerance code letters

The tolerances of the A_L are coded by the letters in the third block of the ordering code in conformity with IEC 62358.

The tolerance values available are given in the individual data sheets.

Definitions

4 Definition quantities in the small-signal range

4.1 Loss factor tan δ

Losses in the small-signal range are specified by the loss factor tan δ .

Based on the impedance \overline{Z} (cf. also section 2.4), the loss factor of the core in conjunction with the complex permeability $\overline{\mu}$ is defined as

tan $\delta_{\rm s} = \frac{\mu_{\rm s}^{\mathrm{u}}}{\mu_{\rm s}^{\mathrm{u}}} = \frac{\rm R_{\rm s}}{\omega \rm L_{\rm s}}$ $=\frac{\mu_s''}{\mu_s'}=\frac{R_s}{\omega L_s}$ and $\tan \delta_p = \frac{\mu_p''}{\mu_p'}=\frac{\omega \cdot L_p}{R_p}$

where R_s and R_p denote the series and parallel resistance and L_s and L_p the series and parallel inductance respectively.

Figure 5

Lossless series inductance L_s with loss resistance R_s resulting from the core losses.

Figure 6 Lossless parallel inductance L_p with loss resistance R_p resulting from the core losses.

From the relationships between series and parallel circuits we obtain:

$$
\mu_p' = \mu_s' \cdot (1 + (\tan \delta)^2)
$$

$$
\mu_p'' = \mu_s'' \cdot \left(1 + \left(\frac{1}{\tan \delta}\right)^2\right)
$$

4.2 Relative loss factor tan δ**/**μ**ⁱ**

In gapped cores the material loss factor tan δ is reduced by the factor $\mu_{\bf e}/\mu_i$. This results in the relative loss factor tan $\delta_{\rm e}$ (cf. also section 2.2):

$$
\text{tan}\,\delta_e\,=\,\frac{\text{tan}\,\delta}{\mu_i}\cdot\mu_e
$$

The table of material properties lists the relative loss factor tan δ/μ_i . This is determined to IEC 60401-3 at B = 0.25 mT, T = $25 °C$.

Definitions

4.3 Quality factor Q

The ratio of reactance to total resistance of an induction coil is known as the quality factor Q.

$$
Q = \frac{\omega L}{R_L} = \frac{\text{reactance}}{\text{total resistance}}
$$

The total quality factor Q is the reciprocal of the total loss factor tan δ of the coil; it is dependent on the frequency, inductance, temperature, winding wire and permeability of the core.

4.4 Hysteresis loss resistance R_h and hysteresis material constant η_B

In transformers, in particular, the user cannot always be content with very low saturation. The user requires details of the losses which occur at higher saturation, e.g. where the hysteresis loop begins to open.

Since this hysteresis loss resistance R_b can rise sharply in different flux density ranges and at different frequencies, it is measured to IEC 60401-3 for μ_i values greater than 500 at B₁ = 1.5 and $B_2 = 3$ mT ($\Delta B = 1.5$ mT), a frequency of 10 kHz and a temperature of 25 °C (for μ_i < 500: f = 100 kHz, $B_1 = 0.3$ mT, $B_2 = 1.2$ mT). The hysteresis loss factor tan δ_h can then be calculated from this.

tan $\delta_h = \frac{R_h}{\omega \cdot L} = \tan \delta(B_2) - \tan \delta(B_1)$

For the hysteresis material constant η_B we obtain:

$$
\eta_B = \frac{\tan \delta_h}{\mu_e \cdot \Delta \hat{B}}
$$

The hysteresis material constant, η_B , characterizes the material-specific hysteresis losses and is a quantity independent of the air gap in a magnetic circuit.

The hysteresis loss factor of an inductor can be reduced, at a constant flux density, by means of an (additional) air gap

$$
\textrm{tan}\,\delta_h\,=\,\eta_B\cdot\Delta\hat{B}\cdot\mu_e
$$

For further details on the measurement techniques see IEC 62044-2.

Definitions

5 Definition quantities in the high-excitation range

While in the small-signal range (H \leq H $_{c}$), i.e. in filter and broadband applications, the hysteresis loop is generally traversed only in lancet form (figure 2), for power applications the hysteresis loop is driven partly into saturation. The defining quantities are then

 μ_{rev} = reversible permeability in the case of superimposition with a DC signal

(operating point for power transformers)

 μ_a = amplitude permeability and
 P_V = core losses.

 $=$ core losses.

5.1 Core losses P_v

The losses of a ferrite core or core set P_V is proportional to the area of the hysteresis loop in question. It can be divided into three components:

$$
P_V = P_{V, hysteresis} + P_{V, eddycurrent} + P_{V, residual}
$$

Owing to the high specific resistance of ferrite materials, the eddy current losses in the frequency range common today (1 kHz to 2 MHz) may be practically disregarded except in the case of core shapes having a large cross-sectional area.

The power loss P_V is a function of the temperature T, the frequency f, the flux density B and is of course dependent on ferrite material and core shape.

The temperature dependence can generally be approximated by means of a third-order polynomial, while

$$
P_V(f) \sim f^{(1+x)} \qquad \qquad 0 \le x \le 1
$$

applies for the frequency dependence and

$$
P_V(B) \sim B^{(2+y)} \qquad \qquad 0 \le y \le 1
$$

for the flux density dependence. The coefficients x and y are dependent on core shape and material, and there is a mutual dependence between the coefficients of the definition quantity (e.g. T) and the relevant parameter set (e.g. f, B).

In the case of cores which are suitable for power applications, the total core losses P_V are given explicitly for a specific frequency f, flux density B and temperature T in the relevant data sheets.

When determining the total power loss for an inductive component, the winding losses must also be taken into consideration in addition to the core-specific losses.

$$
P_{V, \text{ tot}} = P_{V, \text{ core}} + P_{V, \text{ winding}}
$$

where, in addition to insulation conditions in the given frequency range, skin effect and proximity effect must also be taken into consideration for the winding.

Definitions

5.2 Performance factor (PF = f \cdot B_{max})

The performance factor is a measure of the maximum power which a ferrite can transmit, whereby it is generally assumed that the loss does not exceed 300 kW/m3. Heat dissipation values of this order are usually assumed when designing small and medium-sized transformers. Increasing the performance factor will either enable an increase of the power that can be transformed by a core of identical design, or a reduction in component size if the transformed power is not increased.

If the performance factors of different power transformer materials are plotted as a function of frequency, only slight differences are observed at low frequencies (<300 kHz), but these differences become more pronounced with increasing frequency. This diagram can be used to determine the optimum material for a given frequency range.

Definitions

6 Influence of temperature

6.1 μ(T) curve, Curie temperature T_C

The initial permeability μ_i as a function of T is given for all materials (see chapter on SIFERRIT materials). Important parameters for a μ(T) curve are the position of the **s**econdary **p**ermeability **m**aximum (SPM) and the Curie temperature. Minimum losses occur at the SPM temperature.

Above the Curie temperature T $_{\rm C}$ ferrite materials lose their ferrimagnetic properties, i.e. $_{\mu_{\rm i}}$ drops to μ_i = 1. This means that the parallel alignment of the elementary magnets (spontaneous magnetization) is destroyed by increasing thermal activation. This phenomenon is reversible, i.e. when the temperature is reduced below T_c again, the ferrimagnetic properties are restored.

The Curie tempertature $T_{\rm C}$ is defined as the cross of the straight line between 80% and 20% of L_{max} with the temperature axes (figure 7).

Figure 7

Definition of Curie temperature

6.2 Temperature coefficient of permeability α

By definition the temperature coefficient α represents a straight line of average gradient between the reference temperatures T_1 and T_2 . If the $\mu(T)$ curve is approximately linear in this temperature range, this is a good approximation; in the case of heavily pronounced maxima, as occur particularly with highly permeable broadband ferrites, however, this is less true. The following applies:

$$
\alpha = \frac{\mu_{i2} - \mu_{i1}}{\mu_{i1}} \cdot \frac{1}{T_2 - T_1}
$$

 μ_{i1} Initial permeability μ_i at T₁ = 25 °C

 μ_{i2} The initial permeability μ_i associated with the temperature T₂

6.3 Relative temperature coefficient $α$ **F**

$$
\alpha_F = \frac{\alpha}{\mu_i} = \frac{\mu_{i2} - \mu_{i1}}{\mu_{i2} \cdot \mu_{i1}} \cdot \frac{1}{T_2 - T_1}
$$

In a magnetic circuit with an air gap and the effective permeability μ_e the temperature coefficient is reduced by the factor $\mu_{\rm e}/\mu_{\rm i}$ (cf. also section 2.2).

$$
\begin{array}{|c|c|c|}\n\hline\n135 & 1/17 \\
\hline\n\end{array}
$$

Definitions

6.4 Permeability factor

The first factor in the equation for determining the relative temperature coefficient $\frac{\mu_{12} - \mu_{11}}{n}$ is known as the permeability factor. $\frac{\mu_{12} - \mu_{11}}{\mu_{12} \cdot \mu_{11}}$

In the case of SIFERRIT materials for resonant circuits, the temperature dependence of the permeability factor can be seen from the relevant diagram.

6.5 Effective temperature coefficient $α_e$

$$
\alpha_e\,=\,\frac{\mu_e}{\mu_i}\cdot\alpha
$$

In the case of the ferrite materials for filter applications, the α/μ_i values for the ranges 25 to 55 °C and 5 to 25 °C are given in the table of material properties.

The effective permeability μ_e is required in order to calculate α_e ; therefore this is given for each core in the individual data sheets.

6.6 Relationship between the change in inductance and the permeability factor

The relative change in inductance between two temperature points can be calculated as follows:

$$
\frac{L_2-L_1}{L_1}\,=\,\frac{\alpha}{\mu_i}\cdot(T_2-T_1)\cdot\mu_e
$$

 $L_2 - L_1$ $\frac{L_2 - L_1}{L_1} = \frac{\mu_{i2} - \mu_{i1}}{\mu_{i2} \cdot \mu_{i1}}$ $=\frac{\mu_{12} \mu_{11}}{\mu_{12} \mu_{11}} \mu_e$

6.7 Temperature dependence of saturation magnetization

The saturation magnetization B_s drops monotonically with temperature and at T_c has fallen to $B_S = 0$ mT. The drop for $B_S(25 °C)$ and $B_S(100 °C)$, i.e. the main area of application for the ferrites, can be taken from the table of material properties.

6.8 Temperature dependence of saturation-dependent permeability (amplitude permeability)

It can be seen from the $\mu_a(B)$ curves for the different materials that μ_a exhibits a more pronounced maximum with increasing temperature and drops off sooner on account of decreasing saturation.

Definitions

7 Disaccommodation

Ferrimagnetic states of equilibrium can be influenced by mechanical, thermal or magnetic changes (shocks). Generally, an increase in permeability occurs when a greater mobility of individual magnetic domains is attained through the external application of energy. This state is not temporally stable and returns logarithmically with time to the original state.

7.1 Disaccommodation coefficient d

$$
d = \frac{\mu_{i1} - \mu_{i2}}{\mu_{i1} \cdot (lg t_2 - lg t_1)}
$$

- μ_{i1} Permeability at time t₁
- μ_{i2} Permeability at time t₂ and t₂ > t₁

7.2 Disaccommodation factor DF

$$
DF = \frac{d}{\mu_{i1}}
$$

Accordingly, a change in inductance can be calculated with the aid of DF:

$$
\frac{L_1-L_2}{L_1} = DF \cdot \mu_e \cdot log \frac{t_2}{t_1}
$$

Definitions

8 General mechanical, thermal, electrical and magnetic properties of ferrites

Typical figures for the mechanical and thermal properties of ferrites

8.1 Mechanical properties

Ferrite cores have to meet mechanical requirements during assembling and for a growing number of applications. Since ferrites are ceramic materials one has to be aware of the special behavior under mechanical load.

As valid for any ceramic material, ferrite cores are brittle and sensitive to any shock, fast changing or tensile load. Especially high cooling rates under ultrasonic cleaning and high static or cyclic loads can cause cracks or failure of the ferrite cores.

Definitions

There are two modes of crack growth: fast (critical) or slow (subcritical) crack propagation. In the first case spontaneous breakdown occurs. In the second case the crack propagates slowly during static or cycling loading, and then the sample can only fail if a critical crack length is achieved. According to the linear elastic fracture mechanics these two mechanisms could be described in terms of stress intensity factors. For life time predictions the knowledge of subcritical crack growth and R- (respectively K_{P}) curve behavior of the material is essential.

The reduction of the material strength by temperature induced propagating microstructural cracks can be described as follows:

$$
\sigma\ =\ \alpha\cdot\Delta T\frac{E_0}{1+2\pi N l^2}
$$

- σ Effective strength
- α Coefficient of thermal expansion (7 to 12 · 10⁻⁶ 1/K)
- E_0 Modulus of elasticity
N Number of temperature
- Number of temperature changes

l Crack length

The brittleness of ferrite materials can be quantified by means of the fracture toughness. High fracture toughness values indicate decreased material brittleness. The quantity of the fracture toughness is a measure for the stress in the core necessary for a propagating crack. For the crack propagation it is required that the stress intensity factor exceeds the fracture toughness.

$$
K_1 \ge K_{1C}
$$
 with $K_1 = \sigma_{appl} \sqrt{I \cdot Y}$ and $K_{1C} = \sqrt{G_C E}$

- K_1 Stress intensity facture
 K_{1c} Fracture toughness
- Fracture toughness
- σ_{anol} Applied stress
- Y^T Factor for fracture/sample geometry
G_o Critical fracture area energy
- $G_{\rm C}$ Critical fracture area energy
E Modulus of elasticity
- Modulus of elasticity

Typical fracture toughness values are approx. 0.8 to 1.1 MPa·m^{1/2}.

Ferrite materials have a pronounced R curve behavior, i. e. the fracture toughness increases with propagating crack length. In practice there is a rather tolerant behavior towards moderate single stress events.

Definitions

8.2 Stress sensitivity of magnetic properties

Stresses in the core affect not only the mechanical but also the magnetic properties. It is apparent that the initial permeability is dependent on the stress state of the core. With

$$
\mu_i \approx \frac{1}{\frac{1}{\mu_{io}} + k \cdot \sigma_{\mathsf{T}}}; \qquad k \approx 30 \cdot 10^{-6} \cdot \frac{1}{\mathsf{MPa}}
$$

where μ_{io} is the initial permeability of the unstressed material, it can be shown that the higher the stresses are in the core, the lower is the value for the initial permeability. Embedding the ferrite cores (e.g. in plastic) can induce these stresses. A permeability reduction of up to 50% and more can be observed, depending on the material. In this case, the embedding medium should have the greatest possible elasticity.

8.3 Magnetostriction

Linear magnetostriction is defined as the relative change in length of a magnetic core under the influence of a magnetic field. The greatest relative variation in length $\lambda = \Delta I/I$ occurs at saturation magnetization. The values of the saturation magnetostriction (λ_{s}) of our ferrite materials are given in the following table (negative values denote contraction).

Magnetostrictive effects are of significance principally when a coil is operated in the frequency range <20 kHz and then undesired audible frequency effects (distortion etc.) occur.

8.4 Resistance to radiation

SIFERRIT materials can be exposed to the following radiation without significant variation (ΔL/L ≤1% for ungapped cores):

8.5 Resistivity ρ**, dielectric constant** ε

At room temperature, ferrites have a resistivity in the range 1 Ωm to 10⁵ Ωm; this value is usually higher at the grain boundaries than in the grain interior. The temperature dependence of the core resistivity corresponds to that of a semiconductor:

$$
\rho \sim e^{\frac{E_a}{k \cdot T}}
$$

- E_a Activation energy (0.1 to 0.5 eV)
- k Boltzmann constant
- T Absolute temperature (K)

Definitions

Thus the resistivity at 100 °C is one order of magnitude less than at 25 °C, which is significant, particularly in power applications, for the magnitude of the eddy-current losses.

Similarly, the resistivity decreases with increasing frequency.

Example: Material N48

Figure 9

Resistivity and dielectric constant versus frequency

The different resistivity values for grain interior and grain boundary result in high (apparent) dielectric constants ε at low frequencies. The dielectric constant ε for all ferrites falls to values around 10 to 20 at very high frequencies. NiZn ferrites already reach this value range at frequencies around 100 kHz.

Magnetostrictive effects are of significance principally when a coil is operated in the frequency range <20 kHz and then undesired audible frequency effects occur.

Definitions

9 Coil characteristics

Resistance factor A_p

The resistance factor A_R , or A_R value, is the DC resistance R_{CL} per unit turn, analogous to the A_L value.

$$
A_R = \frac{R_{Cu}}{N^2}
$$

When the A_R value and number of turns N are given, the DC resistance can be calculated from $R_{\text{CII}} = A_R N^2$.

From the winding data etc. the A_R value can be calculated as follows:

$$
A_R = \frac{\rho \cdot I_N}{f_{Cu} \cdot A_N}
$$

where ρ = resistivity (for copper: 17.2 $\mu\Omega$ mm), I_N = average length of turn in mm, A_N = cross section of winding in mm², f_{Cu} = copper space factor. If these units are used in the equation, the A_R value is obtained in $\mu\Omega$ = 10⁻⁶ Ω. For calculation of I_N and A_N the middle dimensions are used.

For coil formers, A_R values are given in addition to A_N and I_N . They are based on a copper filling factor of f_{Cu} = 0.5. This permits the A_R value to be calculated for any filling factor f_{Cu} .

$$
A_{R(f_{Cu})} = A_{R(0.5)} \cdot \frac{0.5}{f_{Cu}}
$$

For rough estimation a copper filling factor of $f_{\text{Cu}} = 0.5$ is sufficient.

Application notes

Filter applications

- **1 Cores for filter applications**
- **1.1 Gapped cores for filter/resonant circuits**

Gapped cores are therefore always used in high quality circuits (for materials see application survey).

In the case of small air gaps (max. 0.2 mm) the air gap can be ground into only one core half. In this case the half with the ground air gap bears the stamp. The other half is blank.

The air gap enables the losses in the small-signal area and the temperature coefficient to be reduced by a factor of μ_e/μ_i in the small-signal area. More important, however, is that close ${\sf A}_{\sf L}$ value tolerances can be achieved.

The rated $A₁$ values for cores with ground air gap can be obtained from the individual data sheets. The data for the individual cores also include the effective permeability $\mu_{\rm e}$ used to approximately determine the effective loss factor tan δ_{α} and the temperature coefficient of the effective permeability $\alpha_{\rm e}$ from the ring core characteristics (see table of material properties).

It should be noted at this point that in cores with a larger air gap the stray field in the immediate vicinity of the air gap can cause additional eddy current losses in the copper winding. If the coil quality must meet stringent requirements, it is therefore advisable to wind several layers of polystyrene, nylon tape or even FPC film under the wire in the part of the winding that is in the proximity of the air gap; with a 3-section coil former this would be the part of the center section near the air gap.

Figure 10

Schematic drawing showing the construction of a P or RM core set with a total air gap s, comprising 2 core halves (1 and 2), threaded part (3) and padded winding (4)

Filter applications

1.2 P and RM cores with threaded sleeves

Most of P and RM cores are supplied with a glued-in threaded sleeve. EPCOS uses automatic machines featuring high reliability in dosing of the adhesive and in positioning the threaded sleeve in the core.

The tight fit of the threaded sleeve is regularly checked – including a humid atmosphere of 40 °C/93% r.h. (to IEC 60068-2-3-78) over 4 days – and also by periodic tests over 3 weeks. The usual bonding strengths of 20 N for \varnothing 2 mm holes (e.g. for RM 5) and 30 N for \varnothing 3 mm holes (e.g. for P 14 \times 11, RM 6) are greatly exceeded, reaching an average of $>$ 100 N. The threaded sleeve is continuously checked for proper centering. Overall, the controlled automated procedure guarantees higher reliability than manual gluing with its unavoidable inadequacies. Owing to the porosity of the ferrite, tension of the ferrite structure due to hardened adhesive that has penetrated cannot always be avoided. Hence, the relative temperature coefficient α_F may be increased by approximately $0.2 \cdot 10^{-6}$ /K

1.3 Typical calculation of a resonant circuit inductor

The following example serves to illustrate the dependencies to be considered when designing a resonant circuit inductor:

A SIFERRIT pot core inductor is required with an inductance of $L = 640 \mu H$ and a minimum quality factor Q = 400 (tan δ_1 = 1/Q = 2.5 · 10⁻³) for a frequency of 500 kHz. The temperature coefficient α_{α} of this inductor should be 100 \cdot 10⁻⁶/K in the temperature range +5 to +55 \degree C.

a) Choice of material

According to the table of material properties and the tan δ/μ_i curves (see chapter "SIFERRIT materials") the material M33, for example, can be used for 500 kHz.

b) Choice of A₁ value

The Q and temperature coefficient requirements demand a gapped pot core. The relative temperature coefficient α_F of SIFERRIT M33 according to the table of material properties is on average about 1,6 \cdot 10⁻⁶/K. Since the required α_{α} value of the gapped P core should be about 100 · 10-6/K, the effective permeability is

$$
\alpha_F = \frac{\alpha_e}{\mu_e} \qquad \Longrightarrow \qquad \mu_e = \frac{\alpha_e}{\alpha/\mu_i} = 100 \cdot 10^{-6} / K \cdot \frac{1}{1.6 \cdot 10^{-6} / K} = 62.5
$$

With pot core P 18 \times 11 (B65651): μ_e = 47.9 for A_L = 100 nH. With pot core P 22×13 (B65661): μ_e = 39.8 for A_L = 100 nH.

c) Choice of winding material

RF litz wire 20 \times 0.05 with single natural silk covering is particularly suitable for frequencies around 500 kHz. The overall diameter of the wire including insulation of 0.367 mm and the average resistivity of 0.444 Ω/m are obtained from the litz-wire table (refer to pertinent standard). It is recommended that the actual overall diameter always be measured, and this value used for the calculation.

Filter applications

d) Number of turns and type of core

For an A_L value of 100 nH and an inductance of 640 μ H the equation N = (L/A_L)^{1/2} yields 80 turns. The nomogram for coil formers shows that for a wire with an external diameter of 0.367 mm the twosection coil former for core type P 18×11 can easily take 80 turns. This core type can therefore be used with a one-section coil former.

e) Length of wire and DC resistance

The length of an average turn I_N on the above former is 35.6 mm. The length of litz wire necessary for the coil is therefore 80 · 35.6 mm = 2848 mm plus say 2 · 10 cm for the connections, giving a total length of 3.04 m. The average resistivity of this wire is 0.444 Ω/m ; the total DC resistance is thus 3.04 m \cdot 0,444 $\Omega/m \approx 1.35 \Omega$. It should be noted that the length of an average turn I_N given in the individual data sheets always refers to the fully wound former. If the former is not fully wound, the length of an average turn must be corrected according to the extent of the winding.

f) Checking the temperature coefficient

The core P 18 \times 11 with A_L = 100 nH has an effective permeability μ_e = 47.9. SIFERRIT M33 has a relative temperature coefficient $\alpha_{\text{F}} \approx 1.6 \cdot 10^{-6}$ /K; therefore the following temperature coefficient can be calculated

 $\alpha_e = \mu_e \cdot \alpha_E = 47.9 \cdot 1.6 \cdot 10^{-6}$ § K = 76.6 \cdot 10⁻⁶ § K

Actual measurement yielded 90 · 10-6/K.

It should be pointed out that with pot cores the temperature coefficient of the unwound coil has almost no influence since the flux density lies primarily in the core.

For effective permeabilities μ_e <80, however, due to the influence of the winding an additional temperature coefficient of approx. (10 to 30) \cdot 10⁻⁶/K must be included in the calculation.

Broadband transformers

2 Cores for broadband transformers

General requirements:

- \blacksquare High A_L values (\triangle high effective permeability) to restrict number of turns
- Good broadband properties, i.e. high impedance up to highest possible frequencies
- \blacksquare Low total harmonic distortion (\cong low hysteresis material constant η_B)
- Low sensitivity to superimposed DC currents (\triangle highest possible values for T_C and B_S)
- \blacksquare Low tan δ for high-frequency applications

2.1 Precision-ground, ungapped cores for broadband transformers

For fields of application such as matching transformers in digital telecommunication networks or pulse signal transformers, either cores which form a closed magnetic circuit (toroids, double E or double-aperture cores) or paired core sets without air gap are used. In order to achieve the highest possible effective permeability here, these cores are precision ground with residual air gaps $s \sim 1$ um. By selecting the low-profile core types, the A_L value can be further increased, and the number of turns reduced.

For this reason, RM and pot cores made of materials N30, T38, T46 and T66 are especially suitable for these applications. For high-frequency applications, N22, M33 and K1 are suitable.

2.2 Fundamentals for broadband transformers in the range 10 kHz to over 1 GHz – an example

Broadband transformers are constructed primarily using closed core shapes, i.e. toroids and double-aperture cores. Divided core designs such as P/RM cores or small E/ER cores, which allow more simple winding, are particularly suitable for transformers up to approximately 200 MHz.

The bandwidth $\Delta f = f_{OG} - f_{UG}$ (f_{oG} = upper cut-off frequency, f_{UG} = lower cut-off frequency) is considered the most important transformer characteristic.

Cut-off frequency: Frequency at which the voltage at the transformer drops by 3 dB (\approx -30%)

The following holds true for circuit quality $Q > 10$ (typical value):

$$
\Delta f = \frac{f_r}{R_i} \cdot \sqrt{\frac{L_H}{C_0}}
$$

- f_r Resonance frequency
R_i Internal resistance of c
- R_i Internal resistance of generator (normally, R_i << loss resistance of ferrite)
- L_H Main inductance
- C_0 Winding capacitance

Broadband transformers

Transmission loss curve:

$$
\alpha = \, \text{ln} \frac{U}{U_r}
$$

- U_r Voltage at f_r
- α Attenuation when matched with line impedance (e.g. 50 Ω)

Figure 11

2.3 Low-distortion transformers for digital data transmission (ISDN, xDSL)

The digital transmission technologies over copper like ISDN, HDSL (high-rate digital subscriber line) and ADSL (asymmetric digital subscriber line) require very small harmonic distortion in order to maintain maximal line length. This requirement can be calculated from material parameters for the third harmonic distortion with the Rayleigh model for small-signal hysteresis (sinusoidal current).

For a typical design a transformer has to be matched to a chipset via the turn ratios N1 : N2 : N3 ..., the inductances L_1, L_2, L_3, \ldots and the maximum DC resistances R_1, R_2, R_3, \ldots

Transmission loss curve for transformer $E6.3/T38$ with 2×10 turns (parallel)

Broadband transformers

The third harmonic distortion for winding j can then be calculated as

$$
k_3 = \frac{0.6}{\mu_0} \cdot \underbrace{\eta_B}_{\text{Material}} \cdot \underbrace{\frac{\hat{U}}{2\pi f}}_{\text{Conditional } \text{Circuit}} \cdot \underbrace{L_j \cdot \left[\frac{\rho}{f_{Cu}}\sum_{j=1} \left(\frac{N_j}{N_f}\right)^2 \cdot \frac{1}{R_j}\right]^{3/2}}_{\text{Design constraints}} \cdot \underbrace{\frac{\sum_i I_i}{I_e} \cdot \frac{I_e}{A_e^2}}_{\text{Core } \text{Coil former}} \cdot \frac{I_N^{3/2}}{A_N^{3/2}}_{\text{Geometry}}
$$

This equation shows the contribution of the various design parameters:

- The material is characterized by the hysteresis material constant η_B . Limit values for this parameter are given in the SIFERRIT material tables. The actual level for η_B varies for different cores. In order to select the best material for an application, the normalized temperature dependence $\eta_B(T)/\eta_B(25 \degree C)$ is of great help. Being mainly composition-dependent, these curves are thus material-specific.
- The geometry can be taken into account by a core distortion factor (CDF) defined as

$$
CDF = \frac{\sum I_i}{I_e} \cdot \frac{I_e}{A_e^2} \cdot \frac{I_N^{3/2}}{A_N^{3/2}}
$$

The factor Σl_i/l_e is the closer to 1, the less the core section varies along the magnetic path (homogeneous core shape). The values for CDF are given in the following table for the core shapes preferred for these applications.

148 1/17

Broadband transformers

The values of this parameter indicate that roughly

$$
CDF \sim \frac{1}{V_e^{3/2}}
$$

I.e. the larger the core, the smaller is the distortion. Due to space restriction, however, the choice has to be made among the core shapes of a given size.

- The circuit conditions, i.e. voltage amplitude û and frequency f affect directly the flux density in the core. For increasing flux density, a deviation of the absolute value of k_3 from the calculated test value is expected, since the tan δ_h vs. B curve deviates from linear.
- $-$ The distortion k_{3c} for a transformer in a circuit with given impedance conditions can be obtained from the following formula:

The actual circuit distortion k_{3c} will in general be smaller than the calculated sinusoidal current value k3.

LAN applications

3 Cores for LAN applications

LAN (**L**ocal **A**rea **N**etwork) is a connection of local computers in most cases inside a building. The transfer rate values between 10 Mbit/s and 100 Mbit/s. The transmission rates are 10 Mbit/s (10 Base T), 100 Mbit/s (100 Base T) and 1 Gbit/s (Gigabit Ethernet).

3.1 Signal transformers

To design the signal 1:1 transformer small toroids are typically used. Its functions are impedance matching and network termination. Due to space restriction the core has to be the smallest possible, that still meets the inductance requirement under the given working conditions (100 kHz).

The mostly used core sizes are beginning from outer/inner diameters of 2.54/1.27 mm (0.1/0.05 inch) up to 3.94/2.24 mm (0.155/0.088 inch) with different variations of inner diameter and core height (refer also to chapter *"Toroids"*).

The multi-level coding of the digital waveform is not always symmetrical to the zero line. This imbalance results in an effective DC current, which is allowed to value 8 mA max. Therefore the inductance of the ferrite toroid is specified under a constant DC current of 8 mA. The saturation flux density values 430 mT at 25 °C and the initial permeability is 4000 (figure 13).

For indoor application the temperature range is 0 to 70 °C. To use the LAN technology also in outdoor application the temperature range needs to be extended from -40 to $+85$ °C without changing the electrical specification.

The material T57 enables design in both temperature ranges.

Figure 13

 μ_{rev} versus temperature, measured on toroid R 3.43/1.78/2.11; material T57 $f = 100$ kHz, $\hat{B} = 6$ mT, N = 26 H_{DC} = 27 A/m. (I_{DC} = 8 mA)

LAN applications

3.2 Common-mode chokes

For the suppression of common-mode interference in the frequency range from about 30 MHz to 300 MHz it is necessary to use current-compensated chokes in the LAN network.

The corresponding ferrite material is K10, which is a NiZn material with a permeability of approx. 700 for small Parylene coated cores. The impedance versus frequency curve of K10 is ideally adapted to the suppression requirement in the LAN network (figure 14).

Figure 14 Normalized impedance curve, measured on toroid R 10 ($N = 2$ turns)

3.3 Coating to ensure highest insulation resistance

Typically the toroid has to withstand 1 kV Hipot test. Therefore the toroids needs to be coated with Parylene which ensures highest insulation resistance. With 17 μm (0.0007 inch) a breakdown voltage of 2.7 kV can be achieved. The coating will also protect the wire during winding operation.

EMI applications

4 Cores for EMI applications

4.1 Ring cores to suppress line interference

With the ever-increasing use of electrical and electronic equipment, it becomes increasingly important to be able to ensure that all facilities will operate simultaneously in the context of electromagnetic compatibility (EMC) without interfering with each others' respective functions. The EMC legislation which came into force at the beginning of 1996 applies to all electrical and electronic products marketed in the EU, both new and existing ones. So the latter may have to be modified so that they are neither susceptible to electromagnetic interference, nor emit spurious radiation. Ferrite cores are ideally suited for this purpose since they are able to suppress interference over a wide frequency range.

At frequencies above 1 MHz, ferrite rings slipped over a conductor lead to an increase in the impedance of this conductor. The real component of this impedance absorbs the interference energy.

A ferrite material's suitability for suppressing interference within a specific frequency spectrum depends on its magnetic properties, which vary with frequency. Before the right material can be selected, the impedance $|Z|$ must be known as a function of frequency.

The curve of impedance as a function of frequency is characterized by the sharp increase in loss at resonance frequency.

Measurement results:

The measurements shown here were made at room temperature (25 ± 2) °C using an HP 4191A RF impedance analyzer with a flux density of $\hat{B} \le 1$ mT.

The maximum of the impedance curve shifts to lower frequencies as the number of turns increases; this is due to the capacitive effect of the turns (figure 15, using R 25/15 as an example).

Figure 15 Impedance characteristic curve

152 1/17

EMI applications

The impedance curves of different materials are summarized for direct comparison. The normalized impedance $|Z|_n = |Z| / N^2 \times \Sigma (I_n / A_n)$ were used to display material properties only. The geometry factor was calculated on the basis of the core dimensions.

These normalized impedance curves are guide values, mostly measured using toroidal core R 10 with a number of turns $N = 1$ (wire diameter 0.7 mm); they may vary slightly, depending on the geometry.

4.2 Common-mode chokes

Compact electrical and electronic equipment primarily generates common-mode interference. In order to be able to meet the safety requirements (keeping within the leakage current limits), chokes with a high asymmetrically effective inductance must be used. Current-compensated chokes with a closed core topology are especially suitable for this purpose. The problem of core material saturation due to the useful current is solved in these designs by winding two coils with equal number of turns on the core. These coils are connected in such a way that the magnetic flux induced by the upper coil is compensated by the lower coil.

The new Magnetic Design Tool of EPCOS contains the normalized impedance versus frequency curves of all ferrite materials, which are suitable for EMI applications.

Figure 16

Current-compensated toroid choke; double choke shown as an example

EMI applications

4.3 NiZn ferrites

Toroidal cores of NiZn ferrites are especially suitable for the suppression of high frequency interference, because of the high ohmic resistance of these materials (ca. 10⁵ Ω m). Therefore the negative effect of eddy current is negligible and the usage of these materials allow relatively high impedance values even at frequency well above 100 MHz. There is limiting factor to create NiZn ferrites with higher initial permeability, because with increasing permeability the Curie temperature decreases. For example the Curie temperature for a NiZn ferrite of μ_i = 800 (K10) is specified >150 °C, which is at the limit for many applications.

An applicacion example in the automotive sector is the CAN bus choke, where core sizes from outer diameter 2.5 mm to 6.3 mm (0.1 to 0.29 inch) in material K10 are used. As the transmission frequencies in the telecom industry are rising, it is also expected, that the demand for NiZn ferrites will grow.

Another application example for NiZn ferrite toroids is the usage of cores alone on component leads or in board level circuitry either

- to prevent any parasitic oscillations or
- to attenuate unwanted signal pickup or transmissions which might travel along component leads or interconnecting wires, traces, or cables.

4.4 MnZn ferrites

For the application as current-compensated chokes MnZn ferrites are widely used in the whole range of sizes. The advantage of the MnZn materials is the much higher permeability, which can be realised together with a sufficiently high Curie temperature. Using very high permeability ferrites reduces the number of turns, which are necessary to reach a certain inductance. This avoids the negative impact of a high number of turns like DC resistance or parasitic capacitance and not at least costs.

Small cores R 2.5 up to R 12.5 in the materials N30, T38, T46 can be used for example in Telecom networks like ISDN.

Cores of mid range sizes from R 13.3 to R 26 are used as choke in power lines usually in electronic ballasts in lamps, switch-mode power supplies in TV sets, washing machines and chargers. Ferrite materials: N30, T65, T35, T37, T38 and T46.

The usage for core sizes R 34 and bigger are in industrial applications, in filters for frequency converters (lifts, pumps, traction systems, conveyer systems, air conditioning systems), generalpurpose application in power electronics, UPS and wind-driven power plants. Especially for high temperarure or/and high current application in these fields our material T65 is the most suitable because of its high saturation flux density of 460 mT and high Curie temperature of >160 °C. The initial permeability on big cores is about 4500 to 5000.

If there is not especially high current or high temperature applied, we recommend to use our materials N30 (μ_i = 4300) and T37 (μ_i approx. 5500 to 6000 on big cores). The choice of material depends on the frequency range, which has to be covered by the attenuation. This is determined by the characteristic of permeability.

Inductive sensors

5 Cores for inductive sensors

The proximity switch, widely used in automation engineering, is based on the damping of a highfrequency LC oscillator by the approach of a metal. The oscillator inductor consists of a cylindrical coil and a ferrite core half whose open side forms what is known as the active area. The function of the ferrite core consists in spatially aligning the magnetic field so as to restrict the interaction area.

The oscillator design must take into account that the inductor forms a magnetically open circuit. The inductance and quality are decisively dependent on the coil design, unlike in the case of closed circuits. The initial permeability plays a subordinate role here, as is shown by the following example:

Figure 17

Inductance and quality versus initial permeability $P 9.3 \times 2.7$, N = 100, f = 100 kHz, I = 1 mA

Decisive for this application is the attainment of as high a Q as possible, with the lowest possible dependence on temperature at the oscillator frequency. When the distance between the damping lug and the active area changes, the oscillator Q should however change as strongly as possible.

If the relative change in $Q \Delta Q/Q$ exceeds a predefined threshold, e.g. 10%, a switching operation is initiated at the so-called operating distance. Attainment of the target values depends on appropriate coil dimensioning and can generally only be performed empirically.

Power applications

6 Cores for power applications

6.1 Core shapes and materials

The enormously increased diversity of application in power electronics has led to a considerable expansion not only in the spectrum of core shapes but also in the range of materials.

To satisfy the demands of higher-frequency applications, the EFD cores have been developed in sizes EFD 10, 15, 20, 25 and EFD 30. These are characterized by an extremely flat design, optimized cross-sectional distribution and optimized winding shielding.

For many standard applications up to 100 kHz, materials N27, N41 and N72 can be used. For the range up to 500 kHz, materials N92, N87, N88, N95, N96 and N97 are suitable. N49 covers the range from 300 kHz to 1 MHz, PC200 to 4 MHz e.g. for DC/DC (resonance) converters.

For detailed information on core shapes see the individual data sheets, for general information on materials see the chapter on SIFERRIT materials.

6.2 Low-profile cores for planar magnetics

The design of planar devices has attracted the attention of magnetic design engineers, since this type of devices has interesting advantages over conventional wound components (cf. figure 18):

- Low total height
- Outstanding reproducibility of electrical parameters
- Excellent thermal performance
- High degree of integration
- a) Conventional magnetics b) Planar magnetics

Figure 18

Principle of conventional and planar magnetics

In order to fulfill the requirements of this technology, suitable cores are needed. The most common designs of low-profile cores have been adopted in the IEC standards IEC 62317-4 for RM LP cores and IEC 62317-9 for ELP, EQ and ER planar cores to offer geometrically compatible cores for this application. A common denominator of these cores is that the length of the core is larger than both its total height and its width.

Power applications

The advantages of this core design are:

- High A_L values
- High core surface to volume ratio
- Large core surface to contact heat sink

The preferred materials used in combination with low-profile cores are N87, N88, N95, N96, N97, N92, N49 and PC200 for power applications as well as T38 and T46 for applications requiring high inductance values.

6.3 Correlation: Applications – core shape/material

6.3.1 Step-down converters

Figure 19 Typical circuit diagram

Advantages

- Only one choke required
- High efficiency
- Low radio interference

Disadvantages

- Only one output voltage
- Restricted short-circuit withstand capability (no line isolation)

Application areas

- Providing a constant output voltage, isolated from input voltage
- Regulation in a forward converter
- Regulated voltage inversion
- Sinusoidal line current draw

Core/material requirements

■ Standard requirements regarding losses and saturation

157 1/17

Power applications

EPCOS recommendations for core shape/material

■ E/ETD/U/RM cores made of N27 (standard) N87, N97 (low losses, high saturation) N88 (low losses in high temperature range) N95 (low losses in wide temperature range) N96 (low losses in low temperature range) N92 (high saturation)

6.3.2 Single-ended flyback converter

Advantages

- Simple circuit variant (low cost)
- Low component requirement
- Only one inductive component
- Low leakage losses
- Several easily regulatable output voltages

Disadvantages

- Close coupling of primary and secondary sides
- High eddy current losses in the air gap area
- Large transformer core with air gap restricts possible applications
- Average radio interference
- Exacting requirements on the components

Application areas

- Low and medium powers up to max. 200 W with wide output voltage range
- Maximum operating frequency approx. 100 kHz

158 1/17

Power applications

Core/material requirements

- Low power losses at high temperature
- Very high saturation with low dependence on temperature
- Gapped cores (recently also with A_1 value quarantee)

EPCOS recommendations for core shape/material

■ E/U cores made of N27 (standard) N87, N92, N97 (low losses, high saturation) N88 (low losses in high temperature range) N95 (low losses in wide temperature range) N96 (low losses in low temperature range)

6.3.3 Single-ended forward converter

Figure 21 Typical circuit diagram

Advantages

- Higher power range than flyback converter
- Lower demands on circuit components
- High efficiency

Disadvantages

- 2 inductive components
- Large choke
- Demagnetization winding
- High radio interference suppression complexity
- Increased component requirement, particularly with several regulated output voltages

Power applications

Application areas

- Medium and high powers (up to 500 W) especially in the area of low output voltages
- PWM (pulse width) modulation up to approx. 500 kHz

Core/material requirements

- Low losses at high temperatures and at high frequencies (low eddy-current losses)
- Generally, ungapped cores

EPCOS recommendations for core shape/material

■ E/ETD, small EFD cores, RM/PM cores made of N27, N41 (up to 100 kHz) N87, N97 (up to 500 kHz) N49 (up to 700 kHz) PC200 (up to 4 MHz) N88 (low losses in high temperature range)

6.3.4 Push-pull converter

Figure 22 Typical circuit diagram

Advantages

- Powers up to the kW range
- Small choke
- High efficiency
- Low radio interference suppression complexity

Disadvantages

- 2 inductive components
- Complex winding
- High component requirement, particularly with several regulated output voltages

Power applications

Application areas

- High powers (»100 W), also at high output voltages
- PWM (pulse width) modulation up to 500 kHz

Core/material requirements

- Low losses at high temperatures
- Low eddy-current losses since application areas is up to 500 kHz and above
- Generally, ungapped cores

EPCOS recommendations for core shape/material

■ Large E/ETD, RM/PM cores made of N27, N97, N87 (with large core cross sections $(A_e \ge 250$ mm²), on account of eddy-current losses N87 must be used even where f <100 kHz) N88 (low losses in high temperature range) N95 (low losses in wide temperature range)

6.3.5 Electronic lamp ballast device

Figure 23 Typical circuit diagram

Advantages

- Considerably reduced size compared to 50 Hz line solution
- Significantly higher efficiency than line voltage regulator

Disadvantages

■ High component requirement

Application areas

■ Control unit for fluorescent lamps

Power applications

Core/material requirements

- Low losses in the range 50 to 80 °C
- Pulse power requirements
- Gapped and ungapped E cores
- Ring cores with defined pulse characteristic

EPCOS recommendations for core shape/material

 \blacksquare E/ETD/EFD cores made of N72 for L₁

6.4 Selection of switch-mode power supply transformer cores

The previous section (Correlation: Applications – core shape/material) provides a guide for the rough selection of core shape and material.

The following procedure should be followed when selecting the actual core size and material:

1) Definition of requirements

- $-$ Range of power capacities P_{trans}
- Specification of the SMPS type
- Specification of pulse frequency and maximum temperature rise
- Specification of the maximum volume
- 2) Selection of "possible" core shapes/materials on the basis of the "Power capacity" tables starting on [page 165](#page-165-0).

These tables associate core shape/material combinations (and the volume V) with the power capacity of the different converter types at a "typical" frequency f_{tvn} and a "cut-off frequency" f_{cutoff}

The typical frequency specified here is a frequency for which specific applications are known, or which serves as the base frequency for the specified core loss values.

The cut-off frequency is selected such that the advantages of other materials predominate above this frequency and that it is therefore advisable to switch to a different material which is better optimized for this range.

3) Final selection of core shape/material

The core shapes/materials selected as possibilities under 2) must now be compared with the relevant data sheets for the specific core types and the material data (typical curves), taking the following points into consideration:

- Volume
- Accessories (power coil former)
- A_L values of ungapped core
- $-$ A_L values/air gap specifications
- Temperature minimum for losses, Curie temperature T_{C} , saturation magnetization B_s, magnetic bias characteristic, amplitude permeability characteristic

Core shape/material combinations which are not contained in the individual data sheets can be requested from EPCOS.

Power applications

6.5 Selection tables: Power capacities

In order to calculate the transmissible power, the following relationship is used (transformer with two equal windings):

 $P_{trans} = C \Delta B f A_{e} \cdot A_{N} \cdot j$

where C is a coefficient characterizing the converter topolgy¹), i.e.

 $C = 1$: push-pull converter

C = 0.71: single-ended converter

 $C = 0.62$: flyback converter

Both the core losses associated with the flux swing ΔB and the copper losses due to the current density j result in a temperature increase ΔT. Assuming that both loss contributions are equal and that $P_v \sim B^2$, the power capacity can be approximated by

$$
P_{trans} \approx C \cdot \underbrace{\frac{PF}{\sqrt{P_V}}}_{\text{Material} } \cdot \underbrace{\frac{\Delta T}{R_{th}}}_{\text{International Winding} } \cdot \underbrace{\sqrt{\frac{f_{Cu}}{I_N \cdot I_e}}_{\text{Geometry}}
$$

The equation shows how the different aspects in the design contribute to the power capacity:

- The material term is the performance factor PF divided by the square root of the specific core loss level for which it was derived. For a given core shape deviations from this value are possible as given by its data sheet.
- $-$ The values for ΔT are associated with the material according to the following table.

¹⁾ G. Roespel, "Effect of the magnetic material on the shape and dimensions of transformers and chokes in switchedmode power supplies", J. of Magn. and Magn. Materials 9 (1978) 145-49

Power applications

– The thermal resistance is defined as

$$
R_{th} = \frac{\Delta T}{P_{Vcore} + P_{Vcopper}}
$$

– These values should be regarded as typical for a given core shape. They were determined by measurement under the condition of free convection in air and are given in the table on [page 172](#page-172-0) ff.

For actual designs the actual values for R_{th} should be determined and the tabulated P_{trans} values (cf. [page 171](#page-171-0) ff.) adjusted accordingly.

- The winding design was taken into account in the calcualtions by $f_{\text{Cu}} = 0.4$ and p_{Cu} for DC. In actual design large deviations of the DC resistance due to high frequency effects (skin effect, proximity effect) occur, unless special wire types such as litz wires are used. If the R_{AC}/R_{DC} ratio for a given winding is known, this can be used to correct the tabulated power capacities accordingly.
- The geometry term is related to the core shape and size. However, note that the thermal resistance is also size-dependent via the empirical relation (cf. figure 24):

$$
R_{th} \sim \frac{1}{\sqrt{V_e}}
$$

The tabulated power capacities provide a means for making a selection among cores, although the absolute values will not be met in practice for the reasons explained before.

In the calculation of power capacities the following conditions were also applied:

- The application area for flyback converters was restricted to f <150 kHz.
- The power specifications for N49 should be read as applicable to DC/DC (quasi) resonance converters (single-ended forward operation).

Power applications

– The maximum flux densities were defined as follows: For flyback converters: ΔB ≤200 mT (ΔB ≤50 mT for material N49) For push-pull converters: ΔB ≤400 mT.

Figure 24

Thermal resistance versus core effective volume

Power applications

P_{trans} of cores for wound transformers ($f_{Cu} = 0.4$)

Please read *Important notes* on page 2 and *Cautions and warnings* on page 674

Power applications

EP 5 2.6 EP 6 2.7 EP 7 13 EP 10 25 EP 13 55 EP 17 | | | | 114 EP 20 \qquad | | | | | | | | 329 $\mathsf{P} \, 9 \times 5$ | | | | | | | 14 $P 11 \times 7$ | | | | | 25 P 14 \times 8 $\hskip1cm$ 12 $\hskip1cm$ 12 $\hskip1cm$ 12 $\hskip1cm$ $P 18 \times 11$ | | | | | | 133 P 22 \times 13 \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad 232 P 26 × 16 394 $P 30 \times 19$ \vert \vert \vert \vert \vert \vert 613 E 5 0.3 | | | | 1.7 | | | 1.8 E 6.3 (0.5) (2.4) (2.5) (2.5) E 8.8 | 1.0 | | | | 5.0 | | | | 5.2 E 10/5.5/5 25 4.7 225 25 E 12.7/6/6 | 10 | | | | | | 48 | | | | | 50 E 13/6/6.15 | 10 | | | | | | 49 | | | | | 51 E 13/6.5/3.7 6.0 \vert \vert \vert \vert \vert 31 \vert \vert 32 E 13/7/4 | 5.6 | | | | | | | 28 | | | | | | | 29 $F = 14/8/4$ 9.3 E 16/6/5 | 9.4 | | | | | 48 | | | | 50 E 16/7/5 | 13 | | | | | | | 65 | | | | | | | 68 E 16/8/5 | 14 | 13.2 | | | | | | 68 | | | | | | | 71 E 16/8/8 | 26 | | | | | | | 115 | | | | | | 125 E 19/8/5 | 17 | | | | | | | 82 | | | | | | 89 E 20/9/6 | 26 | | | | | | | 118 | | | | | | 128 E 20/10/6 | 28 | | | | | | | 125 | | | | | | 136 E 20/10/11 50 227 246 E 21/9/5 E 22/15/6 | 44 | | | | | | | 198 | | | | | | 215 N27 N41 N49 N72 N87 N92 N95 N97 f_{typ} (kHz) |25 |25 |500 |25 |100 |100 |100 |100

P_{trans} of cores for wound transformers ($f_{Cu} = 0.4$)

Please read *Important notes* on page 2 and *Cautions and warnings* on page 674

Power applications

P_{trans} of cores for wound transformers ($f_{Cu} = 0.4$)

Please read *Important notes* on page 2 and *Cautions and warnings* on page 674

Power applications

ER 25/6/15 247 238 230 230 258 ER 25/9/15 155 147 143 161 ER 28/17/11 290 ER 32/5/21 387 381 370 412 ER 35/20/11 309 | | | | | | 1388 ER 42/22/15 384 1725 ER 46/17/18 376 ER 49/27/17 | 636 ER 54/18/18 482 2168 N27 N41 N49 N72 N87 N92 N95 N97 f_{typ} (kHz) |25 |25 |500 |25 |100 |100 |100 |100

P_{trans} of cores for wound transformers ($f_{Cu} = 0.4$)

Power applications

P_{trans} of cores for wound transformers ($f_{Cu} = 0.4$)

Power applications

N49 N87 N92 N95 N97 ftyp (kHz) 500 100 100 100 100 RM 4 LP 9.5 10 RM 5 LP 14 17.5 RM 6 LP 22 28 RM 7 LP 33 41 RM 8 LP | 48 | 60 RM 10 LP 86 107 RM 12 LP 183 226 RM 14 LP 305 378 ER 9.5 4.5 FR 11/5 75 7 ER 14.5/6 13 12 11 12 EILP 14 12 11 10 10 EELP 14 | 16 | 17 | 16 | 18.5 16 EILP 18 30 37 34 36 EELP 18 | 44 | 55 | 50 | 50 | 59 EILP 22 | 78 | 96 | 88 | 105 | 105 EELP 22 109 134 123 146 EILP 32 143 177 171 186 192 EELP 32 203 252 244 261 274 EILP 38 262 323 313 252 EELP 38 380 470 454 510 EILP 43 360 445 430 482 EELP 43 500 619 599 666 672 EILP 58 731 EELP 58 1046 $FII P 64$ 800 991 EELP 64 1130 1397

 P_{trans} of low-profile cores for planar transformers (f_{Cu} = 0.1)

Power applications

6.6 Thermal resistance for the main power transformer core shapes

1 Gapped and ungapped ferrite cores

Even with the best grinding methods known today, a certain degree of roughness on ground surfaces cannot be avoided, so that the usual term "without air gap" or "ungapped" does not imply no air gap at all. The A_l values quoted allow for a certain amount of roughness of the ground faces. The tolerance of the $A₁$ value for ungapped cores is –20 to +30% or –30 to +40%. Closer tolerances are not available for several reasons. The spread in the $A₁$ values of ungapped cores practically equal the spread in ring core permeability $(\pm 20\% \dots \pm 30\%)$, and the A_L value largely depends on the grinding quality of the matching surfaces.

The following are normally defined:

The residual air gap s_{resid} here is the total of the residual air gaps at the leg or centerpost contact surfaces.

With increasing material permeability the influence of the inevitable residual air gap grows larger. The spreads in the A_U value may also be increased by the mode of core assembly. Effects of mounting and gluing can result in a reduction of the $A₁$ value. An appropriate wringing of cores with polished surface is used to improve reproducibility of the measurement (it is recommended to rub the mating surfaces themselves six times in a circular or elliptic arc that matches the core profile before measuring $A₁$).

Relationship between permeability μ_{α} and air gap s for an RM 4/T38 ferrite core

Relationship between permeability μ_{α} and air gap s for an E 20/10/11 N87 and ELP 64/10/50 N87 ferrite core

1.1 Air gaps and distributed air gaps in ferrite cores - E, EQ, ER, ETD, PM, PQ cores

Applications

- Power chokes
- Flyback converters

Technique

- The gap delays the core saturation
- The gap is required to increase the power handling capability
- The gap makes the core inductance independent of the material permeability and thereby narrows down the spread of inductance.

Benefits

- **The core size can be reduced by one class due to lower winding loss (e.g. ETD 59** \rightarrow **ETD 54** or E 65 \rightarrow E 55)
- Additional costs for creating the "triple gap" are compensated by the smaller core.

Core types

174 1/17

Technique

The gap delays the core saturation.

FAL0856-4

The gap is required to increase the power handling capabability.

The gap makes the core inductance independent of the material permeability.

For more information, please read chapter "General – Definitions – 2 Permeability"

175 1/17

Simulation with ferrite cores E 55/28/25

The main effect of gaps of different sizes and locations will be changing the loss in the adjacent winding. The size of this effect depends on the stray field which enters the winding. The total gap remains identical, only the location and the individual size per gap are changed.

The average of the square of the local flux density in the winding is used for comparing the results, since they would induce eddy currents and lead to losses and heating governed by $P = R * 12$.

FFK0858-K

Average B2 in winding depending on each gap size (total gap is same) and location.

Improvement in DC current for a 20% drop in initial Inductance for different gap sizes and structures (total gap is same).

Conclusion

In comparison between one gap and three evenly distributed gaps in the core it is seen that the square of the average flux B^2_{ave} , causing winding loss is lower in the later case.

In applications, there are consequently lower electromagnetic emissions and heating.

2 Processing notes for the manufacture of wound products for small-signal and power applications

2.1 Winding design

For the most common core types the maximum number of turns for the individual coil formers can be seen from the following nomograms. The curves have been derived from the equation

$$
N = \frac{A_N}{A_{wire}} \cdot f_{Cu}
$$

where

Common wires and litz wires are specified in the pertinent standards (IEC 60317).

As can be seen from Figure 26, as high a winding level as possible should be employed because at low $\mu_{\rm e}$ values in particular a low winding level (h/H ratio) can cause an A_L drop of up to 10% compared to the maximum value with full winding. (By our standards, the $A₁$ values are always related to fully wound 100-turn coils.)

RM cores

Maximum number of turns N for coil formers

1) American Wire Gauge (AWG)

PQ cores

Maximum number of turns N for coil formers

PM cores

Maximum number of turns N for coil formers

1) American Wire Gauge (AWG)

EP cores

Maximum number of turns N for coil formers

1) American Wire Gauge (AWG)

P cores

Maximum number of turns N for coil formers

1) American Wire Gauge (AWG)

EFD cores

Maximum number of turns N for coil formers

1) American Wire Gauge (AWG)

ETD and ER cores

Maximum number of turns N for coil formers

1) American Wire Gauge (AWG)

E cores

Maximum number of turns N for coil formers

1) American Wire Gauge (AWG)

SMD types

Maximum number of turns N for coil formers

1) American Wire Gauge (AWG)

2.2 Soldering/Inductor assembly

The winding wires are preferably connected to the pins by dip soldering. Note the following when soldering:

- Prior to every dip soldering process the oxide film must be removed from the surface of the solder bath.
- 2 to 3 turns of the wire are dipped into the solder bath; the coil former must not be allowed to come too close to the solder or remain there for too long (see diagram).
- $-$ Typical values are: Bath temperature: 400 °C, soldering time: 1 s.

Soldering of PTH (pin through hole) Soldering of J-leg

For inductor assembly, it is advisable to clamp the cores with the associated relevant mounting assemblies for the coil formers and cores. In this way it is possible to avoid the effects of external mechanical stress.

2.3 Design and processing information for SMD components

2.3.1 Automatic placement

EPCOS ferrite accessories are suitable for automatic placement. Many automatic placement machines pick up the components with suction probes and pliers, so the inductive components should have simple and clear contours as well as a sufficiently large and flat surface. Ferrite cores with a perpendicular magnetic axis, e.g. RM and ER cores, have a smooth surface and the flange for the coil former is styled right for the purpose. For cores with a horizontal magnetic axis, e.g. E cores and toroids, we provide cover caps to meet these requirements.

2.3.2 Coplanarity

Coplanarity means the maximum spacing between a terminal and a plane surface. If inductive components are fabricated with coplanarity of <0.2 mm for example, then one or more terminals may be spaced maximally 0.2 mm from a plane surface.

Inductive components are fabricated to standard with coplanarity of <0.2 mm. Coplanarity is influenced by a number of factors:

a) Coil former specification

The coplanarity of the coil former is <0.1 mm for manufacturing reasons.

b) Winding wire

Use of thick winding wire (e.g. 0.25 mm diameter in model ER 11) leads to considerable mechanical strain on the terminal during winding, and this can degrade coplanarity.

c) Soldering temperature and duration

When winding wire is soldered to a terminal, the coil former is subjected to high thermal stress. If thick wires have to be soldered, the soldering temperature and/or duration increase and thus the thermal stress on the coil former too. This also degrades coplanarity.

Consequently the use of thick wires degrades coplanarity in two ways: greater mechanical strain when winding, and greater thermal stress during soldering.

If electrical requirements call for the use of thick wires, either the manufacturing effort is greater (it takes longer and the costs are higher), or a terminal geometry has to be chosen that is suitable for the use of thick wires. EPCOS offers two different SMD lead geometries: gullwings and J terminals.

Gullwing terminals **Molded-in J** terminals

With gullwings the wire is wound direct on the terminal, which is then soldered on the circuit board. With J terminals the wire is wound on a separate pin, and the J terminal is soldered to the circuit board.

So gullwings are suitable for applications with thin wire (up to approx. 0.18 mm in diameter), and J terminals for use with thick wire (upwards from 0.18 mm in diameter). These figures for wire diameter are only intended as guidelines. Depending on wire diameter, the winding arrangement, the pinning and electrical requirements, one has to decide from case to case which solution is best for the particular application.

2.3.3 Solder paste application

Coplanarity has to be considered when determining the thickness of the solder paste. If coplanarity is <0.2 mm for example, the solder paste has to be applied at least 0.2 mm thick to ensure proper soldering.

2.4 Adhesive application and core mating

A quantity of adhesive appropriate to the area in question is applied to the cleaned surface of the core's side walls. The centerpost must remain free of adhesive. The two core halves without coil former are then placed on a mandrel and rotated against each other two or three times to spread the adhesive. A slight ring of adhesive exuding around the edges indicates that sufficient adhesive has been applied.

On porous, low-permeability SIFERRIT materials (K) the adhesive should be applied and spread twice.

The next step should follow immediately since the adhesive film easily attracts dust and absorbs moisture. Therefore, the core pair with adhesive already applied is opened for a short time and the wound coil is inserted without touching the mating surfaces.

The wound coil is then fixed into position. This can be done by using resilient spacers which must be inserted before applying the adhesive. Appropriate spacers are available on request.

The coil former can also be fixed by gluing, e.g. using adhesive d), but only at one spot on the core bottom to avoid any mechanical stress caused by the difference in thermal expansion of core and coil former.

Adhesive e) is suitable for external gluing, which implies only four dots of adhesive at the joints on both sides of the openings. Because of the somewhat lower torsional strength, it should be noted that this kind of gluing should only be used with mounted cores.

2.5 Holding jigs

The core assembly is cured under pressure in a centering jig. The core center hole – where present – is used for centering, and two to eight coils can be held in one jig with a pressure spring. Spacers will ensure that the pressure is only exerted on the side walls of the core.

Single jigs facilitate the coil inductance measurement, which has proved useful for checking cores with small air gaps before the adhesive has hardened. Small inductance corrections can be made by slightly turning the core halves relative to each other.

2.6 Final adjustment

(possible only with adjustable cores)

With all assembled ferrite cores, a magnetic activation takes place as a result of mounting influences such as clamping, gluing and soldering, i.e. a disaccommodation process commences. Therefore the final adjustment for high-precision inductors should take place no earlier than one day after assembly; preferably, one week should first elapse.

2.7 Hole arrangement

For drilling the through-holes into the PC board we recommend the dimensions given in the hole arrangement for each coil former, which depend on the distance of the pins on the pin outlet level.

2.8 Creepage and clearance

For telecom transformers the clearance and creepage distances and the thickness of insulation must be considered acc. EN 60950 subclause 2.9.

Survey of packing modes

Ferrite cores

Accessories

We can supply the packaging according to customer requirement.

1 General information

Our product packaging modes ensure maximum protection against damage during transportation. Moreover, our packing materials are selected with environmental considerations in mind. They are marked with the appropriate recycling symbols.

Because of the large variety of types and sizes, we use five basic kinds of packing, which are described in points 2 and 3 below:

- Blister tape
- Trav
- Container
- Reel
- Magazine

The packing units are based on the following system:

1.1 Packing unit (PU)

Usually, a packing unit is a collection of a number of basic packages. The size of the packing unit is stated for the particular components in their data sheets. When ordering, please state complete packing units if possible. We reserve the right to round the ordered quantity accordingly.

1.2 Dispatch unit

A number of packing units are combined to form a dispatch unit. Standard dispatch units for large quantities are a Europallet or pallet carton. For small quantities, folding corrugated cardboard boxes are used in standard sizes. In the case of small quantities a dispatch unit may also include packages with other components.

1.3 Barcode label

On the product packing label (standard label) we include bar-code information in addition to plain text. In addition to benefits relating to the internal flow of goods, this provides above all a more rapid and error-free means of identification checking for the customer.

2 Modes of packing

2.1 Blister tape

Blister packing was specially devised for handling by automatic systems but has also proved to be very good for conventional handling, especially where small quantities are concerned. See point 3.2 for a detailed description and a list of the core types that can be supplied in this type of packing.

2.2 Tray (pallet)

2.2.1 Standard tray

The polystyrene tray (basic package) is the standard packing for most types of core. The area of 200 mm \times 300 mm corresponds to the module dimensions of DIN 55 510 and is based on the area of the 800 mm \times 1200 mm Europallet. Depending on the overall height of the trays and the numbers contained, several trays will be stacked to form a packing unit and provided with a corrugated cardboard cover. For the protection of the cores the entire stack is also shrink-wrapped in polyethylene film.

Each core is enclosed in a separate compartment. When P cores and similar types are packed in sets, the halves of the core pairs are packed so that their pole faces are opposite one another. As a rule their association is identified by markings in the polystyrene (recessed webs, thinner webs). In the case of P 3.3 \times 2.6 and P 4.6 \times 4.1 cores the halves of a set are not located in a single tray but in different trays of a packing unit.

2.2.2 Block packing

For E and U core we prefer block packing in trays with the dimensions 200 mm \times 300 mm. The symmetry, position, length and spacing of the blocks are always the same. The height of the tray is dependent on the size of the core. For the makeup of a packing unit see point 2.2.1.

Block packing can be supplied in boxes of corrugated cardboard (special packing unit!) on request.

Block packing permits highly rationalized handling and is designed for automatic processing.

Packing unit for standard or block packing

2.3 Container

2.3.1 Bag

Small ferrite parts are packed in flat polyethylene vacuum bags. The number per bag depends on the volume of the parts. Generally four bags in a corrugated cardboard box form a packing unit.

Small accessories (clamps, pinless and SMD coil formers) are also packed in this way. The size of the bag depends on the volume of the parts (packing unit).

2.3.2 Boxes

Coated ring cores of medium size are packed in cardboard boxes with cardboard or polyethylene foam inlays. The number per box depends on the volume of the cores.

Accessories (large mounting assemblies, clamps, washers packed on reels etc.) are packed in boxes of cardboard or corrugated cardboard.

2.4 Packing for coil formers

For coil formers we use different packing types depending on size, pin type and packing equipment. So we use polystyrene boards for some PTH coil formers like RM types. For most of the other PTH coil formers and some SMD coil formers we use cardboard boxes as bulk packaging. Coil formers without pins are mainly packed in plastic bags. For some SMD coil formers we also use blister tray packaging.

2.5 Cardboard tray

Cardboard trays are a new ecological packing system, stacked in a cardboard box or in a plastic bag.

Advantages:

- Environmentally friendly solution with easy-to-recycle materials.
- Good removing cores from tray.

Packing unit for cardboard trays

2.6 Cardboard tray with vacuum bag

There is used a cardboard tray without slots for individual cores. The tray with cores is placed in vacuum bag, which protects the cores during a transport. The package is suitable for smaller cores that are not too high. The cores are not oriented on the tray.

3 Delivery modes for automatic processing

3.1 General information on inductor production

The inductor parts described in the following can be handled by automatic manufacturing systems. In addition to automatic winding machines – which can be combined with wrapping, fluxing and soldering stations – flexible, high-performance automatic assembly lines are available. Design and packing of the individual parts (ferrite cores, coil formers, clamps, insulating washers and adjusting screws) have been optimized for automatic processing and permit easy feeding to the various stations of production lines.

We supply RM cores up to RM 10 (P and EP cores on request) blister-taped in dispenser boxes. By inserting a plate-shaped resilient insulating washer between core and coil former, gluing can be dispensed with.

We also provide consulting services with examples of implementations to customers planning to introduce automatic production lines.

Production sequence

3.2 Cores in blister tape (strips)

The cores are packed in sets ready for assembly, i.e. a stamped core with the base upwards and an unstamped core (possibly with a threaded sleeve) with the pole face upwards. The blister tapes

have a hole at one end for orientation purposes (see also illustration). The tapes are sealed with a paper cover. Looking at a tape with the hole on the left and the paper cover on top, then after removing the paper cover the stamped cores will be in the upper row and the unstamped cores of the sets in the lower row.

The blister compartments always comprise the following function spaces: a free space for the gripper claws, the recess in which the core rests and the padding.

The free space enables the cores to be removed by mechanical grippers. On the reverse side of the blister, these free spaces lead to a regular grid arrangement with a spacing of 6.2 mm and 3.1 mm. The blisters should be guided and stopped at these intervals. A hanging arrangement is to be preferred, because this avoids problems arising in case the blister height or padding thickness varies.

The core recess centers the core in the blister compartment.

The padding serves as protection during transport and as spacing to achieve correct filling of the dispenser pack. The shape and position of the padding may vary, depending on the production method used. All padding dimensions given must therefore be considered to be subject to change at any time.

Several blister tapes are combined in a box with a perforated tear-off cover (dispenser pack) to form a packing unit. The tapes are packed so that the orientation hole appears in the dispenser opening. The box is shrink-wrapped in polyethylene film.

The following table lists the core types which are available in blister tape:

For ordering codes refer to the individual data sheets.

Dimensions are nominal; tolerances given in design drawings.

3.3 Dispenser pack

To open a blister tape manually, peel back the paper cover tape smoothly but not too quickly, along the axis of the tape as shown in the following illustration.

$$
\underbrace{\qquad \qquad }_{\text{FAI (0135-8)}} \qquad \qquad \overbrace{\qquad \qquad }_{\text{FAI (0135-8)}}
$$

When opening a blister tape automatically, it is advisable not to completely remove the paper cover. Rather, the cover paper should be divided up by means of 4 longitudinal cuts so that the mating surfaces remain on the blister (cf. blister tape illustration). The paper strips produced above the two rows of compartments can then be easily lifted. This avoids malfunctions resulting from fluctuations in the adhesive properties of the paper sealing tape.

3.4 Cores in blister tape (reeled)

Small and low profile cores can also be supplied taped an reeled as per IEC 60286-3, optionally in conductive or non-conductive tapes. The cores are oriented for automatic feeding. The tapes are sealed with a transparent cover tape and wound on 330-mm polystyrol reels. Each reel is identified with a barcode label and a release label.

The following table lists the core types which are available in tape on reel.

3.5 Skin packing

Skin packing is a new and very compact packing method.

Several cores are placed on a cardboard pallet and sealed in GLTE film by heat shrinking. The various pallets are then stacked in a cardboard box.

Advantages

- Environmentally friendly solution with easy-to-recycle materials
- Suitable for all cores larger than E 30
- Good protection of mating surface
- Film can be peeled back very easily
- Code numbers printed on cores can be read through transparent film

Corporate goals

Our aim is to play a leading role among the world's most competitive companies in the sector of electronic components. This aim is shared by the EPCOS quality and environment management system:

1 EPCOS quality system

1.1 Extract from EPCOS quality policy

- The quality of our products and services represents a key constituent of our corporate strategy, whose principal aim is customer satisfaction.
- Our quality management system is continuously oriented to the international standards that stipulate the highest requirements.

1.2 Quality management system

The quality management system to ISO/TS 16949 is applied throughout the company and is used to implement the EPCOS quality policy. The implications include:

- $-$ As a rule, product and process developments follow the rules of APQP¹⁾.
- Quality tools such as $FMEA²$, DoE³) and SPC⁴) minimize risks and ensure continuous improvements in conjunction with regular internal audits and QM reviews.

1.3 Certification

The EPCOS quality management system forms the basis for the certification to ISO 9001 and ISO/TS 16949 that includes all EPCOS plants and sales organizations. The company certificates are posted on the EPCOS Internet (www.epcos.com/quality).

1.4 Production sequence and quality assurance

The business units implement the corporate specifications for quality management in procedural and work instructions referred to products and processes.

¹⁾ APQP = Advanced Product Quality Planning

 $2)$ DoE = Design of Experiments

³⁾ FMEA = Failure Modes and Effects Analysis

⁴⁾ SPC = Statistical Process Control

Production sequence and quality assurance during ferrite manufacture (schematic)

The following example shows quality assurance applied to the production sequence of ferrites.

Production steps

Raw materials (powder)

Incoming inspection Analysis of chemical comp. (X-ray fluorescence analysis)

Granulate production Weighing, mixing, presintering, milling. Homogenization, spraying incl. process control checks

Batch release Chemical analysis Manufacture and testing of sample cores

Granulate storage

Cores production Pressing, debindering, sintering incl. process control checks

Sinter check Testing of electrical and mechanical properties

Cores processing e.g. surface grinding, A_1 grinding, etc. incl. process control checks

Packing in PU (factory packing)

Final inspection/Monitoring Testing electr./mech. properties

Delivery release, Outgoing inspection, Checking of reports and finish labeling **Quality assurance**

X-ray fluorescence analysis reports

Batch release report

Sinter check test report

Final inspection reports

Date code and batch number on packing

Sales warehouse

1.5 Delivery quality

"Delivery quality" means compliance with the agreed data at the time of delivery.

1.6 Failure criteria

A component is defective if one of its features does not correspond to the specification of the data sheet or an agreed delivery specification.

1.7 Incoming goods inspection at the customer

For the incoming inspection, we recommend the use of a random sampling plan to DIN ISO 2859 Part 1 (contents compliant with MIL STD 105 D or IEC 60410).

The test methods used and the AQL must be agreed between the customer and supplier.

1.8 Final inspection/approval for shipment

Final inspection verifies the major properties of the end products batch by batch, usually by means of fully automated selection tests.

Approval for shipment helps certify that products shipped comply with specifications. It includes:

- testing of principal parameters,
- identification check and visual assessment,
- examination of papers accompanying the batch.

1.9 Reliability

A variety of endurance tests and environmental tests are conducted to assure the product reliability. These tests are derived from the extremes of expected application conditions, with test conditions intensified to obtain authoritative results within a reasonable period.

The reliability testing programs of EPCOS are based on the test plans of international standards and customer requirements.

EPCOS performs reliability tests to qualify new component families and for periodic requalification.

1.10 Traceability

By recording the lot or batch numbers on the documentation accompanying the process, complete traceability is maintained in the production sequence.

After delivery, traceability to the internal release inspections ("quality control gates") is ensured by the batch number which is printed on the label.

1.11 Electrical properties

The measuring conditions can be found in the chapter "General – Definitions". The product data and relevant tolerance limits are defined in the respective data sheets. The material data given in the chapter "SIFERRIT materials" are to be understood as typical values.

Measuring conditions deviations from the data book require an agreement between the customer and the EPCOS.

1.12 Dimensions

The dimensional drawings in the individual data sheets are definitive for the dimensions.

1.13 Finish

Assessment of the finish of ferrite cores is performed in accordance with EPCOS finish specifications. These are based on IEC 60424. Detailed drawings, which are available on request, specify the maximum permissible limit values for damage which can never be totally excluded with ceramic components. Assessment of the solderability of terminal pins for coil formers and clamps is carried out for PTH types to IEC 60068-2-20, test Ta, method 1 (aging 3) and for SMD types to IEC 60068-2-58.

1.14 AQL values

Within the framework of our quality goals, we are gradually tightening the AQL values which are intended for use in the customer's incoming goods inspection, currently the value AQL 0.25 is applicable, if not otherwise specified.

1.15 Barcode label

The packing of all EPCOS components bears a barcode label stating the type, production ID (1P), production order number (9K), data code (D), batch number (T), and quantity (Q). This enables a component to be traced back through the production process, together with its batch and test report.

EPCOS F19/8/5 T46 5800 +30% -30% **FERRITE CORE** RoHS-compatible (1P) PROD ID: B66379F X146 $MSI : N$ (9K) PROD ORDER NO 94221898 (D) D/C: 160727 **BATCH NO: F001230055** 1785 pieces (0) **OTV.** Made in Czech republic FAL0685-5

Example for core label

1.16 Conditions of use

EPCOS products may only be used in line with the technical specifications and installation instructions and must comply with the state of the art. Non-observance of limits, operating conditions or handling guidelines can lead to disturbances in the circuit and other undesirable consequences such as a higher failure rate.

Please note the "Important notes".

Should you have any application-referred questions, please contact our experts, who will be pleased to advise you.

1.17 Storage conditions

For all components the following storage conditions apply:

- storage takes place in original packages in non aggressive atmosphere,
- **■** storage temperature should not be less than -25 °C (-13 °F) and not exceed +40 °C (+104 °F),
- relative humidity should be ≤75% as an annual average and ≤ 95% on max. 30 days per annum, condensation is not allowed.

1.18 Shelf life

Shelf life of electronic components is limited by material characteristics or decreasing solderability of the terminations.

The default shelf life of following electronic components:

- Ferrites cores: 5 years
- \blacksquare Ferrite accessories solderable parts: 6 months
- Ferrite accessories FPC foils (self-adhesive): 6 months
- Ferrite accessories other parts: 2 years

Internal quality check is performed in terms of above mentioned periods The items which become out of shelf life are checked by the quality control procedures and if quality parameters fit the required values, then the shelf life can be prolonged accordingly.

1.19 Customer complaints

If a fault occurs in a product despite careful manufacture and testing, please contact your local sales organization. They will register your complaint as an RMA^{1} process and forward it to the relevant technical departments for rapid handling.

EPCOS treats technical complaints according to the 8D methodology; i.e. with the use of interdisciplinary teams who aim to implement rapid countermeasures and sustained corrections and answer all complaints with an 8D report (8D = 8 disciplines).

In order to be able to deal quickly and smoothly with complaints, the following data are helpful:

- Number of components subject to complaint or returned
- Fault description
- How and when was the fault detected?
- Logistics data (date code, delivery note no.)
- Operating conditions
- Operating duration up to occurrence of the fault
- Measurement parameters in the case of divergent technical data

In the event of transport damage, we would ask you to describe this in more detail and if required to mark it so that it can be distinguished from any further damage sustained during the return shipment. The original package should also be checked and any damage to be described. In order to avoid further damage, the original packaging should also be used for the return shipment.

¹⁾ RMA = Return of Material Authorization

2 Environmental management system

2.1 Environmental policy

Our fundamental commitment to environmental protection is laid down in the EPCOS environmental policy:

- 1. We work continuously toward reducing the burden on the environment, toward minimizing associated risks and toward lowering the use of energy and resources, above and beyond the legal requirements.
- 2. We take appropriate precautions to avoid environmental hazards and to prevent damage to the environment.
- 3. Potential impact on the environment is assessed and incorporated in process and product planning at the earliest possible stage.
- 4. By applying environmental, energy and occupational safety management, we ensure that this policy is implemented effectively. The technical and organizational procedures required to do this are monitored regularly and constantly further developed.
- 5. Each employee is required to act in an environmentally conscious manner. It is the constant duty of management to increase and encourage awareness of responsibility for environment, energy consumption and occupational safety at all levels.
- 6. We work with our business partners to promote conformity with similar objectives. We supply our customers with information on ways to minimize any potentially adverse environmental impacts of our products.
- 7. We work in a spirit of cooperation with the relevant authorities.
- 8. We inform the public of the impact on the environment caused by the company and our activities related to the environment and occupational health and safety.
- 9. We consider ensuring a safe, healthy and comfortable work environment as first priority. To regard the rules of labor safety is the task of each employee. We comply with all applicable legal requirements and with all requirements that relate to OH&S hazards.
- 10. We take preventive measures to avoid work-related injury and ill health and strive for continual improvement of our OH&S management system and the OH&S performance.
- 11. We support purchase of energy efficient products, machines and services, which will improve our energy related performance.

2.2 Environmental management system

The EPCOS ISO 14001 based environmental management system is applied company wide for implementing the EPCOS environmental policy. It is posted on the EPCOS Intranet and is thus accessible to all employees.

2.3 Certification

The EPCOS Group operates an environmental management system that conforms to the requirements of ISO 14001 and is mandatory for all plants.

The company certificate is posted on the EPCOS internet:

(www.epcos.com/environmental_management).

2.4 RoHS

The term "RoHS-compatible" shall mean the following:

Components defined as "RoHS-compatible" are compatible with the requirements of Art. 4 of Directive 2011/65/EU ("RoHS II") of the European Parliament and of the Council on the restriction of the use of certain hazardous substances in electrical and electronic equipment of 8 June 2011 and with the requirements of the provisions which will result from transposition of RoHS II into national law to the extent such provisions reflect the directive.

"RoHS-compatible" components do not contain any of the following substances at a content exceeding the maximum concentration limits of 0.1% for lead, mercury, hexavalent chromium, PBB, PBDE, and 0.01% for cadmium at a homogeneous material level, except the application is exempted by Annex III of "RoHS II".

2.5 REACH

According to Art. 33 we are obliged to inform our customers immediately or on request a consumer within 45 days if we get knowledge that a Substance of Very High Concern (SVHC) is contained in a product or it's packaging with more than 0.1% w/w. Provided this substance is published by the European Chemical Agency via the candidates list. Respective information is provided via www.epcos.com/reach (Link: REACH Candidates List and Information according REACH Art. 33, concerning EPCOS Products).

2.6 Banned and hazardous substances in components

As a manufacturer of passive components, we develop our products on the basis of sustainability.

In order to establish a standardized procedure for EPCOS worldwide, a material compliance management and a mandatory list of banned and declarable substances and substances of special interest (EPCOS BAD-SL) are part of our quality management system. The planning and development instructions include regulations and guidelines that aim to identify environmental aspects and to optimize products and processes with respect to material use and environmental compliance, to design them with sparing use of resources and to substitute hazardous substances as far as possible.

Consideration of the environmental aspects is checked and recorded in the design reviews: the environmental officer provides support in the assessment of the environmental impacts of a development project.

2.7 Material data sheets for product families

EPCOS posts material data sheets on the Internet (www.epcos.com/material) that show typical compositions of product groups by selected representatives. The materials are listed with their percentage weight distribution referred to the respective component.

As per IEC/PAS 61906, all materials with a weight percentage exceeding 0.1% are listed. All specifications are typical data and may vary slightly within a product group or production lot.

The material data sheets do not represent guaranteed properties, but are merely given for purposes of information.

Please note in this connection the "Important notes".

2.8 Disposal

All ferrite cores and accessories can be disposed of, reused or recycled. However as disposal is regulated by national law, the respective national provisions have to be observed.

1 IEC standards

PIease refer also the latest CO publications (www.iec.ch)

Standards and specifications

1.1 Quality assessment

The IEC standards mainly specify dimensions, designations and magnetic characteristics, whereas the European system of quality assessment CECC and the harmonized DIN-CECC standards additionally define methods of measurement and quality levels.

Since 1982 the IEC has been establishing the so-called IEC Q-system, which will have worldwide applicability. German DIN IEC standards are being harmonized with this quality system.

CECC and IEC-Q standards have a similar structure: they are subdivided into generic specifications (GS), sectional specifications (SS) and blank detail specifications (BDS). The numbering system of QC is analogous to that of CECC.

The detail specifications of CECC and IEC do not fully correspond to each other.

A quality assessment system of "Capability Approval" for the production of ferrite parts is being established.

RM cores

General information

1 General information

The demand for coil formers with integrated pins for efficient winding gave rise to the development of compact RM (**R**ectangular **M**odular) cores. Furthermore, this design allows high PCB packing densities. RM coil formers and accessories are suited to automatic processing.

During assembly, RM cores are held in place by clamps which engage in recesses in the core base. The various clamping forces defined, which have been verified by EPCOS through measurements, are specified in the individual data sheets.

The core dimensions are matched to standard PCB grids. RM 6 means, for example, that the core with coil former fills a square basic area 6×6 modules (1 module \approx 2.54 mm) = 15.24 \times 15.24 mm². The mainly used core sizes RM 4 through RM 14 are specified in IEC 62317.

2 Applications

- Originally RM cores from Siemens (today EPCOS) were essentially designed for two major applications, i.e.
	- very low-loss, highly stable filter inductors and other resonance determining inductors (materials N48, M33 and K1) and
	- low-distortion broadband transmission at low signal modulation (materials T66, T38, T57, N30).

Even today there is still a high demand for RM cores suited to these applications.

- RM cores are increasingly required for power applications. For this purpose our core series made of materials N87, N97, N88, N96, N95, N92, N49 and PC200 (ungapped) is particularly well suited. Matching coil formers with larger pin spacings are available. RM cores without center hole Δ value and greater power capacity) are used for transformer applications.
- Our product range also includes low-profile RM cores, whose significantly reduced overall height makes them suitable for small-signal, interface and matching transformers and also for transformer and energy storage chokes in DC/DC converters with a high pulse rate (materials N87, N49 and PC200). The low-profile types are particularly suited for applications where the winding is printed onto the PCB and the core is fitted to the board from either side.
- In addition to conventional accessories, SMD coil formers are available for RM 4 LP, RM 5 and RM 6.
- RM cores with or without center hole can be supplied in any material on request.
- For power applications, particularly for compact energy storage chokes, we supply the RM 12 and RM 14 cores with optimized, strengthened base thickness.

RM cores

General information

3 Coil formers for automatic processing

Automated manufacture is gaining more and more importance for the low-cost production of inductive components. The prerequisites are high-performance winding and assembly machines on the one hand, and suitable accessories on the other.

The new EPCOS RM coil formers were developed to meet this demand. These coil formers are not only matched to the versatile concepts of automation, but also offer advantages for manual winding. The essential improvements of the version optimized for automatic processing will be described in the following, taking the example of an RM6 coil former. The consistent utilization of these benefits will in most cases bring about a reduction of production costs for inductors and transformers.

➀ Squared pins or pin squared in the start-ofwinding area:

Secure restraint of the ends of the winding even with 2 to 3 winding corners; the winding process is considerably accelerated.

➁ Internal diameter slightly conical and highly accurate:

Easy and fast slipping-on and snug fit on the winding tools.

- ➂ Shortened wire guidance slots: Substantially higher flange breaking strength.
- ➃ Almost parallel flanges with minimum radii at the winding cylinder to the flange: Correct winding layers, more turns, neat and rapid winding.
- ➄ V-shaped slot in the pinless flange: Automatic loading and unloading of winding machine possible. Substantially more accurate fixing and arrangement of the coil formers.
- ➅ Lengthened wire catching nose: Leads all wires safely into the wire guidance slots, even at high winding speed.
- ➆ Pinless flange without marking: Substantially more accurate arrangement of the coil formers for winding and wrapping.
- ➇ Slot outlet stepped in height: Owing to the transfer of the wire crossing to the level of the slot, short circuit is prevented when soldering the ends of the winding to the pins.
- ➈ Insulation web: Improved insulation between the winding wires

Please read *Important notes* on page 2 and *Cautions and warnings* on page 674

RM cores

General information

4 Tolerances for RM cores

The A_L value tolerances for RM cores have consequently been defined with consideration of optimized process parameters for all materials with an initial permeability μ_i in the region of 2200 to 10000 as a step function (see figure below).

The "quantized" A_l step values should preferably be used. They are still available in their respective lower tolerance ranges. Thus a tolerance of ±5% can be determined for a RM 8 made of N87 material for an $A₁$ value of 500 nH.

With this type of tolerance definition, EPCOS has defined standard $A₁$ values and the associated tolerance for the first time. Based on initial permeability tolerance can be slightly lower or higher.

RM 4

Core and accessories

- To IEC 62317-4
- Core without center hole for transformer applications
- Delivery mode: sets

Magnetic characteristics (per set)

Approx. weight (per set)

Gapped (A_L values/air gaps examples)

216 1/17

Core B65803

¹⁾ Replace the $+$ by the code letter "A" or "N" for the required version.

Ungapped

Other A_L values/air gaps and materials available on request — see [Processing notes on page 173](#page-173-0).

Accessories B65804

Coil former

Material: GFR thermosetting plastic (UL 94 V-0, insulation class to IEC 60085: $F \triangleq$ max. operating temperature 155 °C), color code black Sumikon PM 9630® [E41429 (M)], SUMIMOTO BAKELITE CO LTD

Solderability: to IEC 60068-2-20, test Ta, method 1 (aging 3): 235 °C, 2 s Resistance to soldering heat: to IEC 60068-2-20, test Tb, method 1B: 350 °C, 3.5 s Winding: see Processing notes, 2.1

For matching clamp and insulating washers [see page 219.](#page-219-0)

5 pins

Hole arrangement View in mounting direction

6 pins

FRM0334-Y-E

218 1/17

Accessories B65804, B65806

Clamp

- With ground terminal, made of stainless spring steel (tinned), 0.3 mm thick
- Solderability to IEC 60068-2-20, test Ta, method 1 (aging 3): 235 °C, 2 s

Insulating washer for double-clad PCBs

■ Made of polyarylate film (UL 94 V-0, insulation class to IEC 60085: E \cong 120 °C), 0.25 mm thick Makrofol FR7-2 [E168120 (M)], COVESTRO AG

Clamp Insulating washer

Clamping forces for RM 4

Accessories B65539, B65806

Adjusting screw

■ Tube core with thread and core brake made of GFR polyterephthalate Pocan B3235® [E245249 (M)], LANXESS AG

Core B65803

- To IEC 62317-4
- For compact transformers with high inductance
- Without center hole
- Delivery mode: sets

Magnetic characteristics (per set)

 $ΣI/A = 1.2$ mm⁻¹ l I_e = 17.3 mm
 A_e = 14.5 mm² $= 14.5$ mm² $A_{\text{min}} = 11.3 \text{ mm}^2$ V_e = 251 mm³

Approx. weight 1.2 g/set

Ungapped

Other A_l values/air gaps and materials available on request – see [Processing notes on page 173.](#page-173-0)

Accessories

Coil former

Material: GFR thermosetting plastic (UL 94 V-0, insulation class to IEC 60085: $F \triangleq$ max. operating temperature 155 °C), color code black Sumikon PM 9630® [E41429 (M)], SUMIMOTO BAKELITE CO LTD Solderability: to IEC 60068-2-58, test Ta, method 1 (aging 3): 235 °C, 2 s Resistance to soldering heat: to IEC 60068-2-20, test Tb, method 1B: 350 °C. 2 s

permissible soldering temperature for wire-wrap connection on coil former: 400 °C,1 s Winding: see Processing notes, 2.1

For matching clamp and insulating washers, see page [224](#page-224-0).

Coil former

 B65804

Accessories

SMD

SMD coil former with J terminals

Material: GFR liquid crystal polymer (UL 94 V-0, insulation class to IEC 60085: $F \triangleq$ max. operating temperature 155 °C), color code black Vectra C 130 [E83005 (M)], CELANESE INTERNATIONAL CORP.

Solderability: to IEC 60068-2-58, test Td, method 6 (Group 3): 245 °C, 3 s Resistance to soldering heat: to IEC 60068-2-58, test Td, method 6 (Group 3): 255 °C, 10 s

permissible soldering temperature for wire-wrap connection on coil former: 400 °C,1 s

Winding: see Processing notes, 2.1

For matching clamp, see page [224.](#page-224-0)

Coil former

1) 6 and 8 terminals on request

B65804

Accessories

Clamp

- With ground terminal, made of stainless spring steel (tinned), 0.3 mm thick, Without ground terminal, made of stainless spring steel, 0.3 mm thick
- Solderability to IEC 60068-2-20, test Ta, method 1 (aging 3): 235 °C, 2 s

Insulating washer for double-clad PCBs

■ Made of polyarylate film (UL 94 V-0, insulation class to IEC 60085: E \triangleq 120 °C), 0.25 mm thick Makrofol FR7-2 [E168120 (M)], COVESTRO AG

Insulating washer

Clamp with ground terminal Clamp without ground terminal

B65804

Core and accessories

- To IEC 62317-4
- Core without center hole for transformer applications
- Delivery mode: sets

Magnetic characteristics (per set)

Approx. weight (per set)

Gapped (A_L values/air gaps examples)

Core B65805

¹⁾ Replace the $+$ by the code letter "C" or "N" for the required version.

Ungapped

Other A_L values/air gaps and materials available on request $-$ see [Processing notes on page 173](#page-173-0).

Accessories B65806

Coil former

Material: GFR thermosetting plastic (UL 94 V-0, insulation class to IEC 60085: $F \triangleq$ max. operating temperature 155 °C), color code black SUMIKON PM 9630 [E41429 (M)], SUMITOMO BAKELITE CO LTD Solderability: to IEC 60068-2-20, test Ta, method 1 (aging 3): 235 °C, 2 s

Resistance to soldering heat: to IEC 60068-2-20, test Tb, method 1B: 350 °C, 3.5 s Winding: see Processing notes, 2.1

For matching clamps and insulating washers [see page 229.](#page-229-0)

Accessories B65806

Clamp

- With ground terminal, made of stainless spring steel (tinned), 0.3 mm thick
- Solderability to IEC 60068-2-20, test Ta, method 1 (aging 3): 235 °C, 2 s

Insulating washer 1 between core and coil former

- For tolerance compensation and for insulation
- Made of polyarylate film (UL 94 V-0, insulation class to IEC 60085: E \triangleq 120 °C), 0.08 mm thick Aryphan F685, [E167358 (M)], natural color, LOFO HIGH TECH FILM GMBH

Insulating washer 2 for double-clad PCBs

■ Made of polycarbonate (UL 94 V-0, insulation class to IEC 60085: E \cong 120 °C), 0.25 mm thick Makrofol FR7-2 [E168120 (M)], COVESTRO AG

Clamp Insulating washer 1 Insulating washer 2

FRM0028-6

Clamping forces for RM 5

 F_{min} : Extension of clamp from a to $a_2 = X_{min}$ F_{max} : Extension of clamp from a to $a_1 = X_{\text{max}}$

Please read *Important notes* on page 2 and *Cautions and warnings* on page 674

229 1/17

Accessories

SMD

B65822, B65806

SMD coil former with gullwing terminals

Material: GFR liquid crystal polymer (UL 94 V-0, insulation class to IEC 60085: $F \triangleq$ max. operating temperature 155 °C), color code black Vectra C 130 [E83005 (M)], CELANESE INTERNATIONAL CORP. Solderability: to IEC 60068-2-58, test Td, method 6 (Group 3): 245 °C, 3 s

Resistance to soldering heat: to IEC 60068-2-58, test Td, method 6 (Group 3): 255 °C, 10 s

permissible soldering temperature for wire-wrap connection on coil former: 400 °C,1 s Winding: see Processing notes, 2.1

Clamp

■ Without ground terminal, made of stainless spring steel, 0.335 mm thick

Coil former Clamp

Accessories

B65822, B65806

SMD

SMD coil former with J terminals

Material: GFR liquid crystal polymer (UL 94 V-0, insulation class to IEC 60085: $F \triangleq$ max. operating temperature 155 °C), color code black Vectra C 130 [E83005 (M)], CELANESE INTERNATIONAL CORP. Solderability: to IEC 60068-2-58, test Td, method 6 (Group 3): 245 °C, 3 s Resistance to soldering heat: to IEC 60068-2-58, test Td, method 6 (Group 3): 255 °C, 10 s

permissible soldering temperature for wire-wrap connection on coil former: 400 °C,1 s

Winding: see Processing notes, 2.1

Clamp

■ Without ground terminal, made of stainless spring steel, 0.335 mm thick

Coil former Clamp

FRM0025-G

231 1/17

Accessories B65539, B65806, B65518

Adjusting screw

■ Tube core with thread and core brake made of GFR polyterephthalate Pocan B3235® [E245249 (M)], LANXESS AG

RM 5 »Low Profile« Core B65805P ■ To IEC 62317-4 ■ For compact transformers ■ Without center hole ,
<
<
< ■ Delivery mode: sets $680.$ $\overline{2.5}$ **Magnetic characteristics** (per set) Σl*/*A = 0.71 mm–1 6 min. l I_e = 17.5 mm
 A_e = 24.5 mm² $146 - 06$

Ungapped

 $= 24.5$ mm² $A_{min} = 18$ mm² V_e = 430 mm³

Approx. weight 2.6 g/set

Other AL values/air gaps and materials available on request — see [Processing notes on page 173](#page-173-0).

Core and accessories

Core B65807

- To IEC 62317-4
- Core without center hole for transformer applications
- Delivery mode: sets

Magnetic characteristics (per set)

Approx. weight (per set)

Gapped (A_L values/air gaps examples)

1) Replace the + by the code letter "C" or "N" for the required version. Standard version is "C".

Ungapped

Other A_L values/air gaps and materials available on request — see [Processing notes on page 173](#page-173-0).

Accessories B65808

Coil former, squared pins

Material: GFR thermosetting plastic (UL 94 V-0, insulation class to IEC 60085: $F \triangleq$ max. operating temperature 155 °C), color code black Sumikon PM 9630® [E41429 (M)], SUMITOMO BAKELITE CO LTD Solderability: to IEC 60068-2-20, test Ta, method 1 (aging 3): 235 °C, 2 s

Resistance to soldering heat: to IEC 60068-2-20, test Tb, method 1B: 350 °C, 3.5 s Winding: see Processing notes, 2.1

For matching clamp and insulating washers [see page 240.](#page-240-1)

4 pins

 $5 + 6$ pins

237 1/17

Accessories B65808

Coil former for SMPS transformers with line isolation

The creepage distances and clearances are designed such that the coil former is suitable for use in SMPS transformers with line isolation.

- Closed center flange with external wire quide
- Optimized for use with automatic winding machines

Material: GFR thermosetting plastic (UL 94 V-0, insulation class to IEC 60085: $F \triangleq$ max. operating temperature 155 °C), color code black Sumikon PM 9630® [E41429 (M)], SUMITOMO BAKELITE CO LTD

Solderability: to IEC 60068-2-20, test Ta, method 1 (aging 3): 235 °C, 2 s Resistance to soldering heat: to IEC 60068-2-20, test Tb, method 1B: 350 °C, 3.5 s Winding: see Processing notes, 2.1

For matching clamp and insulating washers [see page 240.](#page-240-1)

238 1/17

Accessories B65808

Coil former for power applications with angled pins

Optimized for automatic winding

Material: GFR polyterephthalate (UL 94 V-0, insulation class to IEC 60085: $F \triangleq$ max. operating temperature 155 °C), color code black Valox 420-SE0 [E45329 (M)] SABIC INNOVATIVE PLASTICS B V Solderability: to IEC 60068-2-20, test Ta, method 1 (aging 3): 235 °C, 2 s Resistance to soldering heat: to IEC 60068-2-20, test Tb, method 1B: 350 °C, 3.5 s

Winding: see Processing notes, 2.1

For matching clamp and insulating washer 1 [see page 240.](#page-240-2)

Accessories B65808

Clamp

- With ground terminal, made of stainless spring steel (tinned), 0.4 mm thick
- Solderability to IEC 60068-2-20, test Ta, method 1 (aging 3): 235 °C, 2 s

Insulating washer 1 between core and coil former

- For tolerance compensation and for insulation
- Made of polyarylate film (UL 94 V-0, insulation class to IEC 60085: E \triangleq 120 °C), 0.08 mm thick Aryphan F685, [E167358 (M)], natural color, LOFO HIGH TECH FILM GMBH

Insulating washer 2 for double-clad PCBs

■ Made of polycarbonate (UL 94 V-0, insulation class to IEC 60085: E \cong 120 °C), 0.25 mm thick Makrofol FR7-2 [E168120 (M)], COVESTRO AG

 0.6

 $13 + 0.5$ 61 ± 0.3

 $2 + 0.2$

Clamping forces for RM 6

 F_{min} : Extension of clamp from a to $a_2 = X_{min}$ F_{max} : Extension of clamp from a to $a_1 = X_{\text{max}}$

Please read *Important notes* on page 2 and *Cautions and warnings* on page 674

240 1/17

Accessories B65821, B65808

SMD

SMD coil former with gullwing terminals

Material: GFR liquid crystal polymer (UL 94 V-0, insulation class to IEC 60085: $F \triangleq$ max. operating temperature 155 °C), color code black Vectra E 130i [E106764 (M)], POLYPLASTICS CO LTD Vectra E 130i [E83005 (M)], CELANESE INTERNATIONAL CORP.

Solderability: to IEC 60068-2-58, test Td, method 6 (Group 3): 245 °C, 3 s

Resistance to soldering heat: to IEC 60068-2-58, test Td, method 6 (Group 3): 255 °C, 10 s

permissible soldering temperature for wire-wrap connection on coil former: 400 °C,1 s

Winding: see Processing notes, 2.1

Clamp

■ Without ground terminal, made of stainless spring steel, 0.435 mm thick

Coil former Clamp

Please read *Important notes* on page 2 and *Cautions and warnings* on page 674

241 1/17

Accessories B65659

Adjusting screw

■ Tube core with thread and core brake made of GFR polyterephthalate Pocan B3235® [E245249 (M)], LANXESS AG

RM 6 »Low Profile« Core B65807P ■ To IEC 62317-4 ■ For compact transformers **LO**
LO ■ Without center hole ■ Delivery mode: sets $82 - 0.4$ 28 **Magnetic characteristics** (per set) Σl*/*A = 0.58 mm–1

l I_e = 21.8 mm
 A_e = 37.5 mm² $= 37.5$ mm² $A_{min} = 31.2$ mm² V_e = 820 mm³

Approx. weight 4.0 g/set

FRM0349-C

Ungapped

Other A_L values/air gaps and materials available on request — see [Processing notes on page 173](#page-173-0).

Core and accessories

FRM0350-F

 $\overline{07.25} - 0.3$

۷

Gapped (A_L values/air gaps examples)

1) Replace the $+$ by the code letter "A" or "N" for the required version.

245 1/17

Ungapped

Other A_L values/air gaps and materials available on request - see [Processing notes on page 173](#page-173-0).

Accessories B65820

Coil former

Material: GFR thermosetting plastic (UL 94 V-0, insulation class to IEC 60085: $F \triangleq$ max. operating temperature 155 °C), color code black Sumikon PM 9630® [E41429 (M)], SUMITOMO BAKELITE CO LTD

Solderability: to IEC 60068-2-20, test Ta, method 1 (aging 3): 235 °C, 2 s Resistance to soldering heat: to IEC 60068-2-20, test Tb, method 1B: 350 °C, 3.5 s Winding: see Processing notes, 2.1

Pins: Squared pins

For matching clamp and insulating washers [see page 248.](#page-248-0)

54

FRM0314-J-E

Accessories B65820

Clamp

- With ground terminal, made of spring steel (tinned), 0.4 mm thick
- Solderability to IEC 60068-2-20, test Ta, method 1 (aging 3): 235 °C, 2 s

Insulating washer 1 between core and coil former

- For tolerance compensation and for insulation
- Made of polyarylate film (UL 94 V-0, insulation class to IEC 60085: E \triangleq 120 °C), 0.08 mm thick Aryphan F685, [E167358 (M)], natural color, LOFO HIGH TECH FILM GMBH

Insulating washer 2 for double-clad PCBs

■ Made of polycarbonate (UL 94 V-0, insulation class to IEC 60085: E \triangleq 120 °C), 0.3 mm thick Makrofol FR7-2 [E168120 (M)], COVESTRO AG

Clamp Insulating washer 1 Insulating washer 2

Accessories B65659

Adjusting screw

■ Tube core with thread and core brake made of GFR polyterephthalate Pocan B3235® [E245249 (M)], LANXESS AG

a b c

₩ ക് 3,8

FRM0094-N

Please read *Important notes* on page 2 and *Cautions and warnings* on page 674

RM 7 »Low Profile« Core B65819P ■ To IEC 62317-4 ■ For compact transformers ندې
مري ■ Without center hole ■ Delivery mode: sets M**agnetic characteristics** (per set) Σl*/*A = 0.52 mm–1 9.3 min. l

 I_e = 23.5 mm
 A_e = 45.3 mm² $= 45.3$ mm² $A_{min} = 39.6$ mm² V_e = 1060 mm³

Approx. weight 5.7 g/set

Ungapped

Other A_l values/air gaps and materials available on request $-$ see [Processing notes on page 173](#page-173-0).

Core and accessories

1) Replace the + by the code letter "F" or "D" for the required version. Standard version is "D".

Ungapped

Other A_L values/air gaps and materials available on request — see [Processing notes on page 173](#page-173-0).

Accessories B65812

Coil former, squared pins

Material: GFR thermosetting plastic (UL 94 V-0, insulation class to IEC 60085: $F \triangleq$ max. operating temperature 155 °C), color code black Sumikon PM 9630® [E41429 (M)], SUMITOMO BAKELITE CO LTD Solderability: to IEC 60068-2-20, test Ta, method 1 (aging 3): 235 °C, 2 s

Resistance to soldering heat: to IEC 60068-2-20, test Tb, method 1B: 350 °C, 3.5 s Winding: see Processing notes, 2.1

For matching clamp and insulating washers [see page 257.](#page-257-0)

254 1/17

FRM0301 M E

12 pins

Please read *Important notes* on page 2 and *Cautions and warnings* on page 674

Accessories B65812

Coil former for SMPS transformers with line isolation

The creepage distances and clearances are designed such that the coil former is suitable for use in SMPS transformers with line isolation.

- Closed center flange with external wire quide
- Optimized for use with automatic winding machines
- Material: GFR thermosetting plastic (UL 94 V-0, insulation class to IEC 60085: $F \triangleq$ max. operating temperature 155 °C), color code black

Sumikon PM 9630® [E41429 (M)], SUMITOMO BAKELITE CO LTD Solderability: to IEC 60068-2-20, test Ta, method 1 (aging 3): 235 °C, 2 s Resistance to soldering heat: to IEC 60068-2-20, test Tb, method 1B: 350 °C, 3.5 s Winding: see Processing notes, 2.1

Accessories B65812

Coil former for power applications

Optimized for automatic winding

Material: GFR polyterephthalate (UL 94 V-0, insulation class to IEC 60085: $F \triangleq$ max. operating temperature 155 °C), color code black Valox 420-SE0 [E45329 (M)] SABIC INNOVATIVE PLASTICS B V Solderability: to IEC 60068-2-20, test Ta, method 1 (aging 3): 235 °C, 2 s Resistance to soldering heat: to IEC 60068-2-20, test Tb, method 1B: 350 °C, 3.5 s

Winding: see Processing notes, 2.1

For matching clamp and insulating washer 1 [see page 257.](#page-257-1)

Hole arrangement View in mounting direction (Note half pitch!)

Accessories B65812

Clamp

- With ground terminal, made of stainless spring steel (tinned), 0.4 mm thick
- Solderability to IEC 60068-2-20, test Ta, method 1 (aging 3): 235 °C, 2 s

Insulating washer 1 between core and coil former

- For tolerance compensation and for insulation
- Made of polyarylate film (UL 94 V-0, insulation class to IEC 60085: E \triangleq 120 °C), 0.08 mm thick Aryphan F685, [E167358 (M)], natural color, LOFO HIGH TECH FILM GMBH

Insulating washer 2 for double-clad PCBs

■ Made of polycarbonate (UL 94 V-0, insulation class to IEC 60085: E \cong 120 °C), 0.25 mm thick Makrofol FR7-2 [E168120 (M)], COVESTRO AG

Clamp

Insulating washer 1 Insulating washer 2

Please read *Important notes* on page 2 and *Cautions and warnings* on page 674

Accessories B65812

Adjusting screw

■ Tube core with thread and core brake made of GFR polyterephthalate Pocan B3235® [E245249 (M)], LANXESS AG

RM 8 »Low Profile« Core B65811P ■ To IEC 62317-4 ■ For compact transformers 1919-01-01 α ■ Without center hole ر
وړ ■ Delivery mode: sets $1 - 0.4$ **Magnetic characteristics** (per set) Σ *VA* = 0.44 mm⁻¹ l I_e = 28.7 mm
 A_e = 64.9 mm² 9.8 min. $= 64.9$ mm² $23.2 - 0.9$ $A_{min} = 55.4$ mm²

 V_e = 1860 mm³

Approx. weight 9.2 g/set

Ungapped

Other A_l values/air gaps and materials available on request $-$ see [Processing notes on page 173](#page-173-0).

RM 8 »Low Profile«

Accessories B65812

Clamp

- With ground terminal, made of stainless spring steel (tinned), 0.4 mm thick
- Solderability to IEC 60068-2-20, test Ta, method 1 (aging 3): 235 °C, 2 s

Insulating washer 1 between core and coil former

- For tolerance compensation and for insulation
- Made of polyarylate film (UL 94 V-0, insulation class to IEC 60085: E \triangleq 120 °C), 0.08 mm thick Aryphan F685, [E167358 (M)], natural color, LOFO HIGH TECH FILM GMBH

Insulating washer 2 for double-clad PCBs

■ Made of polycarbonate (UL 94 V-0, insulation class to IEC 60085: E \cong 120 °C), 0.25 mm thick Makrofol FR7-2 [E168120 (M)], COVESTRO AG

Clamp

Insulating washer 1 Insulating washer 2

Please read *Important notes* on page 2 and *Cautions and warnings* on page 674

Core and accessories

1) Replace the $+$ by the code letter "D" or "N" for the required version.

262 1/17

Core B65813

Ungapped

Other A_L values/air gaps and materials available on request - see [Processing notes on page 173.](#page-173-0)

Accessories B65814

Coil former

Material: GFR thermosetting plastic (UL 94 V-0, insulation class to IEC 60085: $F \triangleq$ max. operating temperature 155 °C), color code black Sumikon PM 9630® [E41429 (M)], SUMITOMO BAKELITE CO LTD

Solderability: to IEC 60068-2-20, test Ta, method 1 (aging 3): 235 °C, 2 s Resistance to soldering heat: to IEC 60068-2-20, test Tb, method 1B: 350 °C, 3.5 s Winding: see Processing notes, 2.1

Pins: Squared pins

For matching clamp and insulating washers [see page 266.](#page-266-0)

12 pins

Accessories B65814

Coil former for power applications

Optimized for automatic winding

Material: GFR polyterephthalate (UL 94 V-0, insulation class to IEC 60085: $F \triangleq$ max. operating temperature 155 °C), color code black Valox 420-SE0 [E45329 (M)] SABIC INNOVATIVE PLASTICS B V Solderability: to IEC 60068-2-20, test Ta, method 1 (aging 3): 235 °C, 2 s Resistance to soldering heat: to IEC 60068-2-20, test Tb, method 1B: 350 °C, 3.5 s

Winding: see Processing notes, 2.1

For matching clamp and insulating washer 1 [see page 266.](#page-266-1)

Hole arrangement View in mounting direction (Note half pitch!)

Accessories B65814

Clamp

- With ground terminal, made of stainless spring steel (tinned), 0.4 mm thick
- Solderability to IEC 60068-2-20, test Ta, method 1 (aging 3): 235 °C, 2 s

Insulating washer 1 between core and coil former

- For tolerance compensation and for insulation
- Made of polyarylate film (UL 94 V-0, insulation class to IEC 60085: E \triangleq 120 °C), 0.08 mm thick Aryphan F685, [E167358 (M)], natural color, LOFO HIGH TECH FILM GMBH

Insulating washer 2 for double-clad PCBs

■ Made of polycarbonate (UL 94 V-0, insulation class to IEC 60085: E \cong 120 °C), 0.25 mm thick Makrofol FR7-2 [E168120 (M)], COVESTRO AG

Clamp

Insulating washer 1 Insulating washer 2

Please read *Important notes* on page 2 and *Cautions and warnings* on page 674

Accessories B65679

Adjusting screw

■ Tube core with thread and core brake made of GFR polyterephthalate Pocan B3235® [E245249 (M)], LANXESS AG

RM 10 »Low Profile« Core B65813P ■ To IEC 62317-4 ■ For compact transformers RANTIN ■ Without center hole ■ Delivery mode: sets $35 - 0.5$ ïï $\widehat{5}$ **Magnetic characteristics** (per set) Σ *VA* = 0.34 mm⁻¹ I_e I_e = 33.9 mm
 A_e = 99.1 mm² 12.6 min. $= 99.1$ mm² \overline{A}_{min} = 90.0 mm²
 V_e = 3360 mm³ $28.5 - 1.3$ $= 3360$ mm³ ø21.2+0.9 **Approx. weight** 17.2 g/set

Ungapped

Other A_L values/air gaps and materials available on request — see [Processing notes on page 173](#page-173-0).

Core and accessories

■ Optimized core cross section and increased thickness of base for power applications **Core B65815 RM 12**

- Without center hole
- Delivery mode: sets

Magnetic characteristics (per set)

 Σ *VA* = 0.39 mm⁻¹ I_e I_e = 57 mm
 A_e = 146 mm $= 146$ mm² A_{min} = 125 mm² V_e = 8320 mm³

Approx. weight 45 g/set

FRM0356-U

Gapped (A_L values/air gaps examples)

Ungapped

Other $A₁$ values/air gaps and materials available on request $-$ see [Processing notes on page 173](#page-173-0).

Accessories B65816

Coil former

Material: GFR thermosetting plastic (UL 94 V-0, insulation class to IEC 60085: $F \triangleq$ max. operating temperature 155 °C), color code black Sumikon PM 9630® [E41429 (M)], SUMITOMO BAKELITE CO LTD Solderability: to IEC 60068-2-20, test Ta, method 1 (aging 3): 235 °C, 2 s

Resistance to soldering heat: to IEC 60068-2-20, test Tb, method 1B: 350 °C, 3.5 s Winding: see Processing notes, 2.1

Pins: Squared pins

For matching clamp [see page 273](#page-273-0).

pin 9 omitted in the 11-pin version

Accessories B65816

Coil former for power applications

Material: GFR polyterephthalate (UL 94 V-0, insulation class to IEC 60085: $F \triangleq$ max. operating temperature 155 °C), color code black Valox 420-SE0 [E45329 (M)] SABIC INNOVATIVE PLASTICS B V

Solderability: to IEC 60068-2-20, test Ta, method 1 (aging 3): 235 °C, 2 s Resistance to soldering heat: to IEC 60068-2-20, test Tb, method 1B: 350 °C, 3.5 s Winding: see Processing notes, 2.1

For matching clamp [see page 273](#page-273-0).

Hole arrangement View in mounting direction (Note half pitch!)

Accessories B65816

Clamp

- With ground terminal, made of spring steel (tinned), 0.5 mm thick
- Solderability to IEC 60068-2-20, test Ta, method 1 (aging 3): 235 °C, 2 s

RM 12 »Low Profile«

Core B65815P

- For compact transformers
- Without center hole
- Delivery mode: sets

Magnetic characteristics (per set)

 $Σ$ *I*/A = 0.29 mm⁻¹ l I_e = 42 mm
 A_e = 147.5 m $= 147.5$ mm² \overline{A}_{min} = 124.7 mm²
 V_e = 6195 mm³ $= 6195 \text{ mm}^3$

Approx. weight 33.6 g/set

Ungapped

Other A_L values/air gaps and materials available on request — see [Processing notes on page 173](#page-173-0).

Core and accessories

Core B65887

- To IEC 62317-4
- Optimized core cross section and increased thickness of base for power applications
- Without center hole
- Delivery mode: sets

Magnetic characteristics (per set)

 Σ *VA* = 0.35 mm⁻¹ l_e I_e = 70 mm
 A_e = 200 mm $= 200$ mm² \overline{A}_{min} = 170 mm²
 V_e = 14000 mm $= 14000$ mm³

Approx. weight 74 g/set

Gapped (A_L values/air gaps examples)

Ungapped

Other $A₁$ values/air gaps and materials available on request $-$ see [Processing notes on page 173](#page-173-0).

Accessories B65888

Coil former

Material: GFR thermosetting plastic (UL 94 V-0, insulation class to IEC 60085: $F \triangleq$ max. operating temperature 180 °C), color code black Sumikon PM 9630® [E41429 (M)], SUMITOMO BAKELITE CO LTD Solderability: to IEC 60068-2-20, test Ta, method 1 (aging 3): 235 °C, 2 s

Resistance to soldering heat: to IEC 60068-2-20, test Tb, method 1B: 350 °C, 3.5 s Winding: see Processing notes, 2.1

Pins: Squared pins

For matching clamp and insulating washer [see page 279.](#page-279-2)

10 pins 12 pins

 α

 10

0288-03

Hole arrangement View in mounting direction

Accessories B65888

Coil former for power applications

Material: GFR polyterephthalate (UL 94 V-0, insulation class to IEC 60085: $F \triangleq$ max. operating temperature 155 °C), color code black Valox 420-SE0 [E45329 (M)] SABIC INNOVATIVE PLASTICS B V Solderability: to IEC 60068-2-20, test Ta, method 1 (aging 3): 235 °C, 2 s Resistance to soldering heat: to IEC 60068-2-20, test Tb, method 1B: 350 °C, 3.5 s

Winding: see Processing notes, 2.1

For matching clamp and insulating washer [see page 279.](#page-279-2)

Hole arrangement View in mounting direction (Note half pitch!)

Accessories B65888

Clamp

- With ground terminal, made of stainless spring steel (tinned), 0.5 mm thick
- Solderability to IEC 60068-2-20, test Ta, method 1 (aging 3): 235 °C, 2 s

Insulating washer for double-clad PCBs

■ Made of polyarylate film (UL 94 V-0, insulation class to IEC 60085: E \cong 120 °C), 0.25 mm thick Makrofol FR7-2 [E168120 (M)], COVESTRO AG

Clamp

Insulating washer

RM 14 »Low Profile« Core B65887P ■ To IEC 62317-4 ■ For compact transformers **BRAC** ■ Without center hole ■ Delivery mode: sets 0.61 **Magnetic characteristics** (per set) 56) Σl*/*A = 0.25 mm–1 l I_e = 50.9 mm
 A_e = 201 mm² $= 201$ mm² 17 min A_{min} = 170 mm² $42.2 - 1.2$ V_e = 10230 mm³ ø29+1 **Approx. weight** 55 g/set $20.5 - 0.2$ $3 + 0.25$ $1+0.6$

FRM0359-J

 $015 - 0.5$

Ungapped

Other A_l values/air gaps and materials available on request — see [Processing notes on page 173](#page-173-0).

PQ cores

General information

PQ cores for switch-mode power supplies

These cores are a preferred shape for power conversion. The main advantages compared to conventional round or rectangular E type cores are the optimized round leg and wider outer surface. The round leg reduces winding length and hence copper cost in production and the wider surface area lowers the thermal resistance by offering a larger area for heat dissipation. The shape also provides better shielding to the winding.

EPCOS offers the extended PQ series from PQ 16 up to PQ 40 and PQ 50 in the typical power materials (N87, N97, N95, N49 and N92). PQ cores are supplied in sets. Selected bobbins are also available.

PQ 16/11.6

Core

■ To IEC 62317-13

■ Delivery mode: sets

Magnetic characteristics (per set)

 Σ *VA* = 0.641 mm⁻¹ $\frac{\mathsf{I}_{\mathsf{e}}}{\mathsf{A}_{\mathsf{e}}}$ $= 27.00$ mm $= 42.10$ mm² A_{min} = 38.50 mm² V_e = 1140 mm³

Approx. weight 6.0 g/set

FPK0469-

Ungapped

Other A_1 values/air gaps and materials available on request – see [Processing notes on page 173.](#page-173-0)

B65885A

PQ 20/16

■ To IEC 62317-13

■ Delivery mode: sets

Magnetic characteristics (per set)

 Σ *VA* = 0.588 mm⁻¹ I_{a} $= 37.2$ mm A_e = 63.2 mm² $A_{min} = 54.4$ mm² V_e = 2360 mm³

Approx. weight 13 g/set

Ungapped

Other A_1 values/air gaps and materials available on request – see [Processing notes on page 173.](#page-173-0)

Core B65875B

PQ 20/20

■ To IEC 62317-13

■ Delivery mode: sets

Magnetic characteristics (per set)

 Σ *VA* = 0.718 mm⁻¹ $\frac{\mathsf{I}_{\mathsf{e}}}{\mathsf{A}_{\mathsf{e}}}$ $= 45.20$ mm $= 62.90$ mm² $A_{min} = 54.40$ mm² V_e = 2850 mm³

Approx. weight 15.6 g/set

Ungapped

Other A_l values/air gaps and materials available on request – see [Processing notes on page 173.](#page-173-0)

Core B65875A

PQ 26/20

Core B65877B

■ To IEC 62317-13

■ Delivery mode: sets

Magnetic characteristics (per set)

 Σ *VA* = 0.362 mm⁻¹ $\frac{\mathsf{I}_\mathsf{e}}{\mathsf{A}_\mathsf{e}}$ $= 44.4$ mm $= 122.6$ mm² A_{min} = 108.8 mm² V_e = 5440 mm³

Approx. weight 31 g/set

FPK0472-3

Ungapped

Other A_l values/air gaps and materials available on request – see [Processing notes on page 173.](#page-173-0)

PQ 26/20

Accessories B65878E

Coil former

Material: GFR thermosetting plastic (UL 94 V-0, insulation class to IEC 60085: $F \triangleq$ max. operating temperature 155 °C), color code black Sumikon PM 9820® [E41429 (M)], SUMITOMO BAKELITE CO LTD

Solderability: to IEC 60068-2-20, test Ta, method 1 (aging 3): 235 °C, 2 s Resistance to soldering heat: to IEC 60068-2-20, test Tb, method 1B: 350 °C, 3.5 s

FPK0422-2-E

PQ 26/25

■ To IEC 62317-13

■ Delivery mode: sets

Magnetic characteristics (per set)

 Σ *VA* = 0.438 mm⁻¹ I_{a} $= 53.5$ mm A_e = 122.2 mm² $A_{min} = 108.8$ mm² V_e = 6540 mm³

Approx. weight 36 g/set

FPK0473-B

Ungapped

Other $A₁$ values/air gaps and materials available on request – see [Processing notes on page 173.](#page-173-0)

Core B65877A

PQ 26/25

Accessories B65878E

Coil former

Material: GFR thermosetting plastic (UL 94 V-0, insulation class to IEC 60085: $F \triangleq$ max. operating temperature 155 °C), color code black Sumikon PM 9820® [E41429 (M)], SUMITOMO BAKELITE CO LTD

Solderability: to IEC 60068-2-20, test Ta, method 1 (aging 3): 235 °C, 2 s Resistance to soldering heat: to IEC 60068-2-20, test Tb, method 1B: 350 °C, 3.5 s

Core B65879A

■ To IEC 62317-13

■ Delivery mode: sets

Magnetic characteristics (per set)

 Σ *VA* = 0.314 mm⁻¹ $\frac{\mathsf{I}_{\mathsf{e}}}{\mathsf{A}_{\mathsf{e}}}$ $= 48.4$ mm $= 154.2$ mm² $A_{min} = 127.5$ mm² V_e = 7460 mm³

Approx. weight 41 g/set

Ungapped

Other A_1 values/air gaps and materials available on request – see [Processing notes on page 173.](#page-173-0)

Accessories B65880E

Coil former

Material: GFR thermosetting plastic (UL 94 V-0, insulation class to IEC 60085: $F \triangleq$ max. operating temperature 155 °C), color code black Sumikon PM 9820® [E41429 (M)], SUMITOMO BAKELITE CO LTD

Solderability: to IEC 60068-2-20, test Ta, method 1 (aging 3): 235 °C, 2 s Resistance to soldering heat: to IEC 60068-2-20, test Tb, method 1B: 350 °C, 3.5 s

Please read *Important notes* on page 2 and *Cautions and warnings* on page 674

■ To IEC 62317-13

■ Delivery mode: sets

Magnetic characteristics (per set)

 Σ *VA* = 0.441 mm⁻¹ $\frac{\mathsf{I}_{\mathsf{e}}}{\mathsf{A}_{\mathsf{e}}}$ $= 67.80$ mm $= 153.8$ mm² $A_{\text{min}} = 127.5 \text{ mm}^2$ V_e = 10440 mm³

Approx. weight 57.4 g/set

Ungapped

Other A_1 values/air gaps and materials available on request – see [Processing notes on page 173.](#page-173-0)

Core B65879B

Accessories B65880E

Coil former

Material: GFR thermosetting plastic (UL 94 V-0, insulation class to IEC 60085: $F \triangleq$ max. operating temperature 155 °C), color code black Sumikon PM 9820® [E41429 (M)], SUMITOMO BAKELITE CO LTD

Solderability: to IEC 60068-2-20, test Ta, method 1 (aging 3): 235 °C, 2 s Resistance to soldering heat: to IEC 60068-2-20, test Tb, method 1B: 350 °C, 3.5 s

FPK0483-I-E

Please read *Important notes* on page 2 and *Cautions and warnings* on page 674

PQ 35/35

- To IEC 62317-13
- Delivery mode: sets

Magnetic characteristics (per set)

 Σ *VA* = 0.465 mm⁻¹ I_{a} $= 79.7$ mm A_e = 171 mm² $A_{min} = 161$ mm² V_e = 13650 mm³

Approx. weight 74 g/set

Ungapped

Other $A₁$ values/air gaps and materials available on request – see [Processing notes on page 173.](#page-173-0)

Core B65881A

PQ 40/30

■ To IEC 62317-13

■ Delivery mode: sets

Magnetic characteristics (per set)

 Σ *VA* = 0.389 mm⁻¹ I_{a} $= 74.10$ mm \tilde{A}_{e} = 190.4 mm² A_{min} = 174.4 mm² V_e = 14120 mm³

Approx. weight 74 g/set

FPK0477-9

Ungapped

Other A_1 values/air gaps and materials available on request – see [Processing notes on page 173.](#page-173-0)

Core B65883B

PQ 40/40

■ To IEC 62317-13

■ Delivery mode: sets

Magnetic characteristics (per set)

 Σ *VA* = 0.492 mm⁻¹ I_{a} $= 93$ mm \bar{A}_e = 189 mm² $A_{min} = 174$ mm² V_e = 17580 mm³

Approx. weight 90 g/set

Ungapped

Other A_1 values/air gaps and materials available on request – see [Processing notes on page 173.](#page-173-0)

Core B65883A

PQ 40/40

Accessories B65884E

Coil former

Material: PMC thermosetting plastics (UL 94 V-0), color code black, Phenolic T375 J [E59481 (M)], CHANG CHUN PLASTICS CO LTD Solderability: to IEC 60068-2-20, test Ta, method 1 (aging 3): 235 °C, 2 s Resistance to soldering heat: to IEC 60068-2-20, test Tb, method 1B: 350 °C, 3.5 s

PQ 50/40

- To IEC 62317-13
- Delivery mode: sets

Magnetic characteristics (per set)

 Σ *VA* = 0.280 mm⁻¹ I_{a} $= 93$ mm \bar{A}_e = 334 mm² $A_{min} = 314$ mm² V_e = 31250 mm³

Approx. weight 170 g/set

FPK0479-Q

Ungapped

Other A_L values/air gaps and materials available on request - see [Processing notes on page 173.](#page-173-0)

PQ 50/50

- To IEC 62317-13
- Delivery mode: sets

Magnetic characteristics (per set)

 Σ *VA* = 0.342 mm⁻¹ $I_{\mathbf{a}}$ $= 113.0$ mm \tilde{A}_{e} = 332 mm² $A_{min} = 314$ mm² V_e = 37630 mm³

Approx. weight 190 g/set

Ungapped

Other A_L values/air gaps and materials available on request - see [Processing notes on page 173.](#page-173-0)

Core B65981A

PQ 50/50

Accessories B65982E

Coil former

Material: PMC thermosetting plastics (UL 94 V-0), color code black, Phenolic T375 J [E59481 (M)], CHANG CHUN PLASTICS CO LTD Solderability: to IEC 60068-2-20, test Ta, method 1 (aging 3): 235 °C, 2 s Resistance to soldering heat: to IEC 60068-2-20, test Tb, method 1B: 350 °C, 3.5 s

PM cores

General information

PM cores are particularly suitable for use in transformers handling high powers in the frequency range up to 300 kHz. For numerous design tasks in telecommunications and industrial electronics (e.g. power pulse transformers in radar transmitters, antenna matching networks, machine control systems, thyristor firing transformers, energy storage chokes in switch-mode power supply equipment and others), the pot core shape offers various advantages: wide flux area for high power at a minimum number of turns, thus causing only low magnetic leakage and stray capacitance, as well as good shielding owing to the closed form, precisely ground air gaps, straightforward assembly and economic mounting.

A family of large pot cores, briefly designated PM cores (for **P**ot core **M**odule), is presented in the following.

Due to the weight of these pot cores, particularly in the case of the large cores 87/70 and 114/93, mounting on PC boards may not always be possible. In these cases, the coil former should be mounted with its terminals upwards.

300 1/17

PM cores

General information

1 Core losses

For each core type, the maximum dissipation loss is specified in W/set with the relevant measurement parameters. The flux density has been calculated on the basis of a sinusoidal voltage and is referred to the minimum cross-sectional area A_{min}.

2 Tightening torque

When using the mounting assembly, the torques for tightening the nuts (without printed circuit board) are as follows:

B65646

PM 50/39

Core

- To IEC 61247
- Particularly suitable for power transformers and energy storage chokes
- Delivery mode: sets

Magnetic characteristics (per set)

Σl*/*A = 0.227 mm–1 l I_e = 84 mm
 A_e = 370 mm $= 370$ mm² A_{min} = 280 mm² V_e = 31000 mm³

Approx. weight 140 g/set

Gapped (A_L values/air gaps examples)

Ungapped

Other A_l values/air gaps and materials available on request – see [Processing notes on page 173.](#page-173-0)

PM 50/39

Accessories B65647

Coil former

Material: GFR polyterephthalate (UL 94 V-0, insulation class to IEC 60085: $F \triangleq$ max. operating temperature 155 °C), color code black Valox 420-SE0 [E45329 (M)] SABIC INNOVATIVE PLASTICS B V Solderability: to IEC 60068-2-20, test Ta, method 1 (aging 3): 235 °C, 2 s Resistance to soldering heat: to IEC 60068-2-20, test Tb, method 1B: 350 °C, 3.5 s

Winding: see Processing notes, 2.1

Marking of solder pin 1

ø23.4 max. က္ 38 max. -95 \circ ∩i 571 1.2×0.6 EPM0019-1-F Hole arrangement view in mounting direction

PM 50/39

Accessories B65647

Mounting assembly

- \blacksquare For chassis mounting¹⁾ or printed circuit boards
- The set comprises a yoke and a base plate
- Fixing nuts M3 and washers are supplied

Yoke

■ Material: Brass clamping yoke (\varnothing 2.6 mm) with thread

Base plate

■ Material: Aluminum (0.6 mm)

304 1/17

¹⁾ On a chassis the coil former must be mounted with its solder pins upward.

PM 62/49 Core B65684 ■ To IEC 61247 > 29 ■ Particularly suitable for power transformers and energy storage chokes ■ Delivery mode: sets 28 ⊕ **Magnetic characteristics** (per set)

Σl*/*A = 0.191 mm–1 I_e I_e = 109 mm
 A_e = 570 mm² $= 570$ mm² A_{min} = 470 mm² V_e = 62000 mm³

Approx. weight 280 g/set

FPM0038-7

Gapped (A_L values/air gaps examples)

Ungapped

Other A_l values/air gaps and materials available on request — see [Processing notes on page 173](#page-173-0).

PM 62/49

Accessories B65685

Coil former

Material: GFR polyterephthalate (UL 94 V-0, insulation class to IEC 60085: $F \triangleq$ max. operating temperature 155 °C), color code black Valox 420-SE0 [E45329 (M)] SABIC INNOVATIVE PLASTICS B V Solderability: to IEC 60068-2-20, test Ta, method 1 (aging 3): 235 °C, 2 s

Resistance to soldering heat: to IEC 60068-2-20, test Tb, method 1B: 350 °C, 3.5 s Winding: see Processing notes, 2.1

Pins: Pins squared in the start-of-winding area

Also available without solder pins.

Hole arrangement View in mounting direction

PM 62/49

Accessories B65685

Mounting assembly

- \blacksquare For chassis mounting¹⁾ or printed circuit boards
- The set comprises a yoke and a base plate
- Fixing nuts M3 and washers are supplied

Yoke

■ Material: Brass clamping yoke (\varnothing 2.6 mm) with thread

Base plate

■ Material: Aluminum (0.6 mm)

FPM0029-8

¹⁾ On a chassis the coil former must be mounted with its solder pins upward.

EXTDK

PM 74/59 Core B65686 ■ To IEC 61247 $74 - 2.5$ ■ Particularly suitable for power transformers $57.5 + 1.8$ and energy storage chokes > 34 ■ Delivery mode: sets

Magnetic characteristics (per set)

Σl*/*A = 0.162 mm–1 l I_e = 128 mm
A_o = 790 mm² $= 790$ mm² $A_{min} = 630$ mm² V_e = 101000 mm³

Approx. weight 460 g/set

Gapped (A_L values/air gaps examples)

Ungapped

Other A_l values/air gaps and materials available on request $-$ see [Processing notes on page 173](#page-173-0).

PM 74/59

Accessories B65687

Coil former

Material: GFR polyterephthalate (UL 94 V-0, insulation class to IEC 60085: $F \triangleq$ max. operating temperature 155 °C), color code black Valox 420-SE0 [E45329 (M)] SABIC INNOVATIVE PLASTICS B V

Solderability: to IEC 60068-2-20, test Ta, method 1 (aging 3): 235 °C, 2 s Resistance to soldering heat: to IEC 60068-2-20, test Tb, method 1B: 350 °C, 3.5 s Winding: see Processing notes, 2.1

Also available without solder pins.

309 1/17

PM 74/59

Accessories B65687

Mounting assembly

- \blacksquare For chassis mounting¹⁾ or printed circuit boards
- The set comprises a yoke and a base plate
- Fixing nuts M3 and washers are supplied

Yoke

■ Material: Brass clamping voke $(Ø 3 mm)$ with thread

Base plate

■ Material: Aluminum (0.6 mm)

¹⁾ On a chassis the coil former must be mounted with its solder pins upward.

310 1/17

PM 87/70

Core B65713

- To IEC 61247
- For power transformers >1 kW (20 kHz) and energy storage chokes
- Delivery mode: sets

Magnetic characteristics (per set)

 $ΣI/A = 0.16$ mm⁻¹ l I_e = 146 mm
 A_e = 910 mm² $= 910$ mm² A_{min} = 700 mm² V_e = 133000 mm³

Approx. weight 770 g/set

Gapped (A_L values/air gaps examples)

Ungapped

Other A_l values/air gaps and materials available on request $-$ see [Processing notes on page 173](#page-173-0).

PM 87/70

Accessories B65714

Coil former

Material: GFR polyterephthalate (UL 94 V-0, insulation class to IEC 60085: $F \triangleq$ max. operating temperature 155 °C), color code black Valox 420-SE0 [E45329 (M)] SABIC INNOVATIVE PLASTICS B V Solderability: to IEC 60068-2-20, test Ta, method 1 (aging 3): 235 °C, 2 s

Resistance to soldering heat: to IEC 60068-2-20, test Tb, method 1B: 350 °C, 3.5 s Winding: see Processing notes, 2.1

Pins: Pins squared in the start-of-winding area

Also available without solder pins.

312 1/17

Please read *Important notes* on page 2 and *Cautions and warnings* on page 674

EXTDK

PM 114/93

Core B65733

- To IEC 61247
- For power transformers >1 kW (20 kHz) and energy storage chokes
- Delivery mode: sets

Magnetic characteristics (per set)

 Σ *VA* = 0.116 mm⁻¹

- I_{e} $= 200$ mm
- A_e = 1720 mm²
- $A_{min} = 1380$ mm²
- V_e = 344000 mm³

Approx. weight 1940 g/set

FPM0040-

Gapped (AL values/air gaps examples)

Ungapped

Other $A₁$ values/air gaps and materials available on request – see [Processing notes on page 173.](#page-173-0)

PM 114/93

Accessories B65734

Coil former without solder pins

Material: Polyphenylene sulphide (UL 94 V-0, insulation class to IEC 85: $F \triangleq$ max. operating temperature 155 °C), color code black Ryton R-4-230 [E95746 (M)] SOLVAY SPECIALITY POLYMERS Winding: see Processing notes, 2.1

EP, EPX, EPO cores

General information

EP, EPX and EPO cores are typically used for transformer applications. Their cubic shape provides an excellent volume ratio to total space used and permits high PCB packing densities. The compact design and the broadband materials used (N30, T38, T57, T65 and T66) ensure low magnetic leakage, low signal distortion and excellent properties for broadband small-signal transmission $(xDSL)$

EP cores are increasingly being used for power applications. Here we recommend the series EP 7 through EP 20 made of N87 for operation up to about 300 kHz.

Matching pinned and SMD coil formers suitable for automatic processing and shielding accessories (yoke, clamp or cap yoke) complete the product line.

1 Example of an assembly set EP 13

2 Core losses

The maximum dissipation loss for each core type employing power materials is specified in W/set together with the measurement parameters. The flux density has been calculated on the basis of a sinusoidal voltage and is referred to the minimum cross-sectional area A_{min} .

EP, EPX, EPO cores

General information

3 Tolerance for EP cores

The A_L value tolerances for EP cores have consequently been defined with consideration of optimized process parameters for all materials with an initial permeability μ_i in the region of 1400 to 15000 as a step function (see figure below).

The "quantized" A_l step values should preferably be used. They are still available in their respective lower tolerance ranges. Thus a tolerance of ±5% can be determined for an EP 13 made of T38 material for an A_L value of 250 nH.

- For small interface transformers and filter chokes
- Suitable for high precise feedthrough gapping
- Same footprint as EE 5
- \blacksquare A_L value increases about 40% against EE 5
- Winding area larger than EE 5
- Delivery mode: sets

Magnetic characteristics (per set)

 Σ *VA* = 3.149 mm⁻¹ \vert_{α} $= 9.73$ mm A_e = 3.09 mm² $A_{\text{min}} = 2.30 \text{ mm}^2$ V_e = 30 mm³

Approx. weight 0.5 g/set

Gapped (A_L values/air gaps examples)

Ungapped

Other A_l values/air gaps and materials available on request – see [Processing notes on page 173.](#page-173-0)

*) gapped (one-sided) FRM0363-C-E

 $6.15 - 0.3$ 2.95 max.

- For small interface transformers and filter chokes
- Suitable for high precise feedthrough gapping
- Same footprint as EE 5
- Winding area larger than EE 5
- Delivery mode: sets

Magnetic characteristics (per set)

 Σ *VA* = 3.359 mm⁻¹ l_e I_e = 10.28 mm
 A_e = 3.06 mm² $= 3.06$ mm² $A_{min} = 2.30$ mm²
 $V_{e} = 31$ mm³ $= 31$ mm³

Approx. weight 0.6 g/set

 $0 - 0$

*) gapped (one-sided)

FEP0071-G-E

Gapped (A_L values/air gaps examples)

Ungapped

Other A_l values/air gaps and materials available on request – see [Processing notes on page 173.](#page-173-0)

- To IEC 62317-5
- For transformers featuring high inductance and low overall height
- For power applications
- Delivery mode: sets

Magnetic characteristics (per set)

 Σ *VA* = 1.52 mm⁻¹ $I_{\rm e}$ $= 15.7$ mm A_e = 10.3 mm² $A_{\text{min}} = 8.5 \text{ mm}^2$
 $V_e = 162 \text{ mm}^3$ $= 162$ mm³

Approx. weight 1.4 g/set

*) gapped (one-sided)

FEP0073-J-E

Gapped (A_L values/air gaps examples)

Ungapped

Other A_L values/air gaps and materials available on request - see [Processing notes on page 173.](#page-173-0)

EP 7

Accessories B65840

Coil former

Coil former

EP 7

Accessories B65840

SMD

SMD coil former with gullwing terminals

Material: GFR liquid crystal polymer (UL 94 V-0), color code black Sumika Super E4008® [E54705 (M)], SUMITOMO CHEMICAL CO LTD

Solderability: to IEC 60068-2-58, test Td, method 6 (Group 3): 245 °C, 3 s

Resistance to soldering heat: to IEC 60068-2-58, test Td, method 6 (Group 3): 255 °C, 10 s permissible soldering temperature for wire-wrap connection on coil former: 400 °C, 1 s

EP 7

Accessories B65840

Coil former

Material: GFR liquid crystal polymer (UL 94 V-0, insulation class to IEC 60085: $F = max$. operating temperature 155°C), color code black Sumika Super E4008 [E54705 (M)], SUMITOMO CHEMICAL CO LTD

Solderability: IEC 60068-2-58, test Td, method 6 (Group 3): 245 °C, 3 s Resistance to soldering heat: to IEC 60068-2-58, test Td, method 6 (Group 3): 255 °C, 10 s permissible soldering temperature for wire-wrap connection on coil former: 400 °C, 1 s

Recommended PCB layout

EPX 7/9

- For xDSL line transformer
- Foot print of EP 7
- Height of EP 13
- Optimized design for low distortion
- Delivery mode: sets

Magnetic characteristics (per set)

 Σ *VA* = 0.91 mm⁻¹ $I_{\rm e}$ $= 15.7$ mm A_e = 17.2 mm² \widetilde{A}_{min} = 13.9 mm²
 V_a = 270 mm³ $= 270$ mm³

Approx. weight 2.8 g/set

*) gapped (one-sided)

FEP0084-E-E

Gapped (A_L values/air gaps examples)

Core B65857A

EPX 7/9

Core B65857A

Gapped

Ungapped

Other $A₁$ values/air gaps and materials available on request – see [Processing notes on page 173.](#page-173-0)

EPX 9/9

- For xDSL line transformers
- Height of EP 13
- Optimized design for low distortion
- Delivery mode: sets

Magnetic characteristics (per set)

Σl*/*A = 1.09 mm–1 l A_e = 19.0 mm
 A_e = 17.5 mm² $= 17.5$ mm² $\widetilde{A}_{min} = 13.9 \text{ mm}^2$
 $V_a = 333 \text{ mm}^3$ $= 333$ mm³

Approx. weight 3 g/set

*) gapped (one-sided)

FEP0085-R-E

Gapped (A_L values/air gaps examples)

Core B65857C

EPX 9/9

Core B65857C

Gapped

Ungapped

Other $A₁$ values/air gaps and materials available on request – see [Processing notes on page 173.](#page-173-0)

ATDK

Core B65841 EP 10

- To IEC 62317-5
- For transformers featuring high inductance and low overall height
- For power applications
- Delivery mode: sets

Magnetic characteristics (per set)

 $Σ*VA* = 1.7 mm⁻¹$ $I_{\rm e}$ $= 19.2$ mm $A_{\rm e}$ = 11.3 mm² $\widetilde{A}_{min} = 8.5$ mm²
 $V_e = 217$ mm³ $= 217 \text{ mm}^3$

Approx. weight 2.8 g/set

*) gapped (one-sided) E

Gapped (A_L values/air gaps examples)

Ungapped

Other A_L values/air gaps and materials available on request – see [Processing notes on page 173.](#page-173-0)

Accessories B65842

Coil former, squared pins

Material: GFR thermosetting plastic (UL 94 V-0, insulation class to IEC 60085: $F \triangleq$ max. operating temperature 155 °C), color code black Sumikon PM 9630® [E41429 (M)], SUMITOMO BAKELITE CO LTD

Solderability: to IEC 60068-2-20, test Ta, method 1 (aging 3): 235 °C, 2 s Resistance to soldering heat: to IEC 68-2-20, test Tb, method 1B: 350 °C, 3.5 s Winding: see Processing notes, 2.1

Hole arrangement View in mounting direction

Marking of pin row including pin 1 0.45

FEP0011-S-E

Please read *Important notes* on page 2 and *Cautions and warnings* on page 674

330 1/17

Accessories B65842

Mounting assembly

The set comprises a yoke and a clamp

Yoke

Made of rolled steel (0.4 mm) with ground terminal (tinned)

Clamp

Spring clamp, made of bronze (0.3 mm), tinned

Yoke Clamp

EPX 10

- For xDSL line transformers
- Outer dimensions of FP 10
- Optimized design for low distortion
- Delivery mode: sets

Magnetic characteristics (per set)

 Σ *VA* = 1.37 mm⁻¹ l I_e = 21.7 mm
 A_e = 15.9 mm² $= 15.9$ mm² A_{min} = 13.2 mm² V_e = 345 mm³

Approx. weight 2.8 g/set

*) gapped (one-sided)

FEP0086-T-E

Gapped (A_L values/air gaps examples)

Ungapped

Other A_l values/air gaps and materials available on request – see [Processing notes on page 173.](#page-173-0)

Core B65859

- To IEC 62317-5
- For transformers featuring high inductance and low overall height
- For power applications
- Delivery mode: sets

Magnetic characteristics (per set)

 Σ *VA* = 1.24 mm⁻¹ $I_{\rm e}$ $= 24.2$ mm A_e = 19.5 mm² \widetilde{A}_{min} = 14.9 mm²
 V_a = 472 mm³ $= 472$ mm³

Approx. weight 4.5 g/set

*) gapped (one-sided)

FEP0078-C-E

Gapped (A_L values/air gaps examples)

Please read *Important notes* on page 2 and *Cautions and warnings* on page 674

Core B65843A

Gapped

Ungapped

Other A_1 values/air gaps and materials available on request – see [Processing notes on page 173.](#page-173-0)

Accessories B65844

Coil former, squared pins

Material: GFR thermosetting plastic (UL 94 V-0, insulation class to IEC 60085: $F \triangleq$ max. operating temperature 155 °C), color code black Sumikon PM 9630® [E41429 (M)], SUMITOMO BAKELITE CO LTD

Solderability: to IEC 60068-2-20, test Ta, method 1 (aging 3): 235 °C, 2 s Resistance to soldering heat: to IEC 60068-2-20, test Tb, method 1B: 350 °C, 3.5 s Winding: see Processing notes, 2.1

Accessories B65844

Coil former with closed center flange for high-voltage applications

Material: GFR thermosetting plastic (UL 94 V-0, insulation class to IEC 60085: $F \triangleq$ max. operating temperature 155 °C), color code black Sumikon PM 9630® [E41429 (M)], SUMITOMO BAKELITE CO LTD Solderability: to IEC 60068-2-20, test Ta, method 1 (aging 3): 235 °C, 2 s

Resistance to soldering heat: to IEC 60068-2-20, test Tb, method 1B: 350 °C, 3.5 s Winding: see Processing notes, 2.1

Pins: Squared pins

Accessories B65844

Mounting assembly

The set comprises a yoke and a clamp

Yoke

Made of cold rolled steel (0.4 mm) with ground terminal (tinned)

Clamp

Spring clamp, made of bronze (0.3 mm)

 12 FEP0065-H

Yoke Clamp

Please read *Important notes* on page 2 and *Cautions and warnings* on page 674

EPO 13

- Recommended for xDSL applications with transformer height constraints
- Low-profile version of EP 13 (1.6 mm lower than EP 13)
- Distortion performance close to EP 13
- Fully compatible with EP 13 coils
- Delivery mode: sets

Magnetic characteristics (per set)

 Σ *VA* = 1.34 mm⁻¹ $\frac{I_e}{A_e}$ $= 25.8$ mm $= 19.3$ mm² $\widetilde{A}_{min} = 14.9 \text{ mm}^2$
 $V_a = 498 \text{ mm}^3$ $= 498$ mm³

Approx. weight 3 g/set

*) gapped (one-sided)

FFP0079-V-F

Gapped (A_L values/air gaps examples)

Core B65843P

Ungapped

Other A_L values/air gaps and materials available on request – see [Processing notes on page 173.](#page-173-0)

EPO 13

Accessories B65844

Coil former, squared pins

Material: GFR thermosetting plastic (UL 94 V-0, insulation class to IEC 60085: $F \triangleq$ max. operating temperature +155 °C), color code black Sumikon PM 9630® [E41429 (M)], SUMITOMO BAKELITE CO LTD

Solderability: to IEC 60068-2-20, test Ta, method 1 (aging 3): 235 °C, 2 s Resistance to soldering heat: to IEC 60068-2-20, test Tb, method 1B: 350 °C, 3.5 s Winding: see Processing notes, 2.1

EPO 13

Accessories B65844

Coil former with closed center flange for high-voltage applications

Material: GFR thermosetting plastic (UL 94 V-0, insulation class to IEC 60085: $F \triangleq$ max. operating temperature +155 °C), color code black Sumikon PM 9630® [E41429 (M)], SUMITOMO BAKELITE CO LTD Solderability: to IEC 60068-2-20, test Ta, method 1 (aging 3): 235 °C, 2 s

Resistance to soldering heat: to IEC 60068-2-20, test Tb, method 1B: 350 °C, 3.5 s Winding: see Processing notes, 2.1

Pins: Squared pins

ATDK

- To IEC 62317-5
- For transformers featuring high inductance and low overall height
- For power applications
- Delivery mode: sets

Magnetic characteristics (per set)

 Σ *VA* = 0.84 mm⁻¹ $I_{\rm e}$ $= 28.5$ mm A_{ρ} = 33.9 mm² $\widetilde{A}_{min} = 25.5$ mm²
 $V_a = 966$ mm³ $= 966$ mm³

Approx. weight 12 g/set

*) gapped (one-sided)

FEP0080-B-E

Ungapped

Other AL values/air gaps and materials available on request – see [Processing notes on page 173](#page-173-0).

Accessories B65846

Coil former

Material: GFR thermosetting plastic (UL 94 V-0, insulation class to IEC 60085: $F \triangleq$ max. operating temperature +155 °C), color code black Sumikon PM 9630® [E41429 (M)], SUMITOMO BAKELITE CO LTD Solderability: to IEC 60068-2-20, test Ta, method 1 (aging 3): 235 °C, 2 s Resistance to soldering heat: to IEC 60068-2-20, test Tb, method 1B: 350 °C, 3.5 s Winding: see Processing notes, 2.1 Pins: Squared pins

Accessories B65846

Mounting assembly

The set comprises a yoke and a clamp

Yoke

Made of cold rolled steel (0.4 mm) with ground terminal (tinned)

Clamp

Spring clamp, made of bronze (0.4 mm)

Yoke Clamp

ATDK

- To IEC 62317-5
- For transformers featuring high inductance and low overall height
- For power applications
- Delivery mode: sets

Magnetic characteristics (per set)

 Σ *VA* = 0.51 mm⁻¹ $I_{\rm e}$ $= 40$ mm \overline{A}_{e} = 78 mm² $\widetilde{A}_{min} = 60$ mm²
 $V_e = 3120$ mm $= 3120$ mm³

Approx. weight 27.5 g/set

*) gapped (one-sided)

FEP0081-N-E

Gapped (AL values/air gaps examples)

Ungapped

Other A_l values/air gaps and materials available on request – see [Processing notes on page 173.](#page-173-0)

Accessories B65848

Coil former

Material: GFR thermosetting plastic (UL 94 V-0, insulation class to IEC 60085: $F \triangleq$ max. operating temperature 155 °C), color code green Vyncolit/X611® [E167521 (M)], VYNCOLIT NV Solderability: to IEC 60068-2-20, test Ta, method 1 (aging 3): 235 °C, 2 s Resistance to soldering heat: to IEC 60068-2-20, test Tb, method 1B: 350 °C, 3.5 s Winding: see Processing notes, 2.1 Pins: Squared pins

346 1/17

Accessories B65848

Mounting assembly

The set comprises a yoke and a clamp

Yoke

Made of nickel bronze (0.4 mm) with ground terminal (tinned)

Clamp

Spring clamp, made of stainless spring steel (0.4 mm)

FEP0069-D

Yoke Clamp

FEP0070-F

P cores (pot cores)

General information

1 General information

P cores (**P**ot cores) are available in a wide range of sizes; 7 types in our product line comply with IEC 62317-2. We offer a choice of different SIFERRIT materials, which permits the cores to be used for a large variety of applications to over 100 MHz. Since the wound coil is completely enclosed by the ferrite core, P cores feature low magnetic leakage. They can be easily and precisely adjusted to the most manifold inductor requirements.

We naturally also supply the appropriate accessories for each core version. Most of the cores are available with threaded sleeves and screws for precision inductance adjustment. Adjustment curves are given for this purpose. These relate to the particular recommended combination of screw core/core material A_l value and must be understood as typical values.

2 Applications

The cores are suitable for:

- High-quality resonant circuit inductors (filters) with high inductance stability (materials K1, M33, N48).
- **Low-distortion broadband small-signal transformers in materials T38 and N30 with high A_L value**
- Power applications. Here, pot cores without center hole made of material N87 are used as standard. As a result of their larger effective magnetic cross-sectional area, these types are characterized by a higher A_l value, better flux density distribution and, consequently, a reduced power loss.

3 Marking

The material and the A_l value are always stamped on P cores with a diameter > 5.8 mm, the material and "o. L."(= without air gap) are stamped on ungapped cores. Only one core half of the two comprising a set carries the marking. With cores having an unsymmetrical air gap (the total air gap is ground into one half) the ground half carries the marking, with cores including a glued-in threaded sleeve the half without sleeve is marked.

4 Power loss

For each core type with power materials the maximum power loss is specified in W/set. The flux density has been calculated on the basis of a sinusoidal voltage and is referred to the minimum cross-sectional area A_{min}.

P cores (pot cores)

General information

5 Tolerances for P cores

The A_L value tolerances for P cores have consequently been defined with consideration of optimized process parameters for all materials with an initial permeability μ_i in the region of 2200 to 10000 as a step function (see figure below).

The "quantized" A₁ step values should be preferably used. They are still available in their respective lower tolerance ranges. Thus a tolerance of ±10% can be determined for a P 9/5 made of N48 material for an A_L value of 500 nH.

With this type of tolerance definition, EPCOS has defined standard $A₁$ values and the associated tolerance for the first time. Based on initial permeability tolerance can be slightly lower or higher.

B65491

P 3.3 × **2.6**

Core

■ To IEC 62317-2

■ Delivery mode: sets

Magnetic characteristics (per set)

 Σ *VA* = 3.72 mm⁻¹ l_e
A_e $= 5.10$ mm \tilde{A}_{e} = 1.37 mm²
 V_{e} = 7 mm³ $= 7$ mm³

Approx. weight 0.06 g/set

Ungapped

Winding data

Other A_l values/air gaps and materials available on request – see [Processing notes on page 173.](#page-173-0)

P 4.6 × **4.1**

Core B65495

Miniature pot cores

- The unit can be fixed to the terminal carrier by glue
- Space requirements of the inductor 5×5.1 mm (without terminals)
- Delivery mode: sets

Magnetic characteristics (per set)

 $Σ*VA* = 2.7 mm⁻¹$ $I_{\rm e}$ I_e = 7.6 mm
 A_e = 2.8 mm² A_e = 2.8 mm²
 V_a = 21.3 mm $= 21.3$ mm³

Ungapped

Other $A₁$ values/air gaps and materials available on request – see [Processing notes on page 173.](#page-173-0)

FPK0350-1

P 5.8 × **3.3**

Core B65501

■ Delivery mode: sets

Magnetic characteristics (per set)

 $ΣI/A = 1.68$ mm⁻¹ l A_e = 7.9 mm
 A_e = 4.7 mm² A_e = 4.7 mm²
 V_a = 37 mm³ $= 37$ mm³

Approx. weight 0.2 g/set

8 0 25

Ungapped 1)

Other A_1 values/air gaps and materials available on request – see [Processing notes on page 173.](#page-173-0)

¹⁾ Gapped pot cores on request

$P 7 \times 4$

Core and accessories

Example of an assembly set for printed circuit boards

 $P 7 \times 4$

■ Delivery mode: sets

Magnetic characteristics (per set)

Gapped (A_L values/air gaps examples)

 $ΣI/A = 1.43$ mm⁻¹

- l I_e = 10 mm
 A_e = 7 mm²
-
- A_e = 7 mm²
V₂ = 70 mm $= 70$ mm³

Approx. weight 0.5 g/set

FPK0040-A

Ungapped

Other A_L values/air gaps and materials available on request - see [Processing notes on page 173.](#page-173-0)

P 7 × **4**

Accessories B65512

Coil former with positioning lug

Material: GFR polyterephthalate (UL 94 V-0, insulation class to IEC 60085: $F \triangleq$ max. operating temperature 155 °C), color code black Valox 420-SE0 [E207780 (M)] SABIC JAPAN L L C

Winding: see Processing notes, 2.1

FPK0041-I

$P 7 \times 4$

Accessories B65512

Mounting assembly for printed circuit boards

- The set comprises a terminal carrier and a yoke
- For snap-in connection

Terminal carrier

■ With thread for the adjusting screw

Material: GFR polyphenylene sulphide (UL 94 V-0, insulation class to IEC 60085: $F \triangleq$ max. operating temperature 155 °C), color code black Ryton R-4-230, [E95746 (M)], SOLVAY SPECIALITY POLYMERS Solderability: to IEC 60068-2-20, test Ta, method 1 (aging 3): 235 °C, 2 s Resistance to soldering heat: to IEC 60068-2-20, test Tb, method 1B: 350 °C, 3.5 s

Yoke

Spring yoke, made of tinned nickel silver (0.2 mm), with ground terminal

Complete mounting assembly (5 solder terminals) Ordering code: B65512C2001X000

a) Yoke

b) Terminal carrier with 5 solder terminals

P 9 \times 5

Core and accessories

 P 9 \times 5

- To IEC 62317-2
- Delivery mode: sets

Magnetic characteristics (per set)

Approx. weight (per set)

Gapped (A_L values/air gaps examples)

Ungapped

Other $A₁$ values/air gaps and materials available on request – see [Processing notes on page 173.](#page-173-0)

$$
358 \overline{\smash{\big)}\ 1/17}
$$

Core B65517

FPK0356-F

¹⁾ Replace the $+$ by the code letter "D" or "T" for the required version.

P 9 \times 5

Accessories B65522

Coil former

Coil former

 P 9 \times 5

Accessories B65524

SMD

SMD coil former with gullwing terminals

Material: GFR liquid crystal polymer (UL 94 V-0, insulation class to IEC 60085: $F \triangleq$ max. operating temperature 155 °C), color code black Sumika Super E4008® [E54705 (M)], SUMITOMO CHEMICAL CO LTD Solderability: to IEC 60068-2-58, test Td, method 6 (Group 3): 245 °C, 3 s

Resistance to soldering heat: to IEC 60068-2-58, test Td, method 6 (Group 3): 255 °C, 10 s

permissible soldering temperature for wire-wrap connection on coil former: 400 °C, 1 s Winding: see Processing notes, 2.1

In the 4-terminal version terminals 2, 3, 6 and 7 are omitted.

P 9 \times 5

Accessories B65518

Mounting assembly for printed circuit boards

- The set comprises a terminal carrier and a voke
- For snap-in connection

Terminal carrier

 \blacksquare With thread for the adjusting screw (to be combined with core version "D")

Material: GFR polyterephthalate (UL 94 V-0, insulation class to IEC 60085: $F \triangleq$ max. operating temperature 155 °C), color code black

Pocan B4235® [E245249 (M)], LANXESS AG

Solderability: to IEC 60068-2-20, test Ta, method 1 (aging 3): 235 °C, 2 s Resistance to soldering heat: to IEC 60068-2-20, test Tb, method 1B: 350 °C, 3.5 s

Yoke

Spring yoke, made of tinned nickel silver (0.25 mm), with ground terminal

4 solder terminals 6 solder terminals

1) 1.3 hole also permissible

a) Yoke

b) Terminal carrier with 4 solder terminals

c) Terminal carrier with 6 solder terminals

Please read *Important notes* on page 2 and *Cautions and warnings* on page 674

361 1/17

FPK0056 W

Core and accessories

Example of an assembly set

for printed circuit boards

- To IEC 62317-2
- Delivery mode: sets

Magnetic characteristics (per set)

Approx. weight (per set)

Gapped (A_L values/air gaps examples)

Ungapped

Other A_l values/air gaps and materials available on request – see [Processing notes on page 173.](#page-173-0)

1) Replace the $+$ by the code letter "D" or "T" for the required version.

Accessories B65532

Coil former

J.

P 11 \times 7

Accessories B65535

Mounting assembly for printed circuit boards

- The set comprises a terminal carrier and a yoke
- For snap-in connection

Terminal carrier

■ With thread for the adjusting screw (to be combined with core version "D")

Material: GFR polyterephthalate (UL 94 V-0, insulation class to IEC 60085: $F \triangleq$ max. operating temperature + 155 °C), color code black

4 solder terminals: Rynite FR 530® [E41938 (M)], E I DUPONT DE NEMOURS & CO 8 solder terminals: Pocan B4235® [E245249 (M)], LANXESS AG

Solderability: to IEC 60068-2-20, test Ta, method 1 (aging 3): 235 °C, 2 s

Resistance to soldering heat: to IEC 60068-2-20, test Tb, method 1B: 350 °C, 3.5 s

Yoke

Spring yoke, made of tinned nickel silver (0.25 mm), with ground terminal

4 solder terminals 8 solder terminals

c) Terminal carrier with 8 solder terminals

Please read *Important notes* on page 2 and *Cautions and warnings* on page 674

365 1/17

Accessories B65539, B65806

Adjusting screw

■ Tube core with thread and core brake made of GFR polyterephthalate Pocan B3235® [E245249 (M)], LANXESS AG

Core and accessories

Example of an assembly set for printed circuit boards

Core B65541

■ To IEC 62317-2

■ Delivery mode: sets

Magnetic characteristics (per set)

Approx. weight (per set)

Gapped (A_L values/air gaps examples)

Ungapped

Other A_L values/air gaps and materials available on request – see [Processing notes on page 173.](#page-173-0)

1) Replace the $+$ by the code letter "D" or "T" for the required version.

Accessories B65542

Coil former

Coil former

-
FPK0446-E

 $\frac{07102}{2}$

 $06 + 0.2$

 0.5

P 14×8

Accessories B65545

Mounting assembly for printed circuit boards

- The set comprises a terminal carrier and a yoke
- For snap-in connection

Terminal carrier

Material: GFR polyterephthalate (UL 94 V-0, insulation class to IEC 60085: $F \triangleq$ max. operating temperature 155 °C), color code gray Pocan B4235® [E245249 (M)], LANXESS AG

Solderability: to IEC 60068-2-20, test Ta, method 1 (aging 3): 235 °C, 2 s Resistance to soldering heat: to IEC 60068-2-20, test Tb, method 1B: 350 °C, 3.5 s

Yoke

Spring yoke, made of tinned nickel silver (0.25 mm), with ground terminal

4 solder terminals 6 solder terminals

*) This recess must be on the side of the grounding pin to ensure that the yoke locks in position.

a) Yoke

- b) Terminal carrier with 4 solder terminals
- c) Terminal carrier with 6 solder terminals

Please read *Important notes* on page 2 and *Cautions and warnings* on page 674

370 1/17

Accessories B65549

Adjusting screw

■ Tube core with thread and core brake made of GFR polyterephthalate Pocan B3235® [E245249 (M)], LANXESS AG

Core and accessories

FPK0021-4

Example of an assembly set for printed circuit boards

■ To IEC 62317-2

■ Delivery mode: sets

Magnetic characteristics (per set)

Approx. weight (per set)

Gapped (A_L values/air gaps examples)

Ungapped

Other A_l values/air gaps and materials available on request – see [Processing notes on page 173.](#page-173-0)

1) Replace the $+$ by the code letter "D" or "T" for the required version.

373 1/17

Accessories B65652

Coil former

Coil former

Accessories B65655

Mounting assembly for printed circuit boards

- The set comprises a terminal carrier and a voke
- For snap-in connection

Terminal carrier

Material: GFR polyterephthalate (UL 94 V-0, insulation class to IEC 60085: $F \cong$ max. operating temperature 155 °C), color code grav Pocan B4235® [E245249 (M)], LANXESS AG

Solderability: to IEC 60068-2-20, test Ta, method 1 (aging 3): 235 °C, 2 s

Resistance to soldering heat: to IEC 60068-2-20, test Tb, method 1B: 350 °C, 3.5 s

Yoke

Spring yoke, made of tinned nickel silver (0.3 mm), with ground terminal

4 solder terminals 8 solder terminals

*) This recess must be on the side of the grounding pin to ensure that the yoke locks in position.

- b) Terminal carrier with 4 solder terminals
- c) Terminal carrier with 8 solder terminals

Please read *Important notes* on page 2 and *Cautions and warnings* on page 674

375 1/17

a) Yoke

Accessories B65659

Adjusting screw

■ Tube core with thread and core brake made of GFR polyterephthalate Pocan B3235® [E245249 (M)], LANXESS AG

社功 ക് 38 FRM0069-8

FRM0066-I

Core and accessories

Example of an assembly set for printed circuit boards

- To IEC 62317-2
- Delivery mode: sets

Magnetic characteristics (per set)

Approx. weight (per set)

Gapped (A_L values/air gaps examples)

Ungapped

Other A_l values/air gaps and materials available on request – see [Processing notes on page 173.](#page-173-0)

378 1/17

1) Replace the $+$ by the code letter "D" or "N" for the required version.

$$
f_{\rm{max}}
$$

FPK0118-Q

Accessories B65662

Coil former

Coil former

Ordering code

Accessories B65665

Mounting assembly for printed circuit boards

- The set comprises a terminal carrier and a voke
- For snap-in connection

Terminal carrier

Material: GFR polyterephthalate (UL 94 V-0, insulation class to IEC 60085: $F \cong$ max. operating temperature 155 °C), color code black, Pocan B4235 [E245249 (M)], LANXESS AG

Solderability: IEC60068-2-20, test Ta, method 1 (aging 3): 235 °C, 2 s

Resistance to soldering heat: to IEC60068-2-20, test Tb, method 1b: 350 °C, 3.5 s

Yoke

Spring yoke, made of tinned nickel silver (0.3 mm), with ground terminal

*) This recess must be on the side of the grounding pin to ensure that the yoke locks in position.

a) Yoke

c) Terminal carrier with 8 solder terminals

Please read *Important notes* on page 2 and *Cautions and warnings* on page 674

Accessories B65812

Adjusting screw

■ Tube core with thread and core brake made of GFR polyterephthalate Pocan B3235® [E245249 (M)], LANXESS AG

Core and accessories

FPK0023-K

Example of an assembly set for printed circuit boards

- To IEC 62317-2
- Delivery mode: sets

Magnetic characteristics (per set)

Approx. weight (per set)

Gapped (A_L values/air gaps examples)

$$
383 \mid 1/17
$$

Ungapped

Other A_L values/air gaps and materials available on request – see [Processing notes on page 173.](#page-173-0)

Accessories B65672

Coil former

Coil former

Accessories B65675

Mounting assembly for printed circuit boards

- The set comprises a terminal carrier and a voke
- For snap-in connection

Terminal carrier

Material: GFR polyterephthalate (UL 94 V-0, insulation class to IEC 60085: $F \triangleq$ max. operating temperature 155 °C), color code grav Pocan B4235® [E245249 (M)], LANXESS AG

Solderability: to IEC 60068-2-20, test Ta, method 1 (aging 3): 235 °C, 2 s

Resistance to soldering heat: to IEC 60068-2-20, test Tb, method 1B: 350 °C, 3.5 s

Yoke

Spring yoke, made of tinned nickel silver (0.4 mm), with ground terminal

Complete mounting assembly (8 solder terminals) Ordering code: B65675B0005X000

*) This recess must be on the side of the grounding pin to ensure that the yoke locks into position.

FPK0379-J-F

Please read *Important notes* on page 2 and *Cautions and warnings* on page 674

386 1/17

Accessories B65679

Adjusting screw

■ Tube core with thread and core brake made of GFR polyterephthalate Pocan B3235® [E245249 (M)], LANXESS AG

Note:

Due to the limited distance between adjusting screw and internal borehole, the entire assembly must be accurately centered.

Core and accessories

Example of an assembly set for printed circuit boards

- To IEC 62317-2
- Delivery mode: sets

Magnetic characteristics (per set)

Approx. weight (per set)

Gapped (A_L values/air gaps examples)

Ungapped

Other $A₁$ values/air gaps and materials available on request – see [Processing notes on page 173.](#page-173-0)

1) Replace the + by the code letter "D" or "T" for the required version.

389 1/17

 $20.9 - 0.9$

Accessories B65702

Coil former

Coil former

Accessories B65705

Mounting assembly for printed circuit boards

- The set comprises a terminal carrier and a voke
- For snap-in connection

Terminal carrier

Material: GFR polyterephthalate (UL 94 V-0, insulation class to IEC 85: $F \cong$ max. operating temperature 155 °C), color code grav Pocan B4235® [E245249 (M)], LANXESS AG Solderability: to IEC 68-2-20, test Ta, method 1 (aging 3): 235 °C, 2 s

Resistance to soldering heat: to IEC 68-2-20, test Tb, method 1B: 350 °C, 3.5 s

Yoke

Spring yoke, made of tinned nickel silver (0.5 mm), with ground terminal

Complete mounting assembly (8 solder terminals) Ordering code: B65705B0003X000

1) The 2.8 mm hole is only necessary for additional fixing with M2.5 screw.

EPK0382-4-E

Please read *Important notes* on page 2 and *Cautions and warnings* on page 674

391 1/17

Accessories B65679

Adjusting screw

■ Tube core with thread and core brake made of GFR polyterephthalate Pocan B3235® [E245249 (M)], LANXESS AG

Note:

Due to the limited distance between adjusting screw and internal borehole, the entire assembly must be accurately centered.

P 36 × **22**

Core and accessories

FPK0025-2

Example of an assembly set for printed circuit boards

P 36 × **22**

■ Delivery mode: sets

Magnetic characteristics (per set)

Approx. weight (per set)

Gapped (A_L values/air gaps examples)

Ungapped

Other $A₁$ values/air gaps and materials on request – see [Processing notes on page 173.](#page-173-0)

$$
394 \overline{\smash{\big)}\ 1/17}
$$

 $26 - 1$

FPK0437-F

ø5.4+0.3 ø162-04

¹⁾ Replace the + by the code letter "D" or "T" for the required version.

P 36 × **22**

Accessories B65612

Coil former

Coil former

FPK0460-E

P 36 × **22**

Accessories B65615

Mounting assembly for printed circuit boards

- The set comprises a terminal carrier and a yoke
- For snap-in connection

Terminal carrier

Material: GFR polyterephthalate (UL 94 V-0, insulation class to IEC 60085: $F \triangleq$ max. operating temperature 155 °C), color code black Pocan B4235® [E245249 (M)], LANXESS AG

Solderability: to IEC 60068-2-20, test Ta, method 1 (aging 3): 235 °C, 2 s Resistance to soldering heat: to IEC 60068-2-20, test Tb, method 1B: 350 °C, 3.5 s

Yoke

Spring yoke, made of nickel silver (0.6 mm), with ground terminal

Complete mounting assembly (10 solder terminals) Ordering code: B65615B0001X000

P 36 × **22**

Accessories B65679

Adjusting screw

■ Tube core with thread and core brake made of GFR polyterephthalate Pocan B3235® [E245249 (M)], LANXESS AG

Note:

Due to the limited distance between adjusting screw and internal borehole, the entire assembly must be accurately centered.

P 41 × **25**

Core and accessories

Example of an assembly set

P 41 × **25**

Core B65621

■ Delivery mode: sets

Magnetic characteristics (per set)

Σl*/*A = 0.264 mm–1 l A_e = 60.4 mm
 A_e = 229 mm² $= 229$ mm² \widetilde{A}_{min} = 201 mm² V_e = 13832 mm³

Approx. weight 82 g/set

FPK0438-N

Ungapped

Other A_1 values/air gaps and materials available on request – see [Processing notes on page 173.](#page-173-0)

P 41 × **25**

Accessories B65623

Mounting assembly for chassis mounting

- The set comprises a voke and a metal base plate
- Fixing by screws or rivets

Yoke

Spring yoke, made of nickel silver (0.5 mm)

Complete mounting assembly (with tubular rivets) Ordering code: B65623A0001X000

a) Yoke

b) Base plate

c) Tubular rivets

P 47 × **28**

■ Delivery mode: sets

Magnetic characteristics (per set)

 $ΣI/A = 0.22$ mm⁻¹ l $= 69.1$ mm \bar{A}_{e} = 310 mm² \widetilde{A}_{min} = 263 mm² V_e = 21428 mm³

Gapped (A_L values/air gaps examples)

Ungapped

Other A_L values/air gaps and materials available on request – see [Processing notes on page 173.](#page-173-0)

P 59 × **36**

Core B65691

■ Delivery mode: sets

Magnetic characteristics (per set)

Σl*/*A = 0.181 mm–1 l I_e = 88 mm
 A_e = 485 mm $= 485$ mm² \widetilde{A}_{min} = 445 mm²
 V_e = 42680 mm $= 42680$ mm³

Approx. weight 270 g/set

FPK0435-Y

Gapped (A_L values/air gaps examples)

Ungapped

Other A_l values/air gaps and materials available on request – see [Processing notes on page 173.](#page-173-0)

P core halves for proximity switches (PS cores)

General information

Inductive proximity switches can be used as noncontacting motion detectors and output indicators. Possible applications:

- Detection of the final position on conveyor belts
- Counters at rotating parts
- Contactless detection of pointer position of pointer-type measuring and control instruments

The advantages of proximity switches are bounceless switching, no mechanical wear, insensitivity to contamination and detection of metallic parts only.

We supply P core halves/PS cores with diameters ranging from 7.35 to 150 mm for inductive proximity switches. Their dimensions are matched to standardized switches. Maximum operating distances can thus be achieved for the individual P core sizes. The SIFERRIT material N22 is particularly suitable for the frequency range from 0.1 to 0.8 MHz. The material M33 is additionally available for higher frequencies (core types with 5.6 to 14.0 mm diameter).

Thermoplastic coil formers can be supplied for most of the core types. This material permits an operating temperature range of -60 to $+120$ °C. Consequently, temperatures of up to $+120$ °C are also permissible during encapsulation.

PS 7.35 × **3.6**

Core and accessories

Core

- To IEC 62323
- Recommended for new designs
- For inductive proximity switches
- Material N22 for the frequency range from about 80 to 800 kHz
- Material M33 for higher frequencies up to about 1.6 MHz

B65933, B65512

.

Other materials available on request – see [Processing notes on page 173.](#page-173-0)

Coil former with positioning lug

Material: GFR polyterephthalate (UL 94 V-0, insulation class to IEC 60085: $F \triangleq$ max. operating temperature 155 °C), color code black Valox 420-SE0® [E45329 (M)], Sabic Innovative Plastic

PS 9 × **3.5**

Core and accessories B65935, B65936

Core

- To IEC 62323
- Recommended for new designs
- For inductive proximity switches
- Material N22 for the frequency range from about 80 to 800 kHz
- Material M33 for higher frequencies up to about 1.6 MHz

Material **Approx.** weight g Ordering code N22 0.6 B65935E0000X022 M33 0.6 B65935E0000X033

Other materials available on request – see [Processing notes on page 173.](#page-173-0)

Coil former with positioning lug

Material: GFR polyterephthalate (UL 94 V-0, insulation class to IEC 60085: $F \triangleq$ max. operating temperature 155 °C), color code black Pocan B4235® [E245249 (M)], LANXESS AG

P core half 14 × **7.5**

Core and accessories B65937, B65542

Core

- For inductive proximity switches
- Material N22 for the frequency range from about 70 to 700 kHz

Other materials available on request – see [Processing notes on page 173.](#page-173-0)

Coil former

Material: GFR polyterephthalate (UL 94 V-0, insulation class to IEC 60085: $F \triangleq$ max. operating temperature 155 °C), color code black Crastin SK 645 FR® [E41938 (M)], E I DUPONT DE NEMOURS & CO INC

54 \sim

PS 25 × **8.9**

Core and accessories B65939, B65940

Core

- To IFC 62323
- Recommended for new designs
- For inductive proximity switches
- Material N22 for the frequency range from about 60 to 600 kHz

 -0.7 r. (3.8) $5.9 + 0.3$ $20.5 + 0.8$ $8.9 - 0.2$ $24.8 - 1$

Other materials available on request – see [Processing notes on page 173.](#page-173-0)

Coil former

Material: GFR polyterephthalate (UL 94 V-0, insulation class to IEC 60085: $F \triangleq$ max. operating temperature 155 °C), color code black Valox 420-SE0 [E121562 (M)] SABIC INNOVATIVE PLASTICS US L L C

ე
თ
თ

PS 30.5 × **10.2**

Core and accessories B65941, B65942

Core

- To IEC 62323
- Recommended for new designs
- For inductive proximity switches
- Material N22 for the frequency range from about 50 to 500 kHz

 $20.9 - 0.9$ (4.7) $7 + 0.4$ $10.2 - 0.5$ $25 + 0.8$ $30.5 - 1$ FPK0443-P

Other materials available on request – see [Processing notes on page 173.](#page-173-0)

Coil former

Material: GFR polyterephthalate (UL 94 V-0, insulation class to IEC 60085: $F \triangleq$ max. operating temperature 155 °C), color code black Valox 420-SE0 [E207780 (M)] SABIC JAPAN L L C

Core B65947 PS 35 × **10.8**

- To IEC 62323
- Recommended for new designs
- For inductive proximity switches
- Material N22 for the frequency range from about 40 to 400 kHz

Other materials available on request – see [Processing notes on page 173.](#page-173-0)

PS 47 × **14.9**

Core B65943

- Recommended for new designs
- For inductive proximity switches
- Material N22 for the frequency range from about 30 to 300 kHz

Other materials available on request – see [Processing notes on page 173.](#page-173-0)

PS 68 × **14.5**

Core and accessories B65928, B65946

Core

- To IEC 62323
- Recommended for new designs
- For inductive proximity switches
- Material N22 for the frequency range from about 20 to 200 kHz

FPK0385-T

Other materials available on request – see [Processing notes on page 173.](#page-173-0)

Coil former

Material: GFR polyterephthalate (UL 94 V-0, insulation class to IEC 60085: $F \triangleq$ max. operating temperature 155 °C), color code black Valox 420-SE0 [E207780 (M)] SABIC JAPAN L L C

P core half 70 × **14.5**

Core and accessories B65945, B65946

Core

- For inductive proximity switches
- Material N22 for the frequency range from about 20 to 200 kHz

Other materials available on request – see [Processing notes on page 173.](#page-173-0)

Coil former

Material: GFR polyterephthalate (UL 94 V-0, insulation class to IEC 60085: $F \triangleq$ max. operating temperature 155 °C), color code black Valox 420-SE0® [E45329 (M)], SABIC INNOVATIVE PLASTICS

P core half 150 × **30**

Large-volume pot core

- Unground core for inductive proximity switches with wide operating distances
- Application examples:
	- Rotary transformers for non-contact power and information transmission
	- Inductive power transmission (non-contact charging of electric cars)
- Options:
	- a) Ground version for transformers up to 30 kW
	- b) Core height up to 45 mm for transformers up to 100 kW

Magnetic characteristics for option a)

(per set)

 Σ *VA* = 0.044 mm⁻¹

- l $= 160$ mm
- A_e = 3580 mm²
- A_{min} = 2800 mm²

 $V_{\text{e}} = 566000 \text{ mm}^3$

FPK0279 D

Other materials available on request – see [Processing notes on page 173.](#page-173-0)

Core B65949

General information

1 Tolerances for E cores

The A_L value tolerances for E cores have consequently been defined with consideration of optimized process parameters for all materials with an initial permeability μ_i in the region of 2200 to 10000 as a step function (see figure below).

The quantized $A₁$ step values should preferably be used. They are still available in their respective lower tolerance ranges. Thus a tolerance of ±15% can be determined for an E 42/21/15 made of N87 material for an $A₁$ value of 1190 nH.

With this type of tolerance definition, EPCOS has defined standard A_l values and the associated tolerance for the first time. Based on the initial permeability the tolerance can be slightly lower or higher.

General information

2 Core shapes and materials

The preferred materials for manufacture of E cores are the SIFERRIT materials N27, N87, N97, N88, N95, N96, N92, T46 and N30, N27 is recommended for power applications in the frequency range up to about 100 kHz and N87, N97, N88, N95, N96 and N92 for the frequency range up to 500 kHz; EFD cores made of N49 are particularly suitable for frequencies up to 1 MHz (PC200 up to 4 MHz). These materials feature a high saturation flux density and low power loss.

Material N30 is particularly suitable for broadband small-signal applications and also for interference suppression chokes.

The E core spectrum contained in this data book comprises five basic core shapes, which can be used not only for transformers but also for chokes with a power capacity of up to 10 kW.

a) Types with round center leg

We offer the following types:

- ER cores
- EQ cores
- ETD cores to IEC 62317-6 (Economic Transformer Design)

E cores with round center leg offer the advantage of easy winding, particularly when thick winding wires are used, compact mounting dimensions and wide openings on each side. ETD cores have the additional benefit of an almost constant cross section along the magnetic path. A wide variety of optimized accessories is available. ER cores in sizes 9.5 and 11/5 are particularly suitable for designing transformers with low overall height and high inductance. They come in material T38 for broadband applications plus in N87, N97, N88, N95, N96, N92 and N49 for power transformers for frequencies up to and over 500 kHz (PC200 up to 4 MHz).

b) Types with rectangular center leg

- E cores
- EFD cores (Economic Flat Transformer Design); EV cores

The conventional E cores with rectangular center leg are available in a wide variety of sizes.

EFD cores have an optimized cross section and enable the design of very flat and compacts transformers, even for high-frequency applications.

c) ELP cores (E Low Profile)

ELP cores enable the design of very flat transformers and feature excellent thermal performance due to the large core surface. ELP cores are now specified in IEC 62317-9.

General information

3 Ordering, marking, delivery

E cores are supplied as single units (except ER 9.5, ER 11 and ER 14.5/6: in sets), with each packing unit (PU) exclusively containing cores with or without shortened center leg (air gap dimension .g").

Gapped EFD cores are supplied with toleranced A₁ value as specified in the data sheets. All other E cores are availble with toleranced $A₁$ value on request.

There are two possibilites of air gap distribution, either symmetrical (each core of a set has the same air gap size) or unsymmetrical (a gapped core is combined with an ungapped core).

E and U cores are marked using the same system. Hence, the following description applies to both core shapes.

■ **E 5, E 6.3, E 8.8, EFD 10** and **I cores** are not marked.

■ **E cores** are marked by an ink-jet printer on the outside of the legs (figure 1).

Fig. 1 Marking by ink-jet printer

Gapped cores:

with toleranced air gap: material, date code and size of air gap, e.g.: 27 B2 1.5 with toleranced AL value: symmetrical version: material, date code, A_L value and code for AL value tolerance, e.g.: 27 B230A unsymmetrical version: material, date code and size of air gap, e.g.: 27 B2 1.5

Ungapped cores are marked with material and date code, e.g.: 27 B2.

General information

Depending on their height and width, there is not enough space on all cores for complete marking, meaning that simplification is necessary. So only the material and the date code will be stated. This ensures that there is space for at least one complete marking (two characters per line) on the core. To avoid confusion of names like N27 and N72, the beginning of the material designation coincides with the position of the letter in the date code.

Example:

 727272 2B2B2B

means N27 (not N72)

Remark: in some exception cases parts are stamped with rolls on the back (gapped EFD 15 for example).

Date code:

Date coding is based on a two-week period (see tables, counting by calendar weeks CW).

In the following year lines 1 and 2 will we swapped (material and date code). The position of letters and digits will not be swapped. Counting started in 1996.

Coding of two-week production periods

Coding of week day

The black ink is insoluble in water, but it will dissolve in fluids based on ketones. It will also dissolve if left for a long time in an ultrasonic bath. Different colored markings are not feasible.

General information

4 Cores with toleranced air gap

The following tolerances for dimension ... q" apply to all E cores:

As is the case with ungapped cores, a certain degree of roughness cannot be avoided on the ground surfaces of the outer legs.

5 Cores with toleranced A₁ value

The tolerance of the A_1 value depends on the magnitude of the A_1 value and the core shape. Tolerance figures are therefore given only on a core-type-specific basis.

6 Calculation formulae

Calculation formulae a) and b) apply to the $A₁$ value under the following measuring conditions:

Measuring flux density $B \le 0.25$ mT, measuring frequency f = 10 kHz, measuring temperature T = 25 \pm 3 °C, measuring coil: N = 100 turns, fully wound

a) Air gap and AL *value*

The typical $A₁$ value tabulated in the individual data sheets refers to a core set comprising a gapped core with dimension "q" and an ungapped core with "q" approx. 0.

By inserting the core-specific constants $K1$ and $K2$, a nominal $A₁$ value can be calculated for the materials N27 and N87 within the relevant quoted air-gap validity range:

$$
s = \left(\frac{A_L}{K1}\right)^{\frac{1}{K2}} \qquad s = [mm]
$$

$$
A_L = [nH]
$$

Production variations with regard to μ_i and grinding quality should be taken into account additionally.

b) DC magnetic bias I_{DC}

By using the core-shape-related factors K3 and K4, nominal values can be determined for the DC magnetic biasing characteristic of E, ETD and EFD cores made of N27 and N87 and ELP cores made of N87 at temperature 25 °C and 100 °C.

The direct current I_{DC} at which the A_L value drops by 10% compared to the A_L value without magnetic biasing (I_{DC} = 0 A) is determined for a coil with 100 turns.

Calculation of I_{DC} at T = 25 °C:

The factors K3 and K4 for T = 25 °C and the A_l value without magnetic biasing are inserted into the equation for the calculation.

General information

Calculation of I_{DC} at T = 100 °C:

The factors K3 and K4 for T = 100 $^{\circ}$ C are inserted into the equation for the calculation. The value for $T = 25$ °C without magnetic biasing should be used here as the A_L value.

 $I_{DC} = \left(\frac{0.9 \cdot A_L}{K3}\right)$ 1 $\frac{1}{\mathsf{K4}}$ = $I_{DC} = [A]$
 $A_L = [nH]$ (without magnetic biasing)

7 Magnetic characteristics

The set characteristics Σl/A, l_e, A_e, A_{min} and V_e required for the calculation of field strength, flux density and hysteresis losses have been determined to IEC 60205 (A_{min} = minimum cross section relative to the nominal dimensions).

8 Core losses

The maximum power loss for each core type is specified in W/set together with the measurement parameters. The flux density has been calculated on the basis of a sinusoidal voltage and is referred to the minimum cross-sectional area A_{min} .

9 Accessories

The coil formers for all ETD, EFD and ER cores and most of the E cores are designed so that they can be wound fully automatically.

With the ETD cores and most E cores, each core half and its mounting assembly can be fitted to the coil former from the same side, thus permitting simple fully automatic assembly.

If coil formers are used for cores with a rectangular cross section (E cores), the indication of the winding height represents only a theoretical value. The use of thicker wires or litz wires results in a gradual rounding of the winding from layer to layer. In such cases the planned winding design should be verified by means of a winding test.

SMD coil formers are available as accessory.

- To IEC 62317-8
- For small impedance-matching transformers in telecom applications
- For miniature transformers, e.g. DC/DC converters for surface mounting
- Delivery mode: single units

Magnetic characteristics (per set)

 $Σ$ *I/A* = 4.86 mm⁻¹ l_e I_e = 12.6 mm
 A_e = 2.6 mm² $= 2.6$ mm² $A_{min} = 2.5$ mm² V_{e} = 33 mm³

Approx. weight 0.16 g/set

Ungapped

Other A_l values/air gaps and materials available on request — see [Processing notes on page 173](#page-173-0).

- To IEC 62317-8
- For miniature transformers, e.g. DC/DC converters for surface mounting
- Available with SMD coil former
- Delivery mode: single units

Magnetic characteristics (per set)

 $Σ$ *I/A* = 3.7 mm⁻¹ I_e $= 12.2$ mm A_e = 3.3 mm² A_{min}^{\bullet} = 2.6 mm² V_{e}^{mm} = 40.3 mm³

Approx. weight 0.24 g/set

Ungapped

Other A_L values/air gaps and materials available on request — see [Processing notes on page 173](#page-173-0).

E 6.3

Accessories B66301

SMD

SMD coil former with gullwing terminals

Plastic cover cap

Used to protect the transformer against external influences, for stamping and for improved processing on assembly machines.

Material: see coil former, color code white

Coil former Coil former Plastic cover cap

FEK0287-5

Please read *Important notes* on page 2 and *Cautions and warnings* on page 674

422 1/17

8

FEK0447-N-E

 $9 ± 0,25$

 1.9 ± 0.12 5.2 ± 0.13

್ಗೆ ಗ

 $2 - 0.1$

FEK0220-J

- To IEC 62317-8
- For miniature transformers, e.g. DC/DC converters for surface mounting
- Available with SMD coil former
- Delivery mode: single units

Magnetic characteristics (per set)

 $Σ$ *I*/ $A = 3.1$ mm⁻¹ I_{a} $= 15.5$ mm A_e = 5 mm² $A_{\text{min}} = 3.6 \text{ mm}^2$ V_{e}^{mm} = 78 mm³

Approx. weight 0.50 g/set

Ungapped

Other A_l values/air gaps and materials available on request $-$ see [Processing notes on page 173](#page-173-0).

E 8.8

Accessories B66302

SMD

SMD coil former with gullwing terminals

Material: GFR liquid crystal polymer (UL 94 V-0, insulation class to IEC 60085: $F \triangleq$ max, operating temperature 155 °C), color code black (coil former) and white (cover cap). Vectra E 130i [E106764 (M)], POLYPLASTICS CO LTD Vectra E 130i [E83005 (M)], CELANESE INTERNATIONAL CORP. Solderability: to IEC 60068-2-58, test Td, method 6 (Group 3): 245 °C, 3 s Resistance to soldering heat: to IEC 60068-2-58, test Td, method 6 (Group 3): 255 °C, 10 s permissible soldering temperature for wire-wrap connection on coil former: 400 °C, 1 s

Winding: see Processing notes, 2.1

Plastic cover cap

Used to protect the transformer against external influences, for stamping and for improved processing on assembly machines.

Material: GFR polyamide (UL 94 V-0, insulation class to IEC 60085: $F \triangleq$ max. operating temperature 155 °C), color code white Stanyl TW250F6 [E47960 (M)], DSM ENGINEERING PLASTICS B V

Coil former Coil former Plastic cover cap

424 1/17

E 10/5.5/5

Core B66322

■ Compact E core with large winding area

- Suitable for the design of compact battery chargers
- Gapped cores available for flyback converters
- Delivery mode: single units

Magnetic characteristics (per set)

 $ΣI/A = 2.41$ mm⁻¹ l $= 26.3$ mm \tilde{A}_{e} = 10.9 mm² A_{min} = 10.4 mm² V_e = 287 mm³

Approx. weight 1.4 g/set

Ungapped

FEK0423-B

Other A_l values/air gaps and materials available on request — see [Processing notes on page 173](#page-173-0).

E 12.7/6/6

■ Delivery mode: single units

Magnetic characteristics (per set)

 $ΣI/A = 1.42$ mm⁻¹ l A_e = 28.3 mm
 A_e = 19.9 mm² $= 19.9$ mm² $A_{\text{min}} = 19.4 \text{ mm}^2$ V_e = 564 mm³

Approx. weight 2.9 g/set

Ungapped

Other A_l values/air gaps and materials available on request – see [Processing notes on page 173.](#page-173-0)

Core B66492

- To IEC 62317-8
- For miniature transformers
- Available with SMD coil former
- E cores with high permeability for common-mode chokes and broadband applications
- Delivery mode: single units

Magnetic characteristics (per set)

 $Σ$ *I*/ $A = 2.39$ mm⁻¹ ءا I_e = 29.6 mm
 A_e = 12.4 mm $= 12.4$ mm² $A_{\text{min}} = 12.2 \text{ mm}^2$ $V_{\rm e}$ = 367 mm³

Approx. weight 2 g/set

Ungapped

Material	$A1$ value nН	$\mu_{\rm e}$	P_V W/set	Ordering code
N30	1000 +30/-20%	1900		B66305G0000X130
T65	$1300 + 30\%$	2470		B66305G0000X165
T65	$1900 + 30%$	3610		B66305F0000X165
T46	$3600 + 30\%$	6839		B66305F0000X146
N ₂₇	$800 + 30/ - 20\%$	1510	$<$ 0.40 (200 mT, 100 kHz, 100 °C)	B66305G0000X127
N87	850 +30/-20%	1620	< 0.20 (200 mT, 100 kHz, 100 °C)	B66305G0000X187

Gapped (A_L values/air gaps examples)

The A_l value in the table applies to a core set comprising one ungapped core (dimension $q = 0$ mm) and one gapped core (dimension $g > 0$ mm).

Other A_l values/air gaps and materials available on request — see [Processing notes on page 173](#page-173-0).

Core B66305

Core B66305

Calculation factors (for formulas, see *"E cores: general information"*)

Validity range: K1, K2: 0.03 mm < s < 1.00 mm K3, K4: 30 nH < A_L < 260 nH

Accessories B66202

Coil former (magnetic axis horizontal or vertical)

Yoke

Material: Stainless spring steel (0.2 mm)

Horizontal version

Accessories B66202

Vertical version

Hole arrangement View in mounting direction

Yoke

Accessories B66306

SMD

SMD coil former with gullwing terminals

Material: GFR liquid crystal polymer (UL 94 V-0, insulation class to IEC 60085: $F \triangleq$ max. operating temperature 155 °C), color code black Vectra E 130i [E106764 (M)], POLYPLASTICS CO LTD Vectra E 130i [E83005 (M)], CELANESE INTERNATIONAL CORP.

Solderability: to IEC 60068-2-58, test Td, method 6 (Group 3): 245 °C, 3 s

Resistance to soldering heat: to IEC 60068-2-58, test Td, method 6 (Group 3): 255 °C, 10 s permissible soldering temperature for wire-wrap connection on coil former: 400 °C, 1 s

Winding: see Processing notes, 2.1

Please read *Important notes* on page 2 and *Cautions and warnings* on page 674

431 1/17

E 13/7/4 (EF 12.6)

Accessories B66414

Cover plate

Material: GFR liquid crystal polymer (UL 94 V-0, insulation class to IEC 60085: $F \triangleq$ max. operating temperature 155 °C), color code black Sumika Super E4008® [E54705 (M)], SUMITOMO CHEMICAL CO LTD

- For stamping and for improved processing on assembly machines
- See under SMD coil former for material and resistance to soldering heat

E 13/6.5/3.7

Core B66543

■ Delivery mode: single units

Magnetic characteristics (per set)

Σl*/*A = 2.35 mm–1 l $= 30$ mm \tilde{A}_{e} = 12.7 mm² A_{min} = 12.1 mm² V_e = 382 mm³

Approx. weight 2 g/set

Ungapped

Other A_L values/air gaps and materials available on request – see [Processing notes on page 173.](#page-173-0)

E 13/6/6.15

Core B66536

■ Delivery mode: single units

Magnetic characteristics (per set)

 $ΣI/A = 1.77$ mm⁻¹ l $= 30.2$ mm A_e = 17.1 mm² A_{min} = 16.9 mm² V_e = 516 mm³

Approx. weight 2.7 g/set

Ungapped

Other A_1 values/air gaps and materials available on request – see [Processing notes on page 173.](#page-173-0)

E 14/8/4

Core B66219

■ Delivery mode: single units

Magnetic characteristics (per set)

Σl*/*A = 2.19 mm–1 L $= 33.9$ mm \tilde{A}_{e} = 15.5 mm² $A_{\text{min}} = 13.1 \text{ mm}^2$ V_e = 525 mm³

Approx. weight 2.8 g/set

Ungapped

Other A_l values/air gaps and materials available on request – see [Processing notes on page 173.](#page-173-0)

Calculation factors (for formulas, see *"E cores: general information"*)

Validity range: K1, K2: 0.03 mm < s < 1.00 mm K3, K4: 30 nH < A₁ < 260 nH

E 16/6/5

■ Shortened leg compared with E 16/8/5

■ Delivery mode: single units

Magnetic characteristics (per set)

 Σ *VA* = 1.49 mm⁻¹ I_e I_e = 28.6 mm
 A_e = 19.2 mm² $= 19.2$ mm² $A_{min} = 17.6$ mm²
 $V_a = 549$ mm³ $\frac{1}{2}$ = 549 mm³

Approx. weight 3 g/set

Ungapped

Other A_l values/air gaps and materials available on request – see [Processing notes on page 173.](#page-173-0)

Calculation factors (for formulas, see *"E cores: general information"*)

Validity range: K1, K2: 0.05 mm < s <1.50 mm K3, K4: 40 nH < A₁ <430 nH

E 16/7/5

Core B66500

■ Delivery mode: single units

Magnetic characteristics (per set)

Σl*/*A = 1.826 mm–1 l $= 35.1$ mm \bar{A}_e = 19.2 mm² A_{min} = 19.2 mm² V_e = 680 mm³

Approx. weight 3.4 g/set

Ungapped

Other A_l values/air gaps and materials available on request – see [Processing notes on page 173.](#page-173-0)

Core B66307

- To IEC 62317-8
- E cores with high permeability for common-mode chokes and broadband applications
- Delivery mode: single units

Magnetic characteristics (per set)

 $Σ$ *I*/ $A = 1.87$ mm⁻¹ l $= 37.6$ mm A_e = 20.1 mm² A_{min} = 19.4 mm²
 V_{e} = 756 mm³ $\frac{1}{2}$ = 756 mm³

Approx. weight 3.6 g/set

Ungapped

Gapped (A_L values/air gaps examples)

The A_l value in the table applies to a core set comprising one ungapped core (dimension g = 0 mm) and one gapped core (dimension $q > 0$ mm).

Other A_l values/air gaps and materials available on request $-$ see [Processing notes on page 173](#page-173-0).

Core B66307

Calculation factors (for formulas, see *"E cores: general information"*)

Validity range: K1, K2: 0.05 mm < s < 1.50 mm K3, K4: 30 nH < A₁ < 330 nH

Accessories B66308

Coil former (magnetic axis horizontal or vertical)

Yoke

Material: Stainless spring steel (0.2 mm)

Horizontal version

Hole arrangement View in mounting direction

Please read *Important notes* on page 2 and *Cautions and warnings* on page 674

Accessories B66308

Vertical version

Hole arrangement View in mounting direction

Yoke

 $4,9 + 0,15$

FEK0451-G

Core B66392 E 16/8/8

 $8.4 - 0.5$

FEK0590-8

 $16^{+0.7}_{-0.5}$

 $4.7 - 0.3$ $11.3 + 0.6$

■ Delivery mode: single units

Magnetic characteristics (per set)

 $ΣI/A = 1.036$ mm⁻¹ l A_e = 37.6 mm
 A_e = 36.3 mm² $= 36.3$ mm² $A_{min} = 35$ mm² V_e = 1370 mm³

Approx. weight 6.8 g/set

Ungapped

 $2 - 0.3$

ക് $+0.4$

Other A_l values/air gaps and materials available on request – see [Processing notes on page 173.](#page-173-0)

E 19/8/5

Core B66379

- Size based on US lam. size E cores US designation E 187
- \blacksquare E cores with high permeability for common-mode chokes and broadband applications
- Delivery mode: single units

Magnetic characteristics (per set)

Σl*/*A = 1.76 mm–1 ءا I_e = 39.6 mm
 A_e = 22.5 mm $= 22.5$ mm² $A_{\text{min}} = 22.1 \text{ mm}^2$ V_{e} = 891 mm³

Approx. weight 4.4 g/set

Ungapped

Other AL values/air gaps and materials available on request - see [Processing notes on page 173](#page-173-0).

Calculation factors (for formulas, see *"E cores: general information"*)

Validity range: K1, K2: 0.10 mm < s < 2.00 mm K3, K4: 40 nH < A_1 < 350 nH

E 20/9/6

Core B66312

■ Delivery mode: single units

Magnetic characteristics (per set)

Σl*/*A = 1.336 mm–1 l $= 42.9$ mm \bar{A}_{e} = 32.1 mm² $A_{\text{min}} = 31.9 \text{ mm}^2$ V_e = 1380 mm³

Approx. weight 6.8 g/set

Ungapped

Other A_L values/air gaps and materials available on request - see [Processing notes on page 173.](#page-173-0)

Core B66311

■ To IEC 62317-8

■ Delivery mode: single units

Magnetic characteristics (per set)

 Σ *VA* = 1.44 mm⁻¹ I_e I_e = 46.3 mm
A_e = 32.1 mm² $= 32.1$ mm² $A_{\text{min}} = 31.9 \text{ mm}^2$ V_{e} = 1490 mm³

Approx. weight 7.3 g/set

Ungapped

Gapped (A_L values/air gaps examples)

The A_L value in the table applies to a core set comprising one ungapped core (dimension g = 0 mm) and one gapped core (dimension $g > 0$ mm).

Other A_l values/air gaps and materials available on request $-$ see [Processing notes on page 173](#page-173-0).

 $59 - 04$ $20.4 - 0.8$ $101 - 03$ $7+0.3$ σ $5.9 - 0.3$ $14.1 + 0.6$ FEK0103-D

Core B66311

Calculation factors (for formulas, see *"E cores: general information"*)

Validity range: K1, K2: 0.05 mm < s < 1.50 mm K3, K4: 50 nH < A₁ < 430 nH

Accessories B66206

Coil former (magnetic axis horizontal or vertical)

Material: GFR polyterephthalate (UL 94 V-0, insulation class to IEC 60085: $F \triangleq$ max. operating temperature 155 °C), color code black Valox 420-SE0 [E207780 (M)] SABIC JAPAN L L C Solderability: to IEC 60068-2-20, test Ta, method 1 (aging 3): 235 °C, 2 s

Resistance to soldering heat: to IEC 60068-2-20, test Tb, method 1B: 350 °C, 3.5 s

Winding: see Processing notes, 2.1

Pins: Squared pins. For matching yoke see next page.

Horizontal version Vertical version

Hole arrangement View in mounting direction

Hole arrangement View in mounting direction

Please read *Important notes* on page 2 and *Cautions and warnings* on page 674

Accessories B66206

Coil former (with right-angle pins)

Yoke

Material: Stainless spring steel (0.2 mm)

Figure 1, coil former (12 pins)

Hole arrangement View in mounting direction

Accessories B66206

Figure 2, coil former (14 pins)

Hole arrangement View in mounting direction

Figure 3, Yoke

Accessories B66206

Coil former for luminaires

Yoke

Material: Nickel silver (0.3 mm)

Coil former Yoke

 $13.2 - 0.2$ $77 - 0.2$ $6.1 + 0.2$ 0.65 $13.7 - 0.3$ 2.75 ϵ $3.2 + 0.5$ \Box 0.6

Hole arrangement View in mounting direction

* Omitted for one-section version.

E 20/10/11

Core B66310

■ Delivery mode: single units

Magnetic characteristics (per set)

Σl*/*A = 0.759 mm–1 l $= 46.3$ mm \tilde{A}_{e} = 61.0 mm² $A_{\text{min}} = 60.5 \text{ mm}^2$ V_e = 2830 mm³

Approx. weight 13.8 g/set

Ungapped

FEK0573-

Other A_L values/air gaps and materials available on request - see [Processing notes on page 173.](#page-173-0)

E 21/9/5

Core B66314

■ Delivery mode: single units

Magnetic characteristics (per set)

Σl*/*A = 2.01 mm–1 l $= 43.4$ mm A_e = 21.6 mm² $A_{\text{min}} = 20.2 \text{ mm}^2$ V_e = 937 mm³

Approx. weight 4.8 g/set

Ungapped

Other A_l values/air gaps and materials available on request $-$ see [Processing notes on page 173](#page-173-0).

Calculation factors (for formulas, see *"E cores: general information"*)

Validity range: K1, K2: 0.05 mm < s < 1.50 mm K3, K4: 30 nH < A₁ < 310 nH

Core B66486 E 22/15/6

■ Delivery mode: single units

Magnetic characteristics (per set)

 $ΣI/A = 1.78$ mm⁻¹ l $= 63.2$ mm \tilde{A}_{e} = 35.5 mm² A_{min} = 33.1 mm² V_e = 2250 mm³

Approx. weight 11.8 g/set

Ungapped

Other A_L values/air gaps and materials available on request - see [Processing notes on page 173.](#page-173-0)

Core B66317

■ To IEC 62317-8

■ Deliverv mode: single units

Magnetic characteristics (per set)

 $Σ*VA* = 1.1 mm⁻¹$ $I_{\rm e}$ I_e = 57.5 mm
 A_e = 52.5 mm² $= 52.5$ mm² $A_{\text{min}} = 51.5 \text{ mm}^2$ V_{e} = 3020 mm³

Approx. weight 16 g/set

Ungapped

Material	$A1$ value nH	$\mu_{\rm e}$	P_V W/set	Ordering code
N30	2900 +30/-20%	2530		B66317G0000X130
N ₂₇	1750 +30/-20%	1520	0.59 (200 mT, 25 kHz, 100 °C)	B66317G0000X127
N87	1850 +30/-20%	1620	< 1.60 (200 mT, 100 kHz, 100 °C)	B66317G0000X187
N97	1950 +30/-20%	1700	$<$ 1.40 (200 mT, 100 kHz, 100 °C)	B66317G0000X197

Gapped (A_L values/air gaps examples)

The A_L value in the table applies to a core set comprising one ungapped core (dimension $q = 0$ mm) and one gapped core (dimension $q > 0$ mm).

Other A_l values/air gaps and materials available on request $-$ see [Processing notes on page 173](#page-173-0).

Core B66317

Calculation factors (for formulas, see *"E cores: general information"*)

Validity range: K1, K2: 0.10 mm < s < 2.00 mm K3, K4: 60 nH < A_L < 570 nH

Accessories B66208

Coil former (magnetic axis horizontal or vertical)

Material: GFR polyterephthalate, UL 94 V-0, insulation class to IEC 60085: B66208B, X: F \triangleq max. operating temperature 155 °C, color code black Valox 420-SE0® [E207780 (M)], SABIC JAPAN L L C B66208-W: H \triangleq max. operating temperature 180 °C, color code black Rynite FR 530® [E41938 (M)], E I DUPONT DE NEMOURS & CO INC Solderability: to IEC 60068-2-20, test Ta, method 1 (aging 3): 235 °C, 2 s Resistance to soldering heat: to IEC 60068-2-20, test Tb, method 1B: 350 °C, 3.5 s Winding: see Processing notes, 2.1

Pins: Squared pins

Yoke Material: Stainless spring steel (0.25 mm)

Horizontal version (B66208B)

Please read *Important notes* on page 2 and *Cautions and warnings* on page 674

公TDK

E 25/13/7 (EF 25)

Accessories B66208

Vertical version (B66208X, B66208W)

Yoke

 $76 - 0.1$ $9.2 - 0.1$ I

FEK0551-M

Accessories B66208

Coil former for SMPS transformers with line isolation

Material: GFR polyterephthalate (UL 94 V-0, insulation class to IEC 60085: $H \triangleq$ max. operating temperature 180 °C), color code black Rynite FR 530® [E41938 (M)], E I DUPONT DE NEMOURS & CO INC Solderability: to IEC 60068-2-20, test Ta, method 1 (aging 3): 235 °C, 2 s Resistance to soldering heat: to IEC 60068-2-20, test Tb, method 1B: 350 °C, 3.5 s Winding: see Processing notes, 2.1 Pins: Squared pins **Yoke** Material: Nickel silver (0.3 mm) with ground terminal

Please read *Important notes* on page 2 and *Cautions and warnings* on page 674

E 25.4/10/7

Core B66315

- Size based on US lam. size E cores US designation E2425
- E cores with high permeability for common-mode chokes and broadband applications
- Delivery mode: single units

Magnetic characteristics (per set)

Σl*/*A = 1.27 mm–1 l $= 49.2$ mm A_e = 38.8 mm² $A_{\text{min}} = 38.4 \text{ mm}^2$
 $V_{\text{e}} = 1910 \text{ mm}^3$ $= 1910 \text{ mm}^3$

Approx. weight 9.6 g/set

Material A_1 value nH μ_e $|P_V|$ W/set Ordering code N30 2700 +30/-20% 2720 2720 B66315G0000X130 T38 3750 +30/–20% 3790 B66315G0000X138 T46 8500 ±30% 8570 B66315F0000X146 N27 1500 +30/–20% 1510 < 0.36 (200 mT, 25 kHz, 100 °C) B66315G0000X127 N87 1670 +30/–20% 1690 < 1.00 (200 mT, 100 kHz, 100 °C) B66315G0000X187

Ungapped

Gapped (A_L values/air gaps examples)

The A_l value in the table applies to a core set comprising one ungapped core (dimension $g = 0$ mm) and one gapped core (dimension *g* > 0 mm).

Other A_l values/air gaps and materials available on request — see [Processing notes on page 173](#page-173-0).

E 25.4/10/7

Core B66315

Calculation factors (for formulas, see *"E cores: general information"*)

Validity range: K1, K2: 0.10 mm < s < 2.00 mm K3, K4: 50 nH < A_L < 500 nH

E 28/10/11

Core B66489

■ Delivery mode: single units

Magnetic characteristics (per set)

Σl*/*A = 0.632 mm–1 l $= 51.6$ mm \tilde{A}_{e} = 81.7 mm² $A_{min} = 77$ mm² V_e = 4220 mm³

 $11 - 0.6$

FEK0575-Z

Approx. weight 21.8 g/set

Ungapped

Other A_L values/air gaps and materials available on request – see [Processing notes on page 173.](#page-173-0)

Core B66319

■ Delivery mode: single units

Magnetic characteristics (per set)

 $ΣI/A = 1.12$ mm⁻¹ L $= 67$ mm A_e = 60 mm² \widetilde{A}_{min} = 49 mm² V_e = 4000 mm³

Approx. weight 22 g/set

Ungapped

Material	$A1$ value nH	$\mu_{\rm e}$	P_{V} W/set	Ordering code
N30	3100 +30/-20%	2760		B66319G0000X130
N ₂₇	1700 +30/-20%	1510	$<$ 0.81 (200 mT, 25 kHz, 100 °C)	B66319G0000X127
N87	1900 +30/-20%	1690	$<$ 2.20 (200 mT, 100 kHz, 100 °C)	B66319G0000X187

Gapped (A_L values/air gaps examples)

The A_1 value in the table applies to a core set comprising one ungapped core (dimension g = 0 mm) and one gapped core (dimension $g > 0$ mm).

Other A_L values/air gaps and materials available on request — see [Processing notes on page 173](#page-173-0).

Core B66319

Calculation factors (for formulas, see *"E cores: general information"*)

Validity range: K1, K2: 0.10 mm < s < 2.00 mm K3, K4: 560 nH < A_L < 60 nH

Accessories B66232

Coil former (magnetic axis horizontal or vertical)

Pins: Squared pins

Yoke Material: Stainless spring steel (0.4 mm)

Horizontal version

Accessories B66232

Vertical version

Yoke

E 32/16/9 (EF 32)

■ To IEC 62317-8

■ Delivery mode: single units

Magnetic characteristics (per set)

 Σ *VA* = 0.89 mm⁻¹ I_e I_e = 74 mm
A_o = 83 mm³ $= 83$ mm² $A_{min} = 81.4$ mm²
 $V_{e} = 6140$ mm³ $= 6140 \text{ mm}^3$

 $32^{+0.9}_{-0.7}$ $9, 5_{-0.7}$ -16.4 _{0.6} $11,2^{+0.6}$ \overline{a} $49,5$ _{-0.6} -22.7 ⁺¹ -FEK0125-9

Approx. weight 30 g/set

Ungapped

Gapped (A_L values/air gaps examples)

The A_l value in the table applies to a core set comprising one ungapped core (dimension $q = 0$ mm) and one gapped core (dimension $q > 0$ mm).

Other A_u values/air gaps and materials available on request — see [Processing notes on page 173](#page-173-0).

Calculation factors (for formulas, see *"E cores: general information"*)

Validity range: K1, K2: 0.10 mm < s < 2.50 mm K3, K4: 70 nH < A₁ < 710 nH

E 32/16/9 (EF 32)

Accessories B66230

Coil former

Material: GFR polyterephthalate (UL 94 V-0, insulation class to IEC 60085: $F \triangleq$ max. operating temperature 155 °C), color code black Rynite FR 530® [E41938 (M)], E I DUPONT DE NEMOURS & CO INC Solderability: to IEC 60068-2-20, test Ta, method 1 (aging 3): 235 °C, 2 s Resistance to soldering heat: to IEC 60068-2-20, test Tb, method 1B: 350 °C, 3.5 s Winding: see Processing notes, 2.1 Pins: Squared pins

Yoke

Material: Stainless spring steel (0.4 mm)

Coil former Yoke

 $17+0.2$

FEK0457 V

E 32/16/11

Core B66233

■ Delivery mode: single units

Magnetic characteristics (per set)

Σl*/*A = 0.76 mm–1 L $= 74$ mm \overline{A}_{e} = 97 mm² $A_{min} = 95$ mm² V_e = 7187 mm³

Approx. weight 37 g/set

Ungapped

Other A_1 values/air gaps and materials available on request – see [Processing notes on page 173.](#page-173-0)

Calculation factors (for formulas, see *"E cores: general information"*)

Validity range: K1, K2: 0.10 mm < s < 2.50 mm K3, K4: 90 nH < A₁ < 800 nH

E 34/14/9

Core B66370

 $9,7_{-0,8}$

FFK0229-D

 \overline{c}

 $34,6 \pm 0.7$

 $9,65 - 0.55$

 25.1^{+1}

- Size based on US lam. size E cores US designation E375
- Delivery mode: single units

Magnetic characteristics (per set)

 $ΣI/A = 0.82$ mm⁻¹ l $= 69.6$ mm A_e = 84.8 mm² $\widetilde{A}_{min} = 83.2 \text{ mm}^2$
 $V_e = 5900 \text{ mm}^3$ $= 5900$ mm³

Approx. weight 30 g/set

Ungapped

 $4,65$ _{-0.75} $9,5+0.5$

Other AL values/air gaps and materials available on request - see [Processing notes on page 173.](#page-173-0)

Calculation factors (for formulas, see *"E cores: general information"*)

Validity range: K1, K2: 0.10 mm < s < 2.50 mm K3, K4: 80 nH < A_L < 770 nH

E 36/18/11

Core B66389

■ Delivery mode: single units

Magnetic characteristics (per set)

Σl*/*A = 0.68 mm–1 l $= 81$ mm A_e = 120 mm² $A_{min} = 112$ mm² V_e = 9720 mm³

Approx. weight 50 g/set

Ungapped

Material	value nH	$\mu_{\rm e}$	P_{V} W/set	Ordering code
N ₂ 7	2900 +30/-20%	1550	\vert < 1.85 (200 mT, 25 kHz, 100 °C) B66389G0000X127	
N87	3100 +30/-20%	1680	\vert < 5.00 (200 mT, 100 kHz, 100 °C) B66389G0000X187	

Gapped (A_L values/air gaps examples)

The A_l value in the table applies to a core set comprising one ungapped core (dimension g = 0 mm) and one gapped core (dimension $q > 0$ mm).

Other A_L values/air gaps and materials available on request – see [Processing notes on page 173.](#page-173-0)

Calculation factors (for formulas, see *"E cores: general information"*)

Validity range: K1, K2: 0.10 mm < s < 2.50 mm K3, K4: 100 nH < A_L < 930 nH

E 36/18/11

Accessories B66390

Coil former

Material: GFR polyterephthalate (UL 94 V-0, insulation class to IEC 60085: $F \triangleq$ max. operating temperature 155 °C), color code black Pocan B4235® [E245249 (M)], LANXESS AG Solderability: to IEC 60068-2-20, test Ta, method 1 (aging 3): 235 °C, 2 s Resistance to soldering heat: to IEC 60068-2-20, test Tb, method 1B: 350 °C, 3.5 s

Winding: see Processing notes, 2.1
Pins: Squared pins Squared pins

E 40/16/12

Core B66381

12.5±0.25

FEK0132-R

 40.6 ± 0.6

 $-125:025$ -28.6 min $-$

- Size based on US lam. size E cores US designation E 21
- Delivery mode: single units

Magnetic characteristics (per set)

 Σ *VA* = 0.52 mm⁻¹ l $= 77$ mm $A_e = 149$ mm² $A_{min} = 143$ mm² $V_{\text{e}} = 11500 \text{ mm}^3$

Approx. weight 58 g/set

Ungapped

İ $16,5:0,2$ 105 ± 0.3 ī

Gapped (A_L values/air gaps examples)

Material g		value A.	μ _e	Ordering code
	mm	approx. nH		
N ₂₇	$0.50 + 0.05$	411	166	B66381G0500X127

The A_l value in the table applies to a core set comprising one ungapped core (dimension $g = 0$ mm) and one gapped core (dimension g > 0 mm).

Other $A₁$ values/air gaps and materials available on request – see [Processing notes on page 173.](#page-173-0)

Calculation factors (for formulas, see *"E cores: general information"*)

K3, K4: 130 nH < $A₁$ < 1200 nH

472 1/17

■ To IEC 62317-8

■ Delivery mode: single units

Magnetic characteristics (per set)

 Σ *VA* = 0.54 mm⁻¹ I_e I_e = 97 mm
 A_e = 178 mm $= 178$ mm² $A_{min} = 175$ mm²
 $V_a = 17300$ mm $= 17300 \text{ mm}^3$

Approx. weight 88 g/set

Ungapped

Material	$A1$ value nH	$\mu_{\rm e}$	P_{V} W/set	Ordering code
N30	7500 +30/-20%	3252		B66325G0000X130
N ₂₇	$3500 + 30/ - 20%$	1510	$<$ 3.30 (200 mT, 25 kHz, 100 °C)	B66325G0000X127
N87	$3950 + 30/ - 20%$	1690	$<$ 9.00 (200 mT, 100 kHz, 100 °C)	B66325G0000X187
N97	$4100 + 30/ - 20%$	1778	< 9.00 (200 mT, 100 kHz, 100 °C)	B66325G0000X197
N95	5100 +30/-20%	2292	< 9.60 (200 mT, 100 kHz, 25 °C) < 8.70 (200 mT, 100 kHz, 100 °C)	B66325G0000X195

Gapped (A_L values/air gaps examples)

The A_l value in the table applies to a core set comprising one ungapped core (dimension g = 0 mm) and one gapped core (dimension $q > 0$ mm).

Other A_L values/air gaps and materials available on request – see [Processing notes on page 173.](#page-173-0)

Core B66325

Calculation factors (for formulas, see *"E cores: general information"*)

Validity range: K1, K2: 0.10 mm < s < 2.50 mm K3, K4: 1210 nH < A₁ < 130 nH

Core B66329

■ To IEC 62317-8

■ Delivery mode: single units

Magnetic characteristics (per set)

 Σ *VA* = 0.41 mm⁻¹ I_e I_e = 97 mm
A_o = 234 mm $= 234$ mm² \overline{A}_{min} = 229 mm²
 V_a = 22700 mm $= 22700$ mm³

 42^{+1}_{-07} -20 _{-0,8}- \mathbf{I} $-21,2.04$ $14, 8^{+0.7}$ 멕 ī $112,2-0.5$ $29.5 + 1.2$ –

FEK0137-X

Ungapped

 $* H = 250$ A/m; f = 10 kHz; T = 100 °C

Gapped (A_L values/air gaps examples)

The A_l value in the table applies to a core set comprising one ungapped core (dimension g = 0 mm) and one gapped core (dimension $g > 0$ mm).

Other A_L values/air gaps and materials available on request – see [Processing notes on page 173.](#page-173-0)

Core B66329

Calculation factors (for formulas, see *"E cores: general information"*)

Validity range: K1, K2: 0.10 mm < s < 3.00 mm K3, K4: 160 nH < A_L < 1500 nH

Accessories B66243

Coil former

Material: GFR polyterephthalate (UL 94 V-0, insulation class to IEC 60085: $F \triangleq$ max. operating temperature 155 °C), color code black Valox 420-SE0 [E121562 (M)] SABIC INNOVATIVE PLASTICS US L L C Solderability: to IEC 60068-2-20, test Ta, method 1 (aging 3): 235 °C, 2 s

Resistance to soldering heat: to IEC 60068-2-20, test Tb, method 1B: 350 °C, 3.5 s Winding: see Processing notes, 2.1

Hole arrangement View in mounting direction

FEK0512-2-E

Please read *Important notes* on page 2 and *Cautions and warnings* on page 674

477 1/17

Accessories B66243

Coil former

Material: Polyterephthalate GV (UL 94 V-0, insulation class to IEC 60085: H \triangle max. operating temperature 180 °C), color code black Rynite FR 530® [E41938 (M)], E I DUPONT DE NEMOURS & CO INC Solderability: to IEC 60068-2-20, test Ta, method 1 (aging 3): 235 °C, 2 s

Resistance to soldering heat: to IEC 60068-2-20, test Tb, method 1B: 350 °C, 3.5 s Winding: see Processing notes, 2.1

E 47/20/16

Core B66383

 $-15.6_{\pm 0.25}$

FEK0140-H

 $46.9_{\pm 0.8}$ –

 $15.6 + 0.25$ -31.8 min $-$

- Size based on US lam. size E cores US designation E 625
- Delivery mode: single units

Magnetic characteristics (per set)

 $ΣI/A = 0.38$ mm⁻¹ l $= 89$ mm \overline{A}_{e} = 233 mm² \widetilde{A}_{min} = 226 mm²
 V_a = 20700 mm $= 20700$ mm³

Approx. weight 106 g/set

1 $19,6 \pm 0.2$ $12.2_{\pm 0.3}$ $\overline{\mathbf{r}}$

 $* H = 250$ A/m; f = 10 kHz; T = 100 °C

Other A_l values/air gaps and materials available on request – see [Processing notes on page 173.](#page-173-0)

Validity range: K1, K2: 0.10 mm < s < 3.00 mm K3, K4: 170 nH < A_L < 1640 nH

 $55^{+1,2}_{-0.9}$

 $-17,2$ _{-0,5} $-$
---37,5 ^{+1,2} ---

E 55/28/21

Core B66335

 $-21_{-0.6}$

FEK0142-Y

아

■ To IEC 62317-8

■ Deliverv mode: single units

Magnetic characteristics (per set)

Σl*/*A = 0.35 mm–1 l I_e = 124 mm
 A_e = 354 mm² $= 354$ mm² $A_{\text{min}} = 351 \text{ mm}^2$
 $V_{\text{e}} = 43900 \text{ mm}^2$ $= 43900$ mm³

Approx. weight 215 g/set

Ungapped

 $-278-0.6$ $-185^{+0.8}$

 $* H = 250$ A/m; f = 10 kHz; T = 100 °C

The A_1 value in the table applies to a core set comprising one ungapped core (dimension g = 0 mm) and one gapped core (dimension $g > 0$ mm).

Other A_l values/air gaps and materials available on request – see [Processing notes on page 173.](#page-173-0)

E 55/28/21

Core B66335

Calculation factors (for formulas, see *"E cores: general information"*)

Validity range: K1, K2: 0.15 mm < s < 3.50 mm K3, K4: 180 nH < A_L < 1799 nH

E 55/28/25

Core B66344

 -25.06

FEK0145-N

O. Ý

 $55^{+1,2}_{-0.9}$

 $17,2$ _{-0,5} $-37.5+1.2$

■ To IEC 62317-8

■ Delivery mode: single units

Magnetic characteristics (per set)

 $ΣV/A = 0.3$ mm⁻¹ I_e I_e = 124 mm
A_o = 420 mm² $= 420$ mm² A_{min} = 420 mm²
 V_a = 52100 mm $= 52100 \text{ mm}^3$

Approx. weight 256 g/set

Ungapped

 $-278.06 -$

 $* H = 250$ A/m; f = 10 kHz; T = 100 $^{\circ}$ C

Gapped (A_L values/air gaps examples)

The A_l value in the table applies to a core set comprising one ungapped core (dimension $q = 0$ mm) and one gapped core (dimension $q > 0$ mm).

Other A_l values/air gaps and materials available on request – see [Processing notes on page 173.](#page-173-0)

E 55/28/25

Core B66344

Calculation factors (for formulas, see *"E cores: general information"*)

Validity range: K1, K2: 0.15 mm < s < 3.50 mm K3, K4: 220 nH < A_L < 2130 nH

E 56/24/19

Core B66385

- Size based on US lam, size E cores US designation E 75
- Delivery mode: single units

Magnetic characteristics (per set)

 $ΣI/A = 0.31$ mm⁻¹ l $= 107$ mm A_e = 340 mm² $A_{\text{min}} = 327 \text{ mm}^2$
 $V_{\text{e}} = 36400 \text{ mm}^2$ $= 36400$ mm³

 $18,8 \pm 0.3$ $561+1 -23,6^{+0.23}$ $14,6:03$ o $18,8_{\pm 0,3}$ $38,1$ min $F E K 0147 - 5$

Approx. weight 184 g/set

Ungapped

 $* H = 250$ A/m; f = 10 kHz; T = 100 °C

Other A_l values/air gaps and materials available on request – see [Processing notes on page 173.](#page-173-0)

Calculation factors (for formulas, see *"E cores: general information"*)

Validity range: K1, K2: 0.10 mm < s < 3.00 mm K3, K4: 200 nH < A_L < 2000 nH

E 65/32/27

Core B66387

■ Delivery mode: single units

Magnetic characteristics (per set)

 $ΣI/A = 0.27$ mm⁻¹ L I_e = 147 mm
 A_e = 535 mm² $= 535$ mm² \tilde{A}_{min} = 529 mm² V_e = 78650 mm³

Approx. weight 394 g/set

Ungapped

 $* H = 250$ A/m; f = 10 kHz; T = 100 °C

The A_l value in the table applies to a core set comprising one ungapped core (dimension $q = 0$ mm) and one gapped core (dimension $q > 0$ mm).

Other A_l values/air gaps and materials available on request – see [Processing notes on page 173.](#page-173-0)

E 65/32/27

Core and accessories B66387, B66388

Calculation factors (for formulas, see *"E cores: general information"*)

Validity range: K1, K2: 0.20 mm < s < 5.00 mm K3, K4: 230 nH < AL < 2290 nH

Coil former

Material: Polyphenylene suplhide (UL 94 V-0, insulation class to IEC 60085: $F \triangleq$ max. operating temperature 155 °C), color code natur Ryton R-4-230, [E95746 (M)], SOLVAY SPECIALITY POLYMERS Winding: see Processing notes, 2.1

Sections A_N mm2 l N mm A_R value μΩ Pins | Ordering code 1 435 246 19.5 – B66388A2000T001

E 70/33/32

Core B66371

 $-32_{-0.8}$ $-$

FEK0151-X

 70.5 ± 1 -

 $-22_{-0.7}$ $48 + 1.5$

 σ ł

■ Delivery mode: single units

Magnetic characteristics (per set)

 $ΣI/A = 0.22$ mm⁻¹ L $= 149$ mm A_e = 683 mm² A_{min} = 676 mm² V_e = 102000 mm³

Approx. weight 514 g/set

Ungapped

ł

 $-33,2-0.5$ -219.07

 $* H = 250$ A/m; f = 10 kHz; T = 100 °C

Gapped (A_L values/air gaps examples)

The A_l value in the table applies to a core set comprising one ungapped core (dimension $q = 0$ mm) and one gapped core (dimension $q > 0$ mm).

Other $A₁$ values/air gaps and materials available on request – see [Processing notes on page 173.](#page-173-0)

E 70/33/32

Core B66371

Calculation factors (for formulas, see *"E cores: general information"*)

Validity range: K1, K2: 0.20 mm < s < 5.00 mm K3, K4: 290 nH < A_L < 2880 nH

Accessories

B66372

Coil former

Material: B66372A: Polyphenylene suplhide, UL 94 V-0, insulation class to IEC 60085: $F \triangleq$ max. operating temperature 155 °C), color code natur Ryton R-4-280 [E95746 (M)] SOLVAY SPECIALITY POLYMERS B66372B: GFR ASA/ PBT, UL 94 HB, insulation class to IEC 60085: H \triangle max. operating temperature 130 °C), color code black Ultradur 4090G6 [E41871 (M)], BASF SE Winding: see Processing notes, 2.1

Sections A_N mm2 l N mm A_R value μΩ Pins **Ordering code** 1 389 230.5 20 – B66372A2000T001 B66372B2000T001

E 80/38/20

■ Delivery mode: single units

Magnetic characteristics (per set)

Σl*/*A = 0.47 mm–1 l $= 184$ mm A_e = 390 mm² A_{min} = 388 mm² $V_{\rm e}$ = 71800 mm³

Approx. weight 358 g/set

$80 + 18$ $20.2_{-0.8}$ $-38.5 - \frac{1}{08}$ $279 + 0.8$ \Box $-202 - 8$ $58,9 + 2.6$ FFK0153-F

Ungapped

 $* H = 250$ A/m; f = 10 kHz; T = 100 °C

Gapped (A_L values/air gaps examples)

The A_L value in the table applies to a core set comprising one ungapped core (dimension $g = 0$ mm) and one gapped core (dimension $g > 0$ mm).

Other $A₁$ values/air gaps and materials available on request – see [Processing notes on page 173.](#page-173-0)

Calculation factors (for formulas, see *"E cores: general information"*)

Validity range: K1, K2: 0.20 mm < s < 5.00 mm K3, K4: 140 nH < A₁ < 1330 nH

E 100/60/28

Core B66894

■ Delivery mode: singles units

Magnetic characteristics (per set)

Σl*/*A = 0.373 mm–1 l $= 274$ mm A_e = 735 mm² \widetilde{A}_{min} = 690 mm² V_e = 201390 mm³

Approx. weight 987 g/set

Ungapped

Other A_1 values/air gaps and materials available on request – see [Processing notes on page 173.](#page-173-0)

E 42/21/15DG

Core

B66325

- The glue and the spacers used are RoHs compliant.
- Max. operating temperature: 150 °C
- Delivery mode: single units

Magnetic characteristics (per set)

Σl*/*A = 0.54 mm–1 I_{a} $= 97$ mm

 A_e = 178 mm²

 \overline{A}_{min} = 175 mm²
 V_a = 17300 mm

 $= 17300$ mm³

Approx. weight 88 g/set

Gapped

Other A_l values/air gaps and materials available on request – see Processing notes on page 173.

E 42/21/20DG

Core B66329

- The glue and the spacers used are RoHs compliant.
- Max. operating temperature: 150 °C
- Delivery mode: single units

Magnetic characteristics (per set)

 $Σ$ *I/A* = 0.41 mm⁻¹ ہا $= 97$ mm A_e = 243 mm² $A_{\text{min}} = 229 \text{ mm}^2$
 $V_{\text{e}} = 22700 \text{ mm}^2$ $= 22700$ mm³

Approx. weight 116 g/set

Gapped

Other A_1 values/air gaps and materials available on request – see Processing notes on page 173.

E 47/20/16DG

- Size based on US lam. size E cores US designation E 625
- The glue and the spacers used are RoHs compliant.
- Max. operating temperature: 150 °C
- Delivery mode: single units

Magnetic characteristics (per set)

 $Σ$ *I*/ $A = 0.38$ mm⁻¹

- I_e $= 89$ mm
- A_e = 233 mm²
- \overline{A}_{min} = 226 mm²
 V_e = 20700 mm

 $= 20700$ mm³

Approx. weight 106 g/set

Gapped

Other $A₁$ values/air gaps and materials available on request – see [Processing notes on page 173.](#page-173-0)

E 55/28/21DG

- The glue and the spacers used are RoHs compliant.
- Max. operating temperature: 150 °C
- Delivery mode: single units

Magnetic characteristics (per set)

Σl*/*A = 0.35 mm–1

- l $= 124$ mm
- \tilde{A}_{e} = 354 mm²
- A_{min} = 351 mm²

 V_e = 43900 mm³

Approx. weight 215 g/set

Gapped

Other A_l values/air gaps and materials available on request – see [Processing notes on page 173.](#page-173-0)

E 55/28/25DG

■ The glue and the spacers used are RoHs compliant.

- Max. operating temperature: 150 °C
- Delivery mode: single units

Magnetic characteristics (per set)

 Σ *VA* = 0.3 mm⁻¹ I_e $= 124$ mm \tilde{A}_{e} = 420 mm² $A_{min} = 420$ mm² V_e = 52100 mm³

Approx. weight 256 g/set

Gapped

Other A_l values/air gaps and materials available on request – see Processing notes on page 173.

E 62/32/27DG

■ The glue and the spacers used are RoHs compliant.

- Max. operating temperature: 150 °C
- Delivery mode: single units

Magnetic characteristics (per set)

Σl*/*A = 0.27 mm–1

- l $= 147$ mm
- \tilde{A}_{e} = 535 mm²
- $A_{min} = 529$ mm²

 V_e = 78600 mm³

$65^{+1.5}_{-1.2}$ $27.4 - 1$ 32806 8 $222+08$ 5 $20 - 0.7$ යි
ශ $44.2 + 1.8$ FEK0608-F

Approx. weight 394 g/set

Gapped

Other A_l values/air gaps and materials available on request – see [Processing notes on page 173.](#page-173-0)

E 70/33/32DG

Core B66371

- The glue and the spacers used are RoHs compliant.
- Max. operating temperature: 150 °C
- Delivery mode: single units

Magnetic characteristics (per set)

 $Σ$ *I*/A = 0.22 mm⁻¹ I_{e} $= 149$ mm A_e = 683 mm² $A_{\text{min}} = 676 \text{ mm}^2$
 $V_{\text{a}} = 102000 \text{ m}$ $= 102000$ mm³

Approx. weight 514 g/set

Gapped

Other A_l values/air gaps and materials available on request – see [Processing notes on page 173.](#page-173-0)

E 80/38/20DG

- The glue and the spacers used are RoHs compliant.
- Max. operating temperature: 150 °C
- Delivery mode: single units

Magnetic characteristics (per set)

 $Σ$ *I/A* = 0.47 mm⁻¹ I_{e} $= 184$ mm

- A_e = 390 mm²
- $A_{\text{min}} = 388 \text{ mm}^2$
 $V_e = 71800 \text{ mm}^2$

 $= 71800$ mm³

Approx. weight 358 g/set

Gapped

Other A_l values/air gaps and materials available on request – see [Processing notes on page 173.](#page-173-0)

ELP cores

General information

Example of an assembly set ELP 32/6/20

1 Total integration

Assembling by gluing technology (ELP without clamp recess)

2 Individual integration

Assembling by clamping technology (ELP with clamp recess)

ELP cores

General information

3 Tolerances for ELP cores

The A_L value tolerances for ELP cores have consequently been defined with consideration of optimized process parameters for all materials with an initial permeability μ_i in the region of 2200 to 10000 as a step function (see figure below).

The "quantized" A₁ step values should preferably be used. They are still available in their respective lower tolerance ranges. Thus a tolerance of ±10% can be determined for a EELP 32/12/20 made of N87 material for an $A₁$ value of 600 nH.

With this type of tolerance definition, EPCOS has defined standard $A₁$ values and the associated tolerance for the first time. Based on initial permeability tolerance can be slightly lower or higher.

ELP 14/3.5/5

Core (without clamp recess)

Core set EELP 14

Combination: ELP 14/3.5/5 with ELP 14/3.5/5

■ To IEC 62317-9

■ Delivery mode: single units

Magnetic characteristics (per set)

 Σ *VA* = 1.45 mm⁻¹ l $= 20.7$ mm A_e = 14.3 mm² A_{min} = 13.9 mm² V_{e} = 296 mm³

Approx. weight 1.6 g/set

Ungapped

Other A_L values/air gaps and materials available on request – see [Processing notes on page 173](#page-173-0).

Calculation factors (for formulas, see *"E cores: general information"*) **EELP 14:**

Validity range: K1, K2: 0.05 mm < s < 1.00 mm K3, K4: 20 nH < A_I < 200 nH

B66281

ELP 14/3.5/5 with I 14/1.5/5

Core (without clamp recess) B66281

Core set EILP 14 Combination: ELP 14/3.5/5 with I 14/1.5/5

■ To IEC 62317-9

■ Delivery mode: single units

Magnetic characteristics (per set)

 Σ *VA* = 1.15 mm⁻¹ ے ا I_e = 16.7 mm
 A_e = 14.5 mm² $= 14.5$ mm² $A_{min} = 13.9$ mm²
 $V_e = 242$ mm³ $= 242$ mm³

Approx. weight 1.3 g/set

Ungapped

* Plate-type tool

Other A_L values/air gaps and materials available on request – see [Processing notes on page 173.](#page-173-0)

Calculation factors (for formulas, see *"E cores: general information"*) **EILP 14:**

Validity range: K1, K2: 0.05 mm < s < 1.00 mm K3, K4: 20 nH < A_L < 200 nH

ELP 18/4/10

Core and accessories (with clamp recess) B66283, B65804

Core set EELP 18 Combination: ELP 18/4/10 with ELP 18/4/10

- To IEC 62317-9
- Delivery mode: single units

Magnetic characteristics (per set)

 Σ *VA* = 0.62 mm⁻¹ l $= 24.3$ mm A_{ρ} = 39.3 mm² $A_{\text{min}} = 38.9 \text{ mm}^2$
 $V_{\text{e}} = 955 \text{ mm}^3$ $= 955$ mm³

Approx. weight 4.8 g/set

FFK0515-R

Ungapped

Other A_L values/air gaps and materials available on request – see [Processing notes on page 173.](#page-173-0)

Calculation factors (for formulas, see *"E cores: general information"*) **EELP 18:**

Validity range: K1, K2: 0.10 mm < s < 1.50 mm K3, K4: 50 nH < A₁ < 500 nH

Clamp

Ordering code per piece, 2 pieces required Ordering code: B65804P2204X000

504 1/17

ELP 18/4/10 with I 18/2/10

Core (with clamp recess) B66283

Core set EILP 18 Combination: ELP 18/4/10 with I 18/2/10

■ To IEC 62317-9

■ Delivery mode: single units

Magnetic characteristics (per set)

 Σ *VA* = 0.51 mm⁻¹ ے ا $= 20.3$ mm A_e = 39.5 mm² $A_{min} = 38.9$ mm²
 $V_e = 802$ mm³ $= 802$ mm³

Approx. weight 4.1 g/set

* Plate-type tool

Other $A₁$ values/air gaps and materials available on request – see [Processing notes on page 173.](#page-173-0)

ELP 18/4/10 I 18/2/10

FEK0516-Z

FFK0535-6

ELP 18/4/10 with I 18/2/10

Core and accessories (with clamp recess) B66283, B66284

Calculation factors (for formulas, see *"E cores: general information"*) **EILP 18:**

Validity range: K1, K2: 0.10 mm < s < 1.50 mm K3, K4: 50 nH < A_L < 500 nH

Clamp

Ordering code per piece, 2 pieces required Ordering code: B66284F2204X000

ELP 18/4/10

Core (without clamp recess) B66453

Core set EELP 18 Combination: ELP 18/4/10 with ELP 18/4/10

■ To IEC 62317-9

■ Delivery mode: single units

Magnetic characteristics (per set)

 Σ *VA* = 0.62 mm⁻¹ l $= 24.3$ mm A_{ρ} = 39.3 mm² $A_{min} = 38.9$ mm² V_e = 955 mm³

Ungapped

Approx. weight 4.8 g/set

Other $A₁$ values/air gaps and materials available on request – see [Processing notes on page 173.](#page-173-0)

Calculation factors (for formulas, see *"E cores: general information"*) **EELP 18:**

Validity range: K1, K2: 0.10 mm < s < 1.50 mm K3, K4: 50 nH < A_l < 500 nH

ELP 18/4/10

FEK0400-7

ELP 18/4/10 with I 18/2/10

Core (without clamp recess) B66453

Ungapped

* Plate-type tool

Other $A₁$ values/air gaps and materials available on request – see [Processing notes on page 173.](#page-173-0)

Calculation factors (for formulas, see *"E cores: general information"*) **EILP 18:**

Validity range: K1, K2: 0.10 mm < s < 1.50 mm K3, K4: 50 nH < A_L < 500 nH

Please read *Important notes* on page 2 and *Cautions and warnings* on page 674

ELP 22/6/16

Core (with clamp recess) B66285

Core set EELP 22 Combination: ELP 22/6/16 with ELP 22/6/16

■ To IEC 62317-9

■ Delivery mode: single units

Magnetic characteristics (per set)

 Σ *VA* = 0.41 mm⁻¹ l I_e = 32.5 mm
A_e = 78.3 mm² $= 78.3$ mm² $A_{\text{min}} = 77.9 \text{ mm}^2$
 $V_{\text{a}} = 2540 \text{ mm}^3$ $= 2540$ mm³

Approx. weight 13 g/set

FEK0518-G

Ungapped

 $* H = 250$ A/m; f = 10 kHz; T = 100 °C

Gapped (A_L values/air gaps examples)

Other A_l values/air gaps and materials available on request – see [Processing notes on page 173.](#page-173-0)

509 1/17

ELP 22/6/16

Core and accessories (with clamp recess) B66285, B66286

Calculation factors (for formulas, see *"E cores: general information"*) **EELP 22:**

Validity range: K1, K2: 0.10 mm < s < 1.50 mm

K3, K4: 100 nH < A_L < 700 nH

Clamp

Ordering code per piece, 2 pieces required Ordering code: B66286A2000X000

ELP 22/6/16 with I 22/2.5/16

Core (with clamp recess) B66285

Core set EILP 22 Combination: ELP 22/6/16 with I 22/2.5/16

- To IEC 62317-9
- Delivery mode: single units

Magnetic characteristics (per set)

 Σ *VA* = 0.33 mm⁻¹ ے ا $= 26.1$ mm A_e = 78.5 mm² $A_{min} = 77.9$ mm²
 $V_e = 2050$ mm³ $= 2050$ mm³

Approx. weight 10.5 g/set

 $21.8 + 0.4$

ELP 22/6/16 I 22/2.5/16

FEK0537-M

 $5.8 + 0.$

Ungapped

* H = 250 A/m; f = 10 kHz; T = 100 °C

** Plate-type tool

Other A_1 values/air gaps and materials available on request – see [Processing notes on page 173.](#page-173-0)

ELP 22/6/16 with I 22/2.5/16

Core and accessories (with clamp recess) B66285, B65804

Calculation factors (for formulas, see *"E cores: general information"*) **EILP 22:**

Validity range: K1, K2: 0.10 mm < s < 1.50 mm

K3, K4: 100 nH < A_L < 700 nH

Clamp

Ordering code per piece, 2 pieces required Ordering code: B65804P2204X000

ELP 22/6/16

Core (without clamp recess) B66455

Core set EELP 22 Combination: ELP 22/6/16 with ELP 22/6/16

■ To IEC 62317-9

■ Delivery mode: single units

Magnetic characteristics (per set)

 Σ *VA* = 0.41 mm⁻¹ l $= 32.5$ mm $A_e = 78.3$ mm² $A_{min} = 77.9$ mm²
 $V_a = 2540$ mm³ $= 2540$ mm³

Ungapped

Approx. weight 13 g/set

 $*$ H = 250 A/m; f = 10 kHz; T = 100 °C

Other $A₁$ values/air gaps and materials available on request – see [Processing notes on page 173.](#page-173-0)

N97 4600 ±25% 1520 310 < 1.20 (200 mT, 100 kHz, 100 °C) B66455G0000X197

Calculation factors (for formulas, see *"E cores: general information"*) **EELP 22:**

Validity range: $K1, K2: 0.10$ mm < s < 1.50 mm K3, K4: 100 nH < A_L < 700 nH

ELP 22/6/16

FEK0402-N

ELP 22/6/16 with I 22/2.5/16

Core (without clamp recess) B66455

Core set EILP 22 Combination: ELP 22/6/16 with I 22/2.5/16

■ To IEC 62317-9

■ Delivery mode: single units

Magnetic characteristics (per set)

 Σ *VA* = 0.33 mm⁻¹ ے ا $= 26.1$ mm A_e = 78.5 mm² A_{min} = 77.9 mm²
 V_{e} = 2050 mm³ $= 2050$ mm³

Approx. weight 10.5 g/set

non contact surface FEK0538-V-E

Ungapped

* H = 250 A/m; $f = 10$ kHz; T = 100 °C

** Plate-type tool

Other $A₁$ values/air gaps and materials available on request – see [Processing notes on page 173.](#page-173-0)

Calculation factors (for formulas, see *"E cores: general information"*) **EILP 22:**

Validity range: K1, K2: 0.10 mm < s < 1.50 mm K3, K4: 100 nH < A_L < 700 nH

514 1/17

ELP 32/6/20

Core (with clamp recess) B66287

Core set EELP 32 Combination: ELP 32/6/20 with ELP 32/6/20

■ To IEC 62317-9

■ Delivery mode: single units

Magnetic characteristics (per set)

 Σ *VA* = 0.32 mm⁻¹ I_{a} $= 41.4$ mm $A_{\rm e}$ = 130 mm² $A_{min} = 128$ mm² V_{e} = 5390 mm³

Approx. weight 28 g/set

Ungapped

 $* H = 250$ A/m; f = 10 kHz; T = 100 °C

Other $A₁$ values/air gaps and materials available on request – see [Processing notes on page 173](#page-173-0).

FEK0520-S

ELP 32/6/20

Core and accessories (with clamp recess) B66287, B65808

Calculation factors (for formulas, see *"E cores: general information"*) **EELP 32:**

Validity range: K1, K2: 0.10 mm < s < 1.50 mm

K3, K4: 150 nH < A_L < 1000 nH

Clamp

Ordering code per piece, 2 pieces required Ordering code: B65808J2204X000

ELP 32/6/20 with I 32/3/20

Core (with clamp recess) B66287

Core set EILP 32 Combination: ELP 32/6/20 with I 32/3/20

- To IEC 62317-9
- Delivery mode: single units

Magnetic characteristics (per set)

 Σ *VA* = 0.27 mm⁻¹ ے ا $= 35.1$ mm A_e = 130 mm² $A_{min} = 128$ mm²
 $V_{\text{e}} = 4560$ mm μ = 4560 mm³

 25.4 ± 0.5 $32+0.15$ $6.35 + 0.1$ 6.35 ± 0.15 $\overline{\mathsf{I}}$ 20 35±0 4 © n ij D 31.75±0.65 31.75±0.65 FEK0521-1

ELP 32/6/20 I 32/3/20

Approx. weight 24 g/set

Ungapped

* H = 250 A/m; $f = 10$ kHz; T = 100 °C

** Plate-type tool

Other A_l values/air gaps and materials available on request – see [Processing notes on page 173](#page-173-0).

and *Cautions and warnings* on page 674

 $5 + 0.15$

 $\overline{5}$ 4

 $35 + 0.4$

FEK0539-4

බ $\overline{5}$

ELP 32/6/20 with I 32/3/20

Core and accessories (with clamp recess) B66287, B66288

Calculation factors (for formulas, see *"E cores: general information"*) **EILP 32:**

Validity range: K1, K2: 0.10 mm < s < 1.50 mm

K3, K4: 150 nH < A_L < 1000 nH

Clamp

Ordering code per piece, 2 pieces required Ordering code: B66288F2204X000

ELP 32/6/20

Core (without clamp recess) B66457

Core set EELP 32 Combination: ELP 32/6/20 with ELP 32/6/20

■ To IEC 62317-9

■ Delivery mode: single units

Magnetic characteristics (per set)

 Σ *VA* = 0.32 mm⁻¹ l $= 41.4$ mm $A_{\rm e}$ = 130 mm² $A_{min} = 128$ mm² V_{e} = 5390 mm³

Approx. weight 28 g/set

Ungapped

 $* H = 250$ A/m; f = 10 kHz; T = 100 °C

Other AL values/air gaps and materials available on request – see [Processing notes on page 173](#page-173-0).

Calculation factors (for formulas, see *"E cores: general information"*) **EELP 32:**

Validity range: K1, K2: 0.10 mm < s < 1.50 mm K3, K4: 150 nH < A_L < 1000 nH

FEK0403-W

ELP 32/6/20 with I 32/3/20

Core (without clamp recess)

Core set EILP 32 Combination: ELP 32/6/20 with I 32/3/20

- To IEC 62317-9
- Delivery mode: single units

Magnetic characteristics (per set)

 Σ *VA* = 0.27 mm⁻¹ l $= 35.1$ mm A_e = 130 mm² $A_{min} = 128$ mm² V_e = 4560 mm³

Approx. weight 24 g/set

Ungapped

* H = 250 A/m; $f = 10$ kHz; T = 100 °C

** Plate-type tool

Other $A₁$ values/air gaps and materials available on request – see [Processing notes on page 173.](#page-173-0)

Calculation factors (for formulas, see *"E cores: general information"*) **EILP 32:**

Validity range: K1, K2: 0.10 mm < s < 1.50 mm K3, K4: 150 nH < $A₁$ < 1000 nH

 25.4 ± 0.5 $6.35+0.15$

31.75±0.65

FEK0403-W

 2035 ± 04

ELP 32/6/20 I 32/3/20

 635 ± 015 $32+0.15$

ELP 38/8/25

Core (with clamp recess) B66289

Core set EELP 38 Combination: ELP 38/8/25 with ELP 38/8/25

- To IEC 62317-9
- Delivery mode: single units

Magnetic characteristics (per set)

 Σ *VA* = 0.27 mm⁻¹ l $= 52.4$ mm $A_{\rm e}$ = 194 mm² $A_{min} = 192$ mm² $V_{\rm e}$ = 10200 mm³

Approx. weight 52 g/set

Ungapped

ELP 38/8/25

FEK0523-H

 $* H = 250$ A/m; f = 10 kHz; T = 100 °C

Other A_l values/air gaps and materials available on request – see [Processing notes on page 173.](#page-173-0)

Validity range: K1, K2: 0.10 mm < s < 2.00 mm K3, K4: 180 nH < A_L < 1500 nH

521 1/17

ELP 38/8/25 with I 38/4/25

Core (with clamp recess) B66289

Core set EILP 38 Combination: ELP 38/8/25 with I 38/4/25

■ To IEC 62317-9

■ Delivery mode: single units

Magnetic characteristics (per set)

 Σ *VA* = 0.22 mm⁻¹ ے ا $= 43.6$ mm A_e = 194 mm² $A_{\text{min}} = 192 \text{ mm}^2$
 $V_{\text{e}} = 8460 \text{ mm}^2$ $= 8460$ mm³

ELP 38/8/25 I 38/4/25

Approx. weight 44 g/set

Ungapped

* H = 250 A/m; $f = 10$ kHz; T = 100 °C

** Plate-type tool

Other $A₁$ values/air gaps and materials available on request – see [Processing notes on page 173.](#page-173-0)

Calculation factors (for formulas, see *"E cores: general information"*) **EILP 38:**

Validity range: K1, K2: 0.10 mm < s < 2.00 mm K3, K4: 180 nH < A₁ < 1500 nH

ELP 38/8/25

Core (without clamp recess) B66459

Core set EELP 38 Combination: ELP 38/8/25 with ELP 38/8/25

■ To IEC 62317-9

■ Delivery mode: single units

Magnetic characteristics (per set)

 Σ *VA* = 0.27 mm⁻¹ l $= 52.4$ mm $A_{\rm e}$ = 194 mm² $A_{min} = 192$ mm² $V_{\rm e}$ = 10200 mm³

Approx. weight 52 g/set

Ungapped

 $* H = 250$ A/m; f = 10 kHz; T = 100 °C

Other $A₁$ values/air gaps and materials available on request – see [Processing notes on page 173.](#page-173-0)

Calculation factors (for formulas, see *"E cores: general information"*) **EELP 38:**

523 1/17

Validity range: K1, K2: 0.10 mm < s < 2.00 mm

K3, K4: 180 nH < A₁ < 1500 nH

ELP 38/8/25

ELP 38/8/25 with I 38/4/25

Core (without clamp recess) B66459

Core set EILP 38 Combination: ELP 38/8/25 with I 38/4/25

■ To IEC 62317-9

■ Delivery mode: single units

Magnetic characteristics (per set)

 Σ *VA* = 0.22 mm⁻¹ le $= 43.6$ mm A_e = 194 mm² $A_{\text{min}} = 192 \text{ mm}^2$ V_e = 8440 mm³

Approx. weight 44 g/set

ELP 38/8/25 I 38/4/25

Ungapped

* H = 250 A/m; f = 10 kHz; T = 100 °C

** Plate-type tool

Other $A₁$ values/air gaps and materials available on request – see [Processing notes on page 173.](#page-173-0)

Calculation factors (for formulas, see *"E cores: general information"*) **EILP 38:**

Validity range: K1, K2: 0.10 mm < s < 2.00 mm K3, K4: 180 nH < A₁ < 1500 nH

ELP 43/10/28

Core (with clamp recess) B66291

Core set EELP 43 Combination: ELP 43/10/28 with ELP 43/10/28

■ To IEC 62317-9

■ Delivery mode: single units

Magnetic characteristics (per set)

 Σ *VA* = 0.274 mm⁻¹ l $= 61.6$ mm $A_{\rm e}$ = 225 mm² $A_{min} = 217$ mm² V_{ρ} = 13748 mm³

Approx. weight 70 g/set

Ungapped

 $* H = 250$ A/m; f = 10 kHz; T = 100 °C

Other A_L values/air gaps and materials available on request – see [Processing notes on page 173.](#page-173-0)

Calculation factors (for formulas, see *"E cores: general information"*) **EELP 43:**

Validity range: K1, K2: 0.10 mm < s < 2.00 mm K3, K4: 200 nH < $A₁$ < 2200 nH

ELP 43/10/28

FEK0526-7

ELP 43/10/28 with I 43/4/28

Core (with clamp recess) B66291

Core set EILP 43 Combination: ELP 43/10/28 with I 43/4/28

■ To IEC 62317-9

■ Delivery mode: single units

Magnetic characteristics (per set)

 Σ *VA* = 0.225 mm⁻¹ l $= 50.8$ mm A_e = 225 mm² $A_{min} = 217$ mm² $V_{\rm e}$ = 11430 mm³

Ungapped

Approx. weight 60 g/set

 $35.4 + 0.7$

 $8.1 + 0.2$

 43.2 ± 0.9

* H = 250 A/m; $f = 10$ kHz; T = 100 °C

** Plate-type tool

Other $A₁$ values/air gaps and materials available on request – see [Processing notes on page 173.](#page-173-0)

Calculation factors (for formulas, see *"E cores: general information"*) **EILP 43:**

Validity range: K1, K2: 0.10 mm < s < 2.00 mm K3, K4: 200 nH < A_L < 2200 nH

 $11 + 0.1$

 ϵ

 -640

FEK0543-W

ШI

 43.2 ± 0.9

ELP 43/10/28 I 43/4/28

i m

mш r ur

 4 ± 0.15 $95 + 015$

이

 $9 + 0$

FEK0527-F

 (11)

ELP 43/10/28

Core (without clamp recess) B66461

Core set EELP 43

Combination: ELP 43/10/28 with ELP 43/10/28

■ To IEC 62317-9

■ Delivery mode: single units

Magnetic characteristics (per set)

 Σ *VA* = 0.274 mm⁻¹ l $= 61.6$ mm $A_{\rm e}$ = 225 mm² $A_{min} = 217$ mm² V_e = 13748 mm³

Approx. weight 70 g/set

Ungapped

 $* H = 250$ A/m; f = 10 kHz; T = 100 °C

Other A_l values/air gaps and materials available on request – see [Processing notes on page 173.](#page-173-0)

Calculation factors (for formulas, see *"E cores: general information"*) **EELP 43:**

Validity range: K1, K2: 0.10 mm < s < 2.00 mm K3, K4: 200 nH < A_L < 2200 nH **ELP 43/10/28**

FEK0408-3

EXTDK

ELP 43/10/28 with I 43/4/28

Core (without clamp recess) B66461

Core set EILP 43 Combination: ELP 43/10/28 with I 43/4/28

- To IEC 62317-9
- Delivery mode: single units

Magnetic characteristics (per set)

 Σ *VA* = 0.225 mm⁻¹ ے ا $= 50.8$ mm A_e = 225 mm² $A_{\text{min}} = 217 \text{ mm}^2$ V_{e} = 11430 mm³

Approx. weight 60 g/set

FEK0408-3

ELP 43/10/28 I 43/4/28

non contact surface

FFK0544-5-F

 1 ± 0.15

Ungapped

 43.2 ± 0.9

* H = 250 A/m; f = 10 kHz; T = 100 °C

** Plate-type tool

Other $A₁$ values/air gaps and materials available on request – see [Processing notes on page 173.](#page-173-0)

Calculation factors (for formulas, see *"E cores: general information"*) **EILP 43:**

Validity range: K1, K2: 0.10 mm < s < 2.00 mm K3, K4: 200 nH < A₁ < 2200 nH

ELP 58/11/38

Core (without clamp recess) B66293

Core set EELP 58

Combination: ELP 58/11/38 with ELP 58/11/38

■ To IEC 62317-9

■ Delivery mode: single units

Magnetic characteristics (per set)

 Σ *VA* = 0.26 mm⁻¹ l $= 80.7$ mm $A_{\rm e}$ = 310 mm² A_{min} = 308 mm² V_{e} = 25000 mm³

Approx. weight 130 g/set

Ungapped

* H = 250 A/m; f = 10 kHz; T = 100 °C

Other A_L values/air gaps and materials available on request – see [Processing notes on page 173.](#page-173-0)

Calculation factors (for formulas, see *"E cores: general information"*) **EELP 58:**

Validity range: K1, K2: 0.10 mm < s < 1.50 mm K3, K4: 50 nH < $A₁$ < 500 nH

FEK0410-E

ယ $10.55 + 0.$ 6.5 ± 0.1

ELP 58/11/38 with I 58/4/38

Core (without clamp recess) B66293

Ungapped

* H = 250 A/m; $f = 10$ kHz; T = 100 °C

** Plate-type tool

Other $A₁$ values/air gaps and materials available on request - see [Processing notes on page 173](#page-173-0).

Calculation factors (for formulas, see *"E cores: general information"*) **EILP 58:**

Validity range: K1, K2: 0.10 mm < s < 1.50 mm K3, K4: 50 nH < $A₁$ < 500 nH

ELP 64/10/50

Core (without clamp recess) B66295

Core set EELP 64

Combination: ELP 64/10/50 with ELP 64/10/50

■ To IEC 62317-9

■ Delivery mode: single units

Magnetic characteristics (per set)

 $ΣI/A = 0.15$ mm⁻¹ l I_e = 79.9 mm
 A_e = 519 mm² $= 519$ mm² $A_{\text{min}} = 518 \text{ mm}^2$ V_e = 41500 mm³

Approx. weight 210 g/set

ELP 64/10/50

FEK0345-1

Ungapped

 $* H = 250$ A/m; f = 10 kHz; T = 100 °C

Other A_l values/air gaps and materials available on request – see [Processing notes on page 173.](#page-173-0)

Calculation factors (for formulas, see *"E cores: general information"*) **EELP 64:**

Validity range: K1, K2: 0.10 mm < s < 2.00 mm K3, K4: 480 nH < A_L < 4800 nH

ELP 64/10/50 with I 64/5/50

Core (without clamp recess) B66295

Core set EILP 64 Combination: ELP 64/10/50 with I 64/5/50

- To IEC 62317-9
- Delivery mode: single units

Magnetic characteristics (per set)

 Σ *VA* = 0.13 mm⁻¹ l $= 69.7$ mm A_e = 519 mm² $A_{min} = 518$ mm² V_e = 36200 mm³

Approx. weight 185 g/set

FEK0593 X-E

Ungapped

* H = 250 A/m; f = 10 kHz; T = 100 °C

** Plate-type tool

Other A_L values/air gaps and materials available on request – see [Processing notes on page 173.](#page-173-0)

Calculation factors (for formulas, see *"E cores: general information"*) **EILP 64:**

Validity range: K1, K2: 0.10 mm < s < 2.00 mm K3, K4: 480 nH < A₁ < 4800 nH

ELP 102/20/38

Core (without clamp recess) B66297

Core set EELP 102 Combination: ELP 102/20/38 with ELP 102/20/38

■ Delivery mode: single units

Magnetic characteristics (per set)

 $ΣI/A = 0.274$ mm⁻¹ I_{a} I_e = 147.6 mm
 A_e = 538 mm² $= 538$ mm² $A_{\text{min}} = 524.5 \text{ mm}^2$ V_e = 79410 mm³

Approx. weight 405 g/set

ELP 102/20/38

FEK0533-P

Ungapped

Other A_l values/air gaps and materials available on request – see [Processing notes on page 173.](#page-173-0)

ELP 102/20/38 with I 102/7/38

Core (without clamp recess) B66297

Approx. weight 330 g/set

Ungapped

Other $A₁$ values/air gaps and materials available on request – see [Processing notes on page 173.](#page-173-0)

EQ cores

General information

EQ planar cores for power applications

Integrating ferrite cores into the PCB has become a common technology in the power supply market. In those low-profile designs ferrite planar cores with low losses and high saturation are widespread. The trends are increasing the power density of the throughput transformer and the current in the output inductor. Ferrite cores are considered a key component for these targets. EPCOS has extended the range of planar ferrite cores to meet the new requirements.

Besides the standard ELP core series EPCOS offers now extended series of planar cores with round center post: EQ 13 to EQ 30 and ER 9.5 to ER 32. This wide range of shapes improves the design capabilities for individual power converter solutions. Customer-specific heights can be supplied as well as different air gap requirements for all series.

All EPCOS planar cores are available in the well-known EPCOS power materials. Preferred materials are N97 and N92. N97 is optimized for low losses, N92 for high saturation current in the output chokes. N87 is suitable for standard requirements. For frequencies higher than 400 kHz, we recommend N49. The material N95 is available for several EQ planar cores and provides stable low power losses across a temperature range from +25 °C up to +120 °C.

EQ 13/2.85/8.7

Core set EEQ 13 Combination: 13/2.85/8.7 with EQ 13/2.85/8.7

- To IEC 62317-9
- Optimized cross section
- Small overall footprint (core and winding)
- Less EMI
- Minimized winding length
- Delivery mode: single units

Magnetic characteristics (per set)

 $ΣI/A = 0.9$ mm⁻¹ I_{a} $= 17.5$ mm

 $A_{\rm e}$ = 19.8 mm²

 A_{min} = 19.2 mm²
 V_a = 347 mm³

 μ = 347 mm³

Approx. weight 1.8 g/set

Ungapped

Other A_l values/air gaps and materials available on request – see [Processing notes on page 173.](#page-173-0)

EQ 13/2.85/8.7

EQ 13/2.85/8.7 with I 13/1/8.7

Core set EIQ 13 Combination: EQ 13/2.85/8.7 with I 13/1/8.7

- To IEC 62317-9
- Optimized cross section
- Small overall footprint (core and winding)
- Less EMI
- Minimized winding length
- Delivery mode: single units

Magnetic characteristics (per set)

 $ΣI/A = 0.803$ mm⁻¹ $= 15.9$ mm

 I_{a} A_e = 19.8 mm²

 A_{min} = 19.2 mm²
 V_e = 315 mm³ $= 315$ mm³

Approx. weight 1.5 g/set

Ungapped

*Plate-type tool

Other A_l values/air gaps and materials available on request – see [Processing notes on page 173.](#page-173-0)

EQ 20/6.3/14

Core set EEQ 20 Combination: EQ 20/6.3/14 with EQ 20/6.3/14

- To IEC 62317-9
- Optimized cross section
- Small overall footprint (core and winding)
- Less EMI
- Minimized winding length
- Delivery mode: single units

Magnetic characteristics (per set)

 $ΣI/A = 0.56$ mm⁻¹

- I_{a} $= 33.2$ mm $A_{\rm e}$ = 59.0 mm²
- $A_{min} = 55.0$ mm²
 $V_a = 1960$ mm³

 μ = 1960 mm³

Approx. weight 11 g/set

EQ 20/6.3/14

Ь.

Ungapped

Other A_l values/air gaps and materials available on request – see [Processing notes on page 173.](#page-173-0)

EQ 20/6.3/14 with I 20/2.3/14

Core set EIQ 20 Combination: EQ 20/6.3/14 with I 20/2.3/14

- To IEC 62317-9
- Optimized cross section
- Small overall footprint (core and winding)
- Less EMI
- Minimized winding length
- Delivery mode: single units

Magnetic characteristics (per set)

 $ΣI/A = 0.42$ mm⁻¹

 I_{a} $= 25.1$ mm $A_{\rm e}$ = 59.8 mm² $A_{min} = 55.0$ mm²
 $V_a = 1500$ mm³

 $= 1500$ mm³

Approx. weight 8.5 g/set

Ungapped

* Plate-type tool

Other AL values/air gaps and materials available on request – see [Processing notes on page 173.](#page-173-0)
ATDK

EQ 25/5.6/18

Core set EEQ 25 Combination: EQ 25/5.6/18 with EQ 25/5.6/18

■ To IEC 62317-9

- Optimized cross section
- Small overall footprint (core and winding)
- Less EMI
- Minimized winding length
- Delivery mode: single units

Magnetic characteristics (per set)

 $ΣI/A = 0.352$ mm⁻¹

 I_{a}

 I_e = 32.95 mm
 A_e = 93.51 mm² $= 93.51$ mm²

 $A_{min} = 86.40$ mm²
 $V_a = 3082$ mm³

 $= 3082 \text{ mm}^3$

Approx. weight 16 g/set

EQ 25/5.6/18

FEK0445-7

Ungapped

Other A_1 values/air gaps and materials available on request – see [Processing notes on page 173.](#page-173-0)

EQ 25/5.6/18 with I 25/2.3/18

Core set EIQ 25 Combination: EQ 25/5.6/18 with I 25/2.3/18

- Optimized cross section
- Small overall footprint (core and winding)
- Less EMI
- Minimized winding length
- Delivery mode: single units

Magnetic characteristics (per set)

Σl/A = 0.294 mm–1 I_e $= 26.4$ mm A_e = 89.7 mm² $A_{min} = 82.8$ mm²

 V_e = 2370 mm³

Approx. weight 13 g/set

Ungapped

* Plate-type tool

Other A_l values/air gaps and materials available on request – see [Processing notes on page 173.](#page-173-0)

ATDK

EQ 30/8/20

Core set EEQ 30 Combination: EQ 30/8/20 with EQ 30/8/20

- To IEC 62317-9
- Optimized cross section
- Small overall footprint (core and winding)
- Less EMI
- Minimized winding length
- Delivery mode: single units

Magnetic characteristics (per set)

$ΣI/A = 0.426$ mm⁻¹

 I_{a} I_e = 46 mm
 A_e = 108 mm $= 108$ mm²

 $A_{min} = 95$ mm²
 $V_a = 4970$ mm $= 4970 \text{ mm}^3$

Approx. weight 23 g/set

$30+0.4$

 $3 + 0$

 \overline{c}

EQ 30/8/20

Ungapped

Other A_l values/air gaps and materials available on request – see [Processing notes on page 173.](#page-173-0)

EQ 30/8/20 with I 30/2.7/20

Core B66506

Ungapped

* Plate-type tool

Other A_l values/air gaps and materials available on request – see [Processing notes on page 173.](#page-173-0)

ER planar cores

General information

Example of an assembly set ER 11/5

ER planar cores

General information

Tolerances for ER cores

The A_L value tolerances for ER cores have consequently been defined with consideration of optimized process parameters for all materials with an initial permeability μ_i in the region of 2200 to 10000 as a step function (see figure below).

The "quantized" A₁ step values should preferably be used. They are still available in their respective lower tolerance ranges. Thus a tolerance of ±3% can be determined for a ER 14.5 made of N87 material for an $A₁$ value of 130 nH.

With this type of tolerance definition, EPCOS has defined standard $A₁$ values and the associated tolerances for the first time. Based on initial permeability tolerance can be slightly lower or higher.

ER 9.5/5

Planar core

- To IEC 62317-9
- For transformers featuring high inductance and low overall height
- Delivery mode: sets

Magnetic characteristics (per set)

 $ΣI/A = 1.54$ mm⁻¹ l $= 13.6$ mm \tilde{A}_{e} = 8.81 mm² A_{min} = 7.6 mm² V_e = 120 mm³

Approx. weight 0.6 g/set

Ungapped

Gapped (A_L values/air gaps examples)

Other A_l values/air gaps and materials available on request – see [Processing notes on page 173.](#page-173-0)

FEK0530-Z

ER 9.5/5

Accessories B65527

SMD

SMD coil former with gullwing terminals

permissible soldering temperature for wire-wrap connection on coil former: 400 °C, 1 s Winding: see Processing notes, 2.1

Yoke

Material: Stainless spring steel (0.1 mm)

Coil former Yoke

Please read *Important notes* on page 2 and *Cautions and warnings* on page 674

547 1/17

ER 11/5

Planar core B65525

- To IEC 62317-9
- For transformers featuring high inductance and low overall height
- Delivery mode: sets

Magnetic characteristics (per set)

 $ΣI/A = 1.1$ mm⁻¹ l $= 14.1$ mm \tilde{A}_{e} = 12.4 mm² $A_{min} = 10.3$ mm² V_e = 174 mm³

Approx. weight 0.85 g/set

FEK0531-8

Ungapped

Gapped (A_L values/air gaps examples)

Other A_1 values/air gaps and materials available on request – see [Processing notes on page 173.](#page-173-0)

ER 11/5

Accessories B65526

SMD

SMD coil former with gullwing terminals

Yoke Material: Stainless spring steel (0.15 mm)

 $1.4+0.1$ $\frac{5.1+0.2}{5}$ ig
D $5.7 + 0.$ B 11.2

FEK0414-C

Please read *Important notes* on page 2 and *Cautions and warnings* on page 674

ER 14.5/6

Planar core B65513

- To IEC 62317-9
- For transformers featuring high inductance and low overall height
- Delivery mode: sets

Magnetic characteristics (per set)

 $ΣI/A = 1.1$ mm⁻¹ l $= 19$ mm \tilde{A}_{e} = 17.6 mm² $A_{min} = 17.3$ mm² V_e = 334 mm³

Approx. weight 1.8 g/set

Ungapped

Gapped (A_L values/air gaps examples)

Other A_l values/air gaps and materials available on request – see [Processing notes on page 173.](#page-173-0)

ATDK

ER 18/3/10

Planar core B66480

- To IEC 62317-9
- Optimized winding area
- Small overall footprint (core and winding)
- Less EMI
- Minimized winding length
- Delivery mode: single units

Magnetic characteristics (per set)

 $ΣI/A = 0.732$ mm⁻¹ I_e I_e = 22.1 mm
 A_e = 30.2 mm² $= 30.2$ mm² $A_{\text{min}} = 30.1 \text{ mm}^2$
 $V_e = 667 \text{ mm}^3$

 $= 667$ mm³

Approx. weight 3.5 g/set

FEK0507-1

Ungapped

Other $A₁$ values/air gaps and materials available on request – see [Processing notes on page 173.](#page-173-0)

ATDK

ER 23/5/13

Planar core B66482

Core set EER 23 Combination: ER 23/5/13 with ER 23/5/13

- To IEC 62317-9
- Optimized winding area
- Small overall footprint (core and winding)
- Less EMI
- Minimized winding length
- Delivery mode: single units

Magnetic characteristics (per set)

$ΣI/A = 0.648$ mm⁻¹

l $= 32.6$ mm A_e = 50.3 mm²

 $A_{min} = 50.0$ mm² V_e = 1640 mm³

Approx. weight 7.8 g/set

ER 23/5/13

Ungapped

* H = 250 A/m; f = 10 kHz; T = 100 $^{\circ}$ C

Other $A₁$ values/air gaps and materials available on request – see [Processing notes on page 173.](#page-173-0)

ER 23/5/13 with I 23/2/13

Planar core B66482

Approx. weight 6.4 g/set

Ungapped

Other A_L values/air gaps and materials available on request - see [Processing notes on page 173.](#page-173-0)

ATDK

ER 25/6/15

Planar core B66484

Core set EER 25 Combination: ER 25/6/15 with ER 25/6/15

- To IEC 62317-9
- Optimized winding area
- Small overall footprint (core and winding)
- Less EMI
- Minimized winding length
- Delivery mode: single units

Magnetic characteristics (per set)

 $ΣI/A = 0.482$ mm⁻¹ l $= 34.1$ mm

 A_e = 70.8 mm²

 $A_{min} = 69.4$ mm²

 V_e = 2414 mm³

Approx. weight 14.2 g/set

optiona $9.4 + 0.2$

ER 25/6/15

FEK0464-D

Ungapped

Gapped (A_L values/air gaps examples)

Other A_L values/air gaps and materials available on request – see [Processing notes on page 173](#page-173-0).

ATDK

ER 25/6/15 with I 25/3/15

Planar core B66484

Approx. weight 11.5 g/set

Ungapped

Other A_L values/air gaps and materials available on request - see [Processing notes on page 173.](#page-173-0)

ER 32/5/21

Planar core B66501

- To IEC 62317-9
- Optimized winding area
- Small overall footprint (core and winding)
- Less EMI
- Minimized winding length
- Delivery mode: single units

Magnetic characteristics (per set)

 $ΣI/A = 0.381$ mm⁻¹ ءا $= 38.3$ mm A_e = 100.5 mm² $A_{\text{min}} = 98.5 \text{ mm}^2$
 $V_{\text{e}} = 3847 \text{ mm}^3$ $= 3847$ mm³

Approx. weight 23.3 g/set

Ungapped

 $* H = 250$ A/m; f = 10 kHz; T = 100 °C

Other A_1 values/air gaps and materials available on request – see [Processing notes on page 173.](#page-173-0)

ER cores

General information

Example of an assembly set ER 42

ER cores are the ideal answer when compact winding structures with low leakage inductance are needed. The round center leg is an advantage together with thick wires or bands.

Because of their good thermal response, ER cores are especially suitable for applications with high power density. E.g. they are used in flyback converters for TVs and monitors.

ER 28/17/11 Core B66433 ■ To IEC 62317-7 28,55±0,55 ■ Round center leg particularly suitable for use of thick winding wires or tapes $2,6 + 0,3$ $16,9 \pm 0.2$ ■ For compact winding design with low leakage inductance ■ Delivery mode: single units **Magnetic characteristics** (per set) $9.9 + 0.25$ Σ *VA* = 0.88 mm⁻¹

 I_e $= 75.0$ mm A_e = 85.4 mm² $A_{\text{min}} = 77.0 \text{ mm}^2$
 $V_{\text{e}} = 6400 \text{ mm}^3$ $= 6400$ mm³

Approx. weight 32 g/set

Ungapped

Other A_l values/air gaps and materials available on request – see [Processing notes on page 173.](#page-173-0)

Core B66350 ER 35/20/11

- To IEC 62317-7
- Round center leg particularly suitable for use of thick winding wires or tapes
- For compact winding design with low leakage inductance
- Delivery mode: single units

Magnetic characteristics (per set)

 $Σ$ *I/A* = 0.81 mm⁻¹ ما $= 89.6$ mm

- A_e = 111 mm²
-

 A_{min} = 101 mm²
 $V_{\rm e}$ = 9950 mm $= 9950$ mm³

Approx. weight 52 g/set

Ungapped

Gapped (A_L values/air gaps examples)

The A_l value in the table applies to a core set comprising one ungapped core (dimension g = 0 mm) and one gapped core (dimension $q > 0$ mm).

Other A_l values/air gaps and materials available on request – see [Processing notes on page 173.](#page-173-0)

Validity range: K1, K2: 0.10 mm < s < 2.50 mm K3, K4: 90 nH < A₁ < 600 nH

ER 42/22/15

- Round center leg particularly suitable for use of thick winding wires or tapes
- For compact winding design with low leakage inductance
- Delivery mode: single units

Magnetic characteristics (per set)

 Σ *VA* = 0.58 mm⁻¹

- l $= 99$ mm
- $A_{\rm e}$ = 170 mm²

 A_{min} = 170 mm²
V_e = 16800 mm

 $\frac{1}{2}$ = 16800 mm³

Approx. weight 84 g/set

Ungapped

 $-42_{-0,7}^{+1}$ -

 $* H = 250$ A/m; f = 10 kHz; T = 100 °C

Gapped (A_I values/air gaps examples)

The A_L value in the table applies to a core set comprising one ungapped core (dimension $g = 0$ mm) and one gapped core (dimension $q > 0$ mm).

Other $A₁$ values/air gaps and materials available on request – see [Processing notes on page 173.](#page-173-0)

Calculation factors (for formulas, see *"E cores: general information"*)

Validity range: K1, K2: 0.10 mm < s < 3.00 mm K3, K4: 110 nH < A₁ < 1100 nH

Core B66377 ER 46/17/18

- Round center leg particularly suitable for use of thick winding wires or tapes
- For compact winding design with low leakage inductance
- Delivery mode: single units

Magnetic characteristics (per set)

 Σ *VA* = 0.34 mm⁻¹ l I_e = 79 mm
 A_e = 233 mm

 $= 233$ mm²

 $A_{min} = 226$ mm²
 $V_{e} = 18400$ mm

 $= 18400$ mm³

Approx. weight 98 g/set

FEK0297-C

Ungapped

Gapped (A_L values/air gaps examples)

The A_l value in the table applies to a core set comprising one ungapped core (dimension g = 0 mm) and one gapped core (dimension $q > 0$ mm).

Other A_L values/air gaps and materials available on request – see [Processing notes on page 173.](#page-173-0)

Calculation factors (for formulas, see *"E cores: general information"*)

Validity range: K1, K2: 0.10 mm < s < 1.00 mm K3, K4: 190 nH < A_L < 1850 nH

ER 49/27/17 Core B66391 ■ To IEC 62317-7 49 ± 1 ■ Round center leg particularly suitable

- for use of thick winding wires or tapes ■ For compact winding design with low leakage inductance
- Delivery mode: single units

Magnetic characteristics (per set)

 Σ *VA* = 0.49 mm⁻¹ ءا I_e = 118 mm
 A_e = 243 mm² $= 243$ mm² $A_{\text{min}} = 225 \text{ mm}^2$ V_e = 28700 mm³

Approx. weight 146 g/set

Ungapped

Other AL values/air gaps and materials available on request - see [Processing notes on page 173](#page-173-0).

Calculation factors (for formulas, see *"E cores: general information"*)

Validity range: K1, K2: 0.10 mm < s < 3.50 mm K3, K4: 130 nH < A_L < 1300 nH

FEK0508-9

ER 54/18/18

Core B66357

■ Round center leg particularly suitable for use of thick winding wires or tapes

- For compact winding design with low leakage inductance
- Delivery mode: single units

Magnetic characteristics (per set)

 Σ *VA* = 0.35 mm⁻¹

- l $= 90$ mm
- $A_{\rm e}$ = 256 mm²
- $A_{min} = 252$ mm²
 $V_a = 23000$ mm

 $= 23000$ mm³

Approx. weight 119 g/set

FEK0085-B

Ungapped

 $* H = 250$ A/m; f = 10 kHz; T = 100 °C

Gapped (A_L values/air gaps examples)

The A_l value in the table applies to a core set comprising one ungapped core (dimension $g = 0$ mm) and one gapped core (dimension g > 0 mm).

Other A_l values/air gaps and materials available on request $-$ see [Processing notes on page 173](#page-173-0).

Calculation factors (for formulas, see *"E cores: general information"*)

Validity range: K1, K2: 0.15 mm < s < 3.50 mm K3, K4: 180 nH < A₁ < 1800 nH

ETD cores

General information

Example of an assembly set ETD 34

564 1/17

ETD cores

General information

Tolerances for ETD cores

The A_L value tolerances for ETD cores have consequently been defined with consideration of optimized process parameters for all materials with an initial permeability μ_i in the region of 2200 to 10000 as a step function (see figure below).

The "quantized" A_l step values should preferably be used. They are still available in their respective lower tolerance ranges. Thus a tolerance of ±10% can be determined for a ETD 54/28/19 made of N87 material for an A_L value of 1000 nH.

With this type of tolerance definition, EPCOS has defined standard $A₁$ values and the associated tolerances for the first time. Based on initial permeability tolerance can be slightly lower or higher.

Core

- To 62317-6
- For SMPS transformers with optimum weight/performance ratio at small volume
- Delivery mode: single units

Magnetic characteristics (per set)

 $ΣI/A = 0.93$ mm⁻¹ I_{a} $= 70.4$ mm \tilde{A}_{e} = 76.0 mm² A_{min} = 71.0 mm² V_e = 5350 mm³

Approx. weight 28 g/set

Ungapped

Material	$A1$ value nН	$\mu_{\rm e}$	P_V W/set	Ordering code
N ₂ 7	2000 +30/-20%	1470	$<$ 1.04 (200 mT, 25 kHz, 100 °C) B66358G0000X127	
N87	2200 +30/-20%	1610	\approx 2.80 (200 mT, 100 kHz, 100 °C)	B66358G0000X187
N97	2250 +30/-20%	1670	\approx 2.40 (200 mT, 100 kHz, 100 °C)	B66358G0000X197

Gapped (A_L values/air gaps examples)

The A_l value in the table applies to a core set comprising one ungapped core (dimension $q = 0$ mm) and one gapped core (dimension $q > 0$ mm).

Other A_l values/air gaps and materials available on request — see [Processing notes on page 173](#page-173-0).

FFK0044-8

Core B66358

Calculation factors (for formulas, see *"E cores: general information"*)

Validity range: K1, K2: 0.10 mm < s < 2.00 mm K3, K4: 70 nH < A_L < 680 nH

Accessories B66359

Coil former (magnetic axis horizontal)

Yoke

Material: Stainless spring steel (0.3 mm)

Coil former Yoke

Please read *Important notes* on page 2 and *Cautions and warnings* on page 674

Accessories B66359

Coil former (magnetic axis vertical)

Yoke

Material: Stainless spring steel (0.3 mm)

Coil former Yoke

Hole arrangement View in mounting direction

569 1/17

- To IEC 62317-6
- For SMPS transformers with optimum weight/performance ratio at small volume
- Delivery mode: single units

Magnetic characteristics (per set)

Σl*/*A = 0.81 mm–1 I_{a} $= 78.6$ mm \tilde{A}_{e} = 97.1 mm² $A_{min} = 91.6$ mm² V_e = 7630 mm³

Approx. weight 40 g/set

 $25.6 + 1.4$ $34^{+1}_{-0.6}$

Ungapped

The $A₁$ value in the table applies to a core set comprising one ungapped core (dimension $q = 0$ mm) and one gapped core (dimension $g > 0$ mm).

Other A_l values/air gaps and materials available on request $-$ see [Processing notes on page 173](#page-173-0).

Core B66361

Calculation factors (for formulas, see *"E cores: general information"*)

Validity range: K1, K2: 0.10 mm < s < 2.50 mm K3, K4: 80 nH < A_L < 780 nH

Accessories B66362

Coil former (magnetic axis horizontal)

Material: GFR polyterephthalate, UL 94 V-0, insulation class to IEC 60085: B66362B: F \triangleq max. operating temperature 155 °C, color code black Valox 420-SE0 [E207780 (M)] SABIC JAPAN L L C B66362W: H \triangleq max. operating temperature 180 °C, color code black Rynite FR 530® [E41938 (M)], E I DUPONT DE NEMOURS & CO INC Solderability: to IEC 60068-2-20, test Ta, method 1 (aging 3): 235 °C, 2 s Resistance to soldering heat: to IEC 60068-2-20, test Tb, method 1B: 350 °C, 3.5 s Winding: see Processing notes, 2.1

Yoke

Material: Stainless spring steel (0.4 mm)

Coil former Yoke

Accessories B66362

Coil former (magnetic axis vertical)

Material: GFR polyterephthalate (UL 94 V-0, insulation class to IEC 60085: $H \triangleq$ max. operating temperature 180 °C), color code black Rynite FR 530® [E41938 (M)], E I DUPONT DE NEMOURS & CO INC Solderability: to IEC 60068-2-20, test Ta, method 1 (aging 3): 235 °C, 2 s Resistance to soldering heat: to IEC 60068-2-20, test Tb, method 1B: 350 °C, 3.5 s Winding: see Processing notes, 2.1

Yoke

Material: Stainless spring steel (0.4 mm)

Coil former Yoke

View in mounting direction

FEK0510-K-E

Please read *Important notes* on page 2 and *Cautions and warnings* on page 674

573 1/17

ETD 39/20/13

- To IEC 62317-6
- For SMPS transformers with optimum weight/performance ratio at small volume
- Delivery mode: single units

Magnetic characteristics (per set)

 Σ *VA* = 0.74 mm⁻¹ l $= 92.2$ mm A_e = 125 mm² $A_{min} = 123$ mm² V_e = 11500 mm³

Approx. weight 60 g/set

Ungapped

FEK0053-8

 $* H = 250$ A/m; f = 10 kHz; T = 100 °C

Gapped (A_L values/air gaps examples)

The A_l value in the table applies to a core set comprising one ungapped core (dimension $g = 0$ mm) and one gapped core (dimension $q > 0$ mm).

Other A_u values/air gaps and materials available on request — see [Processing notes on page 173](#page-173-0).

ETD 39/20/13

Core B66363

Calculation factors (for formulas, see *"E cores: general information"*)

Validity range: K1, K2: 0.10 mm < s < 3.00 mm K3, K4: 90 nH < A_L < 850 nH

ETD 39/20/13

Accessories

Coil former

Yoke

Material: Stainless spring steel (0.4 mm)

Coil former Yoke

576 1/17

B66364

ETD 44/22/15

- To IEC 62317-6
- For SMPS transformers with optimum weight/performance ratio at small volume
- Delivery mode: single units

Magnetic characteristics (per set)

 $ΣI/A = 0.6$ mm⁻¹ l $= 103$ mm

- \tilde{A}_{e} = 173 mm²
- A_{min} = 172 mm²

 V_e = 17800 mm³

Approx. weight 94 g/set

FEK0057-6

Ungapped

 $* H = 250$ A/m; f = 10 kHz; T = 100 °C

The A_l value in the table applies to a core set comprising one ungapped core (dimension $q = 0$ mm) and one gapped core (dimension $q > 0$ mm).

Other $A₁$ values/air gaps and materials available on request $-$ see [Processing notes on page 173](#page-173-0).

Core B66365

ETD 44/22/15

Core B66365

Calculation factors (for formulas, see *"E cores: general information"*)

Validity range: K1, K2: 0.10 mm < s < 3.50 mm K3, K4: 110 nH < A_L < 1060 nH

ETD 44/22/15

Accessories B66366

Coil former

Yoke

Material: Stainless spring steel (0.4 mm)

Coil former Yoke

 $48 + 0.5$ $15 ± 0.2$ $10+0.3$ FEK0494-Z

579 1/17

Core B66367 ETD 49/25/16

- To IEC 62317-6
- For SMPS transformers with optimum weight/performance ratio at small volume
- Delivery mode: single units

Magnetic characteristics (per set)

 $ΣI/A = 0.54$ mm⁻¹ l $= 114$ mm A_e = 211 mm² $A_{min} = 209$ mm² V_e = 24100 mm³

Approx. weight 124 g/set

FFK0061-Y

Ungapped

 $* H = 250$ A/m; f = 10 kHz; T = 100 °C

The A_l value in the table applies to a core set comprising one ungapped core (dimension g = 0 mm) and one gapped core (dimension $q > 0$ mm).

Other $A₁$ values/air gaps and materials available on request $-$ see [Processing notes on page 173](#page-173-0).

ETD 49/25/16

Core B66367

Calculation factors (for formulas, see *"E cores: general information"*)

Validity range: K1, K2: 0.10 mm < s < 3.50 mm K3, K4: 120 nH < A_L < 1160 nH

ETD 49/25/16

Accessories B66368

Coil former

Yoke

Material: Stainless spring steel (0.4 mm)

Coil former Yoke

535±0.5 16.5 ± 0.2 $10.8 + 0.3$ FEK0496-G

ETD 54/28/19

Core B66395

- To IEC 62317-6
- For SMPS transformers with optimum weight/performance ratio at small volume
- Delivery mode: single units

Magnetic characteristics (per set)

 $ΣI/A = 0.45$ mm⁻¹ I_{a} $= 127$ mm

- A_e = 280 mm²
- $A_{min} = 280$ mm²
- V_e = 35600 mm³

Approx. weight 180 g/set

FEK0065-W

Ungapped

 $* H = 250$ A/m; f = 10 kHz; T = 100 °C

The A_l value in the table applies to a core set comprising one ungapped core (dimension g = 0 mm) and one gapped core (dimension $g > 0$ mm).

Other A_u values/air gaps and materials available on request $-$ see [Processing notes on page 173](#page-173-0).

ETD 54/28/19

Core B66395

Calculation factors (for formulas, see *"E cores: general information"*)

Validity range: K1, K2: 0.10 mm < s < 3.50 mm K3, K4: 140 nH < A_L < 1390 nH

ETD 54/28/19

Accessories B66396

Coil former

Material: GFR polyterephthalate (UL 94 V-0, insulation class to IEC 60085: H \triangle max. operating temperature 180 °C), color code black Rynite FR 530® [E41938 (M)], E I DUPONT DE NEMOURS & CO INC Solderability: to IEC 60068-2-20, test Ta, method 1 (aging 3): 235 °C, 2 s Resistance to soldering heat: to IEC 60068-2-20, test Tb, method 1B: 350 °C, 3.5 s Winding: see Processing notes, 2.1

Yoke

Material: Stainless spring steel (0.4 mm)

Coil former Yoke

597±0.5

 $11.7 + 0.3$

 $19.3 + 0.2$

FEK0498-X

ETD 59/31/22

- **Core B66397**
- To IEC 62317-6
- For SMPS transformers with optimum weight/performance ratio at small volume
- Delivery mode: single units

Magnetic characteristics (per set)

Σl*/*A = 0.38 mm–1 l $= 139$ mm A_{ρ} = 368 mm²

 A_{min} = 368 mm²

 V_e = 51200 mm³

Approx. weight 260 g/set

Ungapped

 $* H = 250$ A/m; f = 10 kHz; T = 100 °C

The A_l value in the table applies to a core set comprising one ungapped core (dimension g = 0 mm) and one gapped core (dimension $q > 0$ mm).

Other A_l values/air gaps and materials available on request $-$ see [Processing notes on page 173](#page-173-0).

ETD 59/31/22

Core B66397

Calculation factors (for formulas, see *"E cores: general information"*)

Validity range: K1, K2: 0.10 mm < s < 3.50 mm K3, K4: 170 nH < A_L < 1660 nH

ETD 59/31/22

Accessories B66398

Coil former

Material: GFR polyterephthalate (UL 94 V-0, insulation class to IEC 60085: H \triangle max. operating temperature 180 °C), color code black Rynite FR 530® [E41938 (M)], E I DUPONT DE NEMOURS & CO INC Solderability: to IEC 60068-2-20, test Ta, method 1 (aging 3): 235 °C, 2 s Resistance to soldering heat: to IEC 60068-2-20, test Tb, method 1B: 350 °C, 3.5 s Winding: see Processing notes, 2.1

Yoke

Material: Stainless spring steel (0.4 mm)

Coil former Yoke

 22.1 ± 0.2

FEK0500-D

EFD cores

General information

Example of an assembly set EFD 30/15/9

EFD cores

General information

Tolerances for EFD cores

The A_L value tolerances for EFD cores have consequently been defined with consideration of optimized process parameters for all materials with an initial permeability μ_i in the region of 2200 to 10000 as a step function (see figure below).

The "quantized" A₁ step values should preferably be used. They are still available in their respective lower tolerance ranges. Thus a tolerance of ±10 can be determined for a EFD 30/15/9 made of N87 material for an $A₁$ value of 250 nH.

With this type of tolerance definition, EPCOS has defined standard $A₁$ values and the associated tolerances for the first time. Based on initial permeability tolerance can be slightly lower or higher.

590 1/17

EFD 10/5/3

Core B66411

- E core with flattened, lower center leg for especially flat transformer design
- For DC/DC converters
- Delivery mode: single units

Magnetic characteristics (per set)

Σl*/*A = 3.21 mm–1 l $= 23.1$ mm \tilde{A}_{e} = 7.2 mm² $A_{min} = 6.5$ mm² V_e = 166 mm³

Approx. weight 0.8 g/set

Ungapped

FEK0208-Q

Other $A₁$ values/air gaps and materials available on request – see [Processing notes on page 173.](#page-173-0)

EFD 15/8/5

- E core with flattened, lower center leg for especially flat transformer design
- For DC/DC converters
- Delivery mode: single units

Magnetic characteristics (per set)

 $ΣI/A = 2.27$ mm⁻¹ l $= 34$ mm A_e = 15 mm² $A_{min} = 12.2$ mm² V_e = 510 mm³

Approx. weight 2.8 g/set

Ungapped

FEK0417-2

Other $A₁$ values/air gaps and materials available on request – see [Processing notes on page 173.](#page-173-0)

Gapped (A_L values/air gaps examples)

Material	A _l value nH	$\mu_{\rm e}$	g approx. mm	Ordering code $**$ = 87 (N87) $= 97 (N97)$
N87,	50 \pm 5%	90	0.46	B66413U0050J1**
N97	$100 + 10%$	180	0.17	B66413U0100K1**
	$125 + 10%$	225	0.12	B66413U0125K1**
	$160 + 15%$	288	0.08	B66413U0160L1**

The A_l value in the table applies to a core set comprising one ungapped core (dimension $g = 0$ mm) and one gapped core (dimension $q > 0$ mm).

Validity range: K1, K2: 0.10 mm < s < 1.00 mm K3, K4: 30 nH < A_L < 280 nH

Core B66413

EFD 15/8/5

Coil former

Yoke

Material: Stainless spring steel (0.25 mm)

Coil former Yoke

g 5 $\vec{0}$ 1+0.1 1375 $\mathbf{1}$ $\overline{4}$ 3.75 11 25

Mounting holes

Pin 1 marking

FEK0418-A-E

Accessories B66414

593 1/17

EFD 15/8/5

Accessories B66414

SMD

SMD coil former with J terminals

Cover plate

For marking and improved processing on assembly machines.

See under coil former for material and resistance to soldering heat.

Coil former Yoke

 $106 - 02$

Recommended

Please read *Important notes* on page 2 and *Cautions and warnings* on page 674

594 1/17

EFD 20/10/7

Core B66417

- E core with flattened, lower center leg for especially flat transformer design
- For DC/DC converters
- Delivery mode: single units

Magnetic characteristics (per set)

 $ΣI/A = 1.52$ mm⁻¹ I_{a} $= 47$ mm \tilde{A}_{e} = 31 mm² $A_{min} = 31$ mm² V_e = 1460 mm³

Approx. weight 7.2 g/set

Ungapped

Other $A₁$ values/air gaps and materials available on request – see [Processing notes on page 173.](#page-173-0)

The A_l value in the table applies to a core set comprising one ungapped core (dimension g = 0 mm) and one gapped core (dimension $q > 0$ mm).

EFD 20/10/7

Core B66417

Calculation factors (for formulas, see *"E cores: general information"*)

Validity range: K1, K2: 0.10 mm < s < 1.40 mm K3, K4: 50 nH < A_L < 410 nH

EFD 20/10/7

Accessories

Coil former

Yoke

Material: Stainless spring steel (0.3 mm)

Coil former Yoke

FEK0210-2-E

597 1/17

View A

18,7 min.

ى.

Α

FEK0274 8

 $5,1$

 \equiv \equiv

EFD 25/13/9

- E core with flattened, lower center leg for especially flat transformer design
- For DC/DC converters
- Delivery mode: single units

Magnetic characteristics (per set)

 $ΣI/A = 0.98$ mm⁻¹ l $= 57$ mm A_e = 58 mm² $A_{min} = 57$ mm² V_e = 3310 mm³

Approx. weight 16.6 g/set

Ungapped

Other $A₁$ values/air gaps and materials available on request – see [Processing notes on page 173.](#page-173-0)

Gapped (A_L values/air gaps examples)

The A_l value in the table applies to a core set comprising one ungapped core (dimension $q = 0$ mm) and one gapped core (dimension $q > 0$ mm).

Calculation factors (for formulas, see *"E cores: general information"*)

Validity range: K1, K2: 0.10 mm < s < 1.40 mm K3, K4: 50 nH < A_I < 410 nH

Core B66421

EFD 25/13/9

Accessories B66422

Coil former

Yoke

 35 ± 0.2 12.9 max

Material: Stainless spring steel (0.4 mm)

Coil former Yoke

FEK0330-M-E

599 1/17

EFD 30/15/9

- E core with flattened, lower center leg for especially flat transformer design
- For DC/DC converters
- Delivery mode: single units

Magnetic characteristics (per set)

 $ΣI/A = 0.99$ mm⁻¹

- l $= 68$ mm
- A_e = 69 mm²
- $A_{\text{min}} = 69$ mm²
- V_e = 4690 mm³

Approx. weight 24 g/set

Ungapped

Other $A₁$ values/air gaps and materials available on request – see [Processing notes on page 173.](#page-173-0)

Gapped (A_L values/air gaps examples)

The A_l value in the table applies to a core set comprising one ungapped core (dimension g = 0 mm) and one gapped core (dimension $q > 0$ mm).

Calculation factors (for formulas, see *"E cores: general information"*)

Validity range: $K1, K2: 0.10$ mm < $s < 2.00$ mm K3, K4: 70 nH < A_1 < 630 nH

Core B66423

EFD 30/15/9

Accessories B66424

Coil former

Yoke

Material: Stainless spring steel (0.45 mm)

Coil former Yoke

Pin 1 marking

601 1/17

EV 15/9/7

Core B66434

- For DC/DC converters, storage chokes and EMI suppression chokes
- Delivery mode: single units

Magnetic characteristics (per set)

 $Σ$ *I/A* = 1.4 mm⁻¹ l $= 38.7$ mm \tilde{A}_{α} = 27.7 mm² $\widetilde{A}_{\text{min}} = 25.8 \text{ mm}^2$
 $V_{\text{a}} = 1070 \text{ mm}^3$ $= 1070$ mm³

Approx. weight 5.7 g/set

FEK0560-L

Ungapped

Other A_1 values/air gaps and materials available on request – see [Processing notes on page 173.](#page-173-0)

Please read *Important notes* on page 2 and *Cautions and warnings* on page 674

EV 25/13/13 Core B66408 ■ For DC/DC converters, storage chokes $18.8 + 0.8$ and EMI suppression chokes $8.8 + 0.25$ ■ Delivery mode: single units **Magnetic characteristics** (per set) ್ಕೆ $6 - 0$ $ΣI/A = 0.8$ mm⁻¹ $= 59$ mm l \tilde{A}_{e} = 74 mm²

FEK0335-T

Ungapped

 $\widetilde{A}_{min} = 73 \text{ mm}^2$
 $V_{\text{a}} = 4370 \text{ mm}^2$ $= 4370$ mm³ **Approx. weight** 22 g/set

Other A_1 values/air gaps and materials available on request – see [Processing notes on page 173.](#page-173-0)

Please read *Important notes* on page 2 and *Cautions and warnings* on page 674

603 1/17

EV 30/16/13 Core B66432 ■ For DC/DC converters, storage chokes $22,1 \pm 0.5$ and EMI suppression chokes $11,6+0,3$ ■ Delivery mode: single units **Magnetic characteristics** (per set) $9+0$ $ΣI/A = 0.76$ mm⁻¹

l I_e = 74.8 mm
 A_e = 99 mm² $= 99$ mm² $\widetilde{A}_{min} = 95$ mm²
 $V_a = 7410$ mm $= 7410$ mm³

Approx. weight 37 g/set

Ungapped

Other A_l values/air gaps and materials available on request – see [Processing notes on page 173.](#page-173-0)

EV 36/19/16 Core B66567 ■ For DC/DC converters, storage chokes $95 + 02$ and EMI suppression chokes ■ Delivery mode: single units **Magnetic characteristics** (per set) 8 $Σ$ *I/A* = 0.57 mm⁻¹ $14.5 + 0.35$ $= 87.4$ mm l A_e = 154 mm² $\frac{1}{4}$ 6.2 ± 0.4 A_{min} = 149 mm²
 V_{e} = 13440 mm $= 13440$ mm³ $0.5 + 0.3$ 27.1 ± 0.55 **Approx. weight** 66 g/set

FEK0612-8

 $36.3 + 0.7$

Ungapped

Other A_L values/air gaps and materials available on request - see [Processing notes on page 173.](#page-173-0)

U and UI cores

General information

FUS0001-3

1 Core shapes and materials

U cores of rectangular cross section and I cores are made of SIFERRIT materials N27 and N87. Owing to their high saturation flux density, high Curie temperature and low dissipation losses, they are suitable for power, pulse and high-voltage transformers. UU and UI cores are preferred for power ratings, since they can be combined in various ways (see illustration above) to produce transformers in the kilowatt range.

2 Ordering, marking and delivery

U and I cores are supplied as single units, not as sets.

U cores with one shortened leg $($ \cong air gap) are available on request.

U and I cores are not marked.

3 AL and core loss specification

The corresponding test results are tabulated separately for each core shape.

a) A_l value (see also "General – Definitions")

The A_L value is measured with a fully wound 100-turn coil at a flux density of B = 0.25 mT and a frequency of f = 10 kHz. The temperature of the core is equal to room temperature.

b) Power loss P_V

The dissipation loss is specified in W/set. The data are maximum values under the specified measuring conditions. The flux density has been calculated on the basis of a sinusoidal voltage and is referred to the minimum cross-sectional area A_{min} of the core.

U 26/22/16

Core B67355

■ Delivery mode: single units

Magnetic characteristics (per set)

Σl*/*A = 0.75 mm–1 l $= 98$ mm A_e = 131 mm² \widetilde{A}_{min} = 129 mm² V_e = 12800 mm³

Approx. weight 33 g/pc.

The A_L value in the table applies to a core set comprising two ungapped cores.

U 30/26/26

$30.8 + 1.2$ ■ Delivery mode: single units $10.4 + 0.4$ $26.5 - 0.8$ **Magnetic characteristics** (per set) Σl*/*A = 0.45 mm–1 $= 118$ mm $16 + 0.5$ l A_e = 265 mm² $264 + 06$ \widetilde{A}_{min} = 265 mm² V_e = 31300 mm³ **Approx. weight** 73 g/pc. **FUS0185-U**

The A_L value in the table applies to a core set comprising two ungapped cores.

Core B67362

U 93/76/16 cores

UI 93/104/16 cores B67345

- Delivery mode: single units
- For power transformers >1 kW (20 kHz)

The A_l value in the table applies to a core set comprising two ungapped cores.

U 93/76/20 cores

UI 93/104/20 cores B67345

- Delivery mode: single units
- For power transformers >1 kW (20 kHz)

Magnetic characteristics (per set)

The A_l value in the table applies to a core set comprising two ungapped cores.

U 93/76/30 cores

UI 93/104/30 cores B67345

- Delivery mode: single units
- For power transformers >1 kW (20 kHz)

Magnetic characteristics (per set)

The A_l value in the table applies to a core set comprising two ungapped cores.

U 101/76/30

■ Delivery mode: single units

Magnetic characteristics (per set)

 $ΣI/A = 0.44$ mm⁻¹ l $= 368$ mm A_e = 840 mm² \widetilde{A}_{min} = 840 mm² V_e = 310800 mm³

Approx. weight 1600 g/set

The A_l value in the table applies to a core set comprising two ungapped cores.

Core B67370

U 126/91/20 cores

UI 126/119/20 cores B67385

- Delivery mode: single units
- For power transformers >1 kW (20 kHz)

The A_l value in the table applies to a core set comprising two ungapped cores.

Magnetic characteristics (per set)

U 141/78/30 Core B67374 ■ Delivery mode: single units $141 + 5$ $30 + 1$ **Magnetic characteristics** (per set) Σl*/*A = 0.28 mm–1 50 min. $33.5 + 1$ $= 377$ mm l 785±0.5 A_e = 1350 mm² $A_{\text{min}} = 1350 \text{ mm}^2$ V_e = 508950 mm³

FUS0113-X

The A_L value in the table applies to a core set comprising two ungapped cores.

Approx. weight 2500 g/set

Ferrite blocks

B67345, B67410

- For combination with large volume E, U cores when sides ground (on request)
- For wireless application
- Various thickness possible
- Delivery mode: pieces

Other material combinations on request.

-
- ------------------ 1) Optional height up to 25 mm 2) Optional height up to 45 mm
- 3) Optional height up to 35 mm
- 4) Optional height up to 50 mm

^{*)} Thickness C is ground

Impeder cores

Impeder cores

General information

An impeder core is an essential accessory for the welding of tubes and pipes using high frequency waveguide heating. The characteristics and durability of the impeder core have a significant effect on the efficiency and stability of the welding process.

The impeder core concentrates the magnetic flux generated by the work coil into the area of the pipe joint. As a result, the use of an impeder core significantly increases the efficiency of the welding process.

Various diameters, types (ZR, ZRH, ZRS, ZRSH) and lengths are available.

Please refer to the separate *EPCOS Product Brief 2017 - Impeder Cores* for more details.

General information

Our product line includes a wide range of toroids with finely graded diameters ranging from 2.5 to 202 mm.

Other core heights can be supplied on request. All cores are available in the usual materials.

1 Applications

■ Toroids are primarily used as EMC chokes for suppressing RF interference in the MHZ region and in signal transformers.

Typical applications for toroids of NiZn ferrites are LAN chokes. One of the materials available for this purpose is K10; other materials on request.

The following high-permeability MnZn materials are available for interference suppression:

- R 2.5 through R 12.5 for telecommunications (N30, T38, T46)
- R 13.3 through R 26 for power line chokes (N30, T65, T35, T37, T38)
- >R 34 for chokes and filters in industrial use (T65)
- Toroids are also increasingly used for power applications. Here, the typical values for amplitude permeability and power loss, as summarized in the section on "*SIFERRIT Materials*" ([page 36\)](#page-36-0), are applicable to the special power materials.

2 Coating

Toroids are available in different coating versions, thus offering the appropriate solution for every application. The coating not only offers protection for the edges but also provides an insulation function.

For small ring cores, we have introduced a parylene coating which features a low coating thickness and high dielectric strength.

A coating of the core will cause μ_i to drop, depending on the core size. A similar effect might occur when the core is subjected to high winding forces, especially cores made of the high permeability materials, T38 and T46.

General information

Coatings of ring cores

3 Dielectric strength test

The following test setup is used to test the dielectric strength of the insulating coating: A copper ring is pressed to the top edge of the ring. It touches the ferrite ring at the edges (see diagram). The test duration is 2 seconds.

General information

4 Chamfer

Large toroidal cores use thick wires that are partially subjected to high mechanical stress during winding. This can damage the wire insulation as well as the coating of the cores, thus reducing the breakdown voltage. To avoid this, EPCOS toroids have a chamfer. This prevents any insulation damage, and produces uniform coating thickness at the same time.

FUS0127-3

5 Cutting

Middle size and large toroids are available with gap: 1.) Cut into 2 halves with typical cuting wheel 2.) Cut gap in required thickness. thickness 1.2 mm.

Three basic questions have to be answered during order:

- toroid cuts into 2 halves/only gap (picture 1 or 2)
- cutting before/after coating
	- before: air gap is coated
	- after: air gap is not coated, a measurement fixture can be placed into the air gap
- required thickness of the gap

General information

6 Structure of the ordering code (part number)

Compilation of the ordering code

公TDK

Toroids (ring cores)

Overview

Overview of available sizes

B64290

Overview

.
MM d h $\mathbf d$

FUS0138-

Overview of available sizes (continued)

B64290

622 1/17

Overview

B64290P0035 B64290P0072

R 2.50 × **1.50** × **1.00**

R 2.50 × **1.50** × **1.30**

■ Parylene coating **R 2.50** × **1.50** × **1.00 (mm) R 0.098** × **0.059** × **0.039 (inch)**

Dimensions

Characteristics and ordering codes

Dimensions

■ Parylene coating **R 2.50** × **1.50** × **1.30 (mm) R 0.098** × **0.059** × **0.051 (inch)**

¹⁾ On request.

R 2.54 × **1.27** × **1.27**

R 3.05 × **1.27** × **1.27 B64290P0683**

■ Parylene coating **R 2.54** × **1.27** × **1.27** (mm) **R 0.100** × **0.050** × **0.050 (inch)**

Dimensions

Characteristics and ordering codes

■ Parylene coating **R 3.05** × **1.27** × **1.27** (mm) **R 0.120** × **0.050** × **0.050 (inch)**

Dimensions

¹⁾ On request.

R 3.05 × **1.27** × **2.54**

R 3.05 × **1.78** × **2.03 B64290P0733**

■ Parylene coating **R 3.05** × **1.27** × **2.54 (mm) R 0.120** × **0.050** × **0.100 (inch)**

Dimensions

Characteristics and ordering codes

■ Parylene coating **R 3.05** × **1.78** × **2.03 (mm) R 0.120** × **0.070** × **0.080 (inch)**

Dimensions

¹⁾ On request.

R 3.43 × **1.78** × **1.78**

R 3.43 × **1.78** × **2.03 B64290P0745**

R 3.43 \times **1.78** \times **1.78** (mm) **R 0.135** × **0.070** × **0.070 (inch)**

Dimensions

Characteristics and ordering codes

■ Parylene coating **R 3.43** × 1.78 × **2.03 (mm) R 0.135** × **0.070** × **0.080 (inch)**

Dimensions

Characteristics and ordering codes

R 3.94 × **1.78** × **1.78**

R 3.94 × **2.24** × **1.30 B64290P0061**

■ Parylene coating **R 3.94** × **1.78** × **1.78** (mm) **R 0.155** × **0.070** × **0.070 (inch)**

Dimensions

Characteristics and ordering codes

Dimensions

■ Parylene coating **R 3.94** × **2.24** × **1.30 (mm) R 0.155** × **0.088** × **0.051 (inch)**

¹⁾ On request.

R 3.94 × **2.24** × **2.30**

R 4.00 × **2.40** × **1.60 B64290P0036**

■ Parylene coating **R 3.94** × 2.24 × 2.30 (mm) **R 0.155** × **0.088** × **0.090 (inch)**

Dimensions

Characteristics and ordering codes

Dimensions

■ Parylene coating **R** 4.00 × 2.40 × 1.60 (mm) **R 0.157** × **0.094** × **0.063 (inch)**

¹⁾ On request.

R 4.00 × **2.40** × **1.80**

R 5.84 × **3.05** × **1.52 B64290P0056**

■ Parylene coating **R** 4.00 × 2.40 × 1.80 (mm) **R 0.157** × **0.094** × **0.071 (inch)**

Dimensions

Characteristics and ordering codes

■ Parylene coating **R 5.84** × 3.05 × 1.52 (mm) **R 0.230** × **0.120** × **0.060 (inch)**

Dimensions

¹⁾ On request.

R 5.84 × **3.05** × **3.00**

R 6.30 × **3.80** × **2.50 B64290P0037**

$R\ 5.84 \times 3.05 \times 3.00$ **(mm) R 0.230** × **0.120** × **0.118 (inch)**

Dimensions

Characteristics and ordering codes

■ Parylene coating **R 6.30** × 3.80 × 2.50 (mm) **R 0.248** × **0.150** × **0.098 (inch)**

Dimensions

¹⁾ On request.

R 8.00 × **4.00** × **4.00**

R 9.53 × **4.75** × **3.17 B64290L0062**

■ Parylene coating **R 8.00** × **4.00** × **4.00** (mm) **R 0.315** × **0.158** × **0.158 (inch)**

Dimensions

Characteristics and ordering codes

Dimensions

Example 3.53 \times **R 9.53** \times **4.75** \times **3.17 (mm) R 0.375** × **0.187** × **0.125 (inch)**

¹⁾ On request.

R 10.0 × **6.00** × **4.00**

R 10.0 × **6.00** × **7.00 B64290L0783**

Example 10.0 \times **6.00** \times **4.00 (mm) R 0.394** × **0.236** × **0.157 (inch)**

Dimensions

Characteristics and ordering codes

Example 3.4 Epoxy coating **R** 10.0 \times **6.00** \times **7.00 (mm) R 0.394** × **0.236** × **0.318 (inch)**

Dimensions

Mate-	A _l value	μ_i	Ordering code	Magnetic characteristics				Approx.
rial		(approx.)		$\Sigma I/A$	e	$A_{\rm e}$	V_{e}	weight
	nH			$mm-1$	mm	mm ²	mm ³	g
K ₁₀	450 ± 25%	630	B64290L0783X010	1.76	24.07	13.7	330	1.7
N30	3070 ± 25%	4300	B64290L0783X830					
T65	3360 ± 30%	4700	B64290L0783X065					
T38	7150 ±30%	10000	B64290L0783X038					
T46	10700 ±30%	15000	B64290L0783X046					

¹⁾ On request.

R 12.5 × **7.50** × **5.00**

R 12.5 × **7.90** × **6.35 B64290L0742**

Example 3 Epoxy coating **R** 12.5 \times **7.50** \times **5.00 (mm) R 0.492** × **0.295** × **0.197 (inch)**

Dimensions

Characteristics and ordering codes

Dimensions

■ Epoxy coating **R 12.7** × **7.90** × **6.35 (mm) R 0.500** × **0.311** × **0.250 (inch)**

¹⁾ On request.

R 13.3 × **8.30** × **5.00**

R 14.0 × **9.00** × **5.00 B64290L0658**

Example 3.30 \times **8.30** \times **5.00 (mm) R 0.524** × **0.327** × **0.197 (inch)**

Dimensions

Characteristics and ordering codes

■ Epoxy coating **R 14.0** × **5.00** (mm) **R 0.551** × **0.354** × **0.197 (inch)**

Dimensions

¹⁾ On request.

R 15.0 × **10.4** × **5.30**

R 15.8 × **8.90** × **4.70 B64290L0743**

Example 15.0 \times **R 15.0** \times **10.4** \times **5.30 (mm) R 0.591** × **0.409** × **0.209 (inch)**

Dimensions

Characteristics and ordering codes

■ Epoxy coating **R 15.8** × **8.90** × **4.70 (mm) R 0.622** × **0.350** × **0.185 (inch)**

Dimensions

¹⁾ On request.

R 16.0 × **9.60** × **6.30 B64290L0045**

■ Epoxy coating **R 16.0** × **9.60** × **6.30 (mm) R 0.630** × **0.378** × **0.248 (inch)**

Dimensions

Characteristics and ordering codes

N87: P_V (200 mT, 100 kHz, 100 °C) < 0.45 W/core

¹⁾ On request.

R 17.0 × **10.7** × **6.80**

R 18.4 × **5.90** × **5.90 B64290L0697**

■ Epoxy coating **R 17.0** × 10.7 × **6.80 (mm) R 0.669** × **0.421** × **0.268 (inch)**

Dimensions

Characteristics and ordering codes

N87: P_V (200 mT, 100 kHz, 100 °C) < 0.55 W/core

Dimensions

■ Epoxy coating **R 18.4** × 5.90 × 5.90 (mm) **R 0.724** × **0.232** × **0.232 (inch)**

Characteristics and ordering codes

N87: P_V (200 mT, 100 kHz, 100 °C) < 0.82 W/core

¹⁾ On request.

R 20.0 × **10.0** × **7.0**

R 20.0 × **10.0** × **10.0 B64290L0631**

B64290L0632

■ Epoxy coating **R 20.0** × **7.00 (mm) R 0.787** × **0.394** × **0.276 (inch)**

Dimensions

Characteristics and ordering codes

N87: P_V (200 mT, 100 kHz, 100 °C) < 0.95 W/core N95: P_V (200 mT, 100 kHz, 100 °C) < 0.8 W/core

Dimensions

■ Epoxy coating **R 20.0** × **10.0** × **10.00 (mm) R 0.787** × **0.394** × **0.394 (inch)**

Characteristics and ordering codes

N87: P_V (200 mT, 100 kHz, 100 °C) < 1.3 W/core

1) On request.

639 1/17

R 20.0 × **10.0** × **15.0**

R 22.1 × **13.7** × **6.35 B64290L0638**

■ Epoxy coating **R 20.0** × **15.0 (mm) R 0.787** × **0.394** × **0.591 (inch)**

Dimensions

Characteristics and ordering codes

N87: P_V (200 mT, 100 kHz, 100 °C) < 2 W/core

Example 1 Epoxy coating **R 22.1** \times **R 22.1** \times **13.7** \times **6.35 (mm) R 0.870** × **0.539** × **0.250 (inch)**

Dimensions

Characteristics and ordering codes

N87: P_V (200 mT, 100 kHz, 100 °C) < 0.85 W/core

¹⁾ On request.

R 22.1 × **13.7** × **7.90**

R 22.1 × **13.7** × **12.5 B64290L0651**

B64290L0719

■ Epoxy coating **R 22.1** × **7.90 (mm) R 0.870** × **0.539** × **0.311 (inch)**

Dimensions

Characteristics and ordering codes

N49: P_V (50 mT, 500 kHz, 100 °C) < 0.30 W/core N87: P_V (200 mT, 100 kHz, 100 °C) < 1.05 W/core

Dimensions

Example 12.1 Epoxy coating **R 22.1** \times **R 22.1** \times **12.5 (mm) R 0.870** × **0.539** × **0.492 (inch)**

Characteristics and ordering codes

N87: P_V (200 mT, 100 kHz, 100 °C) < 1.75 W/core

R 22.6 × **14.7** × **9.20**

R 25.3 × **14.8** × **10.0 B64290L0618**

■ Epoxy coating **R 22.6** × **14.7** × **9.20 (mm) R 0.890** × **0.579** × **0.362 (inch)**

Dimensions

Characteristics and ordering codes

N87: P_V (200 mT, 100 kHz, 100 °C) < 1.25 W/core

Dimensions

■ Epoxy coating **R 25.3** × **14.8** × **10.0 (mm) R 0.996** × **0.583** × **0.394 (inch)**

Characteristics and ordering codes

N87: P_V (200 mT, 100 kHz, 100 °C) < 2 W/core N95: P_V (200 mT, 100 kHz, 100 °C) < 1.85 W/core

1) On request.

Please read *Important notes* on page 2 and *Cautions and warnings* on page 674

642 1/17

R 25.3 × **14.8** × **15.0**

R 25.3 × **14.8** × **20.0 B64290L0616**

B64290L0615

■ Epoxy coating **R 25.3** × **14.8** × **15.0 (mm) R 0.996** × **0.583** × **0.590 (inch)**

Dimensions

Characteristics and ordering codes

N87: P_V (200 mT, 100 kHz, 100 °C) < 3 W/core

Dimensions

■ Epoxy coating **R 25.3** × **14.8** × **20.0 (mm) R 0.996** × **0.583** × **0.787 (inch)**

Characteristics and ordering codes

N87: P_V (200 mT, 100 kHz, 100 °C) < 4.1 W/core

¹⁾ On request.

R 29.5 × **19.0** × **14.9**

R 30.5 × **20.0** × **12.5 B64290L0657**

■ Epoxy coating **R 29.5** × **14.9 (mm) R 1.142** × **0.748** × **0.587 (inch)**

Dimensions

Characteristics and ordering codes

N87: P_V (200 mT, 100 kHz, 100 °C) < 2.95 W/core N95: P_V (200 mT, 100 kHz, 100 °C) < 3.10 W/core

Dimensions

Example 30.5 \times **20.0** \times **12.5 (mm) R 1.201** × **0.787** × **0.492 (inch)**

Characteristics and ordering codes

N87: P_V (200 mT, 100 kHz, 100 °C) < 2.65 W/core

R 34.0 × **20.5** × **10.0**

R 34.0 × **20.5** × **12.5 B64290L0048**

■ Epoxy coating **R 34.0** × 20.5 × 10.0 (mm) **R 1.339** × **0.807** × **0.394 (inch)**

Dimensions

Characteristics and ordering codes

N87: P_V (200 mT, 100 kHz, 100 °C) < 3.4 W/core

Dimensions

■ Epoxy coating **R 34.0** × **20.5** × **12.5 (mm) R 1.339** × **0.807** × **0.492 (inch)**

Characteristics and ordering codes

N87: P_V (200 mT, 100 kHz, 100 °C) < 4.2 W/core

R 36.0 × **23.0** × **15.0**

R 38.1 × **19.05** × **12.7 B64290L0668**

■ Epoxy coating **R 36.0** × **23.0** × **15.0 (mm) R 1.417** × **0.906** × **0.591 (inch)**

Dimensions

Characteristics and ordering codes

N49: P_V (50 mT, 500 kHz, 100 °C) < 0.97 W/core N87: P_V (200 mT, 100 kHz, 100 °C) < 5.4 W/core

Dimensions

■ Epoxy coating **R 38.1** × **19.05** × **12.7 (mm) R 1.500** × **0.750** × **0.500 (inch)**

Characteristics and ordering codes

N87: P_V (200 mT, 100 kHz, 100 °C) < 6.5 W/core

R 40.0 × **24.0** × **16.0**

R 41.8 × **26.2** × **12.5 B64290L0022**

■ Epoxy coating **R** 40.0 × 24.0 × 16.0 (mm) **R 1.575** × **0.945** × **0.630 (inch)**

Dimensions

Characteristics and ordering codes

N87: P_V (200 mT, 100 kHz, 100 °C) < 7.6 W/core

Dimensions

■ Epoxy coating **R41.8** × 26.2 × **12.5 (mm) R 1.646** × **1.031** × **0.492 (inch)**

Characteristics and ordering codes

N87: P_V (200 mT, 100 kHz, 100 °C) < 6 W/core

¹⁾ On request.

R 50.0 × **30.0** × **20.0 B64290L0082**

■ Epoxy coating **R 50.0** × 30.0 × 30.0 × 30.0 × 30.0 **mm R 1.969** × **1.181** × **0.787 (inch)**

Dimensions

Characteristics and ordering codes

N87: P_V (200 mT, 100 kHz, 100 °C) < 14.2 W/core
K10: Z (0.25 mT, 25 MHz, 25 °C, 1 turn): 75 Q

 $(0.25$ mT, 25 MHz, 25 °C, 1 turn): 75 Ω typ.

(0.25 mT, 100 MHz, 25 °C, 1 turn): 115 Ω typ.

¹⁾ On request.

R 58.3 × **32.0** × **18.0 B64290L0043**

■ Epoxy coating **R 58.3** × 32.0 × 18.0 (mm) **R 2.295** × **1.260** × **0.709 (inch)**

Dimensions

Characteristics and ordering codes

N87: P_V (200 mT, 100 kHz, 100 °C) < 19 W/core
K10: Z (0.25 mT, 25 MHz, 25 °C, 1 turn): 80 9

 $(0.25$ mT, 25 MHz, 25 °C, 1 turn): 80 Ω typ. (0.25 mT, 100 MHz, 25 °C, 1 turn): 120 Ω typ.

The capacitive effect of turns is not evaluated. Minimum impedance is $|Z|_{\text{typ}}$ -15%.

1) On request.

R 58.3 × **40.8** × **17.6 B64290L0040**

■ Epoxy coating **R 58.3** × 40.8 × 17.6 (mm) **R 2.295** × **1.606** × **0.693 (inch)**

Dimensions

Characteristics and ordering codes

N87: P_V (200 mT, 100 kHz, 100 °C) < 14.5 W/core
K10: Z (0.25 mT, 25 MHz, 25 °C, 1 turn): 45 Ω to

 $(0.25$ mT, 25 MHz, 25 °C, 1 turn): 45 Ω typ.

(0.25 mT, 100 MHz, 25 °C, 1 turn): 70 Ω typ.

¹⁾ On request.

R 58.3 × **40.8** × **20.2 B64290L0042**

R Epoxy coating **R** 58.3 \times 40.8 \times 20.2 (mm) **R 2.295** × **1.606** × **0.795 (inch)**

Dimensions

Characteristics and ordering codes

N87: P_V (200 mT, 100 kHz, 100 °C) < 16.6 W/core
K10: Z (0.25 mT, 25 MHz, 25 °C, 1 turn): 50 Q t

 $(0.25$ mT, 25 MHz, 25 °C, 1 turn): 50 Ω typ.

(0.25 mT, 100 MHz, 25 °C, 1 turn): 80 Ω typ.

¹⁾ On request.

R 63.0 × **38.0** × **25.0 B64290L0699**

R 63.0 \times **38.0** \times **25.0 (mm) R 63.0** \times **25.0 (mm) R 2.480** × **1.496** × **0.984 (inch)**

Dimensions

Characteristics and ordering codes

N87: P_V (100 mT, 100 kHz, 100 °C) < 5.2 W/core
K10: Z (0.25 mT, 25 MHz, 25 °C, 1 turn): 95 0

 $(0.25$ mT, 25 MHz, 25 °C, 1 turn): 95 Ω typ. (0.25 mT, 100 MHz, 25 °C, 1 turn): 140 Ω typ.

¹⁾ On request.

R 68.0 × **48.0** × **13.0 B64290L0696**

■ Epoxy coating **R 68.0** × **13.0 (mm) R 2.677** × **1.890** × **0.512 (inch)**

Dimensions

Characteristics and ordering codes

N87: P_V (200 mT, 100 kHz, 100 °C) < 13 W/core
K10: Z (0.25 mT, 25 MHz, 25 °C, 1 turn): 30 Ω

 $(0.25$ mT, 25 MHz, 25 °C, 1 turn): 30 Ω typ.

(0.25 mT, 100 MHz, 25 °C, 1 turn): 50 Ω typ.

¹⁾ On request.

R 87.0 × **54.3** × **13.5 B64290L0730**

■ Epoxy coating **R87.0** × 54.3 × **13.5 (mm) R 3.425** × **2.138** × **0.531 (inch)**

Dimensions

Characteristics and ordering codes

N87: P_V (100 mT, 100 kHz, 100 °C) < 5 W/core
K10: Z (0.25 mT, 25 MHz, 25 °C, 1 turn): 45 (

 $(0.25$ mT, 25 MHz, 25 °C, 1 turn): 45 Ω typ.

(0.25 mT, 100 MHz, 25 °C, 1 turn): 70 Ω typ.

¹⁾ On request.

R 102 × **65.8** × **15.0 B64290L0084**

■ Epoxy coating **R 102** × **65.8** × **15.0 (mm) R 4.016** × **2.591** × **0.591 (inch)**

Dimensions

Characteristics and ordering codes

N87: P_V (100 mT, 100 kHz, 100 °C) < 7.8 W/core
K10: Z (0.25 mT, 25 MHz, 25 °C, 1 turn): 50 Ω tv

 $(0.25$ mT, 25 MHz, 25 °C, 1 turn): 50 Ω typ.

(0.25 mT, 100 MHz, 25 °C, 1 turn): 75 Ω typ.

¹⁾ On request.

R 140 × **103** × **25.0 B64290L0705**

■ Without coating **R 140** × **103** × **25.0 (mm) R 5.512** × **4.055** × **0.984 (inch)**

Dimensions

Characteristics and ordering codes

N87: P_V (100 mT, 100 kHz, 100 °C) < 20 W/core

K10: Z (0.25 mT, 25 MHz, 25 °C, 1 turn): 55 Ω typ.

(0.25 mT, 100 MHz, 25 °C, 1 turn): 85 Ω typ.

¹⁾ On request.

R 202 × **153** × **25.0 B64290A0711**

■ Without coating **R 202.0** \times **153** \times **25.0 (mm) R 7.953** × **6.024** × **0.984 (inch)**

Dimensions

Characteristics and ordering codes

K10: Z (0.25 mT, 25 MHz, 25 °C, 1 turn): 50 Ω typ. (0.25 mT, 100 MHz, 25 °C, 1 turn): 75 Ω typ.

¹⁾ On request.

Toroids (ring cores) accessories General information

Examples of final applications of ring core accessories

Application of ring core housings – horizontal / vertical version

Application of ring core base plate

Epoxy coated ring cores and accessories is ideal combination for current-compensated chokes. Combination of various wire diameters and hole/pin arrangement offer many alternatives of application.

Toroids (ring cores) accessories

Base plate for ring cores B64293

Base plate for ring cores

¹⁾ Combination with ring core housing B64291A1704X000

²⁾ Hole diameter 1.0 … 3.1 mm possible

公TDK

Toroids (ring cores) accessories

Base plate for ring cores B64293

FUS0176-V

*) Combination with ring core housing B64291A1704X000

Figure c

Tolerances to ISO 2768-C unless otherwise noted. Dimensions in mm.

Toroids (ring cores) accessories

Housings for ring cores B64291

Housings for ring cores – horizontal version

Material: B64291A: GFR polycarbonate UL94 V-0 Makrolon 9415 [E41613], color code blue, COVESTRO AG B64291B: GFR liquid crystal polymer UL94 V-0 Vectra E130i [E83005], color code natural, CELANESE INTERNATIONAL CORP.

Solderability (lead-free): to IEC 60068-2-20, test Ta, $+245 \pm 5$ °C, 3 ± 0.3 s Resistance to soldering heat (wave soldering): to IEC 60068-2-20, test Tb, + 260 $± 5 °C. 10 ± 1 s$

¹⁾ Combination with base plate B64293A1200X000

Toroids (ring cores) accessories

Housings for ring cores B64291

Figure a

Figure b

FUS0180-N

Tolerances to ISO 2768-C unless otherwise noted. Dimensions in mm.

Please read *Important notes* on page 2 and *Cautions and warnings* on page 674

公TDK

Toroids (ring cores) accessories

Housings for ring cores B64291

Figure c Figure d

Figure e Figure f

Figure g

Tolerances to ISO 2768-C unless otherwise noted. Dimensions in mm.

Housings for ring cores B64291 Toroids (ring cores) accessories

Figure h

 $rac{1}{2}$

 42.4 max

 $\frac{1}{2}$

3.9

 ω 75 max

€

40 max.

*) Combination with base plate B64293A1200X000

Tolerances to ISO 2768-C unless otherwise noted. Dimensions in mm.

FUS0175-M-E

Toroids (ring cores) accessories

Housings for ring cores B64292

Housings for ring cores – vertical version

Material: B64292A: GFR polycarbonate UL94 V-0 Makrolon 9415 [E41613], color code blue, COVESTRO AG B64292B: GFR liquid crystal polymer UL94 V-0 Vectra E130i [E83005], color code natural, CELANESE INTERNATIONAL CORP.

Solderability (lead-free): to IEC 60068-2-20, test Ta, $+245 \pm 5$ °C, 3 ± 0.3 s

Resistance to soldering heat (wave soldering): to IEC 60068-2-20, test Tb, $+260 \pm 5$ °C, 10 \pm 1 s

¹⁾ B64292A1604X000 with unsymetrical lead spacing $(12.7 \times 2.54/5.08 \text{ mm})$

公TDK

Toroids (ring cores) accessories

Housings for ring cores B64292

Figure a*) Figure b

*) For 4 PIN version B64292A1004X000 and B64292B1004X000 PIN 2, 3, 6 and 7 omitted

Figure c

Tolerances to ISO 2768-C unless otherwise noted. Dimensions in mm.

Toroids (ring cores) accessories

Housings for ring cores B64292

Figure d

FUS0170-G

Figure e

FUS0173-6

Tolerances to ISO 2768-C unless otherwise noted. Dimensions in mm.

Primarily used for broadband transformers up to high frequencies

Application examples

- SIFERRIT material N30 for low frequencies and for pulse applications
- SIFERRIT material K1 for matching transformers and baluns up to about 250 MHz in antenna feeders or in input circuits of VHF and TV receivers

668 1/17

B62152

¹⁾ Cores made of NiZn ferrite may exceed the specified dimensions by up to 5%.

 $2)$ Magnetic characteristics and A_L value are based on winding of center leg.

³⁾ Double-aperture cores are available with parylene coating on request. Ordering code for coated version: B62152P…

Double-aperture cores

B62152

Overview of available types

1) Magnetic characteristics and A_L value are based on winding of center leg.
2) Double-aperture cores are available with parylene coating on request.

Ordering code for coated version: B62152P…

Ferrite polymer composites

General information

Ferrite cores are familiar as brittle, rigid and bulky components for high-inductance coils and transformers. The performance of such ferrites depends very much on external influences such as temperature, pressure, electromagnetic fields and frequency.

FPC is a homogeneous mixture of ferrite powder and plastic with outstanding mechanical and magnetic properties. This rugged material can be processed into injection-molded parts or thin, flexible film to open up innovative applications.

The new C351 film is suitable for high-temperature applications up to 200 °C and is UL 94-V0-listed. It is also available in various thicknesses from 0.2 to 0.4 mm. Special shape of foil on request (various width, separated piece by piece, etc.). FPC film of materials C350 and C351 can also be supplied in self-adhesive versions.

FPC film is ideal for EMC applications, e.g. to shield coils against metals or absorb interference at frequencies of 500 MHz and higher. It opens up many other applications, such as implementation of low-profile coils for identification systems and electronic article surveillance in retailing and logistics, for sensors or contactless smart cards. This innovative material is also suitable as spacing between ferrite cores – instead of air gaps or non-magnetic films – to suppress leakage fields, for instance, or to adjust the biasing curve.

FPC film

C350, C351

Basic features

- FPC is a composite material of polymer and ferrite
- FPC film is a thin, mechanically flexible film

Technical benefits

- Stable magnetic characteristics
- Low weight: FPC film is 40% lower in density than ferrite
- High mechanical strength
- Shaping as required: customer-specific solutions possible
- Economy: easy transport and storage, simple, rationalized processing, low mounting volume
- G351 film suitable for high-temperature applications (up to 200 $^{\circ}$ C)
- Material C351 approved to UL 94-V0 (E 140 693)
- Various film thickness (from 0.2 to 0.4 mm), thickness tolerance $±15\%$
- Self-adhesive versions (limited shelf life)

Applications

- Implementation of low-profile coils, e.g. for
	- identification systems
	- security tags for electronic article surveillance
	- sensors
	- inductive reading of smart cards
- Electromagnetic shielding of coils from metals to prevent interference
- EMC: absorption of radiated emissions at frequencies ≥500 MHz
- Compensation of deflection yokes to correct distortion at the corners of TV screens and monitors
- Spacing between ferrite cores (as a substitute for air gaps or non-magnetic films) for
	- suppression of the leakage field
	- adjustment of the biasing curve

B68450, B68451

FPC film

C350, C351 B68450, B68451

Ordering details

The ordering codes are structured as follows:

FPC film is supplied in units of 50 m length.

¹⁾ Copper coating only in combination with C351.

²⁾ On request

FPC film

C350, C351 B68450, B68451

Physical properties (material values defined on 0.2 mm thick film)

- 2) $T = 23$ °C and 50% r.h.
- 3) UL 94, flame class V0 (listed E 140 693)

¹⁾ $T = 25 \degree C$ to IEC 51 (CO) 282

Cautions and warnings

Mechanical stress and mounting

Ferrite cores have to meet mechanical requirements during assembling and for a growing number of applications. Since ferrites are ceramic materials one has to be aware of the special behavior under mechanical load.

As valid for any ceramic material, ferrite cores are brittle and sensitive to any shock, fast temperature changing or tensile load. Especially high cooling rates under ultrasonic cleaning and high static or cyclic loads can cause cracks or failure of the ferrite cores.

For detailed information see data book, chapter *"General - Definitions, 8.1"*.

Effects of core combination on A_L value

Stresses in the core affect not only the mechanical but also the magnetic properties. It is apparent that the initial permeability is dependent on the stress state of the core. The higher the stresses are in the core, the lower is the value for the initial permeability. Thus the embedding medium should have the greatest possible elasticity.

For detailed information see data book, chapter *"General - Definitions, 8.1"*.

Heating up

Ferrites can run hot during operation at higher flux densities and higher frequencies.

NiZn-materials

The magnetic properties of NiZn-materials can change irreversible in high magnetic fields.

Ferrite Accessories

EPCOS ferrite accessories have been designed and evaluated only in combination with EPCOS ferrite cores. EPCOS explicitly points out that EPCOS ferrite accessories or EPCOS ferrite cores may not be compatible with those of other manufacturers. Any such combination requires prior testing by the customer and will be at the customer's own risk.

EPCOS assumes no warranty or reliability for the combination of EPCOS ferrite accessories with cores and other accessories from any other manufacturer.

Processing remarks

The start of the winding process should be soft. Else the flanges may be destroyed.

- Too strong winding forces may blast the flanges or squeeze the tube that the cores can not be mounted any more.
- Too long soldering time at high temperature (>300 °C) may effect coplanarity or pin arrangement.
- Not following the processing notes for soldering of the J-leg terminals may cause solderability problems at the transformer because of pollution with Sn oxyde of the tin bath or burned insulation of the wire. For detailed information see chapter *"Processing notes"*, section 2.2.
- The dimensions of the hole arrangement have fixed values and should be understood as a recommendation for drilling the printed circuit board. For dimensioning the pins, the group of holes can only be seen under certain conditions, as they fit into the given hole arrangement. To avoid problems when mounting the transformer, the manufacturing tolerances for positioning the customers' drilling process must be considered by increasing the hole diameter.

Cautions and warnings

Display of ordering codes for EPCOS products

The ordering code for one and the same product can be represented differently in data sheets, data books, other publications and the website of EPCOS, or in order-related documents such as shipping notes, order confirmations and product labels. **The varying representations of the ordering codes are due to different processes employed and do not affect the specifications of the respective products**. Detailed information can be found on the Internet under www.epcos.com/orderingcodes.

Symbols and terms

Symbols and terms

Symbols and terms

All dimensions are given in mm.

SMD Surface-mount device

Symbols and terms

Ordering code structure

RM, P,PQ, EP, ER9,5, ER11 cores

(Example here RM 4)

E, ELP, EQ, ER, ETD, EFD, EV cores

These cores are supplied as single units; each packing unit contains only cores either with or without shortened center leg (gap dimension »g«). The typical value given in the tables for the $A₁$ value applies to a core set consisting of one core with a shortened center leg and one core without a shortened center leg (dimension »g« approx. 0). E cores with a toleranced A_U value are available on request. We then prefer a symmetrical air gap distribution.

Ordering example (here ETD 29)

Symbols and terms

Versions (code letters) of RM cores

Versions (code letters) of P cores

Symbols and terms

Versions (code letters) of E cores

48, [137](#page-137-2)

current-compensated chokes [37](#page-37-3)

Ferrites and accessories

Subject index

A

Ferrites and accessories

Subject index

Ferrites and accessories

Subject index

Get in Contact

Europe

Austria

TDK Austria GesmbH T +43 1 25 63 630 56 39 F +43 1 25 63 630 56 44 sales.austria@eu.tdk.com

Bulgaria, Greece, Macedonia

TDK Austria GesmbH T +43 1 25 63 630 56 30 F +43 1 25 63 630 56 44 sales.csee@eu.tdk.com

Czech Republic

TDK Czech s.r.o. T +420 2 33 03 22 81 F +420 2 33 03 22 89 sales.czech@eu.tdk.com

Finland, Estonia

TDK Nordic OY T +358 10 34 90 108 sales.nordic@eu.tdk.com

France, Belgium, Luxembourg, Malta

TDK Electronics France SAS T +33 1 49 46 67 89 F +33 1 49 46 67 67 sales.france@eu.tdk.com

Germany, Liechtenstein, Netherlands, Switzerland TDK Europe GmbH

T (D) 0180 500 33 48 (0.14 Euro/min.) (NL) +31 70 33 10 611 (CH) +49 89 54020 2691 F +49 89 54020 2913 sales.germany@eu.tdk.com

Hungary

TDK Electronics Hungary Ltd. T +361436 07 20 F +361436 07 21 sales.hungary@eu.tdk.com

Italy

TDK Italy S.r.l T +39 02 50 99 54 25 F +39 02 50 99 54 55 sales.italy@eu.tdk.com

Poland, Latvia, Lithuania

TDK Polska Sp. z o.o. T +48 22 24 60 409 F +48 22 24 60 400 sales.poland@eu.tdk.com

Portugal

TDK Electronics Spain S.L.U. T +34 93 480 42 92 +34 93 480 42 68 F +34 93 480 42 31 sales.iberia@eu.tdk.com

Romania

TDK Austria GesmbH T +43 1 25 63 630 56 30 F +43 1 25 63 630 56 44 sales.romania@eu.tdk.com

Russia, Belarus, Kazakhstan, Moldavia, Ukraine

TDK CIS LLC T +7 495 663 21 00 +7 495 663 21 22 sales.cis@eu.tdk.com

Slovakia

TDK Austria GesmbH T +43 1 25 63 630 56 30 F +43 1 25 63 630 56 44 sales.slovakia@eu.tdk.com

Bosnia and Herzegovina, Croatia, Montenegro, Serbia, Slovenia

TDK Austria GesmbH T +43 1 25 63 630 56 30 F +43 1 25 63 630 56 44 sales.slovenia@eu.tdk.com

Spain

TDK Electronics Spain S.L.U. T +34 93 480 42 92 +34 93 480 43 33 F +34 91 514 70 14 sales.iberia@eu.tdk.com

Sweden, Iceland, Denmark, Norway

TDK Nordic AB T +46 8 4 77 27 00 F +46 8 4 77 27 01 sales.nordic@eu.tdk.com

Turkey

TDK Europe GmbH T +90 216 5 69 81 01 F +90 216 4 64 07 56 sales.turkey@eu.tdk.com

United Kingdom, Ireland TDK UK Limited

T +44 13 44 38 15 10 F +44 13 44 38 15 12 sales.uk@eu.tdk.com

Asia

Afghanistan, Iran, Iraq, Jordan, Lebanon, Pakistan, Syria TDK Europe GmbH T +90 216 5 69 81 01 F +90 216 4 64 07 56 sales.turkey@eu.tdk.com

China

EPCOS (Shanghai) Ltd. T +86 21 22 19 15 00 F +86 21 22 19 15 99 sales.cn@epcos.com

Hong Kong

EPCOS Limited T +852 36 69 82 00 F +852 36 69 82 56 sales.cn@epcos.com

India, Bahrain, Bangladesh, Kuwait, Nepal, Oman, Qatar, Saudi Arabia, Sri Lanka, United Arab Emirates EPCOS India Private Ltd.

T +91 80 40 39 06 00 F +91 80 40 39 06 03 sales.in@epcos.com

Israel

TDK Sales Representative T +972 73 2676 317 sales.israel@eu.tdk.com

Japan

TDK Corporation T +81 3 68 52 73 00 inquiry@jp.tdk.com

Korea

EPCOS Korea LLC T +82 2 21 56 68 18 F +82 2 21 56 68 98 sales.kr@epcos.com

Malaysia

EPCOS RDC SDN. BHD. T +60 6 79 98 168 F +60 6 79 98 162 sales.asean@epcos.com

Philippines

c/o TDK Electronics Philippines Corporation T +63 49 541 31 41 66 30 +63 49 541 31 41 66 31 F +63 49 541 31 40 sales.asean@epcos.com

Singapore, Indonesia, Thailand, Vietnam EPCOS PTE. LTD. T +65 68 41 20 11 F +65 67 44 69 92

sales.asean@epcos.com

EPCOS COMPONENTS PTE. LTD. T +65 65 97 06 28

F +65 65 97 06 07 sales.asean@epcos.com

Taiwan

EPCOS Taiwan Co. Ltd. T +886 2 26 55 76 76 F +886 2 27 82 03 89 sales.tw@epcos.com

Americas

USA, Canada, Mexico EPCOS Inc. T +1 732 9 06 43 00 F +1 732 9 06 43 95 sales.usa@epcos.com

South America EPCOS do Brasil Ltda. T +55 11 32 89 95 99 Ext. 6851 F +55 11 32 89 99 40 sales.br@epcos.com

Australia

Australia, New Zealand TDK Sales Representative T +61 3 95 66 72 17 F +61 3 95 66 72 99 sales.au@epcos.com

Africa

Egypt TDK Europe GmbH T +90 216 5 69 81 01 F +90 216 4 64 07 56 sales.turkey@eu.tdk.com

Morocco, Tunisia TDK Electronics France SAS T +33 1 49 46 67 89 F +33 1 49 46 67 67 sales.france@eu.tdk.com

South Africa

TDK Sales Representative T +27 11 458 90 00 32 F +27 11 458 90 34 sales.southernafrica@epcos.com

01/17

The addresses of our worldwide distributors and regional sales offices are available at www.epcos.com/sales

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

[EPCOS / TDK](http://www.mouser.com/EPCOS):

[B66894GX187](http://www.mouser.com/access/?pn=B66894GX187) [B66894GX197](http://www.mouser.com/access/?pn=B66894GX197) [B66894GX192](http://www.mouser.com/access/?pn=B66894GX192) [B66894GX195](http://www.mouser.com/access/?pn=B66894GX195)