

STY50N105DK5

N-channel 1050 V, 0.110 Ω typ., 46 A MDmesh™ DK5 Power MOSFET in a Max247 package

Datasheet - production data

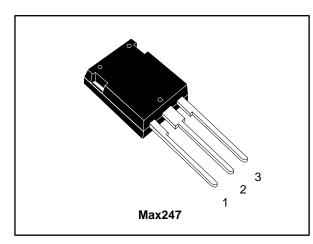
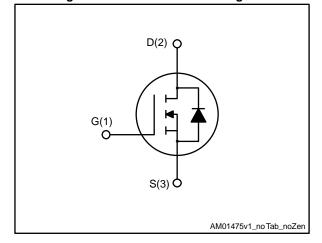



Figure 1: Internal schematic diagram

Features

Order code	V _{DS}	R _{DS(on)} max.	I _D	Ртот	
STY50N105DK5	1050 V	0.120 Ω	46 A	625 W	

- Fast-recovery body diode
- Best R_{DS(on)} x area
- Low gate charge, input capacitance and resistance
- 100% avalanche tested
- Extremely high dv/dt ruggedness

Applications

Switching applications

Description

This very high voltage N-channel Power MOSFET is part of the MDmesh $^{\text{TM}}$ DK5 fast recovery diode series. The MDmesh $^{\text{TM}}$ DK5 combines very low recovery charge (Qrr) and recovery time (trr) with an excellent improvement in $R_{\text{DS(on)}}$ * area and one of the most effective switching behaviors, ideal for half bridge and full bridge converters.

Table 1: Device summary

Order code	Marking	Packages	Packaging
STY50N105DK5	50N105DK5	Max247	Tube

Contents STY50N105DK5

Contents

1	Electric	al ratings	3
2	Electric	cal characteristics	4
	2.1	Electrical characteristics (curves)	6
3	Test cir	cuits	8
4	Packag	e information	9
	4.1	Max247 package information	9
5	Revisio	n history	11

STY50N105DK5 Electrical ratings

1 Electrical ratings

Table 2: Absolute maximum ratings

Symbol	Parameter	Value	Unit	
V _G s	Gate-source voltage	±30	V	
1-	Drain current (continuous) at T _C = 25 °C	46	Α	
lο	Drain current (continuous) at T _C = 100 °C	30	Α	
I _{DM} ⁽¹⁾	Drain current (pulsed)	184	Α	
P _{TOT}	Total dissipation at T _C = 25 °C	625	W	
dv/dt (2)	Peak diode recovery voltage slope	50	V/ns	
dv/dt (3)	MOSFET dv/dt ruggedness	50	V/ns	
Tj	Operating junction temperature range	55 to 150	°C	
T _{stg}	Storage temperature range -55 to 150			

Notes:

Table 3: Thermal data

Symbol	Parameter	Value	Unit
R _{thj-case}	Thermal resistance junction-case	0.2	۰۵۸۸
R _{thj-amb}	Thermal resistance junction-ambient 30		°C/W

Table 4: Avalanche characteristics

Symbol	Parameter	Value	Unit
Ias	Single pulse avalanche energy (pulse width limited by T _{JMAX})	16	Α
E _{AS}	Single pulse avalanche energy (starting T _J = 25°C, I _D = I _{AS} , V _{DD} = 50 V)	1550	mJ

⁽¹⁾Pulse width limited by safe operating area

 $^{^{(2)}}I_{SD} \leq 23$ A, di/dt ≤ 400 A/ μ s; V_{DS peak} \leq V(BR)DSS, V_{DD} = 525 V

 $^{^{(3)}}V_{DS} \le 840 \ V$

2 Electrical characteristics

(T_{CASE} = 25 °C unless otherwise specified)

Table 5: On /off states

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{(BR)DSS}	Drain-source breakdown voltage	$I_D = 1 \text{ mA}, V_{GS} = 0 \text{ V}$	1050			V
	Zara gata valtaga drain	$V_{DS} = 1050 \text{ V}, V_{GS} = 0 \text{ V}$			1	μΑ
IDSS	Zero gate voltage drain current	$V_{DS} = 1050 \text{ V}, V_{GS} = 0 \text{ V},$ $T_{C} = 125 \text{ °C}^{(1)}$			50	μΑ
I _{GSS}	Gate-body leakage current	$V_{GS} = \pm 20 \text{ V}, V_{DS} = 0 \text{ V}$			±10	μΑ
V _{GS(th)}	Gate threshold voltage	$V_{DS} = V_{GS}$, $I_D = 100 \mu A$	3	4	5	V
R _{DS(on)}	Static drain-source on- resistance	V _{GS} = 10 V, I _D = 23 A		0.110	0.120	Ω

Notes:

Table 6: Dynamic

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
Ciss	Input capacitance		-	6675	1	pF
Coss	Output capacitance	$V_{DS} = 100 \text{ V}, f = 1 \text{ MHz},$	-	370	ı	pF
Crss	Reverse transfer capacitance	V _G S = 0 V	-	10	1	pF
C _{o(tr)} ⁽¹⁾	Equivalent capacitance time related	V _{GS} = 0 V, V _{DS} = 0 to 840 V	1	630	ı	pF
C _{o(er)} ⁽²⁾	Equivalent capacitance energy related	VGS = 0 V, VDS = 0 10 040 V	ı	219	ı	
R_{G}	Intrinsic gate resistance f = 1 MHz open drain		-	3	ı	Ω
Q_g	Total gate charge	yate charge $V_{DD} = 840 \text{ V}, I_D = 46 \text{ A},$		204		nC
Qgs	Gate-source charge	V _{GS} = 10 V	-	36		nC
Q_{gd}	Gate-drain charge	(see Figure 15: "Test circuit for gate charge behavior")	-	133	-	nC

Notes:

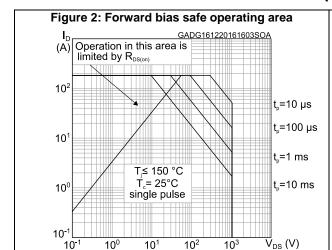
⁽¹⁾Defined by design, not subject to production test

 $^{^{(1)}}$ Time related is defined as a constant equivalent capacitance giving the same charging time as C_{oss} when V_{DS} increases from 0 to 80% V_{DSS} .

 $^{^{(2)}}$ Energy related is defined as a constant equivalent capacitance giving the same stored energy as C_{oss} when V_{DS} increases from 0 to 80% V_{DSS} .

Table 7: Switching times

<u> </u>						
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
t _{d(on)}	Turn-on delay time	$V_{DD} = 525 \text{ V}, I_D = 23 \text{ A},$	ı	40.6	1	ns
tr	Rise time	$R_G = 4.7 \Omega$, $V_{GS} = 10 V$	ı	64.5	1	ns
t _{d(off)}	Turn-off delay time	(see Figure 14: "Test circuit for resistive load switching times"	-	262	-	ns
t _f	Fall time	and Figure 19: "Switching time waveform")	-	49.5	-	ns


Table 8: Source drain diode

Symbol	Parameter Test conditions		Min.	Тур.	Max.	Unit
I _{SD}	Source-drain current		ı		46	Α
I _{SDM}	Source-drain current (pulsed)		ı		184	А
V _{SD} ⁽¹⁾	Forward on voltage	I _{SD} = 46 A, V _{GS} = 0 V	ı		1.5	V
t _{rr}	Reverse recovery time	$I_{SD} = 46 \text{ A}, V_{DD} = 60 \text{ V},$	ı	273		ns
Q_{rr}	Reverse recovery charge	di/dt = 100 A/μs (see <i>Figure 16: "Test circuit for</i>	-	3		μC
I _{RRM}	Reverse recovery current	inductive load switching and diode recovery times")	ı	23		Α
t _{rr}	Reverse recovery time	I _{SD} = 46 A, V _{DD} = 60 V,	-	477		ns
Qrr	Reverse recovery charge	di/dt = 100 A/ μ s, T _j = 150 °C (see <i>Figure 16: "Test circuit for</i>	-	10		μC
IRRM	Reverse recovery current	inductive load switching and diode recovery times")	-	42		А

Notes:

 $^{^{(1)}\}text{Pulsed:}$ pulse duration = 300 $\mu\text{s},$ duty cycle 1.5%

2.1 Electrical characteristics (curves)

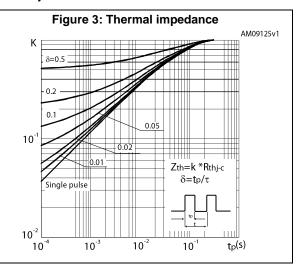
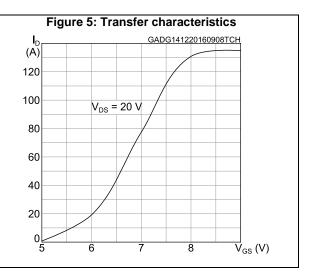
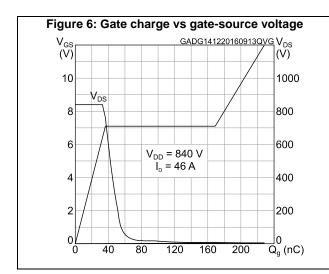
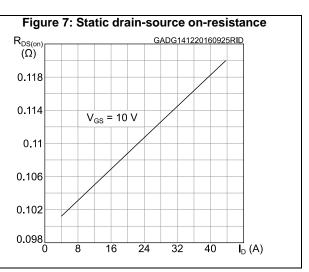
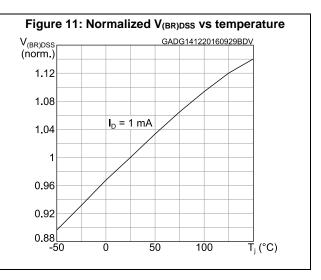
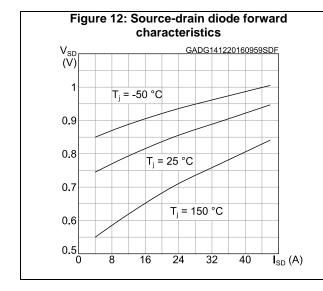
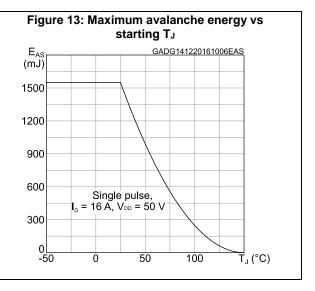





Figure 4: Output characteristics **I**_D (A) $V_{GS} = 9, 10 \text{ V}$ 120 $V_{GS} = 8 V$ 100 80 $V_{GS} = 7 V$ 60 40 20 $V_{GS} = 6 V$ 8 12 16 $\overline{V}_{DS}(V)$







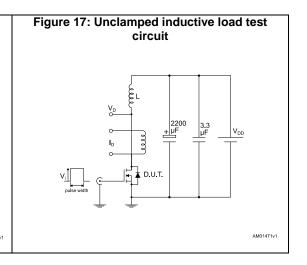
STY50N105DK5 Electrical characteristics

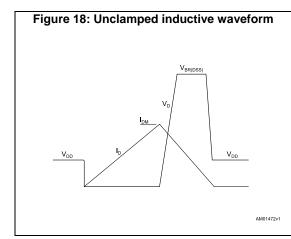
Figure 8: Capacitance variations C (pF) GADG141220160919CVR 10⁴ C_{ISS} 10^{3} f = 1 MHzCoss 10² C_{RSS} 10¹ 10^{0} $\bar{V}_{DS}\left(V\right)$ 10⁰ 10² 10³ 10⁻¹ 10¹

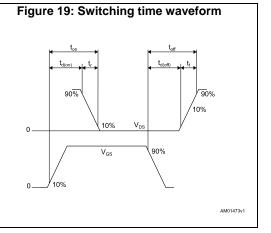
Test circuits STY50N105DK5

3 Test circuits

Figure 14: Test circuit for resistive load switching times


Figure 15: Test circuit for gate charge behavior


12 V 47 kΩ 100 nF D.U.T.


2200 V_G 47 kΩ 0 V_G

AM01489v1

Figure 16: Test circuit for inductive load switching and diode recovery times

STY50N105DK5 Package information

4 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: **www.st.com**. ECOPACK® is an ST trademark.

4.1 Max247 package information

HEAT-SINK PLANE Ε Gate D A1 *b1 b2* 3 BACK VIEW 0094330_Rev_D

Figure 20: Max247 package outline

Table 9: Max247 package mechanical data

Dim		mm	
Dim.	Min.	Тур.	Max.
A	4.70	-	5.30
A1	2.20	-	2.60
b	1.00	-	1.40
b1	2.00	-	2.40
b2	3.00	-	3.40
С	0.40	-	0.80
D	19.70	-	20.30
е	5.35	-	5.55
E	15.30	-	15.90
L	14.20	-	15.20
L1	3.70	-	4.30

STY50N105DK5 Revision history

5 Revision history

Table 10: Document revision history

Date	Revision	Changes
24-Jan-2013	1	First release
19-Dec-2016	2	Datasheet status promoted from preliminary to production data. Updated features, description and internal schematic diagram on cover page. Updated Section 1: "Electrical ratings" and Section 2: "Electrical characteristics". Minor text changes

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2016 STMicroelectronics - All rights reserved

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

STMicroelectronics: STY50N105DK5