

STUSB4710

Stand-alone USB PD controller (with short-to-VBUS protection)

QFN24

3

QFN16

- **Features**
- USB power delivery (PD) controller
- Type-C attach and cable orientation detection
- Single role: provider
- Full hardware solution no software
- I²C interface (optional connection to MCU)
- Support all USB PD profiles: up to 5 power data objects (PDO)
- Configurable start-up profiles
- Integrated V_{BUS} voltage monitoring
- Internal and/or external V_{BUS} discharge path
- Short -to-V_{BUS} protections on CC pins (22 V) and V_{BUS} pins (28 V)
- Wide power supply input:
 - V_{DD} = [4.1 V; 22 V]
- Temperature range: -40 °C up to 105 °C
- Fully compatible with:
 - USB Type-C[™] rev 1.2
 - USB PD rev 2.0
- Certification test ID: 1000125 (QFN24)

Applications

- AC adapters and power supplies for: computer, consumer or portable consumer applications
- Smart plugs and wall adapters
- Power hubs and docking stations
- Displays

Any Type-C source device

Description

The STUSB4710 is a new family of USB power delivery controllers communicating over Type-C^M configuration channel pins (CC) to negotiate a given amount of power to be sourced to an inquiring consumer device.

The STUSB4710 addresses provider/DFP devices such as notebooks, tablets and AC adapters. The device can handle any connections to a UFP or DRP without any MCU attachment support, from the device attachment to power negotiation, including V_{BUS} discharge and protections.

Product status link STUSB4710

1 Functional description

57

The STUSB4710 is an autonomous USB power delivery controller optimized as a provider. It offers an open-drain GPIO interface to make direct interconnection with a power regulation stage.

The STUSB4710 offers the benefits of a full hardware USB PD stack allowing robust and safe USB PD negotiation in line with USB PD standard. The STUSB4710 is ideal for provider applications in which digital or software intelligence is limited or missing.

The STUSB4710 main functions are:

- Detect the connection between two USB ports (attach detection)
- Establish a valid host to the device connection
- Discover and configure V_{BUS}: Type-C low, medium or high current mode
- Resolve cable orientation
- Negotiate a USB power delivery contract with a PD capable device
- Configure the power source accordingly
- Monitor V_{BUS}, manage transitions, handle protections and ensure user and device safety

Additionally, the STUSB4710 offers 5 customizable power data objects (PDOs), 5 general purpose I/Os, an integrated discharge path, and is natively robust to high voltage peaks.

Figure 1. Functional block diagram

2 Inputs/outputs

2.1 Pinout

Figure 2. STUSB4710AQTR pin connections (top view)

Figure 3. STUSB4710AQ1TR pin connections (top view)

2.2 Pin list

57

Table 1.	Pin	function	list
----------	-----	----------	------

Name	Туре	Description	Connection
CC1	20 V analog IO	Configuration channel 1	Type-C receptacle A5
CC2	20 V analog IO	Configuration channel 2	Type-C receptacle B5
SCL	DI	I ² C clock	To I ² C master – ext. pull-up
SDA	DI/OD	I ² C data input/output – active low open- drain	To I ² C master – ext. pull-up
GND	Power	Ground	
SEL_PDO3	OD	PD03 select flag	
SEL_PDO2	OD	PD02 select flag	
ADDR0	Analog	I ² C address 0 bit	
SEL_PDO4	OD	PD04 select flag	
SEL_PDO5	OD	PD05 select flag	
VBUS_SENSE	20 V AI	V_{BUS} voltage monitoring and discharge path	From V _{BUS}
VBUS_DISCH	Output	External discharge control signal	
VBUS_EN_SRC	20 V OD	V_{BUS} source power path enable – active low open-drain	To switch or power system – ext. pull-up
VREG_1V2	Analog	1.2 V regulator output	1 µF typ. decoupling capacitor
VREG_2V7	Analog	2.7 V regulator output	1 µF typ. decoupling capacitor
VDD	20 V power	Main power supply (USB power line)	From V _{BUS} (system side)
EP	Exposed pad	Exposed pad is connected to ground	To ground

Table 2. Legend

Туре	Description
D	Digital
А	Analog
0	Output pad
I.	Input pad
IO	Bidirectional pad
OD	Open drain output
PD	Pull-down
PU	Pull-up
PWR	Power supply
GND	Ground

2.3 Pin description

2.3.1 CC1 / CC2

CC1 and CC2 are the configuration channel pins used for connection and attachment detection, plug orientation determination and system configuration management across USB Type-C cable. CC1/CC2 are HiZ during reset.

2.3.2 I²C interface pins

Table 3. I²C interface pin list

Name	Description
SCL	I ² C clock – needs external pull-up
SDA	I ² C data – needs external pull-up

2.3.3 VBUS_SENSE

This input pin is used to sense V_{BUS} presence, monitor V_{BUS} voltage and discharge V_{BUS} on USB Type-C receptacle side.

2.3.4 VBUS_EN_SRC

In source power role, this pin allows the outgoing V_{BUS} power to be enabled when the connection to a sink is established and V_{BUS} is in the valid operating range. The open-drain output allows a PMOS transistor to be driven directly. The logic value of the pin is also advertised in a dedicated I²C register bit.

2.3.5 VDD

 V_{DD} is the main power supply for applications powered by $V_{\text{BUS}}.$

This pin can be used to sense the voltage level of the main power supply providing V_{BUS} . It allows UVLO and OVLO voltage thresholds to be considered independently on VDD pin as additional conditions to enable the V_{BUS} power path through VBUS_EN_SRC pin.

2.3.6 GND

Ground.

2.3.7 ADDR0

At start-up, this pin is latched to set I²C device address 0 bit.

2.3.8 VREG2V7

This pin is used for external decoupling of 2.7 V internal regulator only . Recommended decoupling capacitor: 1 μ F typ. (0.5 μ F min.; 10 μ F max.). This pin must not be used to supply any external component.

2.3.9 VBUS_DISCH

Control signal for external VBUS_DISCH path.

2.3.10 SEL_PDO [5:2]

These 4 output signals are asserted (active low) respectively when PDO2, PDO3, PDO4 and PDO5 are selected by the attached sink. These signals are used to pilot the power management unit.

3 Block descriptions

3.1 CC interface

The STUSB4710 controls the connection to the configuration channel (CC) pins, CC1 and CC2, through two main blocks, the CC line interface block and the CC control logic block.

The CC lines interface block is used to:

- Configure the termination mode on the CC pins relative to the power mode supported, i.e. pull-up for source power role
- Monitor the CC pin voltage values relative to the attachment detection thresholds
- Protect the CC pins against over voltage

The CC control logic block is used to:

- Execute the Type-C FSM relative to the Type-C power mode supported
- Determine the electrical state for each CC pins relative to the detected thresholds
- Evaluate the conditions relative to the CC pin states and V_{BUS} voltage value to transition from one state to another in the Type-C FSM
- Detect and establish a valid source-to-sink connection
- Determine the attached mode: source, accessory
- Determine cable orientation to allow external routing of the USB super speed data
- Manage V_{BUS} power capability: USB default, Type-C medium or Type-C high current mode
- Handle hardware faults

The CC control logic block implements the Type-C FSM's corresponding to source power role with accessory support.

3.2 BMC

This block is the physical link between USB PD protocol layer and CC pin. In TX mode, it converts the data into bi-phase mark coding (BMC), and drives the CC line to correct voltages. In RX mode, it recovers BMC data from the CC line, and converts to baseband signaling for the protocol layer.

3.3 Protocol layer

The protocol layer has the responsibility to manage the messages from/to the physical layer. It automatically manages the protocol receive timeouts, the message counter, the retry counter and the GoodCRC messages. It communicates with the internal policy engine.

3.4 Policy engine

The policy engine implements the power negotiation with the connected device according to its source role, it implements the state machine that controls protocol layer forming and scheduling the messages.

The policy engine uses the protocol layer to send/receive messages.

The policy engine interprets the device policy manager's input in order to implement policy for port and directs the protocol layer to send appropriate messages.

3.5 Device policy manager

The device policy manager manages the power resources.

3.6 VBUS power path control

3.6.1 VBUS monitoring

The V_{BUS} monitoring block supervises (from the VBUS_SENSE input pin) the V_{BUS} voltage on the USB Type-C receptacle side.

This block is used to check that V_{BUS} is within a valid voltage range:

- To establish a valid source-to-sink connection according to USB Type-C standard specification
- To enable safely the V_{BUS} power path through VBUS_EN_SRC pin

It allows detection of unexpected V_{BUS} voltage conditions such as undervoltage or overvoltage relative to the valid V_{BUS} voltage range. When such conditions occur, the STUSB4710 reacts as follows:

- At attachment, it prevents the source-to-sink connection and the V_{BUS} power path assertion
- After attachment, it deactivates the source-to-sink connection and disables the V_{BUS} power path. The device goes into error recovery state.

The V_{BUS} voltage value is automatically adjusted at attachment and at each PDO transition. The monitoring is then disabled during T_PDO_transition (default 280 ms changed through NVM programming). Additionally, if a transition occurs to a lower voltage, the discharge path is activated during this time.

The valid V_{BUS} voltage range is defined from the V_{BUS} nominal voltage by a high threshold voltage and a low threshold voltage whose minimal values are respectively V_{BUS}+5% and V_{BUS}-5%. The nominal threshold limits can be shifted by a fraction of V_{BUS} from +1% to +15% for the high threshold voltage and from -1% to -15% for the low threshold voltage. This means the threshold limits can vary from V_{BUS}+5% to V_{BUS}+20% for the high limit and from V_{BUS}-5% to V_{BUS}-20% for the low limit.

The threshold limits are preset by default in the NVM with different shift coefficients (see Section 8.3 Electrical and timing characteristics). The threshold limits can be changed independently through NVM programming (see Section 8.3 Electrical and timing characteristics) and also by software during attachment through the I²C interface (see Section 6 I²C register map).

3.6.2 VBUS discharge

The monitoring block handles also the internal V_{BUS} discharge path connected to the VBUS_SENSE input pin. The discharge path is activated at detachment, or when the device goes into the error recovery state (see Section 3.8 Hardware fault management).

The V_{BUS} discharge path is enabled by default in the NVM and can be disabled through NVM programming only (see Section 4 User-defined startup configuration). Discharge time duration (T_PDO_transition and T_Transition to 0 V) are also preset by default in the NVM (see Section 8.3 Electrical and timing characteristics). The discharge time duration can be changed through NVM programming (see Section 4 User-defined startup configuration) and also by software through the I²C interface (see Section 6 I²C register map).

3.6.3 V_{BUS} power path assertion

The STUSB4710 can control the assertion of the V_{BUS} power path on USB Type-C port, directly or indirectly, through VBUS_EN_SRC pin.

The following table summarizes the configurations and the conditions that determine the logic value of VBUS_EN_SRC pin during system operation.

Din	Electrical		Commont			
Pin	value	Attached state	V _{DD} monitoring	V _{BUS} monitoring	Comment	
		Attached.SRC		$V_{\mbox{\scriptsize BUS}}$ within valid voltage		
VBUS_EN_SRC		UnorientedDebug	VDD > UVLO if	range	The signal is apported	
	0	Accessory.SRC	VDD_UVLO enabled	if VBUS _VALID_RANGE enabled	only if all the valid	
		OrientedDebug	and/or VDD < OVLO if VDD OVLO enabled	or V _{BUS} > UVLO if	operation conditions are met.	
		Accessory.SRC		VBUS _VALID_RANGE disabled		
				V _{BUS} is out of valid voltage range		
			VDD < UVLO if	if	The signal is de-	
HiZ		Any other state	VDD_UVLO enabled and/or VDD > OVLO if	VBUS_VALID_RANGE enabled	asserted when at least one non-valid	
			VDD_OVLO enabled	or V _{BUS} < UVLO if	met.	
				VBUS _VALID_RANGE disabled		

Table 4. Conditions for VBUS power path assertion

Note: Activation of the UVLO and OVLO threshold detections can be done through NVM programming (see Section 4 User-defined startup configuration) and also by software through the I²C interface (see Section 6 I²C register map). When the UVLO and/or OVLO threshold detection is activated, the VBUS_EN_SRC pin is asserted only if the device is attached and the valid threshold conditions on V_{DD} are met. Once the VBUS_EN_SRC pin is asserted, the V_{BUS} monitoring is done on VBUS_SENSE pin instead of the V_{DD} pin.

3.7 High voltage protection

The STUSB4710 can be safely used in systems or connected to systems that handle high voltage on the V_{BUS} power path. The device integrates an internal circuitry on the CC pins that tolerates high voltage and ensures a protection up to 22 V in case of unexpected short circuit with V_{BUS} or in case of connection to a device supplying high voltage on V_{BUS} .

3.8 Hardware fault management

The STUSB4710 handles hardware fault conditions related to the device itself and the V_{BUS} power path during system operation.

When such conditions occur, the circuit goes into a transient error recovery state named ErrorRecovery in the Type-C FSM. When entering in this state, the device de-asserts the VBUS power path by disabling the VBUS_EN_SRC pin, and it removes the terminations from the CC pins during several tens of milliseconds. Then, it transitions to the unattached source state.

The STUSB4710 goes into error recovery state when at least one condition listed below is met:

- If an overtemperature is detected, the "THERMAL_FAULT" flag is asserted.
- If an internal pull-up voltage on CC pins is below UVLO threshold, the "VPU_VALID" flag is asserted.
- If an overvoltage is detected on the CC pins, the "VPU_OVP_FAULT" flag is asserted.
- If the V_{BUS} voltage is out of the valid voltage range during attachment, the "VBUS_VALID" flag is asserted.
- If an undervoltage is detected on the V_{DD} pin during attachment when UVLO detection is enabled, the "VDD_UVLO_DISABLE" flag is asserted.
- If an overvoltage is detected on the V_{DD} pin during attachment when OVLO detection is enabled, the "VDD_OVLO_DISABLE" flag is asserted.

The I^2C register bits mentioned above in quotes give either the state of the hardware fault when it occurs or the setting condition to detect the hardware fault.

3.9 Accessory mode detection

The STUSB4710 supports the detection of audio accessory mode and debug accessory mode as defined in the USB Type-C standard specification source power role with accessory support.

3.9.1 Audio accessory mode detection

The STUSB4710 detects an audio accessory device when both the CC1 and CC2 pins are pulled down to ground by a Ra resistor from the connected device. The audio accessory detection is advertised through the CC_ATTACHED_MODE bits of the I²C register CC_CONNECTION_STATUS.

3.9.2 Debug accessory mode detection

The STUSB4710 detects a connection to a debug and test system (DTS) when it operates either in sink power role or source power role. The debug accessory detection is advertised by the DEBUG1 and DEBUG2 pins as well as through the CC ATTACHED MODE bits of the I²C register CC CONNECTION STATUS.

In source power role, a debug accessory device is detected when both the CC1 and CC2 pins are pulled down to ground by a Rd resistor from the connected device. The orientation detection is performed in two steps as described in the table below. The DEBUG2 pin is asserted to advertise the DTS detection and the A_B_SIDE pin indicates the orientation of the connection. The orientation detection is advertised through the TYPEC_FSM_STATE bits of the I²C register CC_OPERATION_STATUS.

4 User-defined startup configuration

4.1 Parameter overview

The STUSB4710 has a set of user-defined parameters that can be customized by NVM re-programming and/or by software through I²C interface. It allows changing the preset configuration of USB Type-C and PD interface and to define a new configuration to meet specific customer requirements addressing various applications, use cases or specific implementations.

The NVM re-programming overrides the initial default setting to define a new default setting that is used at power-up or after a reset. The default value is copied at power-up, or after a reset, from the embedded NVM into dedicated I²C register bits. The NVM re-programming is possible few times with a customer password.

Feature	Parameter	Value	Default
	Voltage	5 V	5 V
PDOT	Current	Configurable – defined by PDO1_I [3:0]	3 A
	Voltage	Configurable – defined by PDO2_V [1:0]	9 V
FDOZ	Current	Configurable – defined by PDO2_I [3:0]	3 A
PDO3	Voltage	Configurable – defined by PDO3_V [1:0]	12 V
FD03	Current	Configurable – defined by PDO3_I [3:0]	3 A
	Voltage	Configurable – defined by PDO4_V [1:0]	15 V
FD04	Current	Configurable – defined by PDO4_I [3:0]	3 A
PDO5	Voltage	Configurable – defined by PDO5_V [1:0]	20 V
PDO5	Current	Configurable – defined by PDO5_I [3:0]	2.25 A

Table 5. PDO configurations in NVM

When a default value is changed during system boot by software, the new settings apply as long as the STUSB4710 is being run and until it is changed again. But after power-off and power-up, or after a hardware reset, the STUSB4710 takes back default values defined in the NVM.

4.2 PDO – voltage configuration in NVM

PDO2_V [1:0], PDO3_V [1:0], PDO4_V [1:0] and PDO5_V [1:0] can be configured with the following values:

Table 6. PDO NVM voltage configuration

Value	Configuration
2b00	9 V
2b01	15 V
2b10	PDO_FLEX_V1
2b11	PDO_FLEX_V2

PDO_FLEX_V1 and PDO_FLEX_V2 are defined in a specific 10-bit register, value being expressed in 50 mV units.

For instance:

PDO_FLEX_V1 = 10b0100100010 \rightarrow 14.5 V

• PDO_FLEX_V2 = 10b0110000110 \rightarrow 19.5 V

4.3 PDO – current configuration in NVM

PDO1_I [3:0], PDO2_I [3:0], PDO3_I [3:0], PDO4_I [3:0] and PDO5_I [3:0] can be configured with the following fixed values:

Value	Configuration
4b0000	PDO_FLEX_I
4b0001	1.50 A
4b0010	1.75 A
4b0011	2.00 A
4b0100	2.25 A
4b0101	2.50 A
4b0110	2.75 A
4b0111	3.00 A
4b1000	3.25 A
4b1001	3.50 A
4b1010	3.75 A
4b1011	4.00 A
4b1100	4.25 A
4b1101	4.50 A
4b1110	4.75 A
4b1111	5.00 A

Table 7. PDO NVM current configuration

PDO_FLEX_I is defined in a specific 10-bit register, value being expressed in 10 mA units. For instance:

PDO_FLEX_I = 10b0011100001 \rightarrow 2.25 A

4.4 Monitoring configuration in NVM

- T_PDO_Transition can be configured from 20 to 300 ms by increments of 20 ms (0 is not recommended).
 Default value is 240 ms.
- T_Transition_to_0V can be configured from 84 to 1260 ms by increments of 84 ms (0 is not recommended).
 Default value is 168 ms.
- Vshift_High can be configured from (5 to 20%). Default value ranges from 8% to 12%.
- Vshift _Low can be configured from (5 to 20%). Default value is 10% for all PDO.

4.5 Discharge configuration in NVM

Both internal and external discharge paths are enabled by default. VBUS_DISCH control pin is configured to drive a PMOS by default (active low).

5 I²C interface

5.1 Read and write operations

The I²C interface is used to configure, control and read the status of the device. It is compatible with the Philips I²C Bus® (version 2.1). The I²C is a slave serial interface based on two signals:

- SCL serial clock line: input clock used to shift data
- SDA serial data line: input/output bidirectional data transfers

A filter rejects the potential spikes on the bus data line to preserve data integrity.

The bidirectional data line support transfers up to 400 Kbit/s (fast mode). The data are shifted to and from the chip on the SDA line, MSB first.

The first bit must be high (START) followed by the 7-bit device address and the read/write control bit. Two 7-bit device addresses are available for the STUSB4710 thanks to external programming of DevADDR0, through ADDR0, pin setting. It allows two STUSB4710 devices to be connected on the same I²C bus. ADDR is not available for all configurations.

The device address format:

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
DevADDR6	DevADDR5	DevADDR4	DevADDR3	DevADDR2	DevADDR1	DevADDR0	R/W
0	1	0	1	0	0	ADDR0	0/1

The register address format:

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
RegADDR7	RegADDR6	RegADDR5	RegADDR4	RegADDR3	RegADDR2	RegADDR1	RegADDR0

The register data format:

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
DATA7	DATA6	DATA5	DATA4	DATA3	DATA2	DATA1	DATA0

Figure 4. Read operation

Start bit= SDA falling when S€⊔ Stop bit= SDA rising when S€⊔ Restart bi⊫ start after a start Acknowledgæ SDA forced low during a SCL clock

GAMG20170104EC-0003

Figure 5. Write operation

Start	Device addr 7 bits	W	А	Reg address 8 bits	А	Reg data 8 bits	А	Reg data 8 bits	A	Reg data 8 bits	А	Stop
Start bit = SDA falling when SCL = 1							Address n+1		Address n+2			

Start bit = SDA falling when SCL = 1 Stop bit = SDA rising when SCL = 1 Restart bit = start after a start

GAMG20170104EC-0004

Timing specifications 5.2

The device uses a standard slave I²C channel at speed up to 400 kHz.

Table 8. I²C timing parameters - VDD = 5 V

Symbol	Parameter	Min.	Тур.	Max.	Unit
F _{scl}	SCL clock frequency	0	-	400	kHz
t _{hd,sta}	Hold time (repeated) START condition	0.6	-	-	μs
t _{low}	LOW period of the SCL clock	1.3	-	-	μs
t _{high}	HIGH period of the SCL clock	0.6	-	-	μs
t _{su,dat}	Setup time for repeated START condition	0.6	-	-	μs
t _{hd,dat}	Data hold time	0.04	-	0.9	μs
t _{su,dat}	Data setup time	100	-	-	μs
tr	Rise time of both SDA and SCL signals	20 + 0.1 C _b	-	300	ns
t _f	Fall time of both SDA and SCL signals	20 + 0.1 C _b	-	300	ns
t _{su,sto}	Setup time for STOP condition	0.6	-	-	μs
t _{buf}	Bus free time between a STOP and START condition	1.3	-	-	μs
Cb	Capacitive load for each bus line	-	-	400	pF

GAMG20170104EC-0005

57

6 I²C register map

Address	Register name	Access	Description
00h			
to	Reserved	RO	Do not use
0Ah			
0Bh	ALERT_STATUS	RC	Alert register linked to transition registers
0Ch	ALERT_STATUS_MASK_CTRL	R/W	Interrupt mask on ALERT_STATUS register
0Dh	CC_CONNECTION_STATUS_TRANS	RC	Alerts on transition in CC_CONNECTION_STATUS register
0Eh	CC_CONNECTION_STATUS	RO	CC connection status
0Fh	MONITORING_STATUS_TRANS	RC	Alerts on transition in MONITORING_STATUS register
10h	MONITORING_STATUS	RO	Gives status on V_{BUS} voltage monitoring
11h	Reserved	RO	Do not use
12h	HW_FAULT_STATUS_TRANS	RC	Alerts on transition in HW_FAULT_STATUS register
13h	HW_FAULT_STATUS	RO	Hardware faults status
14h			
to	Reserved	RO	Do not use
17h			
18h	CC_CAPABILITY_CTRL	R/W	Allows the CC capabilities to be changed
19h			
to	Reserved	RO	Do not use
22h			
23h	RESET_CTRL	R/W	Controls the device reset by software
24h	Reserved	RO	Do not use
25h	VBUS_DISCHARGE_TIME_CTRL	R/W	Parameters defining V _{BUS} discharge time
26h	VBUS_DISCHARGE_CTRL	R/W	Controls the V_{BUS} discharge path
27h	VBUS_ENABLE_STATUS	RO	V _{BUS} power path activation status
2Eh	VBUS_MONITORING_CTRL	R/W	Allows the monitoring conditions of V_{BUS} voltage to be changed
19h			
to	Reserved	RO	Do not use
1Eh			
71h	SRC_PDO1	R/W	PDO1 capabilities configuration
75h	SRC_PDO2	R/W	PDO2 capabilities configuration
79h	SRC_PDO3	R/W	PDO3 capabilities configuration
7Dh	SRC_PDO4	R/W	PDO4 capabilities configuration
81h	SRC_PDO5	R/W	PDO5 capabilities configuration
91h	SRC_RDO	RO	PDO request status

Table 9. STUSB4710 register map overview

Table 10. Register access legend

Access code	Expanded name	Description
RO	Read only	Register can be read only
R/W	Read / write	Register can be read or written
RC	Read and clear	Register can be read and is cleared after read

7 Typical use cases

57

7.1 Power supply – buck topology

Figure 7. Power supply - buck topology

The STUSB4710 offers the possibility to have up to 5 PDOs using (GPIO0 to GPIO3). For example PDO1:5V 3A (no GPIO grounded), PDO2:9V 3A (GPIO0 to GND), PDO3:12V 3A (GPIO1 to GND), PDO4:15 volt (GPIO2 to GND), PDO5: 20 volt GPIO3 to GND).

Table 11. Resistor value

PDO	V _{OUT}	Computation	Resistor value (Ω)
-	-	R1	200 k
5	20	$R_2 = \frac{R_1 \cdot 1.22}{V_{OUT} - 1.22} \tag{1}$	13 k
4	15	$R_3 = \frac{R_1 \cdot 1.22}{V_{OUT} - 1.22} - R_2 \tag{2}$	4k7
3	12	$R_4 = \frac{R_1 \cdot 1.22}{V_{OUT} - 1.22} - R_2 - R_3 \tag{3}$	4k87
2	9	$R_5 = \frac{R_1 \cdot 1.22}{V_{OUT} - 1.22} - R_3 - R_4 \tag{4}$	8k66
1	5	$R_6 = \frac{R_1 \cdot 1.22}{V_{OUT} - 1.22} - R_2 - R_3 - R_4 - R_5 \tag{5}$	33 k

The STUSB4710 offers the possibility to have up to 5 PDOs using GPIO0 to GPIO3. For example PDO1 (5 V; 3 A) (no Sel_PDO grounded), PDO2 (9 V; 3 A) (GPIO0 to GND), PDO3 (15 V; 3 A) (GPIO1 to GND).

Figure 8. Flyback topology

Table 12. Resistor value

PDO	V _{OUT}	Computation	Resistor value (Ω)
-	-	R1	100 k
4	15	$R_3 = \frac{R_1 \cdot 1.24}{V_{OUT} - 1.24} \tag{6}$	8k87
3	12	$R_4 = \frac{R_1 \cdot 1.24}{V_{OUT} - 1.24} - R_3 \tag{7}$	2k49
2	9	$R_5 = \frac{R_1 \cdot 1.24}{V_{OUT} - 1.24} - R_3 - R_4 \tag{8}$	4k42
1	5	$R_6 = \frac{R_1 \cdot 1.24}{V_{OUT} - 1.24} - R_3 - R_4 - R_5 \tag{9}$	16k2

57

8 Electrical characteristics

8.1 Absolute maximum ratings

All voltages are referenced to GND.

Table 13. Absolute maximum ratings

Symbol	Parameter	Value	Unit
V _{DD}	Supply voltage	28	V
V _{CC1} , V _{CC2}	High voltage on CC pins	22	V
V _{VBUS_EN_SRC} V _{VBUS_SENSE} V _{VBUS_} DISCH	High voltage on V_{BUS} pins	28	V
$V_{SCL},V_{SDA},V_{SEL_PDO[5:2]}$	Operating voltage on I/O pins	-0.3 to 6	V
T _{STG}	Storage temperature	-55 to 150	°C
TJ	Maximum junction temperature	145	°C
ESD	HBM	4	kV
ESD	CDM	1.5	κν

8.2 Operating conditions

Table 14. Operating conditions

Symbol	Parameter	Value	Unit
V _{DD}	Supply voltage	4.1 to 22	V
V _{CC1} , V _{CC2}	CC pins ⁽¹⁾	-0.3 to 5.5	V
V _{VBUS_SENSE}			
V _{VBUS_EN_SRC}	High voltage pins	0 to 22	V
V _{VBUS_DISCH}			
$V_{SCL}, V_{SDA}, V_{SEL_PDO[5:2]}$	Operating voltage on I/O pins	0 to 4.5	V
T _A	Operating temperature	-40 to 105	°C

1. Transient voltage on CC1 and CC2 pins are allowed to go down to -0.3 during BMC communication from connected devices.

8.3 Electrical and timing characteristics

Unless otherwise specified: V_DD = 5 V, T_A = +25 °C, all voltages are referenced to GND.

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
	Current	Device Idle as SOURCE (not connected, no	communication)			
IDD(SRC)	consumption	V _{DD} @ 5.0 V	-	188	_	μA
	Standby	Device standby (not connected, low power)			1	
I _{STDBY}	current consumption	V _{DD} @ 5.0 V	-	53	_	μA
CC1 and C	CC2 pins				2	-
I _{P-USB}		CC pin voltage	-20%	80	+20%	μA
I _{P-1.5}	CC current sources	V _{CC} = -0.3 to 2.6 V	-8%	180	+8%	μA
I _{P-3.0}		-40° < T _A < +105°	-8%	330	+8%	μA
V _{CCO}	CC open pin voltage	CC unconnected, V _{DD} =3.0 to 5.5 V	2.75	-	_	V
R _d	CC pull- down resistors	-40° < T _A < +105°	-10%	5.1	+10%	kΩ
	CC pin	External I _P =180 µA applied into CC	_	_	1.2	V
V _{CCDB-1.5} voltage	voltage in dead battery	External I _P =330 µA applied into CC			-	
CCDB-3.0 condition	condition	$(V_{DD} = 0, dead battery function enabled)$	-	_	2	V
R _{INCC}	CC input impedance	Pull-up and pull-down resistors off	200	-	_	kΩ
		Max. R_a detection by DFP at $I_P = I_{P - USB}$,				
V _{TH0.2}	Detection threshold 1	min. I_{P_USB} detection by UFP on $R_d,$	0.15	0.2	0.25	V
		min. CC voltage for connected UFP				
V _{TH0.4}	Detection threshold 2	Max R_a detection by DFP at $I_P = I_{P-1.5}$	0.35	0.4	0.45	V
V _{TH0.66}	Detection threshold 3	Min $I_{P_{1.5}}$ detection by UFP on R_d	0.61	0.66	0.7	V
V _{TH0.8}	Detection threshold 4	Max. R_a detection by DFP at $I_P = I_{P-3.0}$	0.75	0.8	0.85	V
V _{TH1.23}	Detection threshold 5	Min. $I_{P_{3.0}}$ detection by UFP on R_d	1.16	1.23	1.31	V
V _{TH1.6}	Detection threshold 6	Max R _d detection by DFP at I _P = I _{P-USB} and I _P = I _{P-1.5}	1.5	1.6	1.65	V
V _{TH2.6}	Detection threshold 7	Max. R_d detection by DFP at $I_{P-3.0}$, max. CC voltage for connected UFP	2.45	2.6	2.75	V
V _{BUS} mon	itoring and drivi	ing			1	
V _{THUSB}	V _{BUS} presence threshold		3.8	3.9	4	V
	V _{BUS} safe	Programmable threshold (from 0.6 to 1.8 V)	0.5	0.6	0.7	
V _{TH0V}	0V threshold (vSafe0V)	Default V _{THOV} = 0.6 V	0.8	0.9	1	V

Table 15. Electrical characteristics

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit		
VTUOV	V _{BUS} safe	Programmable threshold (from 0.6 to 1.8 V)	1.1	1.2	1.3	V		
V THUV	(vSafe0V)	Default V _{THOV} = 0.6 V	1.7	1.8	1.9	v		
R _{DISUSB}	V _{BUS} discharge resistor		600	700	800	Ω		
T _{DISUSB}	V _{BUS} discharge time to 0 V	Default T_{DISUSB} = 840 ms. The coefficient $T_{DISPARAM}$ is programmable by NVM	70 *T _{DISPA} RAM	84 *T _{DISPA} RAM	100 *T _{DISPA} RAM	ms		
T _{DISUSB}	V _{BUS} discharge time to PDO	Default T_{DISUSB} = 200 ms The coefficient $T_{DISPARAM}$ is programmable by NVM	20 *T _{DISPA} RAM	24 *T _{DISPA} RAM	28 *T _{DISPA} RAM	ms		
V _{MONUSB} H	V _{BUS} monitoring high voltage threshold	V_{BUS} = nominal target value Default $V_{MONUSBH}$ = V_{BUS} +10% The threshold limit is programmable by NVM from V_{BUS} +5% to V_{BUS} +20%	_	V _{BUS} +10%	_	V		
V _{MONUSB} L	V _{BUS} monitoring low voltage threshold	V_{BUS} = nominal target value Default $V_{MONUSBL}$ = V_{BUS} -10% The threshold limit is programmable by NVM from V_{BUS} -20% to V_{BUS} -5%	_	V _{BUS} -10%	_	V		
Digital inpu	ut/output (SCL,	SDA)						
V _{IH}	High level input voltage		1.2	_	-	V		
V _{IL}	Low level input voltage		-	_	0.35	V		
V _{OL}	Low level output voltage	loh = 3 mA	_	_	0.4	V		
20 V open	20 V open-drain outputs (VBUS_EN_SRC)							
V _{OL}	Low level output voltage	loh = 3 mA	_	_	0.4	V		

9 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK packages, depending on their level of environmental compliance. ECOPACK specifications, grade definitions and product status are available at: www.st.com. ECOPACK is an ST trademark.

9.1 QFN24 EP 4x4 mm package information

Figure 9. QFN24 EP 4x4 mm package outline

Symbol	mm			
	Min.	Тур.	Max.	
A	0.80	0.90	1.00	
A1	0.00	0.02	0.05	
A3		0.20 Ref.		
b	0.18	0.25	0.30	
D	3.90	4.00	4.10	
D2	2.55	2.70	2.80	
E	3.90	4.00	4.10	
E2	2.55	2.70	2.80	
e	0.50			
k	0.20	-	-	
L	0.30	0.40	0.50	

Table 16. QFN24 EP 4x4 mm package mechanical data

Table 17. Tolerance of form and position

Symbol	mm
ааа	0.05
bbb	0.10
ссс	0.10
ddd	0.05
eee	0.08

Figure 10. QFN24 EP 4x4 mm recommended footprint

9.2 QFN16 (3x3x0.55) package information

57

Symbol		mm	
Symbol	Min.	Тур.	Max.
А	0.5		0.65
A1	0		0.05
b	0.18	0.25	0.30
D		3.00 BSC	
E		3.00 BSC	
e		0.50	
L	See variations		
aaa			0.15
bbb			0.10
ссс			0.10
ddd			0.05
eee			0.08
n		16	
nD		4	
nE		4	
	L		
Option 1	0.30		0.50
Option 2	0.40		0.60

Table 18. QFN16 (3x3x0.55) mechanical data

Note:

N is the total number of terminals. nD and nE refer to the number of terminals on D and E side. Dimensions b applies to metallized terminal and is measured between 0.15mm and 0.30 mm from the terminal tip. If the terminal has the optional radius on the other end of the terminal, the dimension b should not be measured on that radius area respectively.

9.3 Thermal information

	Table 1	9. Theri	mal info	rmation
--	---------	----------	----------	---------

Package	Symbol Parameter Value		Unit	
QFN24 EP	R _{θJA}	Junction-to-ambient 37		
	R _{θJC}	Junction-to-case thermal resistance	5	°CAN/
QFN16	R _{θJA}	Junction-to-ambient thermal resistance	78	C/W
	R _{θJC}	Junction-to-case thermal resistance	30	

9.4 Packing information

57

Figure 12. Reel information

Table 20. Tape dimensions

Package	Pitch	Carrier width	Reel
QFN 4x4 - 24L	8 mm	12 mm	13"

10 Terms and abbreviations

57

Term	Description
A0000000/	Audio adapter accessory mode. It is defined by the presence of Ra/Ra on the CC1/CC2 pins.
modes	Debug accessory mode. It is defined by the presence of Rd/Rd on CC1/CC2 pins in source power role or Rp/Rp on CC1/CC2 pins in sink power role.
DFP	Downstream facing port, associated with the flow of data in a USB connection. Typically, the ports on a host or the ports on a hub to which devices are connected. In its initial state, the DFP sources V_{BUS} and V_{CONN} and supports data.
DRP	Dual-role port. A port that can operate as either a source or a sink. The port role may be changed dynamically.
Sink	Port asserting Rd on the CC pins and consuming power from the V_{BUS} ; most commonly a device.
Source	Port asserting Rp on the CC pins and providing power over the V_{BUS} ; usually a host or hub DFP.
UFP	Upstream facing port, specifically associated with the flow of data in a USB connection. The port on a device or a hub that connects to a host or the DFP of a hub. In its initial state, the UFP sinks the V _{BUS} and supports data.

11 Ordering information

Table 22.	Ordering	information
-----------	----------	-------------

Order code	Description	Package	Marking
STUSB4710AQ1TR	Autonomous USB PD controller (provider)	QFN16 (3x3 mm)	471A
STUSB4710AQTR		QFN24 EP (4x4 mm)	4710A

Revision history

Table 23. Document revision history

Date	Version	Changes
05-Apr-2017	1	Initial release.
12-Jul-2017	2	Updated Features, Table 2: "Pin functions list", Section 2.3.10: "SEL_PDO [5:2]", Section 4.4: "Monitoring configuration in NVM", Section 4.5: "Discharge configuration in NVM", Section 5.1: "Read and write operations", Table 15: "Operating conditions ", Table 20: "Thermal information", and Section 7.2: "Power supply – flyback topology".
23-Aug-2017	3	Updated Table 1: "Device summary table"
13-Nov-2017	4	Updated the features and the device summary table in cover page. Minor text changes throughout the document.
24-Mar-2021	5	Added Section 11 Ordering information. Updated Section 9.2 QFN16 (3x3x0.55) package information and Section 9.1 QFN24 EP 4x4 mm package information.
22-Jul-2021	6	Updated the title of figure 2 and figure 3.

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. For additional information about ST trademarks, please refer to www.st.com/trademarks. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2021 STMicroelectronics - All rights reserved

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

STMicroelectronics: STUSB4710QTR