

N-channel 650 V, 0.48 Ω typ., 8 A MDmesh[™] M2 Power MOSFET in a PowerFLAT 5x6 HV package

Datasheet - production data

Features

Order code	er code V _{DS} R _{DS(on)} max.		Iр
STL12HN65M2	650 V	0.55 Ω	6 A

- Extremely low gate charge
- Excellent output capacitance (Coss) profile
- 100% avalanche tested
- Zener-protected

Applications

• Switching applications

Description

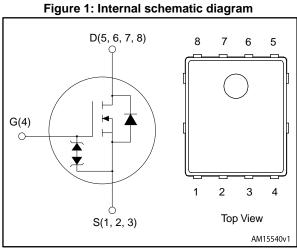

This device is an N-channel Power MOSFET developed using MDmesh[™] M2 technology. Thanks to its strip layout and an improved vertical structure, the device exhibits low on-resistance and optimized switching characteristics, rendering it suitable for the most demanding high efficiency converters.

Table 1: Device summarv

Order code		Marking	Package	Packing		
	STL12HN65M2	12N65M2	PowerFLAT 5x6 HV	Tape and reel		

DocID031325 Rev 1

This is information on a product in full production.

PowerFLAT[™] 5x6 HV

Contents

Contents

1	Electric	al ratings	3
2	Electric	al characteristics	4
	2.1	Electrical characteristics (curves)	6
3	Test cir	cuits	8
4	Packag	e information	9
	4.1	PowerFLAT™ 5x6 HV package information	10
	4.2	PowerFLAT™ 5x6 packing information	12
5	Revisio	n history	14

1 Electrical ratings

Table 2: Absolute maximum ratings

Symbol	Parameter	Value	Unit
V _{GS}	Gate-source voltage	±25	V
lp ⁽¹⁾	Drain current (continuous) at T _{case} = 25 °C	6	А
ID."	Drain current (continuous) at T _{case} = 100 °C	4	A
I _{DM} ⁽²⁾	Drain current (pulsed)	24	А
Ртот	Total dissipation at T _{case} = 25 °C	52	W
dv/dt ⁽³⁾	Peak diode recovery voltage slope	15	V/ns
dv/dt ⁽⁴⁾	MOSFET dv/dt ruggedness	50 V/ns	
T _{stg}	Storage temperature range	55 to 150 °C	
Tj	Operating junction temperature range	-55 to 150 °C	

Notes:

⁽¹⁾ Limited by package.

 $^{\left(2\right) }$ Pulse width is limited by safe operating area.

 $^{(3)}$ Isp ≤ 6 A, di/dt = 400 A/µs, V_DS(peak) < V(BR)DSS, V_DD = 400 V

 $^{(4)}$ V_{DS} \leq 520 V

Table 3: Thermal data

Symbol	ol Parameter		Unit
R _{thj-case}	Thermal resistance junction-case		°C/W
Rthj-pcb ⁽¹⁾	R _{thj-pcb} ⁽¹⁾ Thermal resistance junction-pcb		C/vv

Notes:

 $^{(1)}$ When mounted on an 1 inch² FR-4 board, 2 oz Cu.

Table 4: Avalanche characteristics

Symbol	Parameter	Value	Unit
lar	Avalanche current, repetitive or non-repetitive (pulse width limited by $T_{jmax.}$)	1.6	А
Eas	Single pulse avalanche energy (starting $T_j = 25 \text{ °C}$, $I_D = I_{AR}$, $V_{DD} = 50 \text{ V}$)	250	mJ

2 Electrical characteristics

(T_{case} = 25 °C unless otherwise specified)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{(BR)DSS}	Drain-source breakdown voltage	$V_{GS} = 0 V$, $I_D = 1 mA$	650			V
	Zara gata valtaga drain	$V_{GS} = 0 V, V_{DS} = 650 V$			1	
IDSS	Zero-gate voltage drain current	$V_{GS} = 0 V, V_{DS} = 650 V,$ $T_{case} = 125 \ ^{\circ}C^{(1)}$			100	μA
I _{GSS}	Gate-body leakage current	V_{DS} = 0 V, V_{GS} = ±25 V			±10	μA
VGS(th)	Gate threshold voltage	$V_{DS} = V_{GS}$, $I_D = 250 \ \mu A$	2	3	4	V
R _{DS(on)}	Static drain-source on-resistance	$V_{GS} = 10 \text{ V}, \text{ I}_{D} = 3 \text{ A}$		0.48	0.55	Ω

Notes:

⁽¹⁾Defined by design, not subject to production test.

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
Ciss	Input capacitance		-	535	-	
Coss	Output capacitance	V _{DS} = 100 V, f = 1 MHz,	-	25	-	pF
Crss	Reverse transfer capacitance	$V_{GS} = 0 V$	-	1.1	-	P
Coss eq. ⁽¹⁾	Equivalent output capacitance	$V_{DS} = 0$ to 520 V, $V_{GS} = 0$ V	-	144	-	pF
Rg	Intrinsic gate resistance	f = 1 MHz, I _D = 0 A	-	7	-	Ω
Qg	Total gate charge	V _{DD} = 520 V, I _D = 8 A,	-	16.7	-	
Q _{gs}	Gate-source charge	V _{GS} = 0 to 10 V (see Figure 15: "Test circuit	-	2.6	-	nC
Q _{gd}	Gate-drain charge	for gate charge behavior")	-	8.6	-	

Table 6: Dynamic

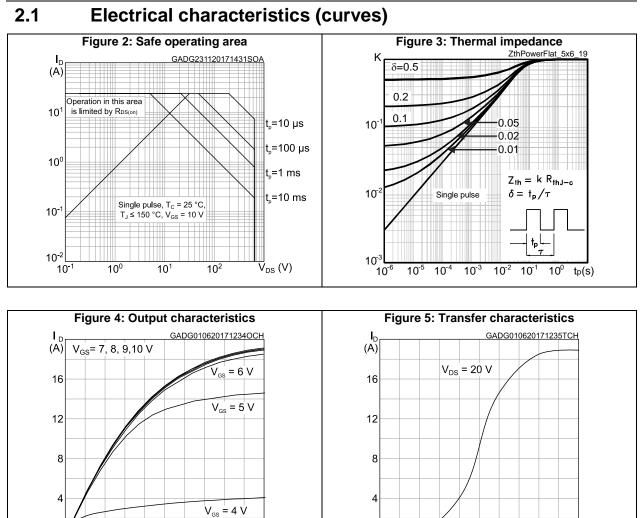
Notes:

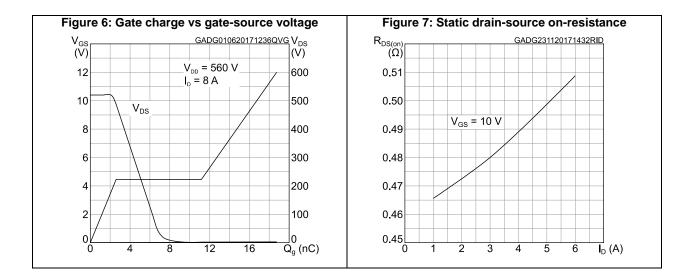
 $^{(1)}$ Coss eq. is defined as a constant equivalent capacitance giving the same charging time as Coss when VDs increases from 0 to 80% VDss.

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
t _{d(on)}	Turn-on delay time	V _{DD} = 325 V, I _D = 4 A	-	9	-	
tr	Rise time	$R_G = 4.7 \Omega$, $V_{GS} = 10 V$ (see Figure 14: "Test circuit	-	7	-	
t _{d(off)}	Turn-off delay time	for resistive load switching	-	34	-	ns
tr	Fall time	times" and Figure 19: "Switching time waveform")	-	13.5	-	

Electrical characteristics

	Tal	ole 8: Source-drain diode				
Symbol	Symbol Parameter Test conditions				Max.	Unit
I _{SD} ⁽¹⁾	Source-drain current		-		6	А
I _{SDM} ⁽²⁾	Source-drain current (pulsed)		-		24	А
Vsd ⁽³⁾	Forward on voltage	$V_{GS} = 0 V$, $I_{SD} = 6 A$	-		1.6	V
trr	Reverse recovery time	I _{SD} = 8 A, di/dt = 100 A/µs,	-	313		ns
Qrr	Reverse recovery charge	V _{DD} = 60 V (see Figure 16: "Test circuit for	-	2.7		μC
I _{RRM}	Reverse recovery current	inductive load switching and diode recovery times")	-	17		А
trr	Reverse recovery time	$I_{SD} = 8 \text{ A}, \text{ di/dt} = 100 \text{ A/}\mu\text{s},$	-	462		ns
Qrr	Reverse recovery charge	$V_{DD} = 60 \text{ V}, \text{ T}_{\text{j}} = 150 ^{\circ}\text{C}$ (see Figure 16: "Test circuit for	-	4.1		μC
Irrm	Reverse recovery current	inductive load switching and diode recovery times")	-	17.5		A


Notes:


⁽¹⁾Limited by package

 $^{\left(2\right) }$ Pulse width is limited by safe operating area.

 $^{(3)}$ Pulse test: pulse duration = 300 $\mu s,$ duty cycle 1.5%

0∟ 2

3

4

5

6

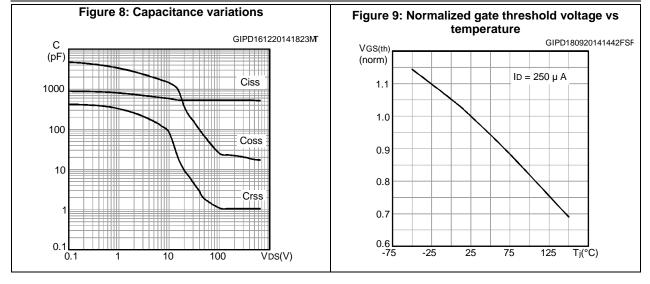
 $\overline{V}_{GS}(V)$

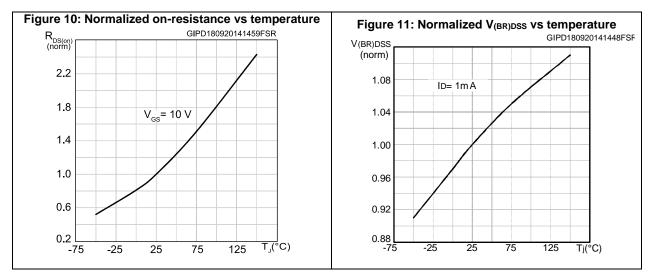
DocID031325 Rev 1

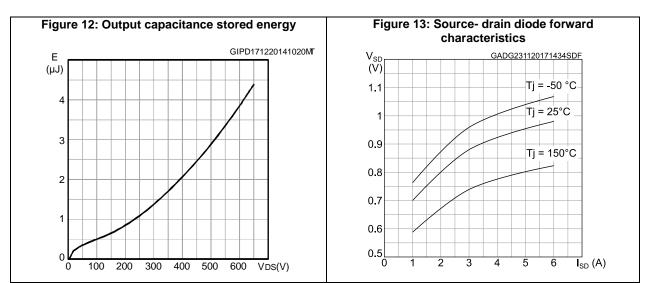
0

8

4

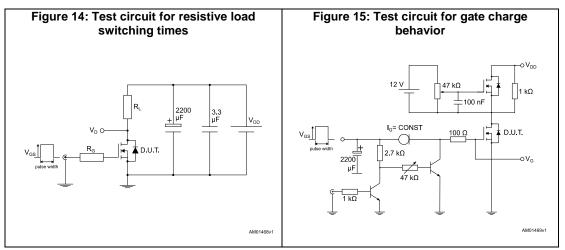

12

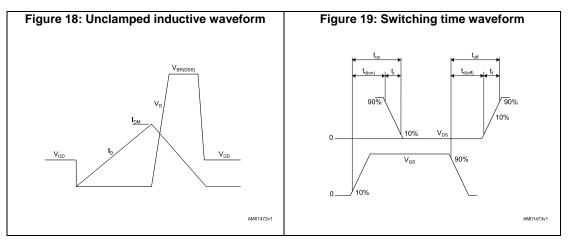

16


 $\overline{V}_{DS}(V)$

57

Electrical characteristics

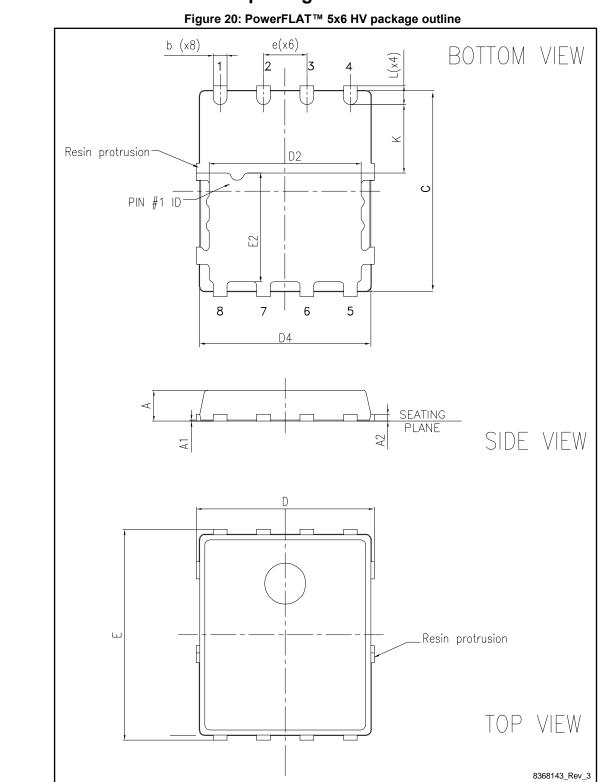




DocID031325 Rev 1

3 Test circuits

DocID031325 Rev 1

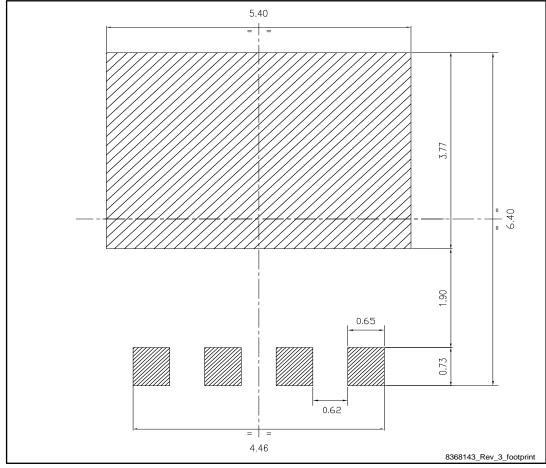


4 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: *www.st.com*. ECOPACK[®] is an ST trademark.

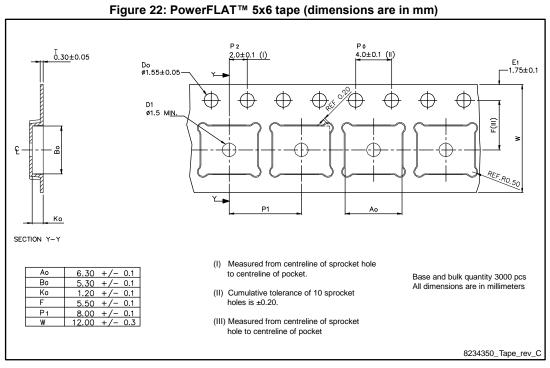
Package information

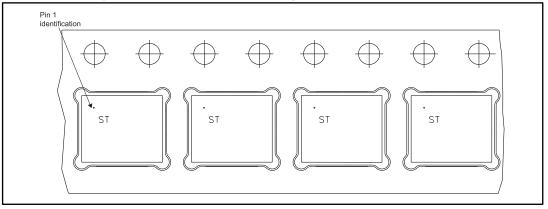
4.1 PowerFLAT[™] 5x6 HV package information



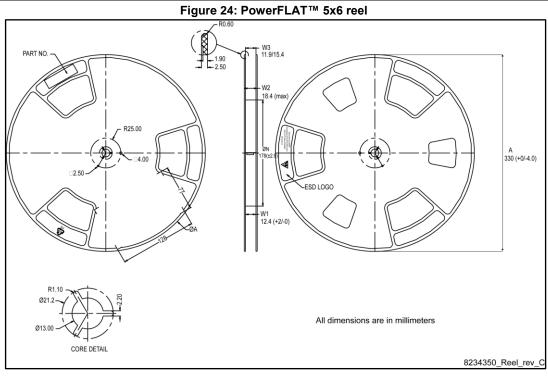
57

Package information


001112						
	Table 9: PowerFLAT™	5x6 HV mechanical data	l			
Dim	mm					
Dim.	Min.	Тур.	Max.			
A	0.80		1.00			
A1	0.02		0.05			
A2		0.25				
b	0.30		0.50			
С	5.8	6	6.1			
D	5.10	5.20	5.30			
E	6.05	6.15	6.25			
E2	3.10	3.20	3.30			
D2	4.30	4.40	4.50			
D4	4.8	5	5.1			
е		1.27				
L	0.50	0.55	0.60			
К	1.90	2.00	2.10			



DocID031325 Rev 1


4.2 PowerFLAT[™] 5x6 packing information

Revision history 5

Date	Revision	Changes
29-Nov-2017	1	First release

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2017 STMicroelectronics - All rights reserved

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

STMicroelectronics: STL12HN65M2