Q1 3-Phase TNPC Module

The NXH25T120L2Q1PG/PTG is a case power module containing a three channel T-type neutral-point clamped (TNPC) circuit. Each channel has a two 1200 V, 25 A IGBTs with inverse diodes and two 650 V, 20 A IGBTs with inverse diodes. The module contains an NTC thermistor.

Features

- Low Package Height
- Compact 82.5 mm x 37.4 mm x 12 mm Package
- Press-fit Pins
- Options with Pre-applied Thermal Interface Material (TIM) and Without Pre-applied TIM
- Thermistor

Typical Applications

- Solar Inverters
- UPS

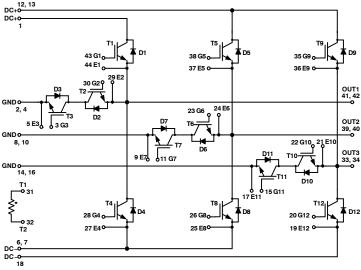
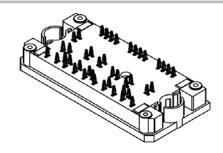
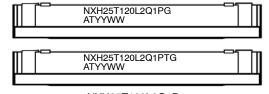



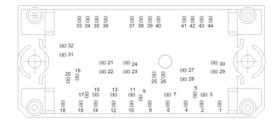
Figure 1. NXH25T120L2Q1PG/PTG Schematic Diagram


ON Semiconductor®

www.onsemi.com

Q1 3-TNPC PRESS FIT CASE 180AS

DEVICE MARKING



NXH25T120L2Q1P or NXH25T120L2Q1PT = Specific Device Code

G = Pb-Free Package

AT = Assembly & Test Site Code YYWW = Year and Work Week Code

PIN ASSIGNMENTS

ORDERING INFORMATION

See detailed ordering and shipping information on page 5 of this data sheet.

Table 1. MAXIMUM RATINGS (Note 1)

Rating	Symbol	Value	Unit
HALF BRIDGE IGBT			•
Collector-Emitter Voltage	V _{CES}	1200	V
Gate-Emitter Voltage	V _{GE}	±20	V
Continuous Collector Current @ T _c = 80°C (T _J = 175°C)	I _C	25	А
Pulsed Collector Current (T _J = 175°C)	I _{Cpulse}	75	А
Maximum Power Dissipation (T _J = 175°C)	P _{tot}	81	W
Short Circuit Withstand Time @ V_{GE} = 15 V, V_{CE} = 600 V, $T_{J} \le 150^{\circ}C$	T _{sc}	5	μs
Minimum Operating Junction Temperature	T _{JMIN}	-40	°C
Maximum Operating Junction Temperature	T _{JMAX}	150	°C
NEUTRAL POINT IGBT			
Collector-Emitter Voltage	V _{CES}	650	V
Gate-Emitter Voltage	V _{GE}	±20	V
Continuous Collector Current @ T _c = 80°C (T _J = 175°C)	I _C	20	Α
Pulsed Collector Current (T _J = 175°C)	I _{Cpulse}	60	А
Maximum Power Dissipation (T _J = 175°C)	P _{tot}	50	W
Short Circuit Withstand Time @ V_{GE} = 15 V, V_{CE} = 400 V, $T_{J} \le 150^{\circ}C$	T _{sc}	5	μs
Minimum Operating Junction Temperature	T _{JMIN}	-40	°C
Maximum Operating Junction Temperature	T _{JMAX}	150	°C
HALF BRIDGE DIODE			
Peak Repetitive Reverse Voltage	V _{RRM}	1200	V
Continuous Forward Current @ T _c = 80°C (T _J = 175°C)	I _F	15	Α
Repetitive Peak Forward Current (T _J = 175°C)	I _{FRM}	45	А
Maximum Power Dissipation (T _J = 175°C)	P _{tot}	43	W
Minimum Operating Junction Temperature	T _{JMIN}	-40	°C
Maximum Operating Junction Temperature	T _{JMAX}	150	°C
NEUTRAL POINT DIODE			
Peak Repetitive Reverse Voltage	V _{RRM}	650	V
Continuous Forward Current @ T _c = 80°C (T _J = 175°C)	IF	15	А
Repetitive Peak Forward Current (T _J = 175°C)	I _{FRM}	45	А
Maximum Power Dissipation (T _J = 175°C)	P _{tot}	39	W
Minimum Operating Junction Temperature	T _{JMIN}	-40	°C
Maximum Operating Junction Temperature	T _{JMAX}	150	°C
THERMAL PROPERTIES			
Storage Temperature range	T _{stg}	-40 to 125	°C
INSULATION PROPERTIES			
Isolation test voltage, t = 1 sec, 60Hz	V _{is}	3000	V_{RMS}
Creepage distance		12.7	mm

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

Table 2. RECOMMENDED OPERATING RANGES

Rating	Symbol	Min	Max	Unit
Module Operating Junction Temperature	T,1	-40	150	°C

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

^{1.} Refer to ELECTRICAL CHĂRACTERISTICS, RECOMMENDED OPERATING RANGES and/or APPLICATION INFORMATION for Safe Operating parameters.

Table 3. ELECTRICAL CHARACTERISTICS T_J = 25°C unless otherwise noted

Parameter	Test Conditions	Symbol	Min	Тур	Max	Unit
HALF BRIDGE IGBT CHARACTERISTICS						
Collector-Emitter Cutoff Current	V _{GE} = 0 V, V _{CE} = 1200 V	I _{CES}	-	_	300	μΑ
Collector-Emitter Saturation Voltage	V _{GE} = 15 V, I _C = 25 A, T _J = 25°C	V _{CE(sat)}	-	1.90	2.50	V
	V _{GE} = 15 V, I _C = 25 A, T _J = 125°C		-	1.96	_	1
Gate-Emitter Threshold Voltage	$V_{GE} = V_{CE}$, $I_C = 1.5 \text{ mA}$	$V_{GE(TH)}$	4.90	5.49	6.50	V
Gate Leakage Current	V _{GE} = 20 V, V _{CE} = 0 V	I _{GES}	=	-	300	nA
Turn-on Delay Time	T _J = 25°C	t _{d(on)}	=	59	_	ns
Rise Time	V_{CE} = 350 V, I_{C} = 15 A V_{GE} = ±15 V, R_{G} = 15 $Ω$	t _r	-	26	_	
Turn-off Delay Time	VGE = ±13 V, NG = 13 ½	t _{d(off)}	-	242	_	1
Fall Time	7	t _f	-	52	_	1
Turn-on Switching Loss per Pulse	7	E _{on}	-	220	_	μJ
Turn off Switching Loss per Pulse	7	E _{off}	_	240	_	1
Turn-on Delay Time	T _J = 125°C	t _{d(on)}	=	48	_	ns
Rise Time	V _{CE} = 350 V, I _C = 15 A	t _r	_	29	_	1
Turn-off Delay Time	V_{GE} = ±15 V, R_{G} = 15 Ω	t _{d(off)}	_	293	_	1
Fall Time	1	t _f	=	258	_	1
Turn-on Switching Loss per Pulse		E _{on}	=	400	-	μJ
Turn off Switching Loss per Pulse	1	E _{off}	=	710	_	1
Input Capacitance	V _{CE} = 20 V, V _{GE} = 0 V. f = 10 kHz	C _{ies}	=	8502	-	pF
Output Capacitance	7	C _{oes}	_	187	_	1
Reverse Transfer Capacitance	7	C _{res}	-	154	_	1
Total Gate Charge	$V_{CE} = 600 \text{ V}, I_{C} = 25 \text{ A}, V_{GE} = \pm 15 \text{ V}$	Q_g	-	352	_	nC
Thermal Resistance - chip-to-heatsink	Thermal grease, Thickness \leq 2.25 Mil, λ = 2.9 W/mK	R _{thJH}	-	1.17	_	°C/W
NEUTRAL POINT DIODE CHARACTERIS	rics	•		•		
Diode Forward Voltage	I _F = 15 A, T _J = 25°C	V _F	=	2.43	_	V
	I _F = 15 A, T _J = 125°C	1	=	1.60	_	1
Combined IGBT + Diode Voltage Drop	I _F = 15 A, T _J = 25°C	V_{DT}	=	3.76	4.60	V
Reverse Recovery Time	T _J = 25°C	t _{rr}	_	59	_	ns
Reverse Recovery Charge	$V_{CE} = 350 \text{ V, } I_{C} = 15 \text{ A}$ $V_{GE} = \pm 15 \text{ V, } R_{G} = 15 \Omega$	Q _{rr}	_	0.21	_	μС
Peak Reverse Recovery Current	$V_{GE} = \pm 15 \text{ V}, \text{ H}_{G} = 15 \Omega$	I _{RRM}	_	7	_	Α
Peak Rate of Fall of Recovery Current	7	di/dt	=	106	_	A/μs
Reverse Recovery Energy	7	E _{rr}	_	40	_	μJ
Reverse Recovery Time	T _J = 125°C	t _{rr}	-	67	-	ns
Reverse Recovery Charge	V _{CE} = 350 V, I _C = 15 A	Q _{rr}	_	0.69	_	μС
Peak Reverse Recovery Current	$V_{GE} = \pm 15 \text{ V}, R_{G} = 15 \Omega$	I _{RRM}	_	19	_	Α
Peak Rate of Fall of Recovery Current	1	di/dt	_	451	_	A/μs
Reverse Recovery Energy	1	E _{rr}	=	100	=	μJ
Thermal Resistance - chip-to-heatsink	Thermal grease, Thickness \leq 2.25 Mil, λ = 2.9 W/mK	R _{thJH}	_	2.45	_	°C/W

Table 3. ELECTRICAL CHARACTERISTICS T_{.1} = 25°C unless otherwise noted

Parameter Test Conditions		Symbol	Min	Тур	Max	Unit
NEUTRAL POINT IGBT CHARACTERISTI	cs	•		•	•	•
Collector-Emitter Cutoff Current	V _{GE} = 0 V, V _{CE} = 650 V	I _{CES}	-	_	200	μΑ
Collector-Emitter Saturation Voltage	V _{GE} = 15 V, I _C = 20 A, T _J = 25°C	V _{CE(sat)}	=	1.49	-	V
	V _{GE} = 15 V, I _C = 20 A, T _J = 125°C	1	_	1.61	-	
Gate-Emitter Threshold Voltage	$V_{GE} = V_{CE}, I_{C} = 1.65 \text{ mA}$	V _{GE(TH)}	4.70	5.68	6.50	V
Gate Leakage Current	V _{GE} = 20 V, V _{CE} = 0 V	I _{GES}	_	_	200	nA
Turn-on Delay Time	T _J = 25°C	t _{d(on)}	_	33	_	ns
Rise Time	V _{CE} = 350 V, I _C = 15 A	t _r	_	18	_	
Turn-off Delay Time	V_{GE} = ±15V, R_{G} = 15 Ω	t _{d(off)}	_	126	-	1
Fall Time		t _f	_	43	_	
Turn-on Switching Loss per Pulse		E _{on}	_	250	_	μJ
Turn off Switching Loss per Pulse	7	E _{off}	_	180	_	
Turn-on Delay Time	T _J = 125°C	t _{d(on)}	=	31	-	ns
Rise Time	$V_{CE} = 350 \text{ V, } I_{C} = 15 \text{ A}$	t _r	-	19	-	
Turn-off Delay Time	$V_{GE} = \pm 15 \text{ V}, R_{G} = 15 \Omega$	t _{d(off)}	-	138	-	
Fall Time		t _f	-	72	-	
Turn-on Switching Loss per Pulse		E _{on}	-	390	-	uJ
Turn off Switching Loss per Pulse		E _{off}	-	300	-	
Input Capacitance	V _{CE} = 20 V, V _{GE} = 0 V, f = 10 kHz	C _{ies}	-	3837	-	pF
Output Capacitance		C _{oes}	-	127	-	
Reverse Transfer Capacitance		C _{res}	=	104	-	
Total Gate Charge	V _{CE} = 480 V, I _C = 20 A, V _{GE} = ±15 V	Qg	=	166	-	nC
Thermal Resistance - chip-to-heatsink	Thermal grease, Thickness \leq 2.25 Mil, λ = 2.9 W/mK	R_{thJH}	-	1.90	_	°C/W
HALF BRIDGE DIODE CHARACTERISTIC	es .					
Diode Forward Voltage	I _F = 15 A, T _J = 25°C	V _F	-	2.47	3	V
	I _F = 15 A, T _J = 125°C	1	-	1.97	-	
Reverse Recovery Time	T _J = 25°C	t _{rr}	-	63	-	ns
Reverse Recovery Charge	$V_{CE} = 350 \text{ V, } I_{C} = 15 \text{ A}$	Q _{rr}	-	0.45	-	μС
Peak Reverse Recovery Current	$V_{GE} = \pm 15 \text{ V}, R_{G} = 15 \Omega$	I _{RRM}	-	17	-	Α
Peak Rate of Fall of Recovery Current		di/dt	-	313	-	A/μs
Reverse Recovery Energy		E _{rr}	-	70	-	μJ
Reverse Recovery Time	T _J = 125°C	t _{rr}	_	233	_	ns
Reverse Recovery Charge	$V_{CE} = 350 \text{ V, } I_{C} = 15 \text{ A}$	Q_{rr}	_	1.55	_	μС
Peak Reverse Recovery Current	$V_{GE} = \pm 15 \text{ V}, R_{G} = 15 \Omega$	I _{RRM}	_	22	_	Α
Peak Rate of Fall of Recovery Current	1	di/dt	_	76	_	A/μs
Reverse Recovery Energy	1	E _{rr}	_	360	-	μJ
Thermal Resistance - chip-to-heatsink	Thermal grease, Thickness ≤ 2.25 Mil, λ = 2.9 W/mK	R_{thJH}	-	2.21	_	°C/W

Table 3. ELECTRICAL CHARACTERISTICS $T_J = 25^{\circ}C$ unless otherwise noted

Parameter	Test Conditions Symi		Min	Тур	Max	Unit
THERMISTOR CHARACTERISTICS						
Nominal resistance	T = 25°C	R ₂₅	-	22	-	kΩ
Nominal resistance	T = 100°C	R ₁₀₀	_	1468	-	Ω
Deviation of R25		ΔR/R	-5		5	%
Power dissipation		P _D	_	200	-	mW
Power dissipation constant			_	2	-	mW/K
B-value	B(25/50), tolerance ±3%		_	3950	-	K
B-value	B(25/100), tolerance ±3%		_	3998	-	K

ORDERING INFORMATION

Orderable Part Number	Marking	Package	Shipping
NXH25T120L2Q1PG	NXH25T120L2Q1PG	Q1 3-Phase TNPC - Case 180AS Press-fit Pins (Pb - Free)	21 Units / Blister Tray
NXH25T120L2Q1PTG	NXH25T120L2Q1PTG	Q1 3-Phase TNPC - Case 180AS Press-fit Pins with pre-applied thermal interface material (TIM) (Pb - Free)	21 Units / Blister Tray

TYPICAL CHARACTERISTICS - HALF BRIDGE IGBT AND DIODE

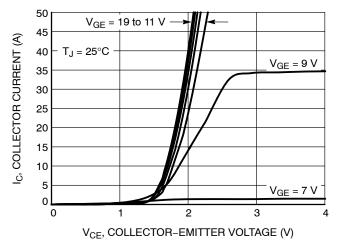


Figure 2. Typical Output Characteristics

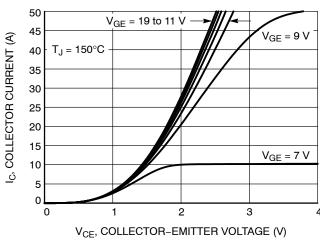


Figure 3. Typical Output Characteristics

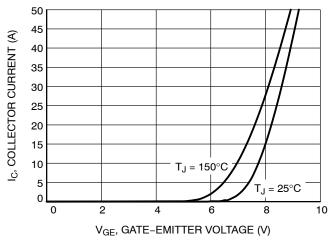


Figure 4. Typical Transfer Characteristics

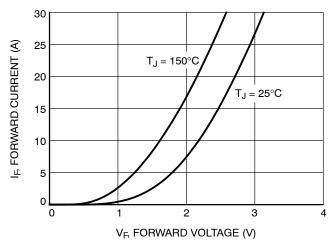


Figure 5. Diode Forward Characteristics

TYPICAL CHARACTERISTICS - HALF BRIDGE IGBT AND DIODE

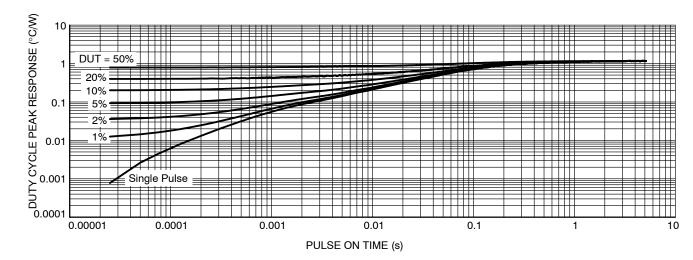


Figure 6. Transient Thermal Impedance (Half Bridge IGBT)

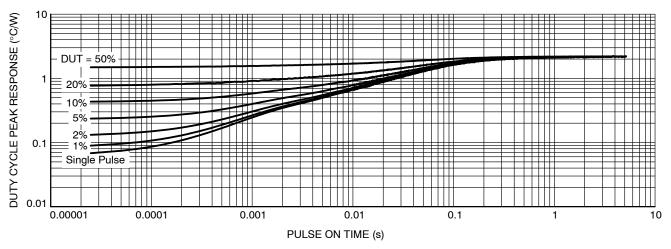


Figure 7. Transient Thermal Impedance (Half Bridge Diode)

TYPICAL CHARACTERISTICS - HALF BRIDGE IGBT AND DIODE

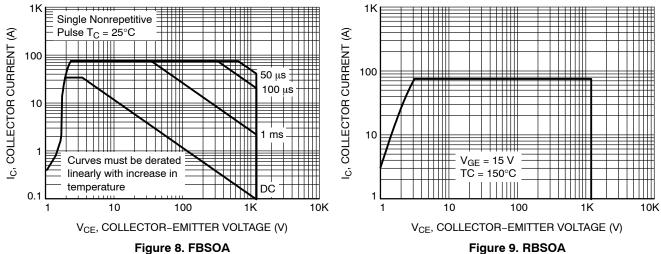


Figure 8. FBSOA

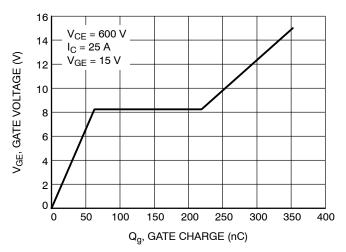
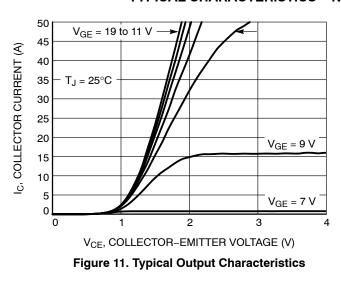



Figure 10. Gate Voltage vs. Gate Charge

TYPICAL CHARACTERISTICS - NEUTRAL POINT IGBT AND DIODE

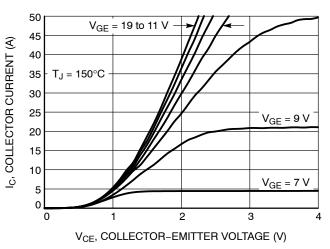


Figure 12. Typical Output Characteristics

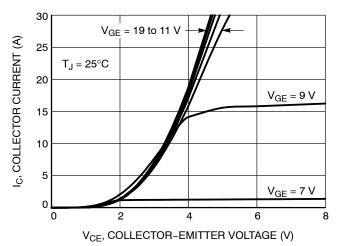


Figure 13. Typical Output Characteristics $(I_C \text{ vs. } V_{DT})$

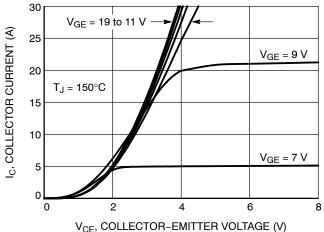


Figure 14. Typical Output Characteristics (I_C vs. V_{DT})

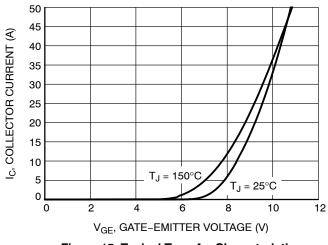


Figure 15. Typical Transfer Characteristics

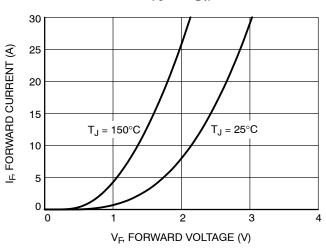


Figure 16. Diode Forward Characteristics

TYPICAL CHARACTERISTICS - NEUTRAL POINT IGBT AND DIODE

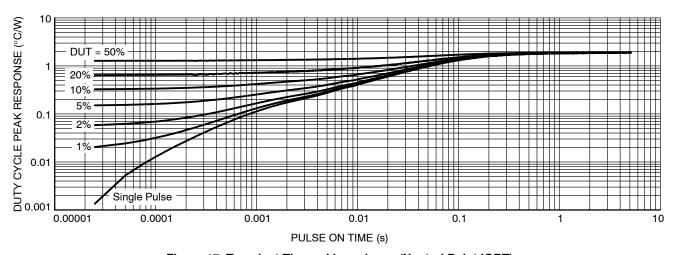


Figure 17. Transient Thermal Impedance (Neutral Point IGBT)

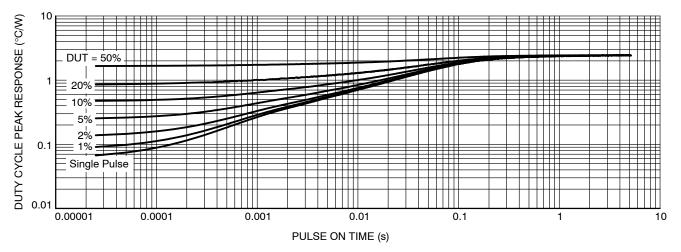


Figure 18. Transient Thermal Impedance (Neutral Point Diode)

TYPICAL CHARACTERISTICS - NEUTRAL POINT IGBT AND DIODE

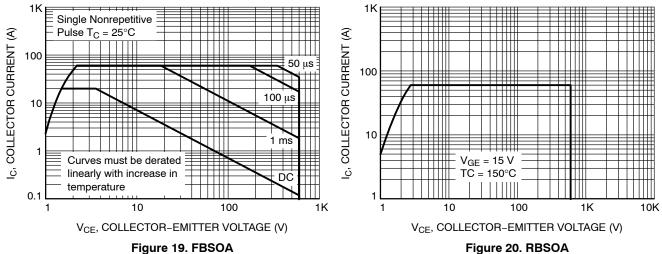
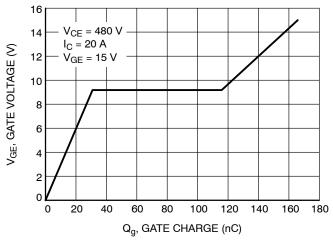
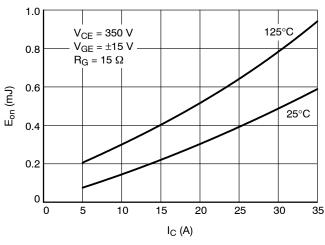
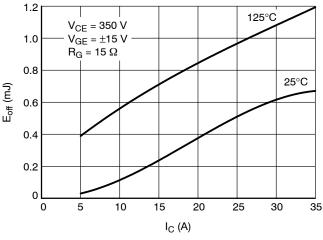


Figure 19. FBSOA


Figure 21. Gate Voltage vs. Gate Charge

125°C V_{CE} = 350 V 0.5 $V_{GE} = \pm 15 V$ $I_{C} = 15 A$ E_{on} (mJ) 0.4 25°C 0.3 0.2 0.1 20 15 30 35 $R_G(\Omega)$

Figure 22. Typical Switching Loss E_{on} vs. I_C

Figure 23. Typical Switching Loss E_{on} vs. R_{G}

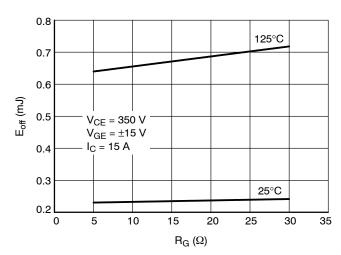
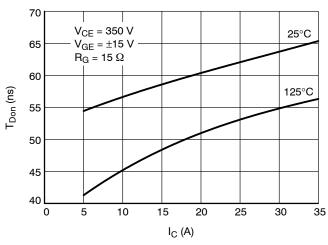



Figure 24. Typical Switching Loss E_{off} vs. I_C

Figure 25. Typical Switching Loss Eoff vs. R_G

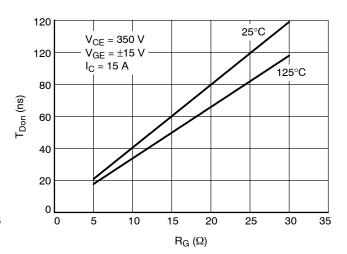
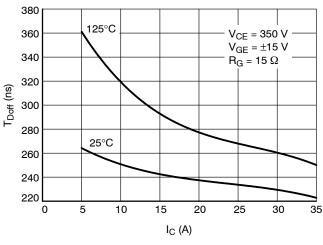
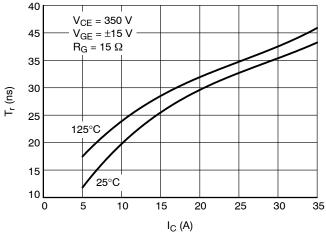



Figure 26. Typical Switching Time T_{Don} vs. I_{C}


Figure 27. Typical Switching Time T_{Don} vs. R_{G}

500 125°C $V_{CE} = 350 \text{ V}$ 450 $V_{GE} = \pm 15 \text{ V}$ 400 $I_{\rm C} = 15 \, {\rm A}$ 25°C 350 T_{Doff} (ns) 300 250 200 150 100 20 10 15 25 30 35 $R_G(\Omega)$

Figure 28. Typical Switching Time T_{Doff} vs. I_{C}

Figure 29. Typical Switching Time T_{Doff} vs. R_{G}

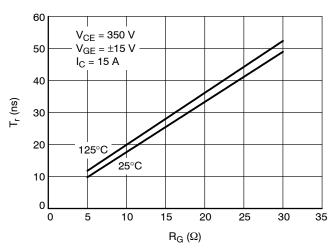
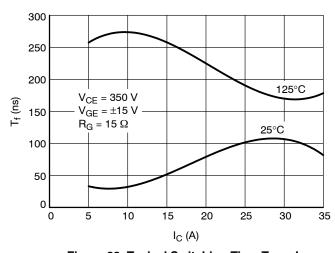



Figure 30. Typical Switching Time T_r vs. I_C

Figure 31. Typical Switching Time T_r vs. R_G

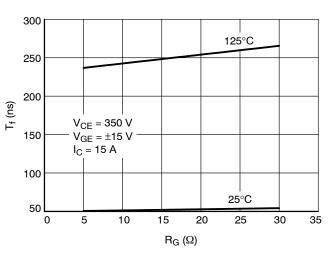
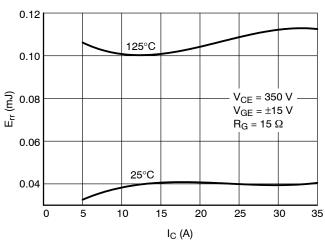
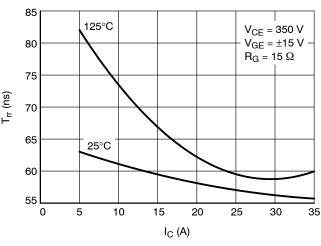



Figure 32. Typical Switching Time $T_{\rm f}$ vs. $I_{\rm C}$


Figure 33. Typical Switching Time T_f vs. R_G

0.14 0.12 0.10 125°C $V_{CE} = 350 \text{ V}$ 80.0 E $V_{GE} = \pm 15 \text{ V}$ I_C = 15 A 0.06 0.04 25°C 0.02 20 10 15 25 35 $R_G(\Omega)$

Figure 34. Typical Reverse Recovery Energy vs. I_C

Figure 35. Typical Reverse Recovery Energy vs. $R_{\mbox{\scriptsize G}}$

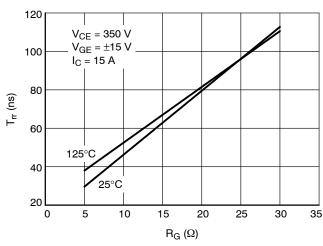
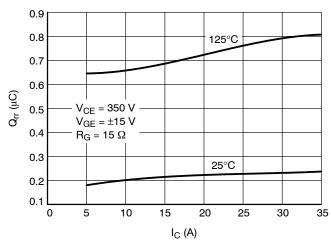



Figure 36. Typical Reverse Recovery Time vs. $I_{\rm C}$

Figure 37. Typical Reverse Recovery Time vs. $$\rm R_{\rm G}$$

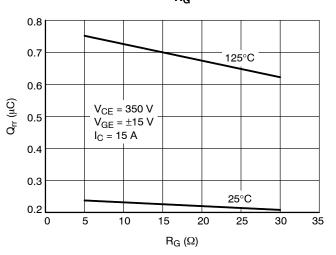
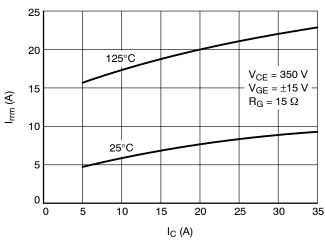
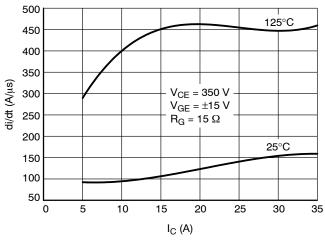



Figure 38. Typical Reverse Recovery Charge vs. I_C


Figure 39. Typical Reverse Recovery Charge vs. $R_{\rm G}$

30 125°C $V_{CE} = 350 \text{ V}$ $V_{GE}^- = \pm 15 \text{ V}$ 25 I_C = 15 A 20 I_{rrm} (A) 15 25°C 10 5 0 20 0 5 10 15 25 35 $R_G(\Omega)$

Figure 40. Typical Reverse Recovery Current vs. I_C

Figure 41. Typical Reverse Recovery Current vs. R_G

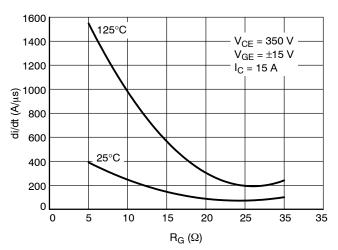
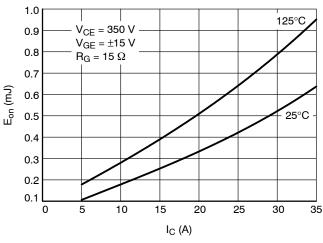
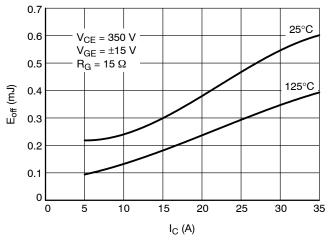



Figure 42. Typical di/dt vs. I_C


Figure 43. Typical di/dt vs. R_G

0.55 125°C $V_{CE} = 350 \text{ V}$ 0.50 $V_{GE} = \pm 15 \text{ V}$ 0.45 $I_{C} = 15 A$ 0.40 E_{on} (mJ) 25°C 0.35 0.30 0.25 0.20 0.15 20 15 25 35 $R_G(\Omega)$

Figure 44. Typical Switching Energy Eon vs. IC

Figure 45. Typical Switching Energy E_{on} vs. R_{G}

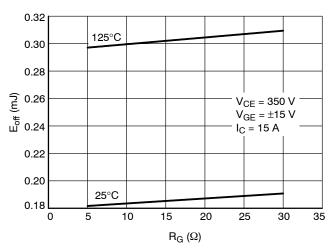
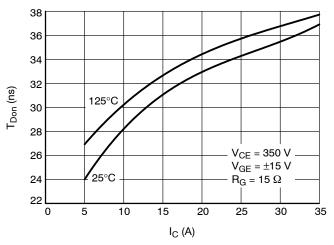



Figure 46. Typical Switching Energy Eoff vs. IC

Figure 47. Typical Switching Energy $\mathsf{E}_{\mathsf{off}}$ vs. R_{G}

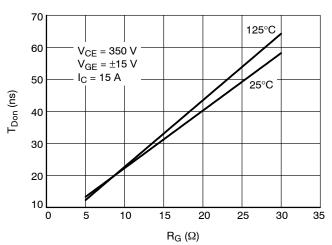
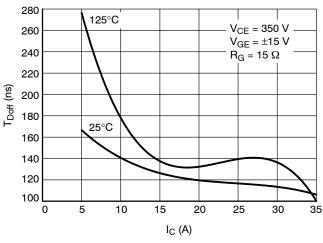
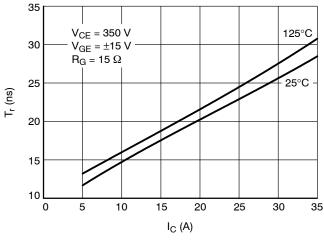



Figure 48. Typical Switching Time T_{Don} vs. I_{C}


Figure 49. Typical Switching Time T_{Don} vs. R_{G}

240 125°C V_{CE} = 350 V 220 $V_{GE} = \pm 15 \text{ V}$ 200 $I_{C} = 15 A$ 180 . 25°C 160 140 120 100 80 60 20 15 25 30 35 $R_G(\Omega)$

Figure 50. Typical Switching Time T_{Doff} vs. I_{C}

Figure 51. Typical Switching Time T_{Doff} vs. R_{G}

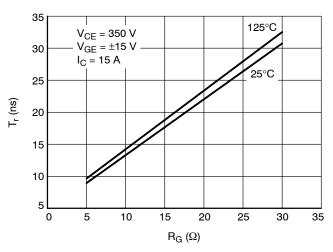
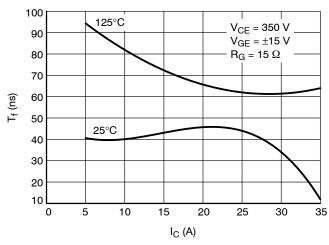



Figure 52. Typical Switching Time T_r vs. I_C

Figure 53. Typical Switching Time T_r vs. R_G

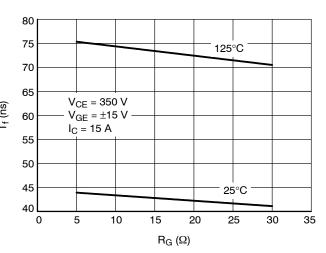
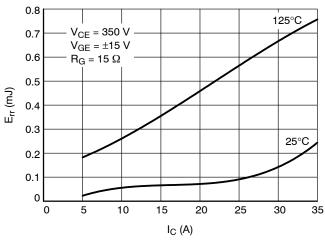
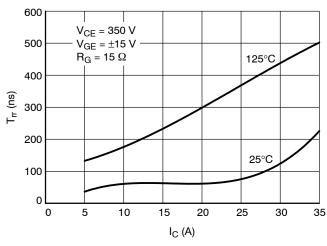



Figure 54. Typical Switching Time T_f vs. I_C


Figure 55. Typical Switching Time T_f vs. R_G

0.45 125°C 0.40 0.35 0.30 0.25 占 0.20 V_{CE} = 350 V $V_{GE} = \pm 15 \text{ V}$ 0.15 $I_{C} = 15 A$ 25°C 0.10 0.05 n 15 20 35 $R_G(\Omega)$

Figure 56. Typical Reverse Recovery Energy vs. I_C

Figure 57. Typical Reverse Recovery Energy vs. R_G

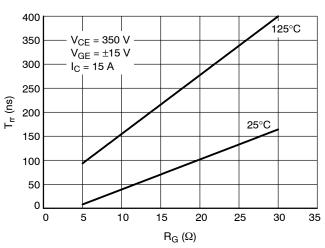
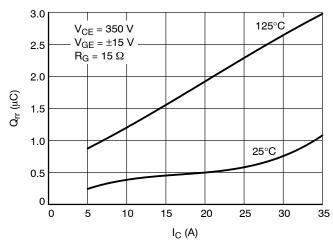



Figure 58. Typical Reverse Recovery Time vs. $\ensuremath{\text{I}_{\text{C}}}$

Figure 59. Typical Reverse Recovery Time vs. $$\rm R_{\rm G}$$

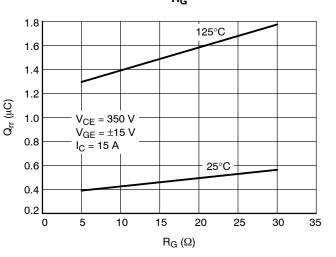
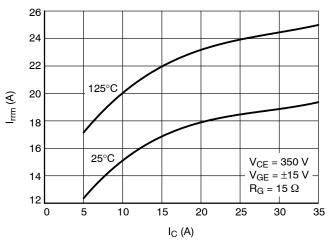
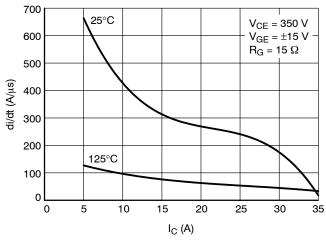



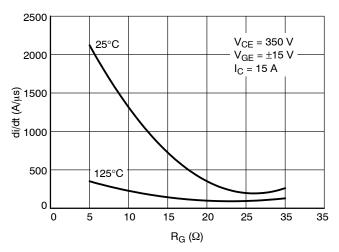
Figure 60. Typical Reverse Recovery Charge vs. I_C


Figure 61. Typical Reverse Recovery Charge vs. R_G

35 125°C $V_{CE} = 350 \text{ V}$ 30 $V_{GE}^{-} = \pm 15 \text{ V}$ $I_{C} = 15 A$ 25 25°C Irrm (A) 20 15 10 5 15 20 25 35 $R_G(\Omega)$

Figure 62. Typical Reverse Recovery Current vs. I_C

Figure 63. Typical Reverse Recovery Current vs. R_G



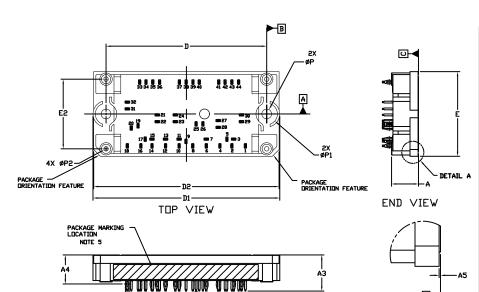
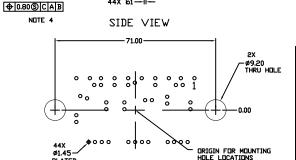

Figure 64. Typical di/dt vs. I_C

Figure 65. Typical di/dt vs. R_G



PIM44, 71x37.4 (PRESSFIT PINS) CASE 180AS ISSUE O

DATE 25 JUN 2018

	PIN PE	ISITION		PIN POSITION	
PIN	Х	Υ	PIN	Х	Υ
1	26.10	14.10	23	-4.85	3.40
2	20.10	14.10	24	-4.85	0.40
3	20.90	11.10	25	4.30	4.40
4	14.80	14.10	26	7.30	4.40
5	17.90	11.10	27	14.05	2.90
6	8.80	14.10	28	14.05	5.90
7	8.80	11.10	29	24.35	3.40
8	2.80	14.10	30	24.35	0.40
9	-0.20	12.10	31	-26.10	-2.25
10	-3.20	14.10	32	-26.10	-5.25
11	-3.20	11.10	33	-20.65	-14.10
12	-9.20	14.10	34	-17.85	-14.10
13	-9.20	11.10	35	-14.85	-14.10
14	-15.20	14.10	36	-11.85	-14.10
15	-15.20	11.10	37	-3.10	-14.10
16	-20.10	14.10	38	-0.10	-14.10
17	-18.20	11.10	39	2.90	-14.10
18	-26.10	14.10	40	5.70	-14.10
19	-21.35	5.20	41	14.30	-14.10
20	-24.35	6.20	42	17.10	-14.10
21	-12.85	0.40	43	20.10	-14.10
22	-12.85	3.40	44	23.10	-14.10

RECOMMENDED MOUNTING PATTERN

NOTES:

PLATED THRU HOLE

44Y h

- DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 2009.
- 2. CONTROLLING DIMENSION: MILLIMETERS
- 3. DIMENSIONS 6 AND 61 APPLY TO THE PLATED
 TERMINALS AND ARE MEASURED AT DIMENSION A4.
- 4. POSITION OF THE CENTER OF THE TERMINALS IS DETERMINED FROM DATUM B THE CENTER OF DIMENSION D, X DIRECTION, AND FROM DATUM A, Y DIRECTION. POSITIONAL TOLERANCE, AS NOTED IN DRAWING, APPLIES TO EACH TERMINAL IN BOTH DIRECTIONS.
- PACKAGE MARKING IS LOCATED AS SHOWN ON THE SIDE OPPOSITE THE PACKAGE ORIENTATION FEATURES.

NΠ	т	E	4	
~~	٠	_	-	

DETAIL A

MILLIMETERS

N□M.

12.00

16.00

12.83 BSC

0.20

1.66

0.80

71.00

82.50

82.00

37.40

30.80

4.30

9.50

2.00

12.50

16.50

0.30

1.71

0.85 71.50

83.00

82.50

37.90

31.30

4.50

9.70

2.20

MIN.

A3

Α4

Α5

b

b1

D

D1

D2

Ε

E2

Р

P1

P2

11.50

15.50

0.10

1.61

0.75

70.50

82.00

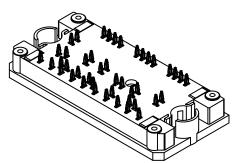
81.50

36.90

30.30

4.10

9.30


1.80

	PIN P	NDITIZE		PIN P	NOITIE
PIN	х	Υ	PIN	×	Y
1	26.10	-14.10	23	-4.85	-3.40
2	20.10	-14.10	24	-4.85	-0.40
3	20.90	-11.10	25	4.30	-4.40
4	14.80	-14.10	26	7.30	-4.40
5	17.90	-11.10	27	14.05	-2.90
6	8.80	-14.10	28	14.05	-5.90
7	8.80	-11.10	29	24.35	-3.40
8	2.80	-14.10	30	24.35	-0.40
9	-0.20	-12.10	31	-26.10	2.25
10	-3.20	-14.10	32	-26.10	5.25
11	-3.20	-11.10	33	-20.65	14.10
12	-9.20	-14.10	34	-17.85	14.10
13	-9.20	-11.10	35	-14.85	14.10
14	-15.20	-14.10	36	-11.85	14.10
15	-15.20	-11.10	37	-3.10	14.10
16	-20.10	-14.10	38	-0.10	14.10
17	-18.20	-11.10	39	2.90	14.10
18	-26.10	-14.10	40	5.70	14.10
19	-21.35	-5.20	41	14.30	14.10
20	-24.35	-6.20	42	17.10	14.10
21	-12.85	-0.40	43	20.10	14.10
22	-12.85	-3.40	44	23.10	14.10

DOCUMENT NUMBER:	98AON92314G	Electronic versions are uncontrolled except when accessed directly from the Document Repository Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	PIM44, 71x37.4 (PRESSFIT PINS)		PAGE 1 OF 2	

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

PIM44, 71x37.4 CASE 180AS ISSUE O

DATE 15 JUN 2018

GENERIC MARKING DIAGRAM*

XXXXX = Specific Device Code
G = Pb-Free Package
AT = Assembly & Test Site Code
YYWW = Year and Work Week Code

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "•", may or may not be present. Some products may not follow the Generic Marking.

DOCUMENT NUMBER:	98AON92314G	Electronic versions are uncontrolled except when accessed directly from the Document Repositor Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.			
DESCRIPTION:	PIM44, 71x37.4		PAGE 2 OF 2		

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, Onsemi, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA class 3 medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at

www.onsemi.com/support/sales

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

onsemi:

NXH25T120L2Q1PTG NXH25T120L2Q1PG