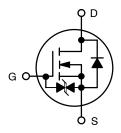
Power MOSFET, N-Channel, UniFET™ II

500 V, 4 A, 1.5 Ω

UniFET II MOSFET is ON Semiconductor's high voltage MOSFET family based on advanced planar stripe and DMOS technology. This advanced MOSFET family has the smallest on–state resistance among the planar MOSFET, and also provides superior switching performance and higher avalanche energy strength. In addition, internal gate–source ESD diode allows UniFET II MOSFET to withstand over 2 kV HBM surge stress. This device family is suitable for switching power converter applications such as power factor correction (PFC), flat panel display (FPD) TV power, ATX and electronic lamp ballasts.

Features

- $R_{DS(on)} = 1.38 \Omega$ (Typ.) @ $V_{GS} = 10 \text{ V}$, $I_D = 2 \text{ A}$
- Low Gate Charge (Typ. 9 nC)
- Low C_{rss} (Typ. 4 pF)
- 100% Avalanche Tested
- Improved dv/dt Capability
- ESD Improved Capability
- These Devices are Pb-Free and are RoHS Compliant


Applications


- LCD / LED TV
- Lighting
- Charger / Adapter

ON Semiconductor®

www.onsemi.com

IPAK3 CASE 369AR

ORDERING INFORMATION

See detailed ordering, marking and shipping information on page 2 of this data sheet.

MAXIMUM RATINGS ($T_C = 25^{\circ}C$ unless otherwise noted)

Symbol	Parameter		Value	Unit	
V _{DSS}	Drain-to-Source Voltage		500	V	
V _{GSS}	Gate-to-Source Voltage		±25	V	
I _D	Drain Current	Continuous (T _C = 25°C)	4	Α	
		Continuous (T _C = 100°C)	2.4		
I _{DM}	Drain Current Pulsed (Note 1)		16	Α	
E _{AS}	Single Pulse Avalanche Energy (Note 2)		304	mJ	
I _{AR}	Avalanche Current (Note 1)		4	Α	
E _{AR}	Repetitive Avalanche Energy (Note 1)		6.2	mJ	
dv/dt	Peak Diode Recovery (Note 3)		10	V/ns	
P_{D}	Power Dissipation	T _C = 25°C	62	W	
		Derate Above 25°C	0.5	W/°C	
T _J , T _{STG}	Operating and Storage Temperature Range		-55 to +150	°C	
TL	Maximum Lead Temperature for Soldering Purposes (1/8" from case for 5 seconds)		300	°C	

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. Repetitive Rating: Pulse width limited by maximum junction temperature.

2. $I_{AS} = 4 \text{ A}$, $V_{DD} = 50 \text{ V}$, L = 38 mH, $R_G = 25 \Omega$, starting $T_J = 25^{\circ}C$.

3. $I_{SD} \le 4 \text{ A}$, $di/dt \le 200 \text{ A}/\mu\text{s}$, $V_{DD} \le BV_{DSS}$, Starting $T_J = 25^{\circ}C$.

THERMAL CHARACTERISTICS

Symbol	Parameter	Value	Unit
$R_{ heta JC}$	Thermal Resistance, Junction-to-Case	2.0	°C/W
$R_{\theta JA}$	Thermal Resistance, Junction-to-Ambient	90	

PACKAGE MARKING AND ORDERING INFORMATION

Part Number	Top Mark	Package	Packing Method	Reel Size	Tape Width	Quantity
FDU5N50NZTU	FDU5N50NZ	IPAK	Tube	N/A	N/A	75 units

ELECTRICAL CHARACTERISTICS (T_C = 25°C unless otherwise specified)

Symbol	Parameter	Test Condition	Min	Тур	Max	Unit
OFF CHARA	CTERISTICS					-
BV_DSS	Drain-to-Source Breakdown Voltage	$I_D = 250 \mu A, V_{GS} = 0 V, T_J = 25^{\circ} C$	500			V
$\Delta BV_{DSS}/\Delta T_{J}$	Breakdown Voltage Temperature Coefficient	I _D = 250 μA, Referenced to 25°C		0.5		V/°C
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} = 500 V, V _{GS} = 0 V			1	μΑ
		V _{DS} = 400 V, T _C = 125°C			10	
I _{GSS}	Gate-to-Body Leakage Current	$V_{GS} = \pm 25 \text{ V}, V_{DS} = 0 \text{ V}$			±10	μΑ
ON CHARAC	TERISTICS					
V _{GS(th)}	Gate Threshold Voltage	$V_{GS} = V_{DS}, I_D = 250 \mu A$	3.0		5.0	V
R _{DS(on)}	Static Drain-to-Source On Resistance	V _{GS} = 10 V, I _D = 2 A		1.38	1.5	Ω
9 _{FS}	Forward Transconductance	V _{DS} = 20 V, I _D = 2 A		3.54		S
DYNAMIC CH	HARACTERISTICS					
C _{iss}	Input Capacitance	V _{DS} = 25 V, V _{GS} = 0 V, f = 1 MHz		330	440	pF
C _{oss}	Output Capacitance			50	70	
C _{rss}	Reverse Transfer Capacitance			4	6	
Q _{g(tot)}	Total Gate Charge at 10 V	V _{DS} = 400 V, I _D = 4 A, V _{GS} = 10 V (Note 4)		9	12	nC
Q_{gs}	Gate-to-Source Gate Charge			2		
Q_{gd}	Gate-to-Drain "Miller" Charge			4		
SWITCHING	CHARACTERISTICS					
t _{d(on)}	Turn-On Delay Time	V _{DD} = 250 V, I _D = 4 A,		12	35	ns
t _r	Turn-On Rise Time	V_{GS} = 10 V, R_{G} = 25 Ω (Note 4)		22	55	
t _{d(off)}	Turn-Off Delay Time			28	65	
t _f	Turn-Off Fall Time	1		21	50	
DRAIN-SOU	RCE DIODE CHARACTERISTICS			_		
IS	Maximum Continuous Drain to Source Diode Forward Current				4	Α
I _{SM}	Maximum Pulsed Drain to Source Diode Forward Current				16	1
V_{SD}	Drain to Source Diode Forward Voltage	V _{GS} = 0 V, I _{SD} = 4 A			1.4	V
t _{rr}	Reverse Recovery Time	$V_{GS} = 0 \text{ V, } I_{SD} = 4 \text{ A,}$ $dI_F/dt = 100 \text{ A/}\mu\text{s}$		210		ns
Q _{rr}	Reverse Recovery Charge			1.1		μС

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

4. Essentially independent of Operating Temperature Typical Characteristics.

TYPICAL CHARACTERISTICS

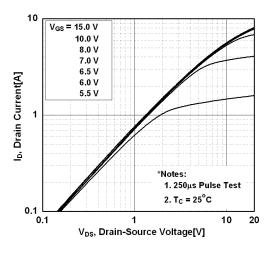


Figure 1. On-Region Characteristics

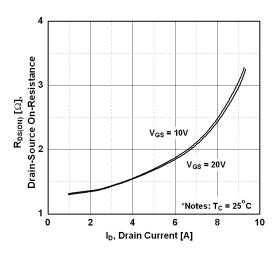


Figure 3. On-Resistance Variation vs. Drain Current and Gate Voltage

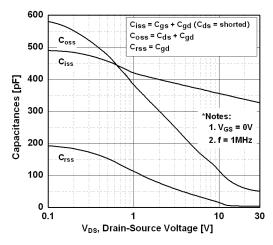


Figure 5. Capacitance Characteristics

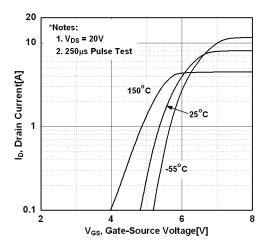


Figure 2. Transfer Characteristics

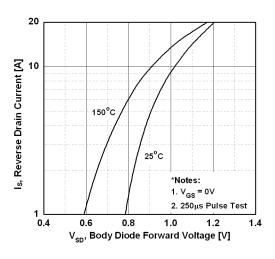


Figure 4. Body Diode Forward Voltage Variation vs. Source Current and Temperature

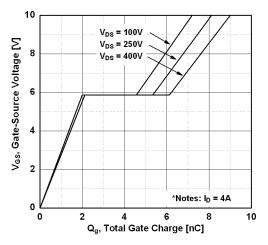


Figure 6. Gate Charge Characteristics

TYPICAL CHARACTERISTICS

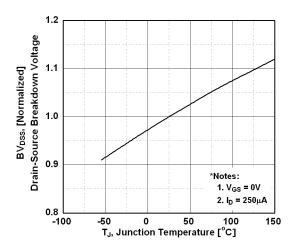
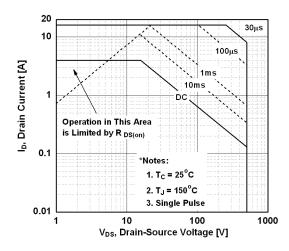



Figure 7. Breakdown Voltage Variation vs. Temperature

Figure 8. On–Resistance Variation vs. Temperature

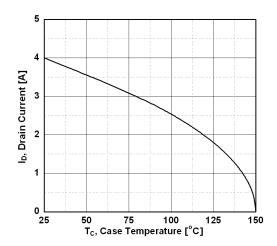


Figure 9. Maximum Safe Operating Area vs.

Case Temperature

Figure 10. Maximum Drain Current

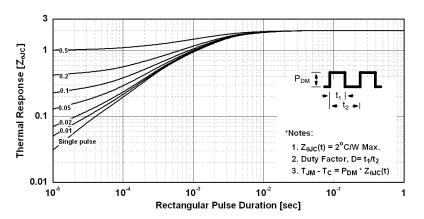


Figure 11. Transient Thermal Response Curve

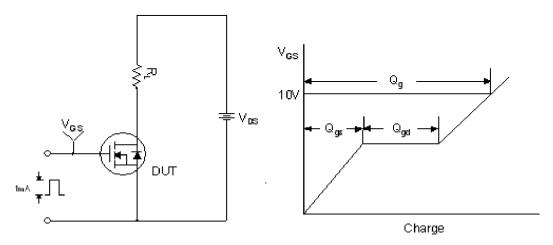


Figure 12. Gate Charge Test Circuit & Waveform

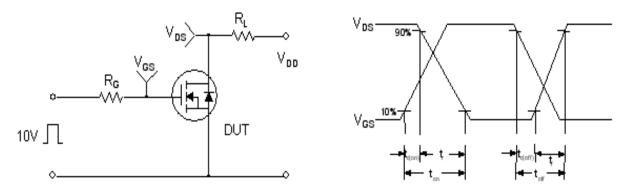


Figure 13. Resistive Switching Test Circuit & Waveforms

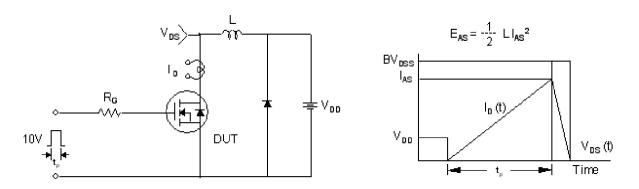
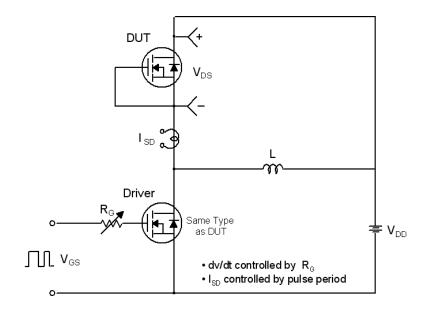
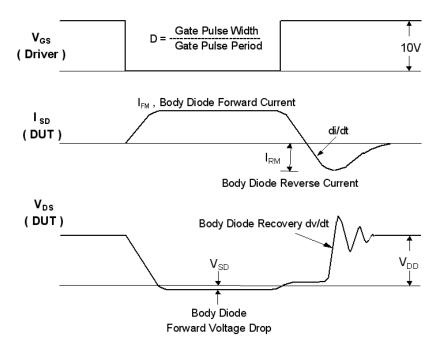
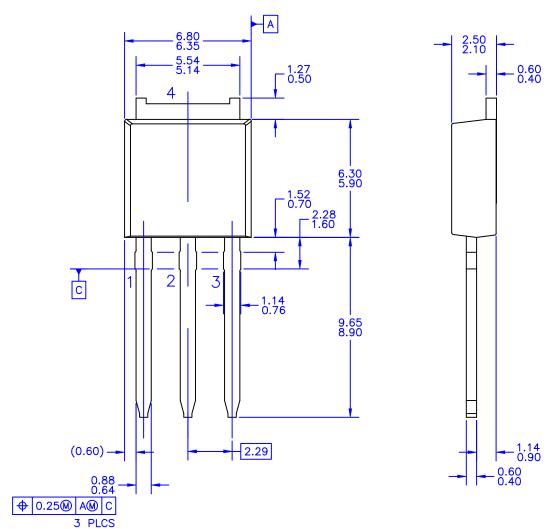
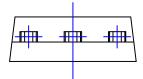



Figure 14. Unclamped Inductive Switching Test Circuit & Waveforms


Figure 15. Peak Diode Recovery dv/dt Test Circuit & Waveforms

PACKAGE DIMENSIONS

DPAK3 (IPAK) CASE 369AR ISSUE O

NOTES: UNLESS OTHERWISE SPECIFIED

- A) ALL DIMENSIONS ARE IN MILLIMETERS.
- B) THIS PACKAGE CONFORMS TO JEDEC, TO-251, ISSUE C, VARIATION AA, DATED SEP 1988.
- C) DIMENSIONING AND TOLERANCING PER ASME Y14.5M-1994.

UniFET is a trademark of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries.

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor datas sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify a

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada

Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

ON Semiconductor: FDU5N50NZTU