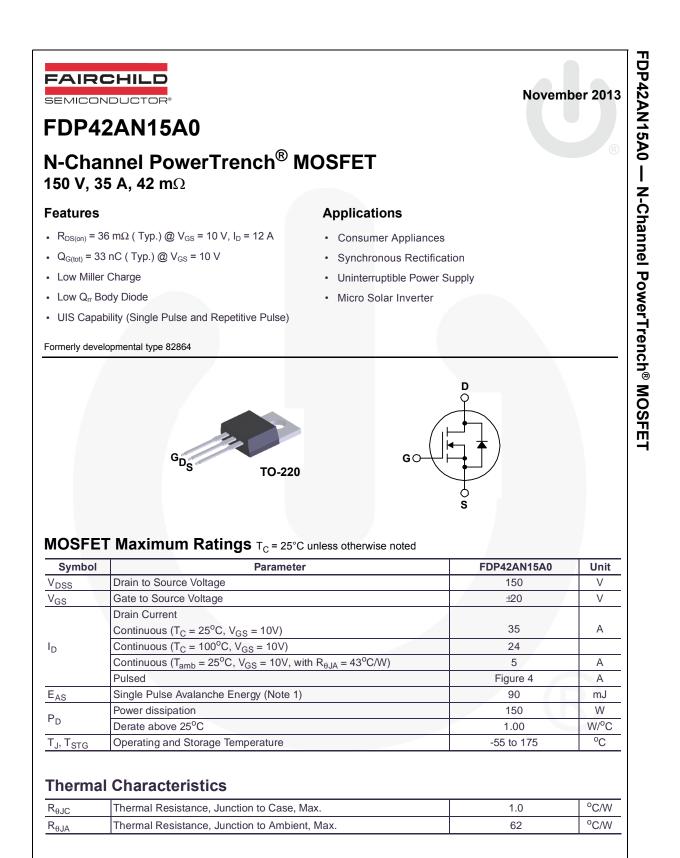
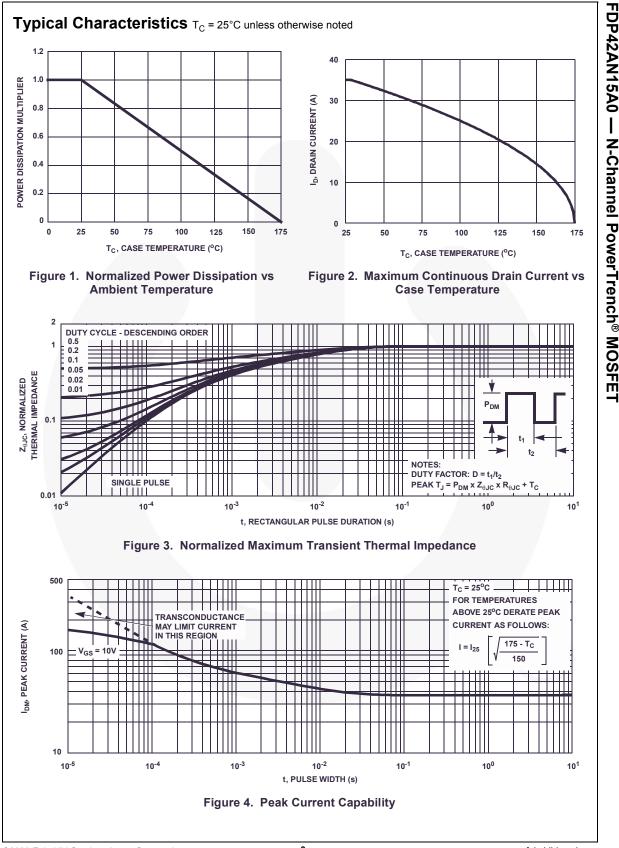


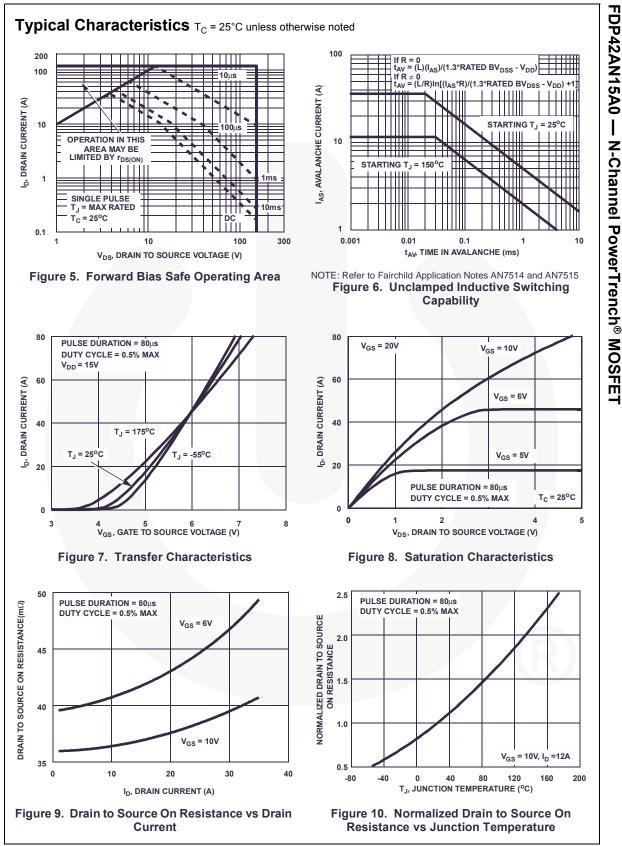
Is Now Part of



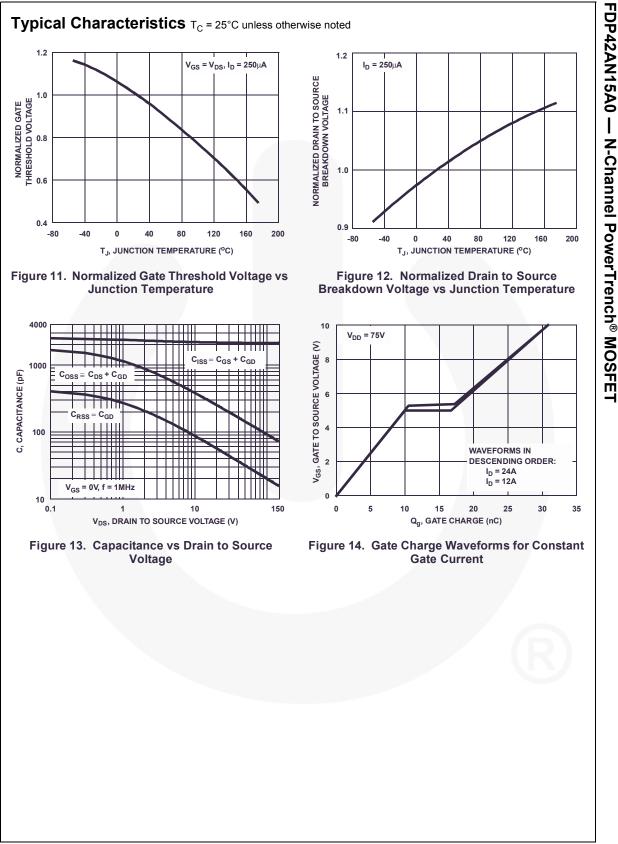
ON Semiconductor®

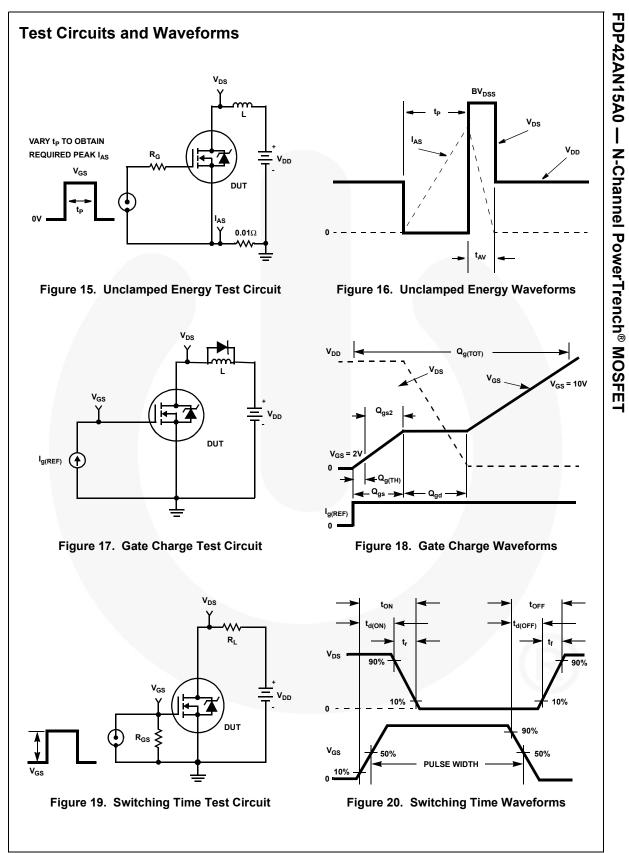

To learn more about ON Semiconductor, please visit our website at <u>www.onsemi.com</u>

Please note: As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers will need to change in order to meet ON Semiconductor's system requirements. Since the ON Semiconductor product management systems do not have the ability to manage part nomenclature that utilizes an underscore (_), the underscore (_) in the Fairchild part numbers will be changed to a dash (-). This document may contain device numbers with an underscore (_). Please check the ON Semiconductor website to verify the updated device numbers. The most current and up-to-date ordering information can be found at www.onsemi.com. Please email any questions regarding the system integration to Fairchild_questions@onsemi.com.

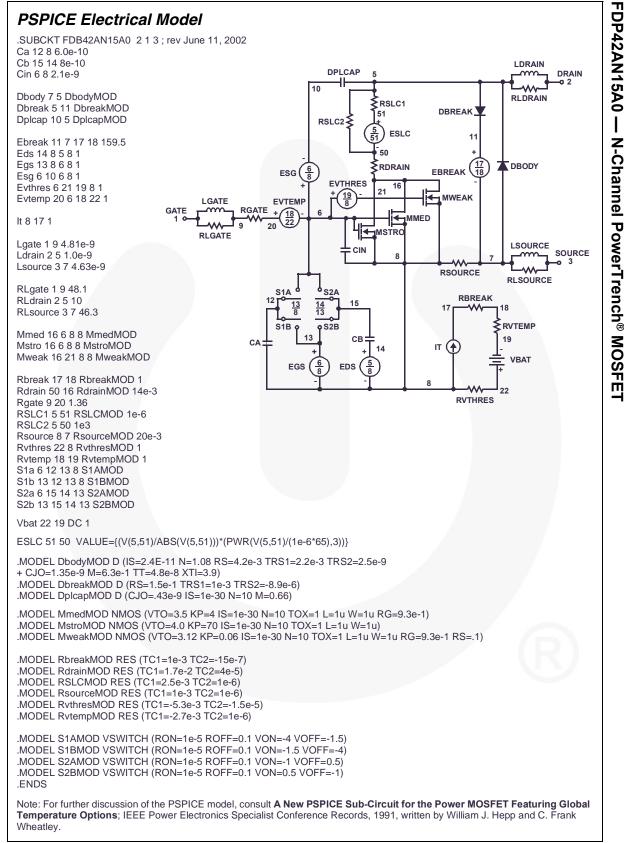

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized applications, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an equif prese

Device Marking FDP42AN15A0		Device	Package	Reel Size	Tape Width N/A		Quantity 50 units		
		FDP42AN15A0	TO-220	Tube					
Electric	al Char	acteristics T _c = 25°C	unless otherwise	e noted					
Symbol		Parameter	Test Conditions		Min	Тур	Max	Unit	
Off Chara	cteristic	S			•		•		
B _{VDSS}	Drain to S	ource Breakdown Voltage	I _D = 250μA, V	I _D = 250μA, V _{GS} = 0V		-	-	V	
I _{DSS}	Zero Gate Voltage Drain Current		V _{DS} = 120V	20		-	1	μA	
			$V_{GS} = 0V$	$T_{C} = 150^{\circ}C$	-	-	250	•	
I _{GSS}	Gate to Source Leakage Current		$V_{GS} = \pm 20V$	_	-	-	±100	nA	
On Chara	cteristic	S							
V _{GS(TH)} Gate to		ource Threshold Voltage	$V_{GS} = V_{DS}, I_D = 250 \mu A$		2	-	4	V	
			$I_{\rm D} = 12$ A, $V_{\rm GS}$		-	0.036	0.042	2	
-						0.040	0.060		
r _{DS(ON)}	Drain to S	ource On Resistance		I _D = 12A, V _{GS} = 10V,		0.090	0.107	Ω	
Dynamic	Characte	eristics							
C _{ISS}	Input Cap				-	2150	-	pF	
C _{OSS}	Output Capacitance Reverse Transfer Capacitance		$V_{DS} = 25V, V_{GS} = 0V,$ f = 1MHz			225	-	pF	
C _{RSS}					-	45	-	pF	
Q _{g(TOT)}	Total Gate Charge at 10V		$V_{GS} = 0V \text{ to } 10V$			30	39	nC	
Q _{g(TH)}		Gate Charge		V V _{DD} = 75V	-	4.2	5.4	nC	
Q _{gs}		ource Gate Charge		$I_{D} = 12A$	-	9.5	-	nC	
Q _{gs2}		rge Threshold to Plateau	-	$I_q = 1.0 \text{mA}$	-	5.3	-	nC	
Q _{gd}	-	rain "Miller" Charge				6.9	-	nC	
Switching	Charac	teristics (V _{GS} = 10V)							
t _{ON}	Turn-On T					-	46	ns	
t _{d(ON)}	Turn-On D	elay Time			-	11	-	ns	
t _r	Rise Time Turn-Off Delay Time Fall Time		Vpp = 75V. lp	$V_{DD} = 75V, I_D = 12A$ $V_{GS} = 10V, R_{GS} = 7.5\Omega$		19	-	ns	
t _{d(OFF)}						27	-	ns	
t _f			\neg			23	-	ns	
t _{OFF}	Turn-Off T	ïme	-		-	-	74	ns	
		le Characteristics			ļ	-			
	Source to Drain Diode Voltage		I _{SD} = 12A	I _{SD} = 12A		-	1.25	V	
V _{SD}			$I_{SD} = 6A$		-	-	1.0	V	
t _{rr}	Reverse F	Recovery Time	I_{SD} = 12A, dI_{SD}/dt = 100A/µs		-	-	82	ns	
Q _{RR}	Reverse F	Recovered Charge	$I_{SD} = 12A$, $dI_{SD}/dt = 100A/\mu s$		-	-	204	nC	

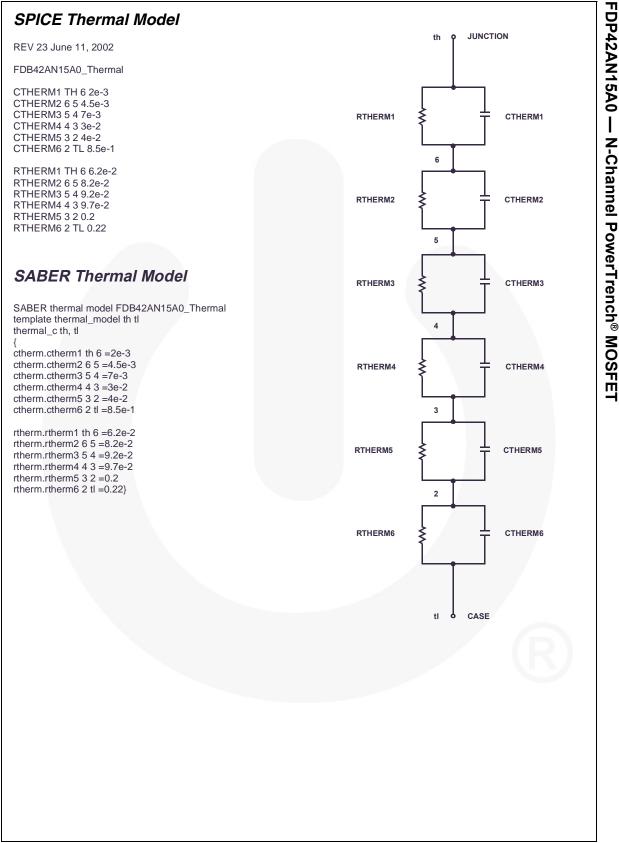


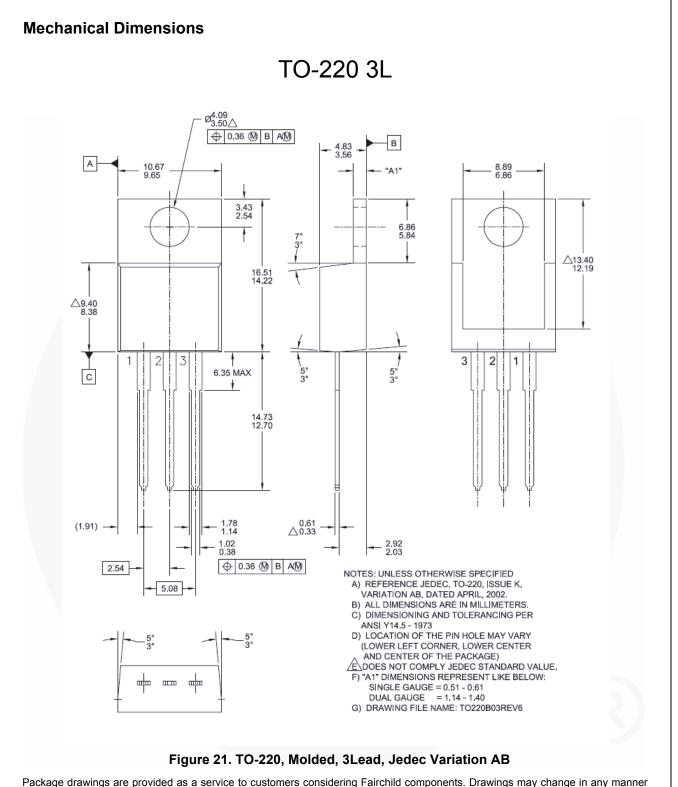

©2002 Fairchild Semiconductor Corporation FDP42AN15A0 Rev. C2

©2002 Fairchild Semiconductor Corporation FDP42AN15A0 Rev. C2


www.fairchildsemi.com

©2002 Fairchild Semiconductor Corporation FDP42AN15A0 Rev. C2


www.fairchildsemi.com



©2002 Fairchild Semiconductor Corporation FDP42AN15A0 Rev. C2

SABER Electrical Model DP42AN15A0 --rev June 11, 2002 template FDB42AN15A0 n2,n1,n3 electrical n2,n1,n3 var i iscl dp..model dbodymod = (isl=2.4e-11,nl=1.08,rs=4.2e-3,trs1=2.2e-3,trs2=2.5e-9,cjo=1.35e-9,m=6.3e-1,tt=4.8e-8,xti=3.9) dp..model dbreakmod = (rs=1.5e-1,trs1=1e-3,trs2=-8.9e-6) dp..model dplcapmod = (cjo=.43e-9,isl=10e-30,nl=10,m=0.66) m..model mmedmod = (type=_n,vto=3.5,kp=4,is=1e-30, tox=1) **N-Channel PowerTrench® MOSFET** m..model mstrongmod = (type=_n,vto=4.0,kp=70,is=1e-30, tox=1) m..model mweakmod = (type=_n,vto=3.12,kp=0.06,is=1e-30, tox=1,rs=.1) sw_vcsp..model s1amod = (ron=1e-5,roff=0.1,von=-4,voff=-1.5) DPLCAP DRAIN ന്ന sw_vcsp..model s1bmod = (ron=1e-5,roff=0.1,von=-1.5,voff=-4) -02 10 sw_vcsp..model s2amod = (ron=1e-5,roff=0.1,von=-1,voff=0.5) RLDRAIN sw_vcsp..model s2bmod = (ron=1e-5,roff=0.1,von=0.5,voff=-1) **∑**RSLC1 c.ca n12 n8 = 6.0e-10 51 RSLC2 ₹ c.cb n15 n14 = 8e-10 ISCL c.cin n6 n8 = 2.1e-9 DBREAK 50 dp.dbody n7 n5 = model=dbodymod RDRAIN dp.dbreak n5 n11 = model=dbreakmod 6 ESG 11 dp.dplcap n10 n5 = model=dplcapmod EVTHRES 16 21 <u>19</u> 8 MWFAK spe.ebreak n11 n7 n17 n18 = 159.5 GATE LGATE EVTEMP RGATE ണ MMED EBREAK spe.eds n14 n8 n5 n8 = 1 18 22 I 9 20 spe.egs n13 n8 n6 n8 = 1 MSTRO RLGATE spe.esg n6 n10 n6 n8 = 1 LSOURCE spe.evthres n6 n21 n19 n8 = 1CIN SOURCE 8 spe.evtemp n20 n6 n18 n22 = 1 3 RSOURCE RLSOURCE i.it n8 n17 = 1 RBREAK l.lgate n1 n9 = 4.81e-9 17 \sim 18 I.ldrain n2 n5 = 1.0e-9 RVTEMP l.lsource n3 n7 = 4.63e-9 S1B S2B CB 19 CA IT 14 res.rlgate n1 n9 = 48.1VRAT res.rldrain n2 n5 = 10EGS EDS res.rlsource n3 n7 = 46.3 8 22 m.mmed n16 n6 n8 n8 = model=mmedmod, l=1u, w=1u RVTHRES m.mstrong n16 n6 n8 n8 = model=mstrongmod, l=1u, w=1u m.mweak n16 n21 n8 n8 = model=mweakmod, l=1u, w=1u res.rbreak n17 n18 = 1, tc1=1e-3,tc2=-15e-7 res.rdrain n50 n16 = 14e-3, tc1=1.7e-2,tc2=4e-5 res.rgate n9 n20 = 1.36 res.rslc1 n5 n51 = 1e-6, tc1=2.5e-3,tc2=1e-6 res.rslc2 n5 n50 = 1e3res.rsource n8 n7 = 20e-3, tc1=1e-3,tc2=1e-6 res.rvthres n22 n8 = 1, tc1=-5.3e-3,tc2=-1.5e-5 res.rvtemp n18 n19 = 1, tc1=-2.7e-3,tc2=1e-6 sw_vcsp.s1a n6 n12 n13 n8 = model=s1amod sw_vcsp.s1b n13 n12 n13 n8 = model=s1bmod sw_vcsp.s2a n6 n15 n14 n13 = model=s2amod sw_vcsp.s2b n13 n15 n14 n13 = model=s2bmod v.vbat n22 n19 = dc=1 equations { i (n51->n50) +=iscl iscl: v(n51,n50) = ((v(n5,n51)/(1e-9+abs(v(n5,n51))))*((abs(v(n5,n51)*1e6/65))** 3))} }

www.fairchildsemi.com

FDP42AN15A0 — N-Channel PowerTrench[®] MOSFET

without notice. Please note the revision and/or date on the drawing and contact a Fairchild Semiconductor representative to verify or obtain the most recent revision. Package specifications do not expand the terms of Fairchild's worldwide terms and conditions, specifically the warranty therein, which covers Fairchild products.

Always visit Fairchild Semiconductor's online packaging area for the most recent package drawings:

http://www.fairchildsemi.com/package/packageDetails.html?id=PN_TT220-003

Dimension in Millimeters

Obsolete

Not In Production

Datasheet contains specifications on a product that is discontinued by Fairchild

Semiconductor. The datasheet is for reference information only.

Rev. 166

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor has against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death ass

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81-3-5817-1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

© Semiconductor Components Industries, LLC

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

onsemi: FDB42AN15A0