General Purpose Transistors

NPN Silicon

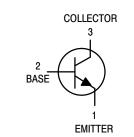
Features

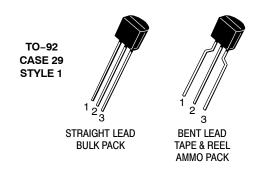
• Pb-Free Packages are Available*

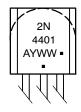
MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector – Emitter Voltage	V _{CEO}	40	Vdc
Collector - Base Voltage	V _{CBO}	60	Vdc
Emitter – Base Voltage	V _{EBO}	6.0	Vdc
Collector Current – Continuous	Ι _C	600	mAdc
Total Device Dissipation @ T _A = 25°C Derate above 25°C	P _D	625 5.0	mW mW/°C
Total Device Dissipation @ T _C = 25°C Derate above 25°C	P _D	1.5 12	W mW/°C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	−55 to +150	°C

THERMAL CHARACTERISTICS


Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction-to-Ambient	$R_{\theta JA}$	200	°C/W
Thermal Resistance, Junction-to-Case	$R_{\theta JC}$	83.3	°C/W


Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.


ON Semiconductor®

http://onsemi.com

MARKING DIAGRAM

2N4401 = Device Code A = Assembly Location Y = Year WW = Work Week • = Pb-Free Package (Note: Microdot may be in either location)

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 2 of this data sheet.

*For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ELECTRICAL CHARACTERISTICS ($T_A = 25^{\circ}C$ unless otherwise noted)

Characteristic			Symbol	Min	Max	Unit
OFF CHARACTERISTICS		t		•		-4
Collector-Emitter Breakdov	wn Voltage (Note 1) $(I_{\rm C} = 1.0 \text{ mAdc}, I_{\rm B} = 0)$	V _{(BR)CEO}	40	-	Vdc
Collector-Base Breakdowr	n Voltage	$(I_{\rm C} = 0.1 \text{ mAdc}, I_{\rm E} = 0)$	V _{(BR)CBO}	60	-	Vdc
Emitter-Base Breakdown	√oltage	$(I_{E} = 0.1 \text{ mAdc}, I_{C} = 0)$	V _{(BR)EBO}	6.0	-	Vdc
Base Cutoff Current		(V _{CE} = 35 Vdc, V _{EB} = 0.4 Vdc)	I _{BEV}	-	0.1	μAdc
Collector Cutoff Current		(V _{CE} = 35 Vdc, V _{EB} = 0.4 Vdc)	I _{CEX}	-	0.1	μAdc
ON CHARACTERISTICS (Note 1)			•		
DC Current Gain			h _{FE}	20 40 80 100 40	- - 300 -	_
Collector – Emitter Saturatio	on Voltage	$ (I_C = 150 \text{ mAdc}, I_B = 15 \text{ mAdc}) \\ (I_C = 500 \text{ mAdc}, I_B = 50 \text{ mAdc}) $	V _{CE(sat)}		0.4 0.75	Vdc
Base - Emitter Saturation Voltage		$ (I_C = 150 \text{ mAdc}, I_B = 15 \text{ mAdc}) \\ (I_C = 500 \text{ mAdc}, I_B = 50 \text{ mAdc}) $	V _{BE(sat)}	0.75 _	0.95 1.2	Vdc
SMALL-SIGNAL CHARAC	CTERISTICS					
Current-Gain - Bandwidth	Product (_C = 20 mAdc, V _{CE} = 10 Vdc, f = 100 MHz)	f _T	250	-	MHz
Collector-Base Capacitanc	e	(V _{CB} = 5.0 Vdc, I _E = 0, f = 1.0 MHz)	C _{cb}	-	6.5	pF
Emitter-Base Capacitance		(V _{EB} = 0.5 Vdc, I _C = 0, f = 1.0 MHz)	C _{eb}	-	30	pF
Input Impedance		l _C = 1.0 mAdc, V _{CE} = 10 Vdc, f = 1.0 kHz)	h _{ie}	1.0	15	kΩ
Voltage Feedback Ratio		l _C = 1.0 mAdc, V _{CE} = 10 Vdc, f = 1.0 kHz)	h _{re}	0.1	8.0	X 10 ⁻⁴
Small–Signal Current Gain (I _C		l _C = 1.0 mAdc, V _{CE} = 10 Vdc, f = 1.0 kHz)	h _{fe}	40	500	-
Output Admittance (I _C =		l _C = 1.0 mAdc, V _{CE} = 10 Vdc, f = 1.0 kHz)	h _{oe}	1.0	30	μmhos
SWITCHING CHARACTER	RISTICS					
Delay Time	(V _{CC} = 30 Vdc,	V _{BE} = 2.0 Vdc,	t _d	-	15	ns
Rise Time	$I_{\rm C}$ = 150 mAdc,	l _{B1} = 15 mAdc)	t _r	-	20	ns
Storage Time	1	_C = 150 mAdc,	ts	_	225	ns

1. Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2.0%.

 $I_{B1} = I_{B2} = 15 \text{ mAdc}$)

ORDERING INFORMATION

Fall Time

Device	Package	Shipping [†]
2N4401	TO-92	5000 Units / Bulk
2N4401G	TO-92 (Pb-Free)	5000 Units / Bulk
2N4401RLRA	TO-92	2000 / Tape & Reel
2N4401RLRAG	TO-92 (Pb-Free)	2000 / Tape & Reel
2N4401RLRMG	TO-92 (Pb-Free)	2000 / Tape & Ammo Box
2N4401RLRP	TO-92	2000 / Tape & Ammo Box
2N4401RLRPG	TO-92 (Pb-Free)	2000 / Tape & Ammo Box

tf

_

30

ns

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

SWITCHING TIME EQUIVALENT TEST CIRCUITS

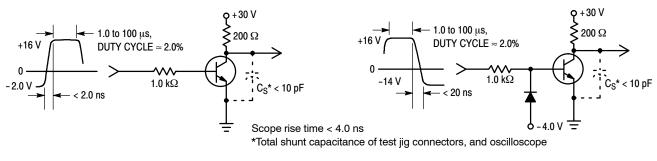
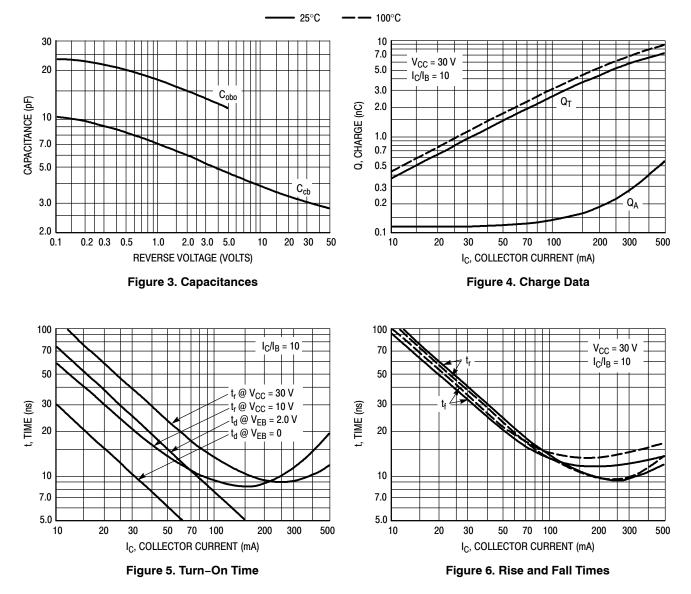



Figure 2. Turn-Off Time

TRANSIENT CHARACTERISTICS

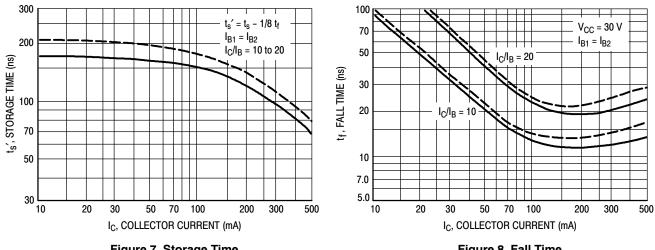
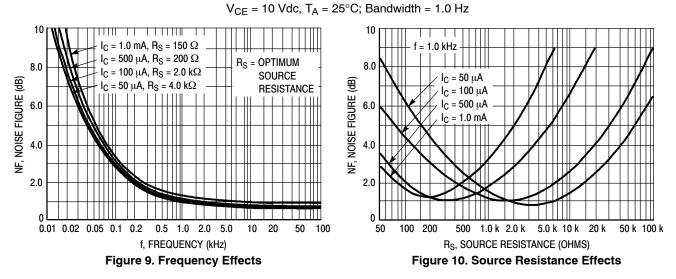



Figure 7. Storage Time

Figure 8. Fall Time

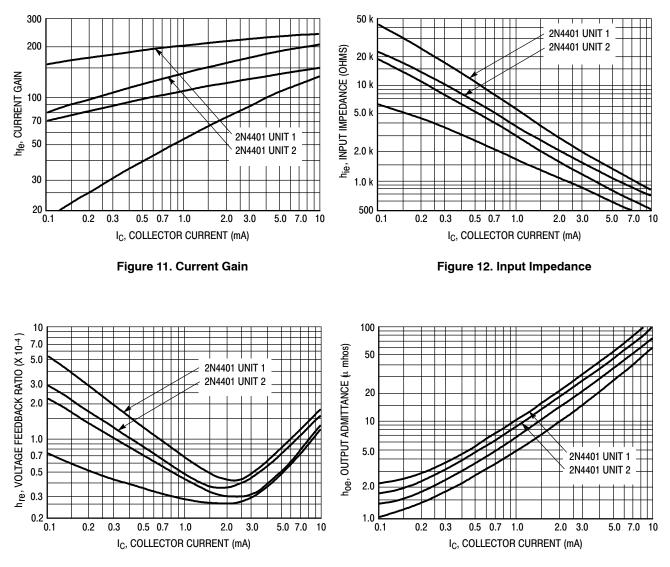
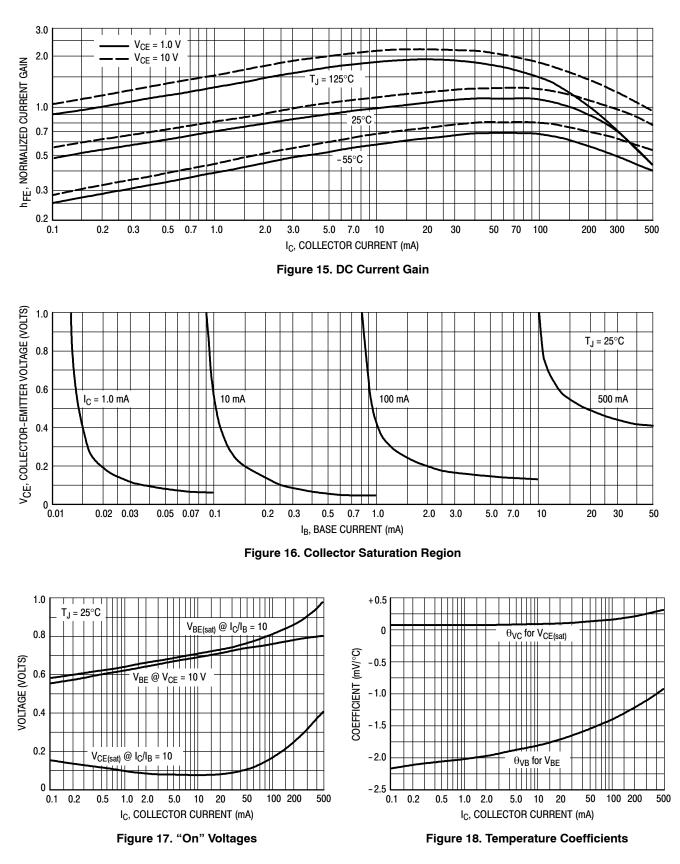
SMALL-SIGNAL CHARACTERISTICS **NOISE FIGURE**

h PARAMETERS

 V_{CE} = 10 Vdc, f = 1.0 kHz, T_A = 25°C

This group of graphs illustrates the relationship between h_{fe} and other "h" parameters for this series of transistors. To obtain these curves, a high-gain and a low-gain unit were

selected from the 2N4401 lines, and the same units were used to develop the correspondingly numbered curves on each graph.

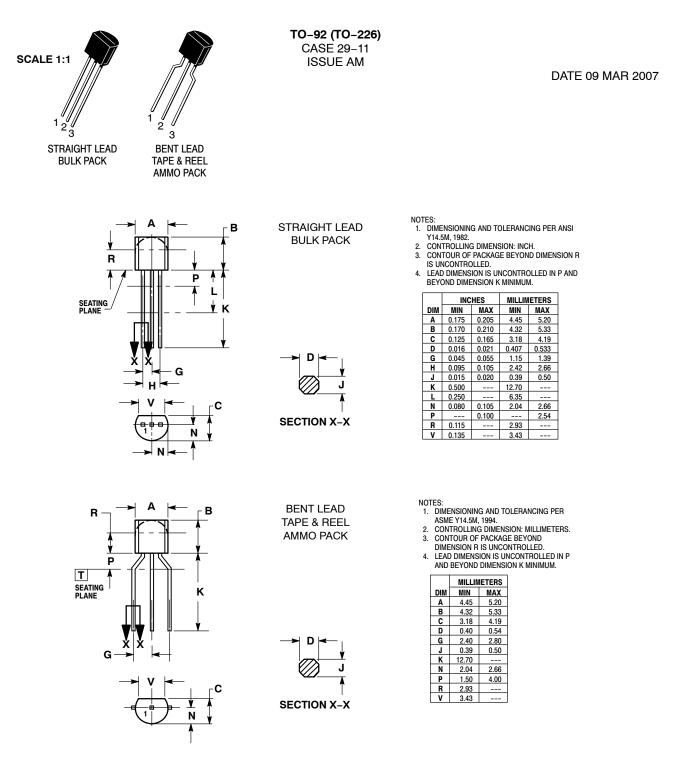

Figure 13. Voltage Feedback Ratio

Figure 14. Output Admittance

ONSEMI,

STYLES ON PAGE 2

DOCUMENT NUMBER:	98ASB42022B	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.	
DESCRIPTION:	TO-92 (TO-226)		PAGE 1 OF 2

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

TO-92 (TO-226) CASE 29-11 **ISSUE AM**

STYLE 3: PIN 1. ANODE

DATE 09 MAR 2007

	EMITTER BASE COLLECTOR
STYLE 6: PIN 1. 2. 3.	SOURCE & SUBSTRATE
2.	ANODE CATHODE & ANODE CATHODE
2.	ANODE GATE CATHODE
2.	COLLECTOR EMITTER BASE
STYLE 26: PIN 1. 2. 3.	V _{CC} GROUND 2

	BASE EMITTER COLLECTOR
2.	SOURCE DRAIN GATE
2.	MAIN TERMINAL 1 Gate Main Terminal 2
2.	COLLECTOR BASE EMITTER
2.	SOURCE GATE DRAIN
STYLE 32: PIN 1.	BASE

2. COLLECTOR 3. EMITTER

	ANODE ANODE CATHODE
2.	DRAIN GATE SOURCE & SUBSTRATE
2.	3: ANODE 1 GATE CATHODE 2
2.	B: ANODE CATHODE NOT CONNECTED
2.	3: GATE SOURCE DRAIN
STYLE 2	B:

PIN 1. CATHODE ANODE
GATE

STYLE 33: PIN 1. RETURN 2. INPUT 3. OUTPUT

2.	CATHODE CATHODE ANODE
2.	BASE 1 EMITTER BASE 2
2.	EMITTER COLLECTOR BASE
2.	EMITTER COLLECTOR/ANODE CATHODE
2.	NOT CONNECTED ANODE CATHODE
2.	INPUT GROUND LOGIC

STYLE 5: PIN 1. DRAIN 2. SOURCE 3. GATE STYLE 10: PIN 1. CATHODE 2. GATE 3. ANODE STYLE 15: PIN 1. ANODE 1 2. CATHODE 3. ANODE 2 STYLE 20: PIN 1. NOT CONNECTED 2. CATHODE 3. ANODE STYLE 25: PIN 1. MT 1 2. GATE 3. MT 2 STYLE 30: PIN 1. DRAIN 2. GATE 3. SOURCE STYLE 35: PIN 1. GATE 2. COLLECTOR

3. EMITTER

DOCUMENT NUMBER:	BASB42022B Electronic versions are uncontrolled except when accessed directly from the Document Reposi Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	TO-92 (TO-226)		PAGE 2 OF 2

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent_Marking.pdf</u>. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or indental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification. Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs,

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

Technical Library: www.onsemi.com/design/resources/technical-documentation onsemi Website: www.onsemi.com

ONLINE SUPPORT: <u>www.onsemi.com/support</u> For additional information, please contact your local Sales Representative at <u>www.onsemi.com/support/sales</u>

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

onsemi:

2N4401G 2N4401RLRA 2N4401RLRAG 2N4401RLRPG