

February 2008

MM74HCU04 Hex Inverter

Features

- Typical propagation delay: 7ns
- Fanout of 15 LS-TTL loads
- Quiescent power consumption: 10µA maximum at room temperature
- Low input current: 1µA maximum

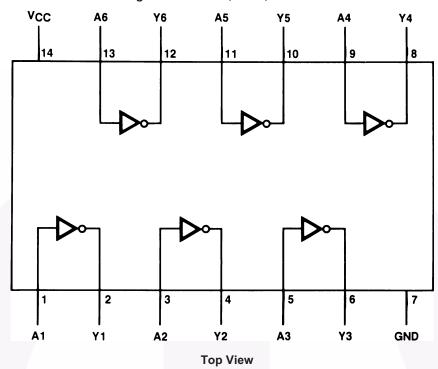
General Description

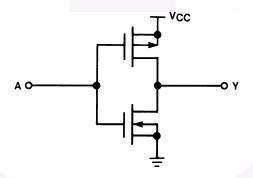
The MM74HCU04 inverters utilize advanced silicon-gate CMOS technology to achieve operating speeds similar to LS-TTL gates with the low power consumption of standard CMOS integrated circuits.

The MM74HCU04 is an unbuffered inverter. It has high noise immunity and the ability to drive 15 LS-TTL loads. The 74HCU logic family is functionally as well as pin-out compatible with the standard 74LS logic family. All inputs are protected from damage due to static discharge by internal diode clamps to $V_{\rm CC}$ and ground.

Ordering Information

Order Number	Package Number	Package Description
MM74HCU04M	M14A	14-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow
MM74HCU04SJ	M14D	14-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide
MM74HCU04MTC	MTC14	14-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide
MM74HCU04N	N14A	14-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide


Device also available in Tape and Reel. Specify by appending suffix letter "X" to the ordering number.


All packages are lead free per JEDEC: J-STD-020B standard.

Connection Diagram

Pin Assignments for DIP, SOIC, SOP and TSSOP

Schematic Diagram

Absolute Maximum Ratings⁽¹⁾

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

Symbol	Parameter	Rating
V _{CC}	Supply Voltage	-0.5 to +7.0V
V _{IN}	DC Input Voltage	-1.5 to V _{CC} +1.5V
V _{OUT}	DC Output Voltage	-0.5 to V _{CC} +0.5V
I _{IK} , I _{OK}	Clamp Diode Current	±20mA
I _{OUT}	DC Output Current, per pin	±25mA
I _{CC}	DC V _{CC} or GND Current, per pin	±50mA
T _{STG}	Storage Temperature Range	−65°C to +150°C
P _D	Power Dissipation Note 2	600mW
	S.O. Package only	500mW
T _L	Lead Temperature (Soldering 10 seconds)	260°C

Notes:

- 1. Unless otherwise specified all voltages are referenced to ground.
- 2. Power Dissipation temperature derating plastic "N" package: -12mW/°C from 65°C to 85°C.

Recommended Operating Conditions

The Recommended Operating Conditions table defines the conditions for actual device operation. Recommended operating conditions are specified to ensure optimal performance to the datasheet specifications. Fairchild does not recommend exceeding them or designing to absolute maximum ratings.

Symbol	Parameter		Max.	Units
V _{CC}	Supply Voltage	2	6	V
V_{IN}, V_{OUT}	DC Input or Output Voltage		V _{CC}	V
T _A	Operating Temperature Range	-40	+85	°C

DC Electrical Characteristics

				T _A =	25°C	T _A = -40°C to 85°C	T _A =-55°C to 125°C	
Symbol Parameter		V _{CC} (V)	Conditions	Тур.		Guaranteed	Limits	Units
V _{IH}	Minimum HIGH	2.0			1.7	1.7	1.7	V
	Level Input Voltage	4.5			3.6	3.6	3.6	
	voltage	6.0			4.8	4.8	4.8	
V_{IL}	Maximum LOW	2.0			0.3	0.3	0.3	V
	Level Input Voltage	4.5			0.8	0.8	0.8	
	voitage	6.0			1.1	1.1	1.1	
V _{OH}	Minimum HIGH	2.0	$V_{IN} = V_{IL}$,	2.0	1.8	1.8	1.8	V
	Level Output Voltage	4.5	I _{OUT} ≤ 20μA	4.5	4.0	4.0	4.0	
	voitage	6.0		6.0	5.5	5.5	5.5	
	4.5	$V_{IN} = GND,$ $ I_{OUT} \le 4.0 mA$	4.2	3.98	3.84	3.7		
		6.0	$V_{IN} = GND,$ $ I_{OUT} \le 5.2mA$	5.7	5.48	5.34	5.2	
OL	Maximum LOW	2.0	$V_{IN} = V_{IH}$	0	0.2	0.2	0.2	V
	Level Output Voltage	4.5	I _{OUT} ≤ 20μA	0	0.5	0.5	0.5	
	voltage	6.0		0	0.5	0.5	0.5	
		4.5	$V_{IN} = V_{CC},$ $ I_{OUT} \le 6.0 \text{mA}$	0.2	0.26	0.33	0.4	
		6.0	$V_{IN} = V_{CC},$ $ I_{OUT} \le 7.8 \text{mA}$	0.2	0.26	0.33	0.4	
I _{IN}	Maximum Input Current	6.0	$V_{IN} = V_{CC}$ or GND		±0.1	±1.0	±1.0	μA
I _{CC}	Maximum Quiescent Supply Current	6.0	$V_{IN} = V_{CC}$ or GND, $I_{OUT} = 0\mu A$		2.0	20	40	μA

Note:

3. For a power supply of 5V $\pm 10\%$ the worst case output voltages (V_{OH}, and V_{OL}) occur for HC at 4.5V. Thus the 4.5V values should be used when designing with this supply. Worst case V_{IH} and V_{IL} occur at V_{CC} = 5.5V and 4.5V respectively. (The V_{IH} value at 5.5V is 3.85V.) The worst case leakage current (I_{IN}, I_{CC}, and I_{OZ}) occur for CMOS at the higher voltage and so the 6.0V values should be used.

AC Electrical Characteristics

 $V_{CC} = 5V$, $T_A = 25$ °C, $C_L = 15$ pF, $t_r = t_f = 6$ ns

Symbol	Parameter	Conditions	Тур.	Guaranteed Limit	Units
t _{PHL} , t _{PLH}	Maximum Propagation Delay		7	13	ns

AC Electrical Characteristics

 $\rm V_{CC} = 2.0V$ to 6.0V, $\rm C_L = 50pF,\ t_r = t_f = 6ns$ (unless otherwise specified)

				T _A =2	25°C	T _A =-40°C to 85°C	T _A -55°C to 125°C	
Symbol	Parameter	Conditions	V _{CC} (V)	Тур.	(Guaranteed	Limits	Units
t _{PHL} , t _{PLH}	t _{PHL} , t _{PLH} Maximum Propagation		2.0	49	82	103	120	ns
	Delay		4.5	9.9	16	21	24	
			6.0	8.4	14	18	20	
t _{TLH} , t _{THL}	Maximum Output Rise		2.0	30	75	95	110	ns
	and Fall Time		4.5	8	15	19	22	
			6.0	7	13	16	19	
C _{PD}	Power Dissipation Capacitance ⁽⁴⁾	(per gate)		90				pF
C _{IN}	Maximum Input Capacitance			8	15	15	15	pF

Note:

4. C_{PD} determines the no load dynamic power consumption, $P_D = C_{PD} \, V_{CC}^{\ 2} \, f + I_{CC} \, V_{CC}$, and the no load dynamic current consumption, $I_S = C_{PD} \, V_{CC} \, f + I_{CC}$.

Typical Applications

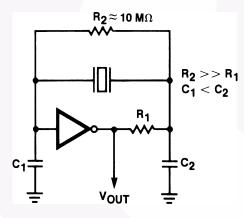


Figure 1. Crystal Oscillator

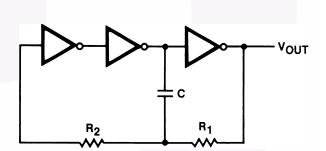


Figure 2. Stable RC Oscillator

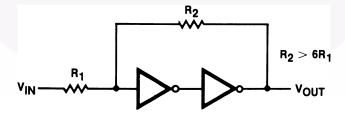
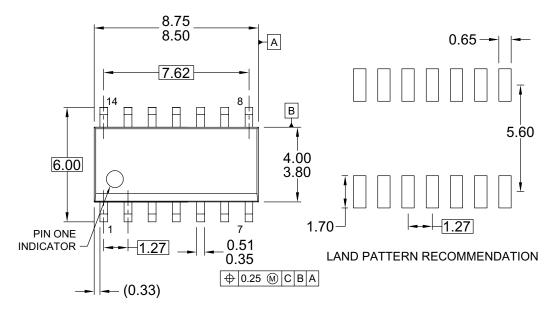
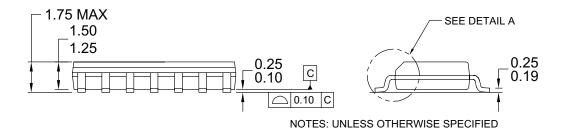
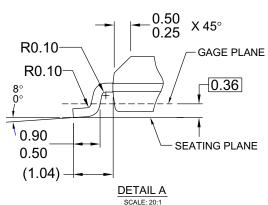
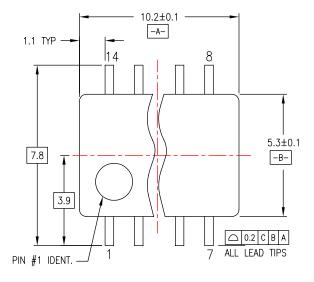
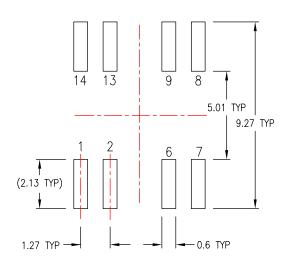





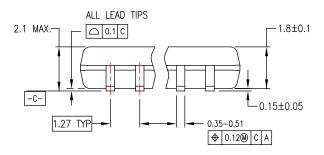
Figure 3. Schmitt Trigger

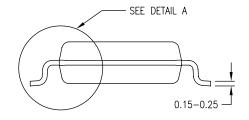
Physical Dimensions


- A) THIS PACKAGE CONFORMS TO JEDEC MS-012, VARIATION AB, ISSUE C,
- B) ALL DIMENSIONS ARE IN MILLIMETERS.
- C) DIMENSIONS DO NOT INCLUDE MOLD FLASH OR BURRS.
- D) LANDPATTERN STANDARD: SOIC127P600X145-14M
- E) DRAWING CONFORMS TO ASME Y14.5M-1994
- F) DRAWING FILE NAME: M14AREV13

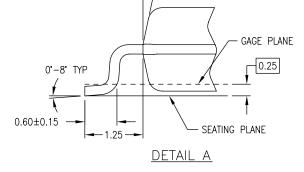

Figure 4. 14-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow

Package drawings are provided as a service to customers considering Fairchild components. Drawings may change in any manner without notice. Please note the revision and/or date on the drawing and contact a Fairchild Semiconductor representative to verify or obtain the most recent revision. Package specifications do not expand the terms of Fairchild's worldwide terms and conditions, specifically the warranty therein, which covers Fairchild products.


Always visit Fairchild Semiconductor's online packaging area for the most recent package drawings: http://www.fairchildsemi.com/packaging/


Physical Dimensions (Continued)

LAND PATTERN RECOMMENDATION



7° TYP

DIMENSIONS ARE IN MILLIMETERS

NOTES:

- A. CONFORMS TO EIAJ EDR-7320 REGISTRATION, ESTABLISHED IN DECEMBER, 1998.
 B. DIMENSIONS ARE IN MILLIMETERS.
 C. DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLD FLASH, AND TIE BAR EXTRUSIONS.

M14DREVC

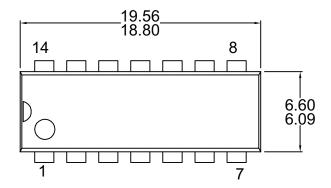
Figure 5. 14-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide

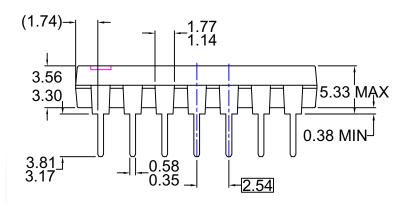
Package drawings are provided as a service to customers considering Fairchild components. Drawings may change in any manner without notice. Please note the revision and/or date on the drawing and contact a Fairchild Semiconductor representative to verify or obtain the most recent revision. Package specifications do not expand the terms of Fairchild's worldwide terms and conditions, specifically the warranty therein, which covers Fairchild products.

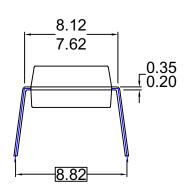
Always visit Fairchild Semiconductor's online packaging area for the most recent package drawings:

http://www.fairchildsemi.com/packaging/

Physical Dimensions (Continued) 5.0±0.1 -A-0.65 0.43 TYP 6.4 4.4±0.1 -B-1.65 3.2 □ 0.2 C B A PIN #1 IDENT. 6.10 0.45 -LAND PATTERN RECOMMENDATION SEE DETAIL A ALL LEAD TIPS 0.90+0.15 1.2 MAX □ 0.1 C 0.09-0.20 -C-0.10±0.05 0.65 0.19 - 0.30⊕ |0.13\\(\) |A |B\(\) |C\(\) 12.00°TOP & BOTTOM R0.09 min GAGE PLANE 0.25 0°-8° NOTES: 0.6±0.1 A. CONFORMS TO JEDEC REGISTRATION MO-153, SEATING PLANE R0.09min VARIATION AB, REF NOTE 6 -1 00 **B. DIMENSIONS ARE IN MILLIMETERS DETAIL A**


- C. DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLD FLASH, AND TIE BAR EXTRUSIONS
- D. DIMENSIONING AND TOLERANCES PER ANSI Y14.5M, 1982
- E. LANDPATTERN STANDARD: SOP65P640X110-14M
- F. DRAWING FILE NAME: MTC14REV6


Figure 6. 14-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide


Package drawings are provided as a service to customers considering Fairchild components. Drawings may change in any manner without notice. Please note the revision and/or date on the drawing and contact a Fairchild Semiconductor representative to verify or obtain the most recent revision. Package specifications do not expand the terms of Fairchild's worldwide terms and conditions, specifically the warranty therein, which covers Fairchild products.

Always visit Fairchild Semiconductor's online packaging area for the most recent package drawings: http://www.fairchildsemi.com/packaging/

Physical Dimensions (Continued)

NOTES: UNLESS OTHERWISE SPECIFIED THIS PACKAGE CONFORMS TO

- A) JEDEC MS-001 VARIATION BA
- B) ALL DIMENSIONS ARE IN MILLIMETERS.
 DIMENSIONS ARE EXCLUSIVE OF BURRS.
- C) MOLD FLASH, AND TIE BAR EXTRUSIONS.
- D) DIMENSIONS AND TOLERANCES PER ASME Y14.5-1994
- E) DRAWING FILE NAME: MKT-N14AREV7

Figure 7. 14-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide

Package drawings are provided as a service to customers considering Fairchild components. Drawings may change in any manner without notice. Please note the revision and/or date on the drawing and contact a Fairchild Semiconductor representative to verify or obtain the most recent revision. Package specifications do not expand the terms of Fairchild's worldwide terms and conditions, specifically the warranty therein, which covers Fairchild products.

Always visit Fairchild Semiconductor's online packaging area for the most recent package drawings: http://www.fairchildsemi.com/packaging/

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

Build it Now™ CorePLUS™ CROSSVOLTTM **CTL™**

Current Transfer Logic™ EcoSPARK® EZSWITCH™ *

Fairchild[®] Fairchild Semiconductor® FACT Quiet Series™

FACT[®] $\mathsf{FAST}^{\mathbb{R}}$ FastvCore™ FlashWriter® 3 FPS™ FRFET®

Global Power Resource^{sм}

Green FPS™

Green FPS™e-Series™

GTO™ i-Lo™ IntelliMAX™ ISOPLANAR™

MegaBuck™ MICROCOUPLER™ MicroFET™

MicroPak™ MillerDrive™ Motion-SPM™ OPTOLOGIC®

OPTOPLANAR®

PDP-SPM™ Power220® POWEREDGE® Power-SPM™ $\mathsf{PowerTrench}^{\mathbb{R}}$

Programmable Active Droop™

QS™

QT Optoelectronics™ Quiet Series™ RapidConfigure™ SMART START™ SPM[®] STEALTH™ SuperFET™

SuperSOT™3 SuperSOT™6 SuperSOT™-8 SupreMOS™ SyncFET™ SYSTEM ® GENERAL

The Power Franchise®

p wer franchise TinyBoost™ TinyBuck™ TinyLogic[®] TINYOPTO™ TinyPower™ TinyPWM™ TinyWire™ μSerDes™ UHC®

Ultra FRFET™ UniFET™ VCX™

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- 2. A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild Semiconductor. The datasheet is printed for reference information only.

Rev. 133

^{*} EZSWITCH™ and FlashWriter® are trademarks of System General Corporation, used under license by Fairchild Semiconductor.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

onsemi

MM74HCU04MTC_Q