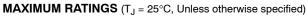
MOSFET - Power, Single **N-Channel, PQFN8**

100 V, 10.8 mΩ, 83 A


Product Preview NTMFS010N10G

Features

- Wide SOA for Linear Mode Operation
- Low R_{DS(on)} to Minimize Conduction Loss
- High Peak UIS Current Capability for Ruggedness
- Small Footprint (5x6 mm) for Compact Design
- These Devices are Pb-Free, Halogen Free/BFR Free and are RoHS Compliant

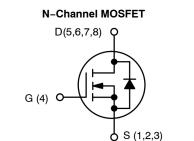
Typical Applications

• 48 V Hot Swap System, Load Switch, Soft Start, E-Fuse

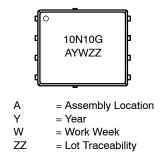
Parar	Symbol	Value	Unit		
Drain-to-Source Breakdown Voltage			V _{(BR)DSS}	100	V
Gate-to-Source Voltage			V _{GS}	±20	V
Continuous Drain Cur-	Steady	$T_{C} = 25^{\circ}C$	۱ _D	83	А
rent $R_{\theta JC}$ (Note 2)	State	$T_{C} = 100^{\circ}C$	I _D	58	А
Power Dissipation		$T_C = 25^{\circ}C$	PD	150	W
R _{θJC} (Note 2)		$T_{C} = 100^{\circ}C$	PD	75	W
Continuous Drain Current $R_{\theta JA}$ (Note 1, 2)	Steady State	$T_C = 25^{\circ}C$	Ι _D	11	А
		$T_{C} = 100^{\circ}C$	Ι _D	8	А
Power Dissipation		$T_{C} = 25^{\circ}C$	PD	3	W
R _{θJA} (Note 1, 2)		$T_{C} = 100^{\circ}C$	PD	1.5	W
Pulsed Drain Current	T _A = 25°	C, t _p = 10 μs	I _{DM}	1247	А
Operating Junction and Storage Temperature Range			T _J , T _{stg}	–55 to +175	°C
Source Current (Body Diode)			۱ _S	125	А
Single Pulse Drain-to-Source Avalanche Energy (I_{AV} = 38.8 A, L = 0.3 mH)			E _{AS}	226	mJ
Lead Temperature Soldering Reflow for Sol- dering Purposes (1/8" from case for 10 s)			ΤL	260	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

- 1. Surface-mounted on FR4 board using 1 in² pad size, 1 oz Cu pad.
- 2. The entire application environment impacts the thermal resistance values shown, they are not constants and are only valid for the particular conditions noted.


This document contains information on a product under development. ON Semiconductor reserves the right to change or discontinue this product without notice.

ON Semiconductor®


www.onsemi.com

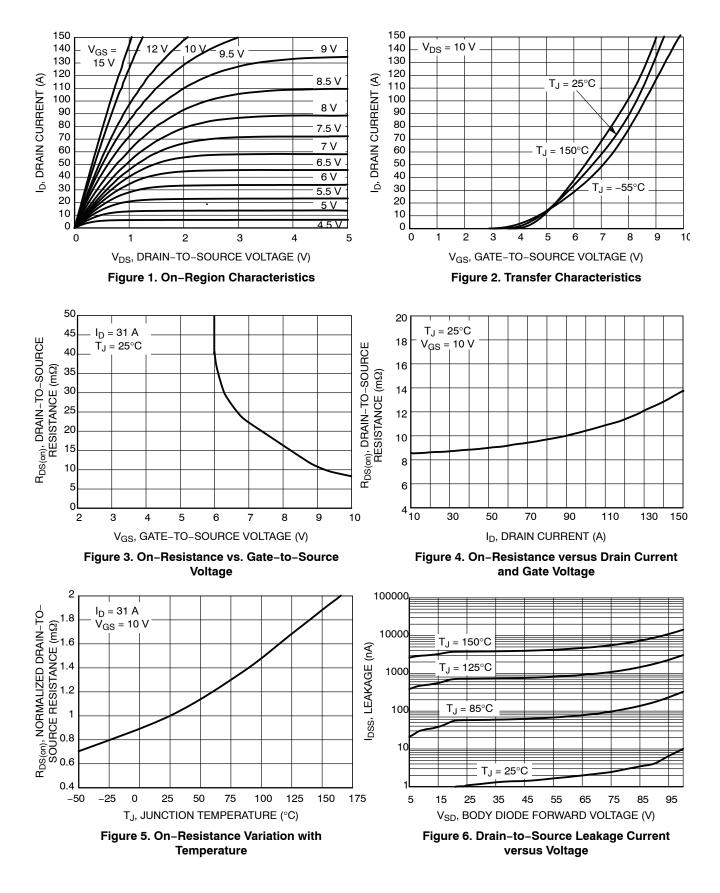
V _{(BR)DSS}	R _{DS(ON)} MAX	I _D MAX		
100 V	10.8 m Ω @ 10 V	83 A		

MARKING DIAGRAM

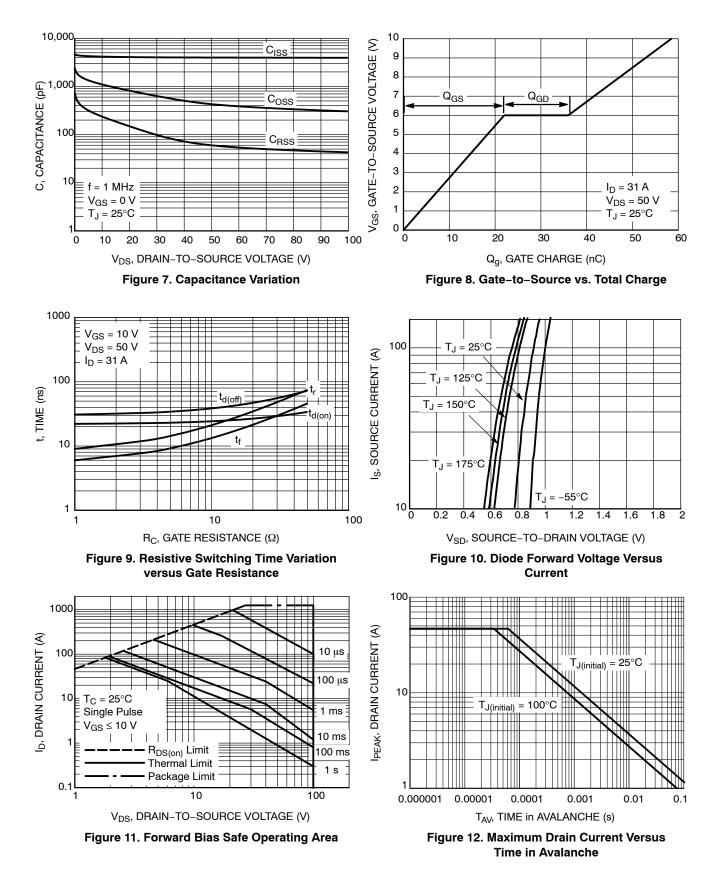
ORDERING INFORMATION

See detailed ordering and shipping information on page 5 of this data sheet.

THERMAL CHARACTERISTICS


Symbol	Parameter	Мах	Unit
$R_{ extsf{ heta}JC}$	Junction-to-Case - Steady State	1.0	°C/W
$R_{ ext{ heta}JA}$	Junction-to-Ambient – Steady State	50	

ELECTRICAL CHARACTERISTICS (T_J = $25^{\circ}C$ unless otherwise noted)


Symbol	Parameter	Test Conditions		Min	Тур	Max	Unit
OFF CHARAC	TERISTICS	•			•		-
V _{(BR)DSS}	Drain-to-Source Breakdown Voltage	V_{GS} = 0 V, I_D = 250 μ A		100			V
$V_{(BR)DSS}/T_J$	Drain-to-Source Breakdown Voltage Temperature Coefficient	$I_D = 250 \ \mu A$, ref to $25^{\circ}C$			87.9		mV/°C
I _{DSS}	Zero Gate Voltage Drain Current		$T_J = 25^{\circ}C$			1	μA
		V_{GS} = 0 V, V_{DS} = 80 V	T _J = 125°C			100	1
I _{GSS}	Gate-to-Source Leakage Current	V _{DS} = 0 V, V _{GS} = ±20 V				±100	nA
ON CHARACT	ERISTICS (Note 3)	-					-
V _{GS(TH)}	Gate Threshold Voltage	$V_{GS} = V_{DS}, I_D = 1$	64 μΑ	2.0	3.0	4.0	V
V _{GS(TH)} / T _J	Negative Threshold Temperature Coefficient	$I_D = 164 \ \mu A$, ref to 25°C			-9.2		mV/°C
R _{DS(on)}	Drain-to-Source On Resistance	V _{GS} = 10 V, I _D =	31 A		8.6	10.8	mΩ
^g FS	Forward Transconductance	V _{DS} = 5 V, I _D = 31 A			21		S
R _G	Gate-Resistance	V _{GS} = 0 V, f = MHz			0.52		Ω
CHARGES & C	CAPACITANCES						
C _{ISS}	Input Capacitance	V _{GS} = 0 V, f = 1 MHz, V _{DS} = 50 V			3950		pF
C _{OSS}	Output Capacitance				430		1
C _{RSS}	Reverse Transfer Capacitance				60		
Q _{G(TOT)}	Total Gate Charge				58.5		nC
Q _{GS}	Gate-to-Source Charge	V _{GS} = 10 V, V _{DS} = 50 V, I _D = 31 A			22		
Q _{GD}	Gate-to-Drain Charge				14		-
Q _{OSS}	Output Charge	V _{GS} = 0 V, V _{DD} = 50 V			41		1
	HARACTERISTICS (Note 3)						
t _{d(ON)}	Turn–On Delay Time				23		ns
t _r	Rise Time	Vcs = 10 V. Vcs = 50 V	ln = 31 A.		14		1
t _{d(OFF)}	Turn-Off Delay Time	V_{GS} = 10 V, V_{DS} = 50 V, I_{D} = 31 A, R_{G} = 4.7 Ω			34		1
t _f	Fall Time				9		
DRAIN-SOUR	CE DIODE CHARACTERISTICS				•		
V _{SD}	Forward Diode Voltage	Voo - 0 V lo - 31 A	T _J = 25°C		0.83	1.2	V
			T _J = 125°C		0.7		1
t _{RR}	Reverse Recovery Time	V_{GS} = 0 V, dI _S /dt = 300 A/µs, I _S = 15 A			36		ns
Q _{RR}	Reverse Recovery Charge				147		nC
t _{RR}	Reverse Recovery Time	V_{GS} = 0 V, dI_S/dt = 1000 A/µs, I_S = 15 A			24		ns
Q _{RR}	Reverse Recovery Charge				288		nC

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions. 3. Switching characteristics are independent of operating junction temperatures.

TYPICAL CHARACTERISTICS

TYPICAL CHARACTERISTICS

TYPICAL CHARACTERISTICS

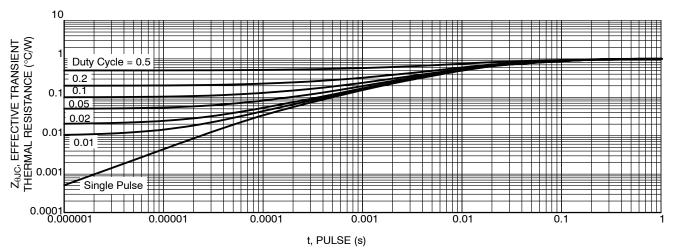


Figure 13. Transient Thermal Impedance

ORDERING INFORMATION

Device	Device Marking	Package	Shipping (Qty / Packing) [†]
NTMFS010N10GTWG	10N10G	PQFN8 (Pb-Free/Halogen Free)	3000 / Tape & Reel

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

PACKAGE DIMENSIONS

BOTTOM VIEW

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor hy such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, a

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

TECHNICAL SUPPORT

ON Semiconductor Website: www.onsemi.com

Email Requests to: orderlit@onsemi.com

North American Technical Support: Voice Mail: 1 800–282–9855 Toll Free USA/Canada Phone: 011 421 33 790 2910 Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

onsemi:

NTMFS010N10GTWG