ONSEMI,

N-Channel RF Amplifier

MMBF5484, MMBF5485, MMBF5486

This device is designed primarily for electronic switching applications such as low On Resistance analog switching. Sourced from Process 50.

ABSOLUTE MAXIMUM RATINGS* (T_A = 25°C unless otherwise noted)

Symbol	Rating	Value	Unit	
Symbol	Itating	value	Unit	
V_{DG}	Drain-Gate Voltage	25	V	
V _{GS}	Gate-Source Voltage	-25	V	
I _{GF}	Forward Gate Current	10	mA	
T _J , T _{stg}	Operating and Storage Junction Temperature Range	–55 to +150	°C	

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

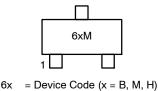
*These rating are limiting values above which the serviceability of any semiconductor device may be impaired.

1. These rating are based on a maximum junction temperature of 150°C.

2. These are steady state limits. The factory should be consulted on applications involving pulsed or low duty cycle operations.

THERMAL CHARACTERISTICS ($T_A = 25^{\circ}C$ unless otherwise noted)

		Мах	
Symbol	Characteristic	*MMBF5484-5486	Unit
P _D	Total Device Dissipation Derate above 25°C	225 1.8	mW mW/°C
$R_{ extsf{ heta}JC}$	Thermal Resistance, Junction to Case	-	°C/W
R_{\thetaJA}	Thermal Resistance, Junction to Ambient	556	°C/W


*Device mounted on FR-4 PCB 1.6" x 1.6" x 0.06".

NOTE: Source & Drain are interchangeable

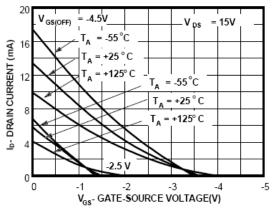
SOT-23 CASE 318-08

MARKING DIAGRAM

M = Date Code

ORDERING INFORMATION

Device	Package	Shipping [†]
MMBF5484	SOT-23	3000 Tape &
MMBF5484	(Pb-Free)	Reel
MMBF5484		


+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

Symbol	Parameter	Test Condition		Min	Тур	Max	Unit
OFF CHAP	RACTERISTICS	•		1	1		
V _{(BR)GSS}	Gate-Source Breakdown Voltage	$I_{G} = -1.0 \ \mu A, V_{DS} = 0$		-25	-	-	V
I _{GSS}	Gate Reverse Current					-1.0 -0.2	nA μA
V _{GS(off)}	Gate-Source Cutoff Voltage	V _{DS} = 15 V, I _D = 10 nA	5484 5485 5486	-0.3 -0.5 -2.0	- - -	-3.0 -4.0 -6.0	V V V
ON CHAR	ACTERISTICS	·					
I _{DSS}	Zero-Gate Voltage Drain Current*	V _{DS} = 15 V, V _{GS} = 0	5484 5485 5486	1.0 4.0 8.0	_ _ _	5.0 10 20	mA mA mA
SMALL SI	GNAL CHARACTERISTICS	•				•	
9fs	Forward Transfer Conductance	V_{DS} = 15 V, V_{GS} = 0, f = 1.0 kHz	5484 5485 5486	3000 3500 4000	- - -	6000 7000 8000	μmhos μmhos μmhos
Re ₍ y _{is)}	Input Conductance	V_{DS} = 15 V, V_{GS} = 0, f = 100 MHz	5484	-	-	100	μmhos
		V_{DS} = 15 V, V_{GS} = 0, f = 400 kHz	5485 / 5486	-	-	1000	μmhos
g _{os}	Output Conductance	V _{DS} = 15 V, V _{GS} = 0, f = 1.0 kHz	5484 5485 5486	- - -	- - -	50 60 75	μmhos μmhos μmhos
Re ₍ y _{os)}	Output Conductance	V _{DS} = 15 V, V _{GS} = 0, f = 100 MHz	5484	-	_	75	μmhos
		V_{DS} = 15 V, V_{GS} = 0, f = 400 MHz	5485 / 5486	-	-	100	μmhos
Re ₍ y _{fs)}	Forward Transconductance	V_{DS} = 15 V, V_{GS} = 0, f = 100 MHz	5484	2500	-	-	μmhos
		V_{DS} = 15 V, V_{GS} = 0, f = 400 MHz	5485 5486	3000 3500			μmhos μmhos
C _{iss}	Input Capacitance	V _{DS} = 15 V, V _{GS} = 0, f = 1.0 MHz		-	-	5.0	pF
C _{rss}	Reverse Transfer Capacitance	V _{DS} = 15 V, V _{GS} = 0, f = 1.0 MHz		-	-	1.0	pF
C _{oss}	Output Capacitance	V _{DS} = 15 V, V _{GS} = 0, f = 1.0 MHz		-	-	2.0	pF
NF	Noise Figure	V_{DS} = 15 V, R_{G} = 1.0 k Ω , f = 100 MHz	5484	-	-	3.0	dB
		V_{DS} = 15 V, R_G = 1.0 k Ω , f = 400 MHz	5484	-	4.0	-	dB
		V_{DS} = 15 V, R_G = 1.0 k Ω , f = 100 MHz	5485 / 5486	-	-	2.0	dB
		V_{DS} = 15 V, R_G = 1.0 k Ω , f = 400 MHz	5485 / 5486	-	-	4.0	dB

ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise noted)

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

TYPICAL CHARACTERISTICS

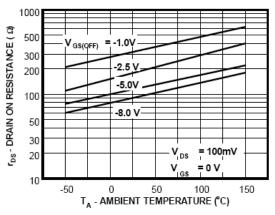


Figure 2. Channel Resistance vs. Temperature

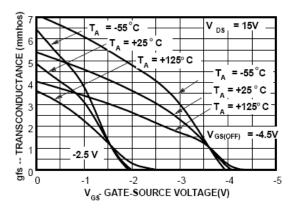


Figure 3. Transconductance Characteristics

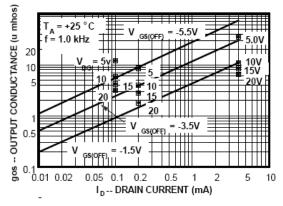


Figure 5. Output Conductance vs. Drain Current

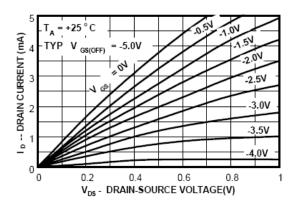


Figure 4. Common Drain–Source Characteristics

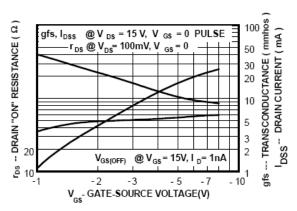


Figure 6. Transconductance Parameter Interactions

TYPICAL CHARACTERISTICS (continued)

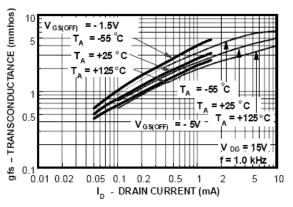


Figure 7. Transconductance vs. Drain Current

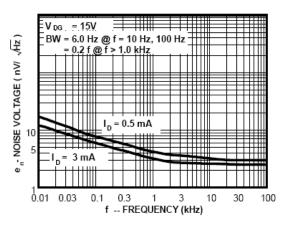


Figure 8. Noise Voltage vs. Frequency

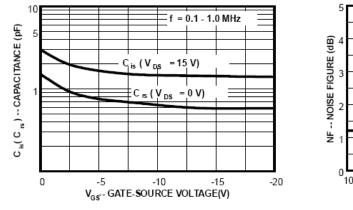


Figure 9. Capacitance vs. Voltage

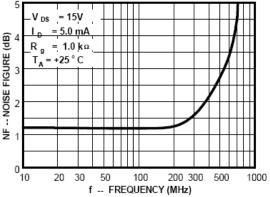
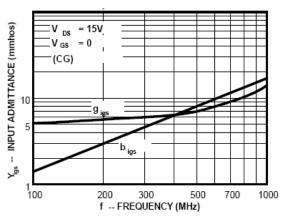
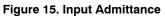


Figure 10. Noise Figure Frequency

COMMON SOURCE CHARACTERISTICS

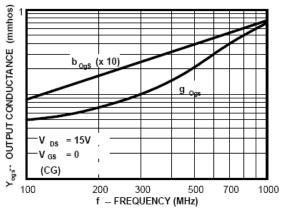

Figure 13. Forward Transadmittance


Figure 14. Reverse Transadmittance

COMMON GATE CHARACTERISTICS

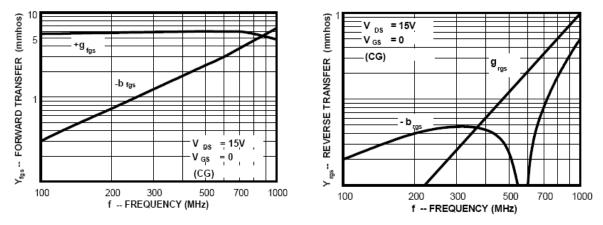


Figure 17. Forward Transadmittance

Figure 18. Reverse Transadmittance

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent_Marking.pdf</u>. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or indental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification. Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs,

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

Technical Library: www.onsemi.com/design/resources/technical-documentation onsemi Website: www.onsemi.com

ONLINE SUPPORT: <u>www.onsemi.com/support</u> For additional information, please contact your local Sales Representative at <u>www.onsemi.com/support/sales</u>

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

onsemi:

MMBF5484 MMBF5486 MMBF5485