onsemi

Power Transistor, PNP, General Purpose 100 V, 3 A

PNP TRANSISTOR 100 V, 3 A

MJK32C

These Bipolar Junction Transistors are designed for general purpose power and switching applications such as regulators, converters and power amplifiers. Housed in advanced LFPAK package $(5 \times 6 \text{ mm})$ with excellent thermal conduction. Automotive end applications include air bag deployment, power train control units, and instrument clusters.

Features

- Complementary NPN: MJK31C
- NJV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q101 Qualified and PPAP Capable
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant

MAXIMUM RATINGS (T_A = 25° C)

Rating	Symbol	Max	Unit
Collector-Emitter Voltage	V _{CEO}	-100	Vdc
Emitter-Base Voltage	V _{EBO}	-5	Vdc
Collector Current – Continuous	Ι _C	-3	А
Collector Current – Peak	I _{CM}	-5	А
Junction and Storage Temperature Range	T _J , T _{stg}	-65 to +150	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

THERMAL CHARACTERISTICS

Characteristics	Symbol	Max	Unit
Thermal Resistance, Junction-to-Case per Device (Note 1)	$R_{\theta JC}$	2.4	°C/W
Thermal Resistance, Junction-to-Ambient per Device (Note 1)	R_{\thetaJA}	45	°C/W
Total Power Dissipation @ T _A = 25°C (Note 1)	P _D	2.7	W

1. Surface-mounted on FR4 board using a 6 cm², 2 oz. Cu collector pad.

XX	= Specific Device Code
	= Assembly Location

= Wafer Lot

A LL

Υ

W

= Year - Work Week

_	 	

ORDERING INFORMATION

Device	Package	Shipping [†]
MJK32CTWG	LFPAK4 5x6 (Pb-Free)	3000 / Tape & Reel
NJVMJK32CTWG	LFPAK4 5x6 (Pb-Free)	3000 / Tape & Reel

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted)

Characteristic	Symbol	Min	Тур	Max	Unit	
OFF CHARACTERISTICS	OFF CHARACTERISTICS					
Collector-Emitter Sustaining Voltage $(I_{C} = -30 \text{ mA}, I_{B} = 0)$	V _{CEO(sus)}	-100	_	_	Vdc	
Collector Cutoff Current (V_{CE} = Rated V_{CEO} , V_{BE} = 0)	I _{CES}	-	-	-20	μΑ	
Collector Cutoff Current (V_{CE} = Rated V_{CEO} , I_B = 0)	I _{CEO}	-	-	-50	μΑ	
Emitter Cutoff Current (V _{EB} = -5 Vdc)	I _{EBO}	-	-	-1.0	mA	
ON CHARACTERISTICS	ON CHARACTERISTICS					
Collector-Emitter Saturation Voltage $(I_{C} = -3 \text{ Adc}, I_{B} = -0.375 \text{ Adc})$	V _{CE(sat)}	-	-	-1.2	Vdc	
Base-Emitter Saturation Voltage (I _C = -3 Adc, V _{CE} = -4 Vdc)	V _{BE(on)}	-	-	-1.8	Vdc	
DC Current Gain ($V_{CE} = -4 \text{ Vdc}, I_C = -1 \text{ Adc}$) ($V_{CE} = -4 \text{ Vdc}, I_C = -3 \text{ Adc}$)	h _{FE}	25 10	-	_ 60	_	
DYNAMIC CHARACTERISTICS						
Gain Bandwidth Product (I _C = 0.5 Adc, V _{CE} = 10 Vdc, f = 1 MHz)	f _T	_	3	_	MHz	

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

TYPICAL CHARACTERISTICS

Figure 4. Saturation Voltage V_{BE(sat)}

Figure 6. Capacitance

Figure 3. Saturation Voltage V_{CE(sat)}

Figure 5. Collector Saturation Region

TYPICAL CHARACTERISTICS (continued)

Figure 9. Typical Transient Thermal Response, Junction-to-Case

PACKAGE DIMENSIONS

LFPAK4 5x6 CASE 760AB ISSUE C

*FOR ADDITIONAL INFORMATION ON OUR PB-FREE STRATEGY AND SOLDERING DETAILS, PLEASE DOWNLOAD THE ON SEMICONDUCTOR SOLDERING AND MOUNTING TECHNIQUES REFERENCE MANUAL, SOLDERRM/D.

NOTES:

- 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
- 2. CONTROLLING DIMENSION: MILLIMETERS.
- 3. DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR BURRS. MOLD FLASH PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED 0.150mm PER SIDE.
- 4. DIMENSIONS D AND E ARE DETERMINED AT THE OUTERMOST EXTREMES OF THE PLASTIC BODY.
- 5. DATUMS A AND B ARE DETERMINED AT DATUM PLANE H.

ι	UNIT IN MILLIMETER			
DIM	MIN	NOM	MAX	
Α	1.10	1.20	1.30	
A1	0.00	0.08	0.15	
A2	1.10	1.15	1.20	
A3	().25 REF	-	
A4	0.45	0.50	0.55	
b	0.40	0.45	0.50	
b2	3.80	4.10	4.40	
b3	2.00	2.10	2.20	
b4	0.70	0.80	0.90	
b5	0.55	0.65	0.75	
b6		0.31 REI	Н	
С	0.19	0.22	0.25	
c2	0.19	0.22	0.25	
D	4.05	4.15	4.25	
D1	3.80	4.00	4.20	
D2	3.00	3.10	3.20	
D3	0.30	0.40	0.50	
D4	0.90	1.00	1.10	
Е	4.80	4.90	5.00	
E1	3.10	3.20	3.30	
E2	5.00	5.00 5.15 5.30		
е	1.27 BSC			
1/2e	0.635 BSC			
e1	0.40 REF			
н	6.00	6.15	6.30	
L	0.40	0.65	0.85	
L1	0.80	0.90	1.00	
L2	0.90	1.10	1.30	
L3	0.00	0.10	0.20	
q	0°	4°	8°	

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights or the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any dovices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of pers

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS: Technical Library: www.onsemi.com/design/resources/tec

Technical Library: www.onsemi.com/design/resources/technical-documentation onsemi Website: www.onsemi.com/design/resources/technical-documentation onsemi Website: www.onsemi.com/design/resources/technical-documentation onsemi Website: www.onsemi.com/design/resources/technical-documentation onsemi Website: www.onsemi.com onsemi.com onsemi.com

ONLINE SUPPORT: www.onsemi.com/support For additional information, please contact your local Sales Representative at www.onsemi.com/support/sales

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

onsemi:

NJVMJK32CTWG MJK32CTWG