ON Semiconductor

Is Now

Onsemi

To learn more about onsemi[™], please visit our website at <u>www.onsemi.com</u>

onsemi and ONSEMI. and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product factures, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and asfety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or by customer's technical experts. onsemi products and actal performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiari

Is Now Part of

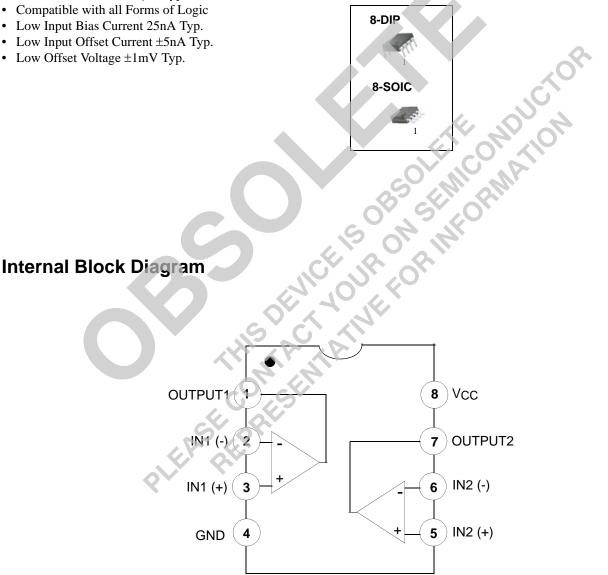
ON Semiconductor®

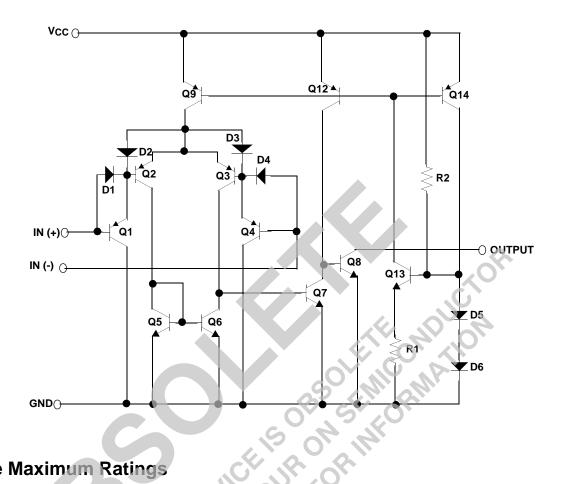
To learn more about ON Semiconductor, please visit our website at <u>www.onsemi.com</u>

Please note: As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers will need to change in order to meet ON Semiconductor's system requirements. Since the ON Semiconductor product management systems do not have the ability to manage part nomenclature that utilizes an underscore (_), the underscore (_) in the Fairchild part numbers will be changed to a dash (-). This document may contain device numbers with an underscore (_). Please check the ON Semiconductor website to verify the updated device numbers. The most current and up-to-date ordering information can be found at www.onsemi.com. Please email any questions regarding the system integration to Fairchild_questions@onsemi.com.

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor data sheets and/or specifications can and do vary in different applications and safety requirements or standards, regardless of any support or application provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or unauthorized sage and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconduct

LM2903,LM393/LM393A,LM293A **Dual Differential Comparator**


Features


- Dual Supply Operation: $\pm 1V$ to $\pm 18V$ •
- Allow Comparison of Voltages Near Ground Potential •
- Low Current Drain 800µA Typ.
- •
- Low Input Bias Current 25nA Typ.
- •
- •

Description

The LM2903, LM393/LM393A, LM293A consist of two independent voltage comparators designed to operate from a single power supply over a wide voltage range.

Schematic Diagram

Absolute Maximum Ratings

Parameter	Symbol	Value	Unit
Power Supply Voltage	Vcc	±18 or 36	V
Differential Input Voltage	VI(DIFF)	36	V
Input Voltage	VI	-0.3 to +36	V
Output Short Circuit to GND		Continuous	-
Power Dissipation, T _a = 25°C 8-DIP 8-SOIC	PD	1040 480	mW
Operating Temperature LM393/LM393A LM2903 LM293A	TOPR	0 ~ +70 -40 ~ +105 -25 ~ +85	°C
Storage Temperature	T _{STG}	-65 ~ +150	°C

Thermal Data

Parameter	Symbol	Value	Unit
Thermal Resistance Junction-Ambient Max. 8-DIP 8-SOIC	R _{θja}	120 260	°C/W

Electrical Characteristics

(V_{CC} = 5V, T_A = 25°C, unless otherwise specified)

Symbol	Conditions		LM293A/LM393A			LM393			Unit	
Parameter Symbol		Conditions		Тур.	Max.	Min.	Тур.	Max.	Unit	
Vio	VO(P) =1.4V, RS = 0Ω - ±1 VCM= 0 to 1.5V Note1 - -		-	±1	±2	-	±1	±5	mV	
VIO			±4.0	-	-	±9.0	mv			
Input Offset Current IIO			-	±5	±50	-	±5	±50	nA	
10		Note1	-	-	±150	-	-	±150		
Input Bias Current IBIAS			-	65	250	-	65	250	nA	
IDIAS		Note1	-	-	400	-	-	400		
VI(R)			0	-	VCC -1.5	0	-	VCC -1.5	V	
Ī		Note1	0	-	Vcc-2	0	5	Vcc-2		
	$R_L = \infty$, $V_{CC} = 5$	5V	-	0.6	1	-	0.6	1	mA	
	RL = ∞, VCC = 3	0V	-	0.8	2.5	-C	0.8	2.5		
Gv	/		50	200		50	200	-	V/mV	
TLRES			5	350	CO.	A	350	-	nS	
TRES	V _{RL} =5∨, R _L =5	.1kΩ		1.4	-	-	1.4	-	μS	
ISINK	$V_{I(-)} \ge 1V, V_{I(+)} = V_{O(P)} \le 1.5V$	=0V,	6	18	-	6	18	-	mA	
VOAT	$V_{I(-)} \ge 1 \vee, V_{I(+)} =$	= 0V		160	400	-	160	400	mV	
VSAT	ISINK = 4mA	Note1	<u> </u>	-	700	-	-	700	mv	
	$V_{i(-)} = 0V,$	VO(P) = 5V	-	0.1	-	-	0.1	-	nA	
IO(LKG)	$V_{I(+)} = 1V$	VO(P) = 30V	-	-	1.0	-	-	1.0	μA	
	VIO IIO IBIAS VI(R) ICC GV TLRES TRES	$V_{IO} \qquad \begin{array}{c} VO(P) = 1.4V, Rs \\ VCM = 0 \text{ to } 1.5V \\ \hline VCM = 0 \text{ to } 1.5V \\ \hline VCM = 0 \text{ to } 1.5V \\ \hline VI(R) \\ \hline IBIAS \\ \hline VI(R) \\ \hline ICC \\ RL = \infty, VCC = 3 \\ \hline VCC = 15V, RL \ge 3 \\ \hline VICC = 15V, RL \ge 3 \\ \hline VICC = 15V, RL \ge 3 \\ \hline VICC = 15V, RL = 5 \\ \hline RL = 5.1k\Omega \\ \hline TRES \\ VREF = 1.4V, VR \\ RL = 5.1k\Omega \\ \hline TRES \\ VREF = 5.1k\Omega \\ \hline VI(-) \ge 1V, VI(+) = 3 \\ \hline VO(P) \le 1.5V \\ \hline VSAT \\ \hline ISINK = 4mA \\ \hline VI(-) \ge 0V \\ \hline \end{array}$	$V_{IO} \qquad \begin{array}{c} VO(P) = 1.4V, RS = 0\Omega \\ \hline VCM = 0 \text{ to } 1.5V & \text{Note1} \\ \hline VCM = 0 \text{ to } 1.5V & \text{Note1} \\ \hline \\ IO & \text{Note1} \\ \hline \\ IBIAS & \text{Note1} \\ \hline \\ IBIAS & \text{Note1} \\ \hline \\ VI(R) & & \text{Note1} \\ \hline \\ VI(R) & & \text{RL} = \infty, VCC = 5V \\ \hline \\ RL = \infty, VCC = 30V \\ \hline \\ GV & VCC = 15V, RL \ge 15k\Omega \\ (\text{for large VO(P-P)swing)} \\ \hline \\ VCC = 15V, RL \ge 15k\Omega \\ (\text{for large VO(P-P)swing)} \\ \hline \\ TLRES & VREF = 1.4V, VRL = 5V, \\ RL = 5.1k\Omega \\ \hline \\ TRES & VRL = 5V, RL = 5.1k\Omega \\ \hline \\ ISINK & \frac{VI(-) \ge 1V, VI(+) = 0V, \\ VO(P) \le 1.5V \\ \hline \\ VSAT & \frac{VI(-) \ge 1V, VI(+) = 0V}{ISINK = 4mA & \text{Note1} \\ \hline \\ IO(LCC) & VI(-) = 0V, \\ \hline \end{array}$	$\begin{tabular}{ c c c c } \hline Min. \\ \hline V_{IO} & VO(P) = 1.4V, RS = 0\Omega & - \\ \hline VCM = 0 \ to \ 1.5V & Note1 & - \\ \hline VCM = 0 \ to \ 1.5V & Note1 & - \\ \hline & Note1 & 0 \\ \hline & RL = \infty, VCC = 5V & - \\ \hline & RL = \infty, VCC = 5V & - \\ \hline & RL = \infty, VCC = 30V & - \\ \hline & RL = \infty, VCC = 30V & - \\ \hline & QV & VCC = 15V, RL \ge 15k\Omega & 50 \\ \hline & VIC = 15V, RL \ge 15k\Omega & 50 \\ \hline & VI = TTL \ Logic \ Swing & VI = 5.1k\Omega & - \\ \hline & RL = 5.1k\Omega & - \\ \hline & ISINK & VI(-) \ge 1V, VI(+) = 0V, & - \\ \hline & VSAT & VI(-) \ge 1V, VI(+) = 0V & - \\ \hline & ISINK = 4mA & Note1 & - \\ \hline & IO(IKC) & VI(-) = 0V, & VO(P) = 5V & - \\ \hline \end{tabular}$	$\begin{tabular}{ c c c c } \hline Min. & Typ. \\ \hline \\ \hline VO(P) = 1.4V, RS = 0\Omega & - & \pm 1 \\ \hline VCM = 0 to 1.5V & Note1 & - & - \\ \hline \\ \hline IBIAS & - & - & - & - & - & - & - & - & - & $	$\begin{tabular}{ c c c c c } \hline Min. & Typ. & Max. \\ \hline Win. & Typ. & Max. \\ \hline Vin & Vo(P) = 1.4V, RS = 0\Omega & - & \pm 1 & \pm 2 \\ \hline VcM = 0 to 1.5V & Note1 & - & \pm 4.0 \\ \hline VcM = 0 to 1.5V & Note1 & - & \pm 5 & \pm 50 \\ \hline Ilo & Note1 & - & - & \pm 150 \\ \hline Ilo & Note1 & - & - & \pm 150 \\ \hline IBIAS & & & & & & & & & & & & & & & & & & &$	$\begin{tabular}{ c c c c c } \hline Min. & Typ. & Max. & Min. \\ \hline ViO & VO(P) = 1.4V, RS = 0\Omega & - & \pm 1 & \pm 2 & - \\ \hline VCM = 0 to 1.5V & Note1 & - & \pm 5 & \pm 50 & - \\ \hline VCM = 0 to 1.5V & Note1 & - & \pm 5 & \pm 50 & - \\ \hline ID & Note1 & - & - & \pm 150 & - \\ \hline IBIAS & Note1 & - & 65 & 250 & - \\ \hline IBIAS & Note1 & - & 65 & 250 & - \\ \hline VI(R) & Note1 & 0 & - & VCC & 0 \\ \hline VI(R) & Note1 & 0 & - & VCC & 0 \\ \hline ICC & RL = \overline{\sigma}, VCC = 5V & - & 0.6 & 1 & - \\ \hline RL = \overline{\sigma}, VCC = 30V & - & 0.8 & 2.5 & - \\ \hline GV & VCC = 15V, RL \ge 15 k\Omega & 50 & 200 & - & 50 \\ \hline GV & VCC = 15V, RL \ge 15 k\Omega & 50 & 200 & - & 50 \\ \hline TLRES & VI = TTL Logic Swing & - & 350 & - & - \\ \hline ISINK & VI = 5V, RL = 5 1 k\Omega & - & 1.4 & - & - \\ \hline ISINK & VI (-) \ge 1V, VI (+) = 0V & - & 160 & 400 & - \\ \hline VSAT & VI (-) \ge 1V, VI (+) = 0V & - & 0.1 & - & - \\ \hline IO(1KG) & VI (-) = 0V, & VO(P) = 5V & - & 0.1 & - & - \\ \hline O(1KG) & VI (-) = 0V, & VO(P) = 5V & - & 0.1 & - & - \\ \hline \end{tabular}$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	

Electrical Characteristics (Continued)

(V_{CC} = 5V, T_A = 25°C, unless otherwise specified)

Devementer	Cumbal	Conditions			LM2903			3	l lm it
Parameter	Symbol	Conditions		Min.	Тур.	Max.	Unit		
Input Offeet Veltere	VIO	VO(P) =1.4V, RS = 0	-	±1	±7	m\/			
Input Offset Voltage		VCM= 0 to 1.5V	Note1	-	±9	±15	mV		
Input Offset Current	lio			-	±5	±50	nA		
input Onset Current	10	Note1		-	±50	±200			
Input Bias Current	IBIAS	- 65			250	nA			
input bias ourient	IDIAS		Note1	-	-	500			
Input Common Mode Voltage Range	VI(R)			0	-	Vcc -1.5	V		
Voltage Hange			Note1	0	-	Vcc-2			
Supply Current	Icc	$R_L = \infty$, $V_{CC} = 5V$			0.6	1	mA		
	100	RL = ∞, VCC = 30V		-	1	2.5	III/A		
Voltage Gain	Gv	VCC =15V, RL≥15kΩ (for large VO(P-P)swing)		25	100	-	V/mV		
Large Signal Response Time	TLRES	$V_I = TTL Logic Swing$ $V_{REF} = 1.4V, V_{RL} = 5V, R_L = 5.1k\Omega$			350	-	nS		
Response Time	TRES	$V_{RL} = 5V, R_{L} = 5.11$	Ω	<u> </u>	1.5	-	μS		
Output Sink Current	ISINK	$V_{I(-)} \ge 1V, V_{I(+)} = 0V, V_{O(P)} \le 1.5V$		6	16	-	mA		
Output Saturation Voltage	VSAT	$V_{I(-)} \ge 1V, VI(+) = 0V$			160	400	mV		
		ISINK = 4mA	Note1	-	-	700	IIIV		
Output Leakage Current		VI(-) = 0V,	VO(P) = 5V	-	0.1	-	nA		
Output Leakage Outrent	O(LKG)	VI(+) = 1V	VO(P) = 30V	-	-	1.0	μΑ		
Note1 .M393/LM393A: 0 ≤ T _A ≤ +70°C .M2903: -40 ≤ T _A ≤ +105°C .M293A : -25 ≤ T _A ≤ +85°C	SER	$V_{I(-)} = 0V,$ $V_{I(+)} = 1V$	*						

Note1

Typical Performance Characteristics

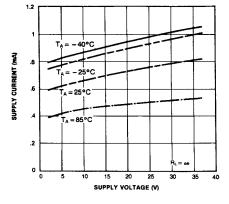


Figure 1. Supply Current vs Supply Voltage

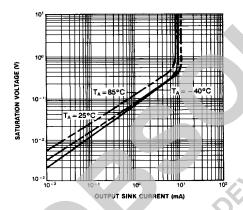


Figure 3. Output Saturation Voltage vs Sink Current

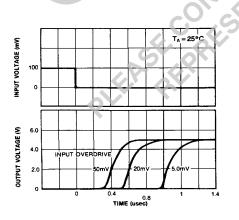


Figure 5. Response Time for Various Input Overdrive-Positive Transition

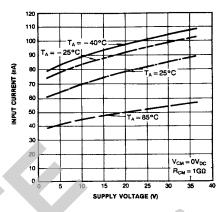


Figure 2. Input Current vs Supply Voltage

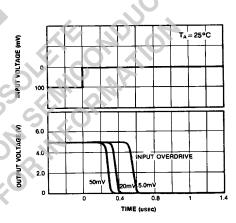
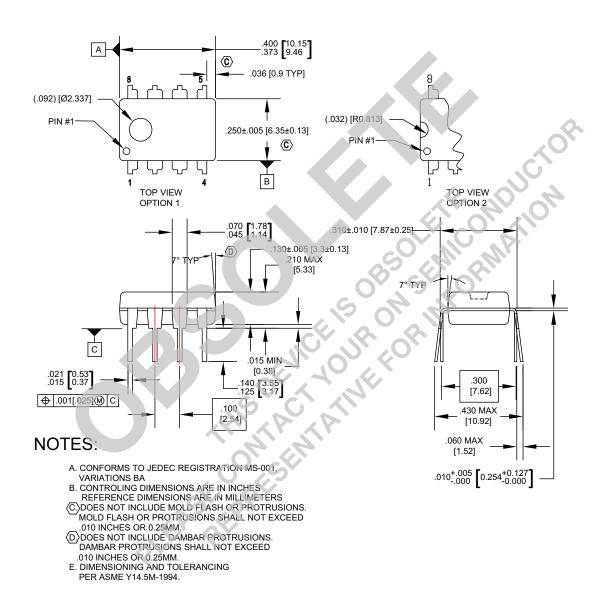
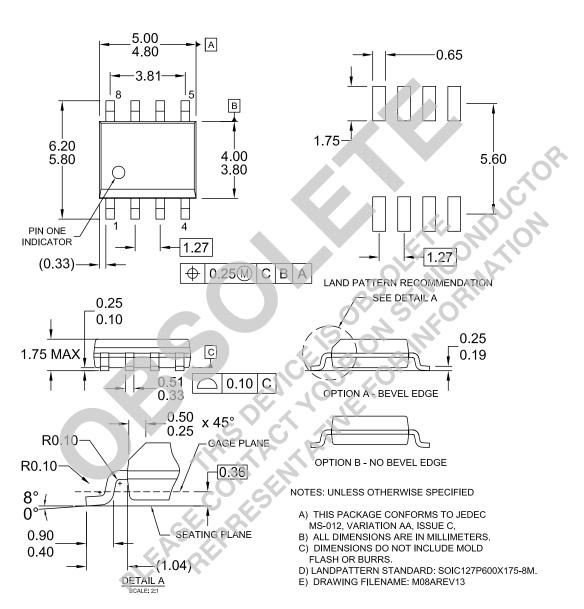



Figure 4. Response Time for Various Input Overdrive-Negative Transition

Mechanical Dimensions

Package

Dimensions in millimeters


8-DIP

N08EREVG

Dimensions in millimeters

Mechanical Dimensions (Continued)

Package

8-SOIC

Ordering Information

Product Number	Operating Temperature	Package	Packing Method	
LM393N		8-DIP	Rail	
LM393AN		0-DIF	Rail	
LM393M	0 ~ +70°C		Rail	
LM393MX	0~+70 C	8-SOIC	Tape & Reel	
LM393AM		0-3010	Rail	
LM393AMX			Tape & Reel	
LM2903N		8-DIP	Rail	
LM2903M	-40 ~ +105°C	8-SOIC	Rail	
LM2903MX		0-3010	Tape & Reel	
LM293AN	-25 ~ +85°C	8-DIP	Rail	

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- 2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ON SEMICONDUC

www.fairchildsemi.com

ON Semiconductor and where trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor haves against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death

50E-CTATINE FOR MICONDUCTO

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support:

Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81-3-5817-1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

© Semiconductor Components Industries, LLC

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

onsemi:

LM393AN LM393AM LM393AMX LM393MX LM393N LM393M LM2903MX LM2903M LM2903N