

Is Now Part of

OR NEW DESIGN

IN Semiconductor®

To k an more about CH Semiconductor, please visit our website at

Please note. As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers will need to change in order to meet ON Semiconductor's system requirements. Since the ON Semiconductor product management systems do not have the ability to manage part nomenclature that utilizes an underscore (_), the underscore (_) in the Fairchild part numbers will be changed to a dash (-). This document may contain device numbers with an underscore (_). Please check the ON Semiconductor website to verify the updated device numbers. The most current and up-to-date ordering information can be found at www.onsemi.com. Please email any questions regarding the system integration to Fairchild guestions@onsemi.com.

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor data sheets and/or specifications can and do vary in different applications and safety requirements or standards, regardless of any support or application provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or unauthorized sage and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconduct

FQP3P50

P-Channel QFET® MOSFET

-500 V, -2.7 A, 4.9 Ω

Description

This P-Channel enhancement mode power MOSFET is produced using Fairchild Semiconductor's proprietary planar stripe and DMOS technology. This advanced MOSFET technology has been especially tailored to reduce on-state resistance, and to provide superior switching performance and high avalanche energy strength. These devices are suitable for switched mode power supplies, audio amplifier, • 100% Avalanche Troted DC motor control, and variable switching power applications.

Features

• -2.7 Å, -500 V, $R_{DS(on)}$ = 4.9 Ω (Max.) @ V_{GS} = -10 V, I_D = -1.35 A

FQP3P50 — P-Channel QFET[®] MOSFET

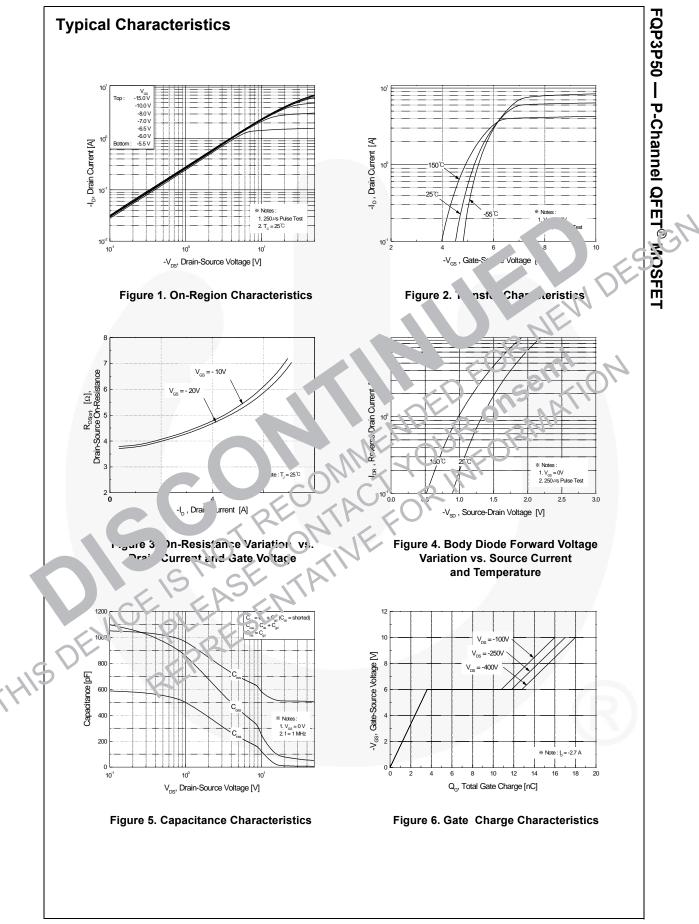
January 2016

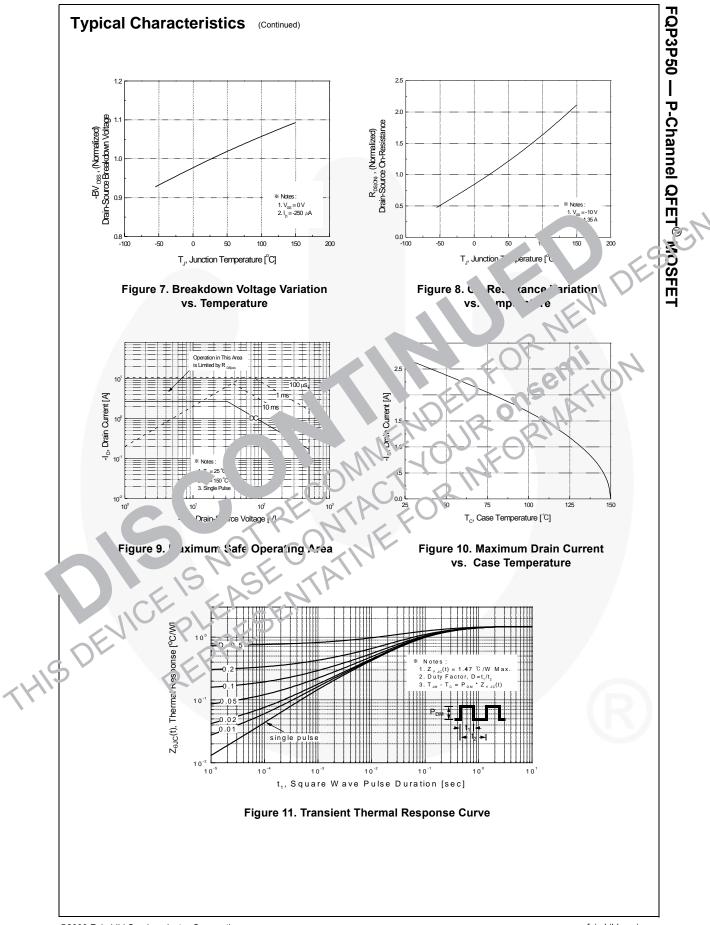
- Low Gate Charge (Typ. 18 nC)
- Low Crss (Typ 9.5 pF)

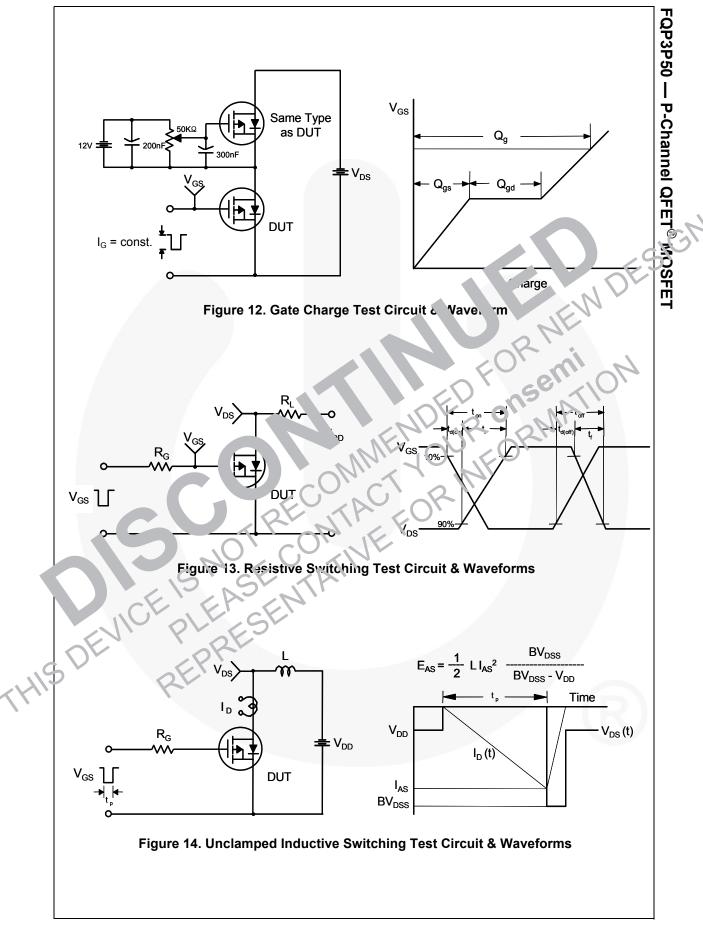
Absolute Max num Tatings Tc= zu C unless c thurvise noted.

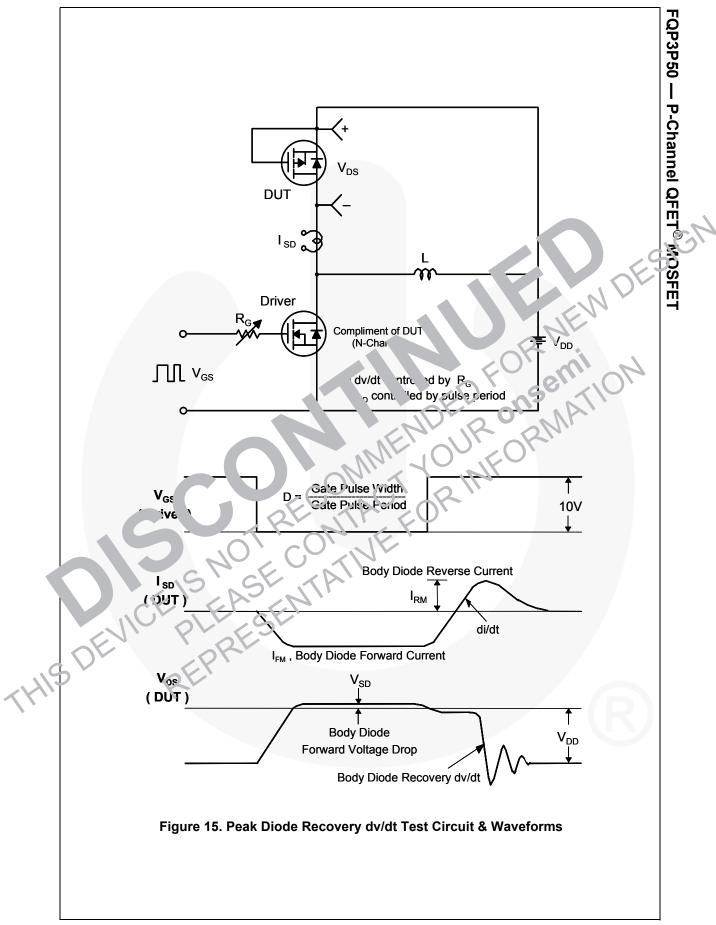
G_D

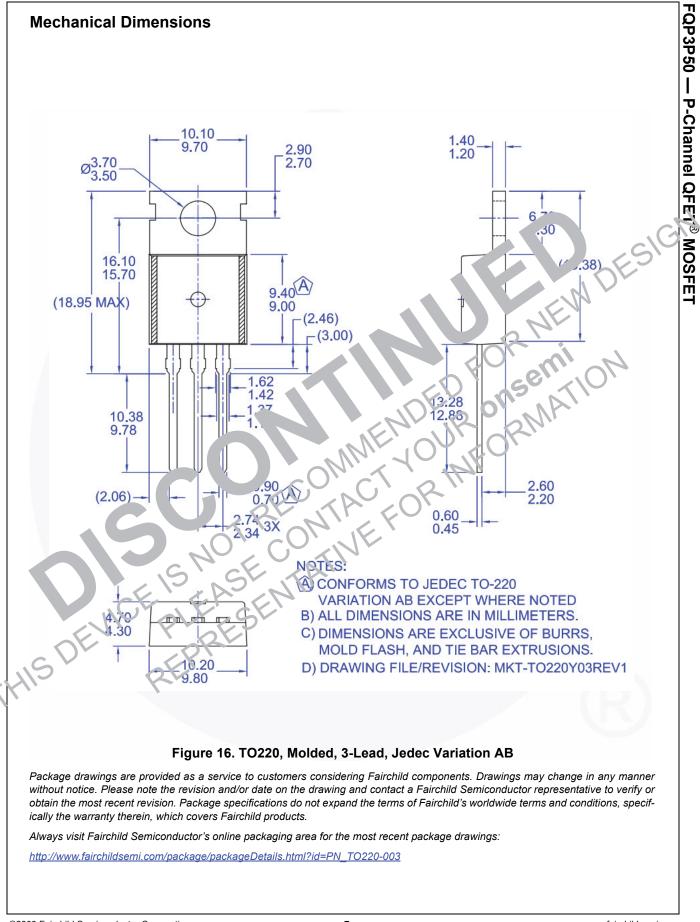
Symbol	Parameter		FQP3P50	Unit
V _{DSS}	urain ource Voltage		-500	V
	Current Continuous $(T_c = 25^{\circ}C)$		-2.7	A
	- Crintin Jours (T _C = 106°C)		-1.71	A
	Drain Current - Fulsed	(Note 1)	-10.8	A
	Gale-Source Voltage		± 30	V
E _{AS}	Single Pused Avalanche Finergy (Note 2)		250	mJ
l Ar	Avalanche Curren: (Note 1)		-2.7	A
Evr	Repetitive Aralanche Energy	(Note 1)	8.5	mJ
dv/dt	Pea', Diode Recovery dv/dt (Note 3)		-4.5	V/ns
P _D	Powe: Dissipation ($T_C = 25^{\circ}C$)		85	W
	- Derate above 25°C		0.68	W/°C
T _J , T _{STG}	Operating and Storage Temperature Range		-55 to +150	°C
Τ _L	Maximum lead temperature for soldering, 1/8" from case for 5 seconds		300	°C


0-2


Thermal Characteristics


Symbol	Parameter	FQP3P50	Unit
$R_{ extsf{ heta}JC}$	Thermal Resistance, Junction-to-Case, Max.	1.47	°C/W
$R_{ extsf{ heta}JA}$	Thermal Resistance, Junction-to-Ambient, Max.	62.5	°C/W


Elerica Symbol	+	cteristics	10-2	220	Tube	NI/A		NI/A	5	O unito	
Symbol Off Cha BV _{DSS} ΔBV _{DSS}					lube	N/A		N/A	5	50 units	
Off Cha BV _{DSS} ΔBV _{DSS}			T _C = 25°C un	less otherwise				i		+	
$\frac{BV_{DSS}}{\DeltaBV_{DSS}}$	aracterist	Parameter			Test Conditions		Min.	Тур.	Max.	Unit	
$\frac{BV_{DSS}}{\DeltaBV_{DSS}}$	araotorist	tics									
$\Delta \text{BV}_{\text{DSS}}$	Drain-Sou	urce Breakdown	Voltage	$V_{CS} = 0$	V, I _D = -250 μA		-500			V	
		vn Voltage Temp	•		$0 \mu\text{A}$, Referenced to	o 25°C		0.42		V/°C	
IDSS	Zero Gate	e Voltage Drain (Current		500 V, $V_{GS} = 0 V$ 400 V, $T_C = 125^{\circ}C$				-1 -10	μA μA	
I _{GSSF}	Gate-Bod [*]	ly Leakage Curre	ent, Forward		30 V, V _{DS} = 0 V					nA	
		ly Leakage Curre			0 V, V _{DS} = 0 V				10	nA	
	aracterist			00						3	
V _{GS(th)}		eshold Voltage	_	Vpc = V	_{GS} , I _D = -250 μA	— T	-3.		-5.0	Τv	
R _{DS(on)}		ain-Source	_		$IO V, I_D = -1 -5 A$	$\overline{}$		3.9	<i>7</i> .9	Ω	
9 _{FS}		Transconductand	ce	V _{DS} = -5	50 V, . 35			2.35		S	
	nic Charao						Ō	<u></u>	<u>()</u>	10	
C _{iss}	Input Cap				25 V, V = 0 V,	\mathbf{O}			660	pF	
Coss		apacitance						70	90	pF	
C _{oss} C _{rss}	Output Ca		ance	f = 1.0		R	<u>o</u>	70 9.5	90 12	pF pF	
C _{rss} Switch	Output Ca Reverse T	apacitance	ance	f = 1.0	HZ ND	R	0		· ·		
C _{rss}	Output Ca Reverse T	apacitance Transfer Capacit acterist [†] s Delou Time		f = 1.0	⁴ z 250 V, 1 _D = -2.7 A,	JR IN	0	95	12	pF	
C _{rss} Switch	Output Ca Reverse T ing Chara Turn-On E	apacitance Transfer Capacit acterist [†] s Delou Time		f = 1.0	⁴ z 250 V, 1 _D = -2.7 A,	JR IN	0	9.5 12	12 35	pF	
$\frac{C_{rss}}{Switch}$ $\frac{t_{d(on)}}{t_{r}}$	Output Ca Reverse T ing Chara Turn-On E Turn-On	apacitance Transfer Capacit acterist ⁷ s Delou Time se Time Nay Tim		f = 1.0	⁴ z 250 V, 1 _D = -2.7 A,	(Note 4)	0	9.5 12 56	12 35 120	pF ns	
C _{rss} Switch t _{d(on)} t _r t _{d(off)}	Output Ca Reverse T ing Chara Turn-On E Turn-On Turn-Off rurn-Off F	apacitance Transfer Capacit acterist ⁷ s Delou Time se Time Nay Tim		f = 1.0 $V_{DI} = -2$ $R_G = 25$	4z 250 V, t _D = -2.7 A, Ω	(Note 4)		9.5 12 56 35	12 35 120 80	pF ns ns ns ns	
$\begin{tabular}{ c c c c c }\hline \hline C_{rss} \\ \hline \hline Switch \\ \hline t_{d(on)} \\ \hline t_r \\ \hline t_{d(off)} \\ \hline t_f \\ \hline Q_g \\ \hline Q_{-s} \\ \hline \end{tabular}$	Output Ca Reverse T ing Chara Turn-On E Turn-On Turn-Off	apacitance Transfer Capacit acterist [†] s Delou Time se Time se Time lay Tim		f = 1.0 $V_{DI} = -2$ $R_G = 25$	$\frac{1}{2}$ 250 V, $t_{D} = -2.7 A,$ 6. 100 V, $t_{D} = -2.7 A,$	(Note 4)		9.5 12 56 35 45	12 35 120 80 100	pF ns ns ns	
$\begin{tabular}{ c c c c c }\hline \hline C_{rss} \\ \hline Switch \\ \hline t_{d(on)} \\ \hline t_r \\ \hline t_{d(off)} \\ \hline t_f \\ \hline Q_g \\ \hline \end{tabular}$	Output Ca Reverse T ing Chara Turn-On E Turn-On Turn-Off	apacitance Transfer Capacit acterist ⁷ s Delou Time se Time Nay Tim F ₂ Tim Charge urce Charge		f = 1.0 $V_{DI} = -2$ $R_G = 25$ $V_{DS} = -4$	$\frac{1}{2}$ 250 V, $t_{D} = -2.7 A,$ 6. 100 V, $t_{D} = -2.7 A,$	(Note 4)		9.5 12 56 35 45 18	12 35 120 80 100 23	pF ns ns ns ns nc	
	Output Ca Reverse T ing Chara Turn-On E Turn-Off Turn-Off Grta-S Gate-Drai	apacitance Transfer Capacit acteristi s Deloui Time se Time Nay Tim Fei Time Charge in Charge		f = 1.0 $V_{D1} = -2$ $R_G = 25$ $V_{DS} = -4$ $V_{GS} = -1$	$\frac{1}{2}$ 250 V, $t_{D} = -2.7 A,$ 6. 100 V, $t_{D} = -2.7 A,$	-	 	9.5 12 56 35 45 18 3.6	12 35 120 80 100 23 	pF ns ns ns nc nC	
	Output Ca Reverse T ing Chara Turn-On E Turn-Off Turn-Off Gota-S Gate-Drai	apacitance Transfer Capacit acteristi s Deloui Time se Time Nay Tim Fei Time Charge in Charge	teristics a	f = 1.0 $V_{DI} = -2$ $R_G = 25$ $V_{OS} = -4$ $V_{OS} = -1$ nd Maxi	4z $250 V, t_{D} = -2.7 A,$ $400 V, t_{D} = -2.7 A,$ 100 V mum Ratings	-	 	9.5 12 56 35 45 18 3.6	12 35 120 80 100 23 	pF ns ns ns nc nC	
	Output Ca Reverse T ing Chara Turn-On E Turn-On Turn-Off ourn-Off F Gate-Drai Sourc > Di Maximum	apacitance Transfer Capacit acteristi s Delou Time se Time lay Tim F. Tim Charge in Charge in Charge in Charge	teristics al	f = 1.0 $V_{DI} = -2$ $R_G = 25$ $V_{DS} = -4$ $V_{CS} = -1$ nd Maxi ode Forwa	4z $250 V, t_D = -2.7 A,$ f, $100 V, t_D = -2.7 A,$ 100 V mum Ratings rd Current	-	 	9.5 12 56 35 45 18 3.6 9.2	12 35 120 80 100 23 	pF ns ns ns nC nC nC	
$ \begin{array}{c} \hline C_{rss} \\ \hline \textbf{Switch} \\ \hline t_{d(on)} \\ \hline t_{r} \\ \hline t_{d(off)} \\ \hline t_{f} \\ \hline Q_{g} \\ \hline Q_{g_{i}} \\ \hline \textbf{Dr} \\ \textbf{.n.s} \end{array} $	Output Ca Reverse T ing Chara Turn-On E Turn-On Turn-Off I urn-Off Gate-Sa Gate-Drai SocarC + Di Maximum	apacitance Transfer Capacit acterist ⁱ s Delou Time se Time Nay Tim Charge Charge in Charge in Charge in Charge	teristics an aim-Source Did ource Diode F	$f = 1.0$ $V_{DI} = -2$ $R_G = 25$ $V_{CS} = -1$ $V_{CS} = -1$ $Determine the forward for the forward forward for the forward forward for the forward forward forward forward forward for the forward forward$	4z $250 V, t_p = -2.7 A,$ $400 V, t_p = -2.7 A,$ 100 V mum Ratings rd Current urrent $V, t_s = -2.7 A$	-	 	9.5 12 56 35 45 18 3.6 9.2	12 35 120 80 100 23 	pF ns ns ns nC nC nC	
$\begin{array}{c} \hline C_{rss} \\ \hline \textbf{Switch} \\ \hline t_{d(on)} \\ \hline t_{r} \\ \hline t_{d(off)} \\ \hline t_{f} \\ \hline \textbf{Q}_{g} \\ \hline \textbf{Q}_{g} \\ \hline \textbf{Dr} \\ \textbf{.n.s} \\ \hline \textbf{S}_{s} \\ \hline \textbf{I}_{SM} \\ \hline \end{array}$	Output Ca Reverse T ing Chara Turn-On E Turn-Off Turn-Off Gote-S Gate-Drai Sourc 3 Di Maximum Drain-Sou Reverse S	apacitance Transfer Capacit acteristi s Deloti Time se Time Nay Tim Fe Time Charge in Charge in Charge in Charge in Charge	teristics all am Source Dide F aurce Diode F ard Voltage	$f = 1.0$ $V_{D1} = -2$ $R_{G} = 25$ $V_{OS} = -1$ $V_{OS} = -1$ $Definition of the forward Compared to the forward to the forwa$	4z $250 V, t_D = -2.7 A,$ c. $100 V, t_D = -2.7 A,$ 100 V mum Ratings rd Current urrent	-	 	9.5 12 56 35 45 18 3.6 9.2 	12 35 120 80 100 23 -2.7 -10.8	pF ns ns nc nC nC A A	


hannel OFET

FAIRCHILD

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

AccuPower TM AttitudeEngine TM Awinda [®] AX-CAP [®] * BitSiC TM Build it Now TM CorePLUS TM CorePOWER TM CorePOWER TM Crutent Transfer Logic TM DEUXPEED [®] Dual Cool TM EcoSPARK [®] EfficentMax TM ESBC TM Fairchild [®] Fairchild [®] Fairchild [®] Fairchild [®] Fairchild [®] Fairchild [®] Fairchild Semiconductor [®] FACT [®] FastvCore TM FEBench TM FPS TM	F-PFS™ FRFET® Global Power Resource SM GreenBridge™ Green FPS™ Green FPS™ e-Series™ Gmax™ GTO™ IntelliMAX™ ISOPLANAR™ Marking Small Speakers Sound Louder and Better™ MegaBuck™ MICROCOUPLER™ MicroPak™ MicroPak™ MicroPak™ MicroPak™ MicroPak™ MicroPak™ MotionMax™ MotionGrid® MTi® MTx® MVN® mWSave® OptoHiT™ OPTOLOGIC®	Saving our world, 1mW/W/kW atneT SignalWise™ SmartMax™ SMART START™ Solutions for Your Coess™ SPM® STEALTH™ SuperF® StriperS Sup, OT Supre, S® SyncFE 'vnc-Locx™	ESYSTEM ®* TinyBoost® TinyBuck® TinyCalc™ TinyLogic® TINYOPTOTM TinyPower™ TinyPower™ TinyPower™ TinyPower™ TinyCorr anSiCT™ anSiCT™ anSiCT™ anSiCT™ anSiCT™ CriteT™ CriteT™ VCURF NT®* UHC® TinyPower™ Signer TinyPower
*Trademarks of System Gene	ral Corporation, used und	ld .niconduc.or.	

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES E RIGI. TO KE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. TO DBTAIN E L. JEST, NOST UP-TO-DATE DATASHEET, ND PRODUCT INFORMATION, VISIT OUR WEBSITE AT <u>HTTP:///WW.FAIRCHINGEN</u> OM FAIF HILD DOES INT ASSUME ANY LIABILITY RICING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT OF SRIGED HL TINE MILE DOES IT CONVET ANY LIABILITY RICING OUT OF THE APPLICATION OR USE OF OTHERS. THESE SPECIFICATION ON USE OF FAIR THIS WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY MARRANTY THEREIN, MILICHING VERS TI SE PRODUCT.S.

AUTHORIZED USE

Unless otherways specifically approved in writing by a Fairchild specifical product and is not intended for use in applications that require extraordinary less of quality and reliability. This product may not be used in the following applications, unless specifically approved in writing by a Fairchild officer to an sportation. (2) military/aerospace, (3) any safety critical application – including life critical medical equipment – where the faile of the for product reasonably would be exocided to result in personal injury, death or property damage. Customer's use of this product is subject to sement this thorized Use policy. In the event of an unautionized use of Fairchild's product, Fairchild accepts no liability in the event of product shall be subject to Fairchild's Worldwide Terms and Conditions of Sale, unless a separate agreement has been signed by bot.

ANTI-COUNTERFEITING POLICY

Fairchild Sen iconductor Corporation's Anti Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.fai.child.sc.ni.com, under Terms of Use

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufacturers of semiconductor products are experiencing counterfeiting of their parts. Customers who inactor in the process counterfeit parts experience many problems such as loss of brand reputation, substandard performance, and applications, and increase upsto for production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handling and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address and warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.

Rev. 177

QP3P50 — P-Channel QFET[®] MOSFE

NOT RECONNENDED FOR MENDESIGN ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typical" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support:

Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81–3–5817–1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

© Semiconductor Components Industries, LLC

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

onsemi:

FQP3P50