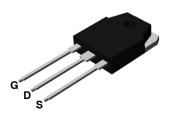


MOSFET - N-Channel, SUPERFET®

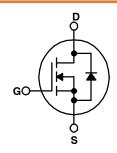
600 V, 20 A, 190 m Ω

FCA20N60

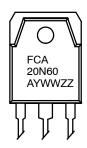
Description


SUPERFET MOSFET is **onsemi**'s first generation of high voltage super-junction (SJ) MOSFET family that is utilizing charge balance technology for outstanding low on- resistance and lower gate charge performance. This technology is tailored to minimize conduction loss, provide superior switch- ing performance, dv/dt rate and higher avalanche energy. Con- sequently, SuperFET MOSFET is very suitable for the switching power applications such as PFC, server/telecom power, FPD TV power, ATX power and industrial power applications.

Features


- $650 \text{ V} @ \text{T}_{\text{J}} = 150^{\circ}\text{C}$
- Typ. $R_{DS(on)} = 150 \text{ m}\Omega$
- Ultra Low Gate Charge (Typ. Qg = 75 nC)
- Low Effective Output Capacitance (Typ. Coss(eff.) = 165 pF)
- 100% Avalanche Tested
- This Device is Pb-Free

Applications


- Solar Inverter
- AC-DC Power Supply

TO-3P-3L CASE 340BZ

MARKING DIAGRAM

FCA20N60

= Specific Device Code

A

= Assembly Location

YWW 77

= Date Code (Year and Week)

= Assembly Lot Code

ORDERING INFORMATION

Device	Package	Shipping [†]
FCA20N60	TO-3P-3L (Pb-Free)	450 Units / Tube
FCA20N60-F109	TO-3P-3L (Pb-Free)	450 Units / Tube

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

MOSFET MAXIMUM RATINGS

 $(T_C = 25^{\circ}C \text{ unless otherwise noted.})$

Symbol	Parameter	Value	Unit
V _{DSS}	Drain to Source Voltage	600	V
V _{GSS}	Gate-Source Voltage	±30	V
I _D	Drain Current - Continuous (T _C = 25°C) - Continuous (T _C = 100°C)	20 12.5	Α
I _{DM}	Drain Current - Pulsed (Note 1)	60	Α
E _{AS}	Single Pulsed Avalanche Energy (Note 2)	690	mJ
I _{AR}	Avalanche Current (Note 1)	20	Α
E _{AR}	Repetitive Avalanche Energy (Note 1)	20.8	mJ
dv/dt	Peak Diode Recovery dv/dt (Note 3)	4.5	V/ns
P _D	Power Dissipation – (T _C = 25°C) – Derate Above 25°C	208 1.67	W W/°C
T_J , T_{STG}	Operating and Storage Temperature Range	-55 to +150	°C
T _L	Maximum Lead Temperature for Soldering Purpose, 1/8" from Case for 5 Seconds	300	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

THERMAL CHARACTERISTICS

Symbol	Parameter	Value	Unit
$R_{ heta JC}$	Thermal Resistance, Junction to Case, Max	0.6	°C/W
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient, Max.	41.7	

ELECTRICAL CHARACTERISTICS (T_C = 25°C unless otherwise noted)

Off Characteristics Prain—Source Breakdown Voltage I _D = 250 μA, V _{GS} = 0 V, T _J = 25°C 600 - - V ΔBV _{DSS} ΔT _J Breakdown Voltage Temperature Coefficient I _D = 250 μA, V _{GS} = 0 V, T _J = 150°C - 660 - V BVD _{SS} ΔT _J Breakdown Voltage Temperature Coefficient I _D = 250 μA, Referenced to 25°C - 0.6 - V° BVD _{SS} Doubles Drain—Source Avalanche Breakdown Voltage V _{GS} = 0 V, I _D = 20 A - 700 V I _{DSS} Zero Gate Voltage Drain Current V _{GS} = 600 V, V _{GS} = 0 V - - - 10 µA I _{GSS} Gate to Body Leakage Current V _{GS} = 600 V, V _{GS} = 0 V - - - 10 nA I _{GSS} Gate to Body Leakage Current V _{GS} = 50 V, V _{GS} = 0 V - - - 10 nA I _{GSS} Gate to Body Leakage Current V _{GS} = 600 V, V _{GS} = 0 V - - - 10 nA I _{GSS} Gate to Body Leakage Current V _{GS} = 600 V, V _{GS} = 20 V, D _{GS} = 20 P - - - 10 nA I _{GSS} Sith Dig S	Symbol	Parameter	Test Conditions	Min	Тур	Max	Unit		
D = 250 μA, YGS = 0 V, T _J = 150°C	Off Chara	Off Characteristics							
ΔBV DSS ATJ Breakdown Voltage Temperature Coefficient ID = 250 μA, Referenced to 25°C — 0.6 — V/°C BVDS Drain-Source Avalanche Breakdown Voltage VGS = 0 V, ID = 20 A — 700 V IDSS Zero Gate Voltage Drain Current VDS = 600 V, VGS = 0 V — — 1 1 μA VDS = 480 V, TC = 125°C — — — 10 μA VDS = 480 V, VGS = 0 V — — — ±100 nA On Characteristics — — ±100 nA VGS(th) VGS(th) Gate Threshold Voltage VGS = VDS, ID = 250 μA 3.0 — 5.0 5.0 V RDS(on) Static Drain to Source On Resistance VGS = 40 V, ID = 10 A — — 0.15 0.19 Ω 0 - — — 17 — S S Dys = 40 V, ID = 10 A — — — 17 — — S Dys = 40 V, ID = 10 A — — — — 17 — — — S Dys = 40 V, ID = 10 A — — — — — 17 — — — S Dys = 40 V, ID = 10 A — — — — — — — — — — — — — — — — S Dys = 40 V, ID = 10 A — — — — — — — — — — — — — — — — — — —	BV _{DSS}	Drain-Source Breakdown Voltage	$I_D = 250 \mu A, V_{GS} = 0 V, T_J = 25^{\circ}C$	600	_	_	V		
ΔTJ or ATJ o			$I_D = 250 \ \mu A, \ V_{GS} = 0 \ V, \ T_J = 150 ^{\circ} C$	-	650	-	V		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			I _D = 250 μA, Referenced to 25°C	-	0.6	-	V/°C		
Vas	BV _{DS}		V _{GS} = 0 V, I _D = 20 A	-	700		V		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} = 600 V, V _{GS} = 0 V	-	_	1	μΑ		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			V _{DS} = 480 V, T _C = 125°C	-	_	10	1		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	I _{GSS}	Gate to Body Leakage Current	V _{GS} = ±30 V, V _{DS} = 0 V	-	_	±100	nA		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	On Chara	cteristics							
Section Sec	V _{GS(th)}	Gate Threshold Voltage	$V_{GS} = V_{DS}, I_D = 250 \mu A$	3.0	_	5.0	V		
Dynamic Characteristics Ciss Input Capacitance VDS = 25 V, VGS = 0 V, f = 1 MHz - 2370 3080 pF	_	Static Drain to Source On Resistance	V _{GS} = 10 V, I _D = 10 A	-	0.15	0.19	Ω		
Ciss Input Capacitance V _{DS} = 25 V, V _{GS} = 0 V, f = 1 MHz - 2370 3080 pF C _{oss} Output Capacitance - 1280 1665 pF C _{rss} Reverse Transfer Capacitance - 95 - pF C _{oss} Output Capacitance V _{DS} = 480 V, V _{GS} = 0 V, f = 1 MHz - 65 85 pF C _{oss} (eff.) Effective Output Capacitance V _{DS} = 480 V, V _{GS} = 0 V - 165 - pF Q _g Total Gate Charge at 10 V V _{DS} = 480 V, I _D = 20 A, V _{GS} = 0 V - 75 98 nC Q _g Gate to Source Charge V _{DS} = 480 V, I _D = 20 A, V _{GS} = 10 V (Note 4) - 75 98 nC Q _g Gate to Drain "Miller" Charge - 13.5 18 nC Switching Characteristics - - 36 - nC Switching Characteristics - V _{DS} = 300 V, I _D = 20 A, V _{GS} = 0 V (Note 4) - 62 135 ns t ₁ (a) (m) Turn-On Rise Time<	9FS	Forward Transconductance	V _{DS} = 40 V, I _D = 10 A	-	17	-	S		
Coss Output Capacitance — 1280 1665 pF Crss Reverse Transfer Capacitance — 95 — pF Coss Output Capacitance V _{DS} = 480 V, V _{GS} = 0 V, f = 1 MHz — 65 85 pF Coss(eff.) Effective Output Capacitance V _{DS} = 0 V to 400 V, V _{GS} = 0 V — 165 — pF Qg Total Gate Charge at 10 V V _{DS} = 480 V, I _D = 20 A, V _{GS} = 0 V — 75 98 nC Qgs Gate to Source Charge V _{DS} = 480 V, I _D = 20 A, V _{GS} = 10 V (Note 4) — 75 98 nC Qgs Gate to Drain "Miller" Charge — — 36 — nC Switching Characteristics tt _{d(on)} Turn–On Delay Time V _{DD} = 300 V, I _D = 20 A, V _{GS} = 25 Ω (Note 4) — 62 135 ns t _{d(off)} Turn–Off Delay Time — — 65 140 ns Drain–Source Diode Characteristics and Maximum Ratings I _S M	Dynamic (Characteristics							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	C _{iss}	Input Capacitance	V _{DS} = 25 V, V _{GS} = 0 V, f = 1 MHz	_	2370	3080	pF		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	C _{oss}	Output Capacitance		-	1280	1665	pF		
$\begin{array}{c} C_{\text{OSS}}(\text{eff.}) & \text{Effective Output Capacitance} \\ Q_{\text{g}} & \text{Total Gate Charge at 10 V} \\ Q_{\text{gs}} & \text{Gate to Source Charge} \\ Q_{\text{gd}} & \text{Gate to Drain "Miller" Charge} \\ \end{array} \begin{array}{c} V_{\text{DS}} = 480 \text{ V, } I_{\text{D}} = 20 \text{ A,} \\ V_{\text{GS}} = 10 \text{ V (Note 4)} \\ \end{array} \begin{array}{c} - & 75 & 98 & \text{nC} \\ \hline - & 13.5 & 18 & \text{nC} \\ \hline - & 36 & - & \text{nC} \\ \hline \end{array} \\ \begin{array}{c} \text{Switching Characteristics} \\ \hline t_{d(\text{on})} & \text{Turn-On Delay Time} \\ \hline t_{\text{f}} & \text{Turn-On Rise Time} \\ \hline t_{\text{f}} & \text{Turn-Off Delay Time} \\ \hline \end{array} \begin{array}{c} V_{\text{DD}} = 300 \text{ V, } I_{\text{D}} = 20 \text{ A,} \\ V_{\text{GS}} = 10 \text{ V (Note 4)} \\ \end{array} \begin{array}{c} - & 62 & 135 & \text{ns} \\ \hline - & 140 & 290 & \text{ns} \\ \hline - & 230 & 470 & \text{ns} \\ \hline \end{array} \\ \begin{array}{c} t_{\text{f}} & \text{Turn-Off Pall Time} \\ \end{array} \begin{array}{c} - & 65 & 140 & \text{ns} \\ \hline \end{array} \\ \begin{array}{c} \text{Drain-Source Diode Characteristics and Maximum Ratings} \\ \hline I_{\text{S}} & \text{Maximum Continuous Drain to Source Diode Forward Current} \\ \hline V_{\text{SD}} & \text{Drain-Source Diode Forward Voltage} \\ \hline V_{\text{QS}} = 0 \text{ V, } I_{\text{SD}} = 20 \text{ A,} \\ \hline V_{\text{GS}} = 0 \text{ V, } I_{\text{SD}} = 20 \text{ A,} \\ \hline \end{array} \begin{array}{c} - & - & 60 & \text{A} \\ \hline \end{array} \\ \begin{array}{c} - & 530 & - & \text{ns} \\ \hline \end{array}$	C _{rss}	Reverse Transfer Capacitance		-	95	-	pF		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	C _{oss}	Output Capacitance	V _{DS} = 480 V, V _{GS} = 0 V, f = 1 MHz	-	65	85	pF		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	C _{oss} (eff.)	Effective Output Capacitance	$V_{DS} = 0 \text{ V to } 400 \text{ V, } V_{GS} = 0 \text{ V}$	-	165	-	pF		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Qg	Total Gate Charge at 10 V		-	75	98	nC		
	Q_{gs}	Gate to Source Charge	V _{GS} = 10 V (Note 4)	-	13.5	18	nC		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Q_{gd}	Gate to Drain "Miller" Charge		-	36	-	nC		
$t_r \text{Turn-On Rise Time} \qquad V_{GS} = 10 \text{ V R}_G = 25 \ \Omega \text{ (Note 4)} \qquad - \qquad 140 \qquad 290 \qquad \text{ns}$ $t_{d(off)} \text{Turn-Off Delay Time} \qquad - \qquad 230 \qquad 470 \qquad \text{ns}$ $t_f \text{Turn-Off Fall Time} \qquad - \qquad 65 \qquad 140 \qquad \text{ns}$ $Drain-Source \ Diode \ Characteristics \ and \ Maximum \ Ratings$ $I_S \text{Maximum Continuous Drain to Source Diode Forward Current} \qquad - \qquad - \qquad 20 \qquad A$ $I_{SM} \text{Maximum Pulsed Drain to Source Diode Forward Current} \qquad - \qquad - \qquad 660 \qquad A$ $V_{SD} \text{Drain-Source Diode Forward Voltage} \qquad V_{GS} = 0 \text{ V, } I_{SD} = 20 \text{ A} \qquad - \qquad - \qquad 1.4 \qquad V$ $t_{rr} \text{Reverse Recovery Time} \qquad V_{GS} = 0 \text{ V, } I_{SD} = 20 \text{ A}, \qquad - \qquad 530 \qquad - \qquad \text{ns}$ $dI_{r}/dt = 100 \text{ M/us}$	Switching	Characteristics							
$t_{r} \text{Turn-Off Rise Time} \qquad \qquad - 140 290 \text{ns}$ $t_{d(off)} \text{Turn-Off Delay Time} \qquad \qquad - 230 470 \text{ns}$ $t_{f} \text{Turn-Off Fall Time} \qquad \qquad - 65 140 \text{ns}$ $\textbf{Drain-Source Diode Characteristics and Maximum Ratings}$ $l_{S} \text{Maximum Continuous Drain to Source Diode Forward Current} \qquad - - 20 \text{A}$ $l_{SM} \text{Maximum Pulsed Drain to Source Diode Forward Current} \qquad - - 60 \text{A}$ $V_{SD} \text{Drain-Source Diode Forward Voltage} \qquad V_{GS} = 0 \text{ V, } l_{SD} = 20 \text{ A} \qquad - - 1.4 \text{V}$ $t_{rr} \text{Reverse Recovery Time} \qquad V_{GS} = 0 \text{ V, } l_{SD} = 20 \text{ A}, \qquad - 530 - \text{ns}$ $dl_{r}/dt = 100 \text{ A/us}$	t _{d(on)}	Turn-On Delay Time	$V_{DD} = 300 \text{ V}, I_D = 20 \text{ A},$	-	62	135	ns		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	t _r	Turn-On Rise Time	$V_{GS} = 10 \text{ V H}_{G} = 25 \Omega \text{ (Note 4)}$	-	140	290	ns		
Drain–Source Diode Characteristics and Maximum Ratings I_S Maximum Continuous Drain to Source Diode Forward Current - - 20 A I_{SM} Maximum Pulsed Drain to Source Diode Forward Current - - 60 A V_{SD} Drain–Source Diode Forward Voltage $V_{GS} = 0 \text{ V}, I_{SD} = 20 \text{ A}$ - - 1.4 V t_{rr} Reverse Recovery Time $V_{GS} = 0 \text{ V}, I_{SD} = 20 \text{ A},$ - 530 - ns	t _{d(off)}	Turn-Off Delay Time	1	_	230	470	ns		
Is Maximum Continuous Drain to Source Diode Forward Current - - 20 A IsM Maximum Pulsed Drain to Source Diode Forward Current - - 60 A VsD Drain-Source Diode Forward Voltage V _{GS} = 0 V, I _{SD} = 20 A - - 1.4 V t_{rr} Reverse Recovery Time V _{GS} = 0 V, I _{SD} = 20 A, d/U _S - 530 - ns	t _f	Turn-Off Fall Time		-	65	140	ns		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Drain-Sou	urce Diode Characteristics and Maximum	Ratings						
V_{SD} Drain-Source Diode Forward Voltage $V_{GS} = 0 \text{ V}, I_{SD} = 20 \text{ A}$ 1.4 V t_{rr} Reverse Recovery Time $V_{GS} = 0 \text{ V}, I_{SD} = 20 \text{ A},$ - 530 - ns $\frac{dI_{r}}{dt} = 100 \text{ A/us}$	I _S	Maximum Continuous Drain to Source Diode Forward Current		_	_	20	А		
t_{rr} Reverse Recovery Time $V_{GS} = 0 \text{ V, } I_{SD} = 20 \text{ A,}$ - 530 - ns	I _{SM}	Maximum Pulsed Drain to Source Diode Forward Current		_	_	60	А		
dl _r /dt = 100 A/us	V _{SD}	Drain-Source Diode Forward Voltage	V _{GS} = 0 V, I _{SD} = 20 A	-	_	1.4	٧		
Q_{rr} Reverse Recovery Charge	t _{rr}	Reverse Recovery Time		-	530	-	ns		
	Q _{rr}	Reverse Recovery Charge	dl _F /dt = 100 A/μs	-	10.5	-	μС		

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

- 1. Repetitive Rating: Pulse width–limited by maximum junction temperature.
 2. $I_{AS} = 10 \text{ A V}_{DD} = 50 \text{ V}$, $R_G = 25 \Omega$, starting $T_J = 25^{\circ}\text{C}$.
 3. $I_{SD} \le 20 \text{ A}$, di/dt $\le 200 \text{ A/}\mu\text{s}$, $V_{DD} \le BV_{DSS}$, starting $T_J = 25^{\circ}\text{C}$.
 4. Essentially independent of operating temperature typical Characteristics.

TYPICAL CHARACTERISTICS

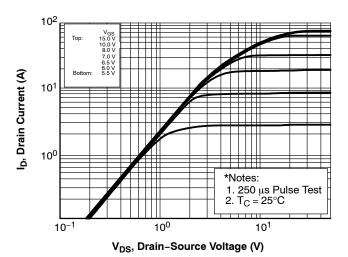


Figure 1. On-Region Characteristics

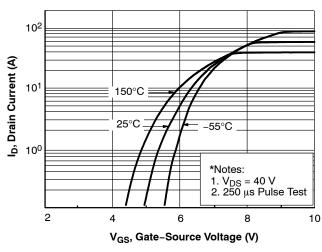


Figure 2. Transfer Characteristics

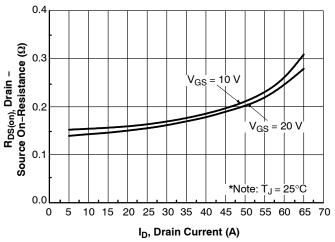


Figure 3. On-Resistance Variation vs Drain Current and Gate Voltage

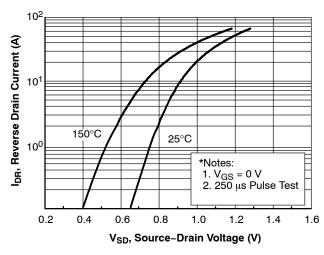


Figure 4. Body Diode Forward Voltage Variation vs Source Current and Temperature

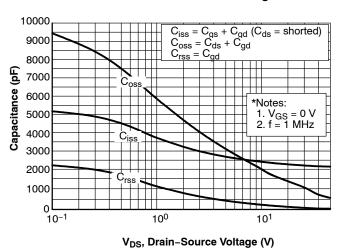
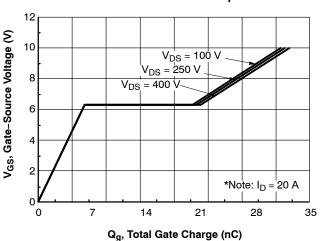
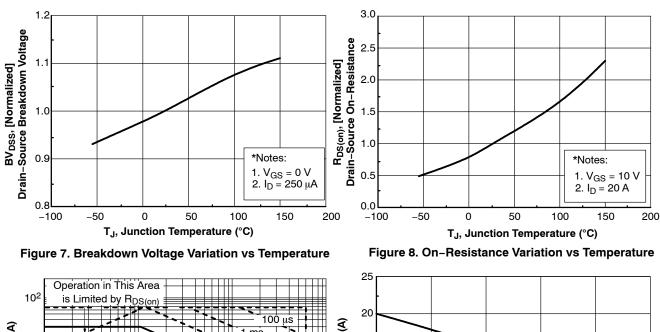
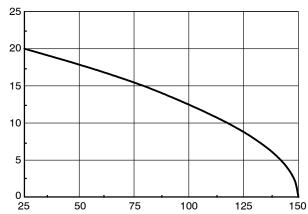


Figure 5. Capacitance Characteristics


Figure 6. Gate Charge Characteristics

TYPICAL CHARACTERISTICS (CONTINUED)

100 μs 100 μs 1 1 ms 100 μs 100 ms 10 ms

Figure 9. Maximum Safe Operating Area

T_C, Case Temperature (°C)
Figure 10. Maximum Drain Current
vs. Case Temperature

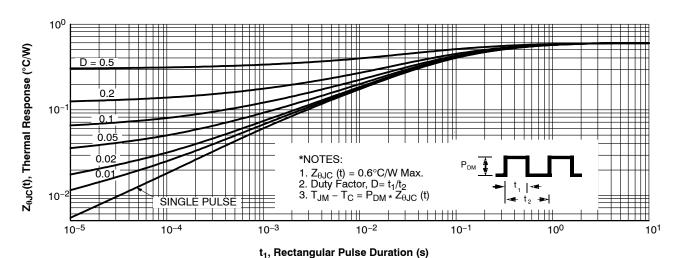


Figure 11. Transient Thermal Response Curve

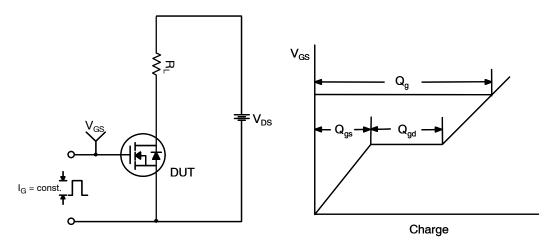


Figure 12. Gate Charge Test Circuit & Waveform

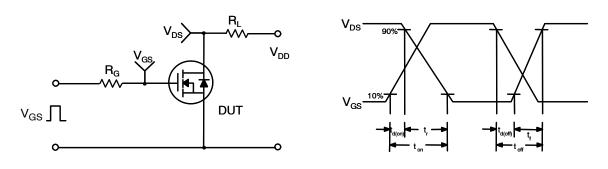


Figure 13. Resistive Switching Test Circuit & Waveforms

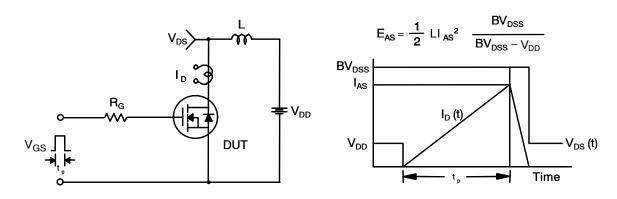
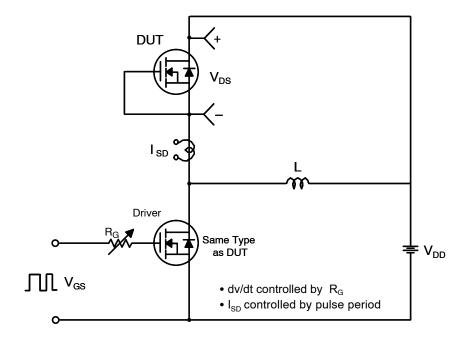
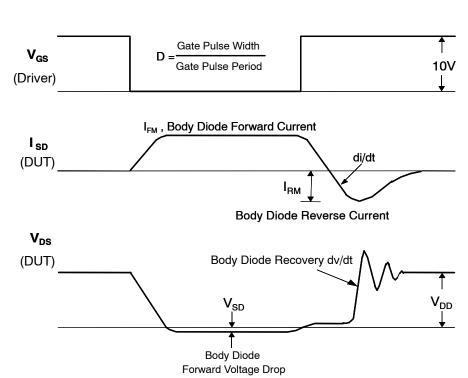
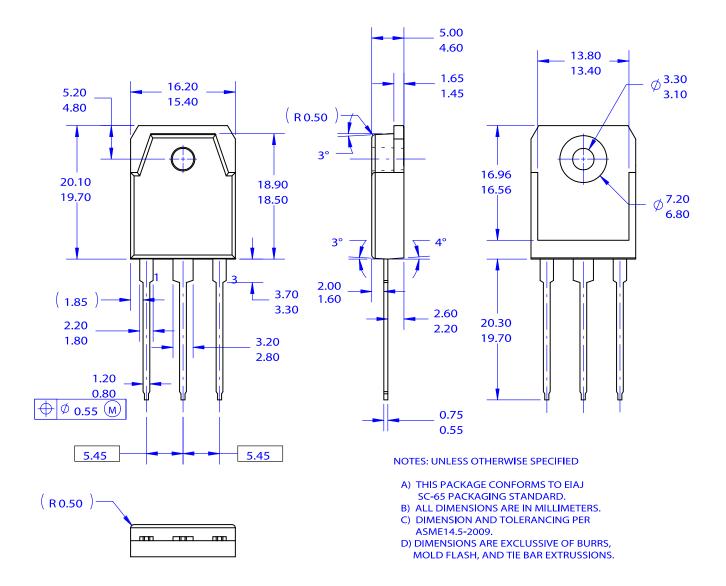



Figure 14. Unclamped Inductive Switching Test Circuit & Waveforms




Figure 15. Peak Diode Recovery dv/dt Test Circuit & Waveforms

SUPERFET is a registered trademark of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries.

TO-3P-3LD / EIAJ SC-65, ISOLATED CASE 340BZ ISSUE O

DATE 31 OCT 2016

DOCUMENT NUMBER:	98AON13862G	Electronic versions are uncontrolled except when accessed directly from the Document Repos Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.			
DESCRIPTION:	TO-3P-3LD / EIAJ SC-65, ISOLATED		PAGE 1 OF 1		

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, ONSEMI., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems. or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at

www.onsemi.com/support/sales

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

onsemi:

FCA20N60 FCA20N60-F109