CMOS IC 4.5K-byte FROM and 128-byte RAM integrated 8-bit 1-chip Microcontroller

Overview

The LC87F0N04A is an 8-bit microcomputer that, integrates on a single chip a number of hardware features such as 4.5K-byte flash ROM, 128-byte RAM, 16-bit timers/counters, a 16-bit timer, an asynchronous/synchronous SIO interface, motor control 10-bit PWM, two Analog Comparators, a 6-channel AD converter, a system clock frequency divider, an internal reset and an interrupt feature.

Features

- ■Flash ROM
 - 4608 × 8 bits (4096 + 512-byte)
 - Capable of On-board programming with wide range (2.8 to 5.5V) of voltage source.
 - Block-erasable in 128 byte units
 - Writable in 2-byte units

■RAM

- 128 × 9 bits
- ■Package Form
 - SSOP16 (225mil) : Lead-/Halogen-free type

Package Dimensions

unit : mm (typ)

* This product is licensed from Silicon Storage Technology, Inc. (USA).

■Minimum Bus Cycle

• 100.0ns (10MHz at V_{DD}=2.8V to 5.5V)

Note: The bus cycle time here refers to the ROM read speed.

Ports

- Normal withstand voltage I/O ports
- Ports I/O direction can be designated in 1 bit units 12(P00 to P03, P1n)
- Reset pin
 1 (RES)
 On-chip Debugger pin
 1 (OWP0)
- Power pins 2 (V_{SS}, V_{DD})
- ■Timers
 - Timer 0: 16-bit timer/counter with a capture register.
 - Mode 0: 8-bit timer with an 8-bit programmable prescaler (with an 8-bit capture register) × 2 channels Mode 1: 8-bit timer with an 8-bit programmable prescaler (with an 8-bit capture register)
 - + 8-bit counter (with an 8-bit capture register)
 - Mode 2: 16-bit timer with an 8-bit programmable prescaler (with a 16-bit capture register)
 - Mode 3: 16-bit counter (with a 16-bit capture register)
 - Timer 1: 16-bit timer/counter that supports PWM/toggle outputs
 - Mode 0: 8-bit timer with an 8-bit prescaler (with toggle outputs) \times 2 channels
 - Mode 1: 8-bit PWM with an 8-bit prescaler \times 2 channels
 - Mode 2: 16-bit timer/counter with an 8-bit prescaler (with toggle outputs) (toggle outputs also possible from the lower-order 8 bits)
 - Mode 3: 16-bit timer with an 8-bit prescaler (with toggle outputs)
 - (The lower-order 8 bits can be used as PWM.)
 - Base timer
 - 1) The clock is selectable from system clock, and timer 0 prescaler output.
 - 2) Interrupts are programmable in 5 different time schemes

■SIO

- SIO1: 8-bit asynchronous/synchronous serial interface
 - Mode 0: Synchronous 8-bit serial I/O (2- or 3-wire configuration, 2 to 512 tCYC transfer clocks)
 - Mode 1: Asynchronous serial I/O (half-duplex, 8 data bits, 1 stop bit, 8 to 2048 tCYC baudrates)
 - Mode 2: Bus mode 1 (start bit, 8 data bits, 2 to 512 tCYC transfer clocks)
 - Mode 3: Bus mode 2 (start detect, 8 data bits, stop detect)
- **AD** Converter: 10 bits/8 bits \times 6 channels
 - 10/8 bits AD converter resolution selectable
 - Auto start function (It links an interrupt factor of Motor control PWM)
- Remote Control Receiver Circuit (sharing pins with P11, INT3)
- Noise rejection function (noise filter time constant selectable from 1 tCYC, 32 tCYC, and 128 tCYC)
- Clock Output Function
 - Can generate clock outputs with a frequency of 1/1, 1/2, 1/4, 1/8, 1/16, 1/32, 1/64 of the source clock selected as the system clock.

■Analog Comparator × 2 channels

- Analog comparator Interrupt.
- Analog comparator reference selectable (External input / Programmable on-chip voltage reference). The voltage reference has 2 ranges with 16-level voltage levels in each range.
- $\begin{array}{l} \mbox{Rang1: CMP1vref1= (CMP1vref-Register<3:0>+1)/16 \times V_{DD} \times 0.64 \\ \mbox{CMP2vref2= (CMP2vref-Register<3:0>+1)/16 \times V_{DD} \times 0.64 \\ \mbox{Rang2: CMP1vref1= (CMP1vref-Register<3:0>+1)/64 \times V_{DD} \times 0.64 \\ \mbox{CMP2vref2= (CMP2vref-Register<3:0>+1)/64 \times V_{DD} \times 0.64 \\ \end{array}$
- ■MCPWM2: Motor control 10bits PWM with Full-Bridge
 - Dead time is programmable.
 - Forced stop is possible by the output of the analog comparator and the INT terminals.
 - Edge-aligned / center-aligned selectable.

■Watchdog Timer

- Can generate the internal reset signal on a timer overflow monitored by the WDT-dedicated low-speed RC oscillation clock (30kHz).
- Allows selection of continue, stop, or hold mode operation of the counter on entry into the HALT/HOLD mode.

■Interrupts

- 14 sources, 9 vector addresses
- 1) Provides three levels (low (L), high (H), and highest (X)) of multiplex interrupt control. Any interrupt requests of the level equal to or lower than the current interrupt are not accepted.
- 2) When interrupt requests to two or more vector addresses occur at the same time, the interrupt of the highest level takes precedence over the other interrupts. For interrupts of the same level, the interrupt into the smallest vector address takes precedence.

No.	Vector Address	Level	Interrupt Source
1	00003H	X or L	INTO
2	0000BH	X or L	INT1
3	00013H	H or L	INT2/T0L
4	0001BH	H or L	INT3/base timer
5	00023H	H or L	ТОН
6	0002BH	H or L	T1L/T1H
7	00033H	H or L	-
8	0003BH	H or L	SIO1/PWM
9	00043H	H or L	ADC
10	0004BH	H or L	CMP1/CMP2

• Priority levels X > H > L

• Of interrupts of the same level, the one with the smallest vector address takes precedence.

Subroutine Stack Levels: 64levels (The stack is allocated in RAM.)

■High-speed Multiplication/Division Instructions

- 16 bits \times 8 bits (5 tCYC execution time)
- 24 bits \times 16 bits (12 tCYC execution time)
- 16 bits ÷ 8 bits (8 tCYC execution time)
- 24 bits \div 16 bits (12 tCYC execution time)

■Oscillation Circuits

Internal oscillation circuits

Medium-speed RC oscillation circuit :	For system clock (1MHz)
High-speed RC oscillation circuit :	For system clock (10MHz)
Low-speed RC oscillation circuit :	For watch dog timer (30kHz)

System Clock Divider Function

- Can run on low current.
- The minimum instruction cycle selectable from 300ns, 600ns, 1.2µs, 2.4µs, 4.8µs, 9.6µs, 19.2µs, 38.4µs, and 76.8µs (at a main clock rate of 10MHz).

Internal Reset Function

- Power-on reset (POR) function
 - 1) POR reset is generated only at power-on time.
 - 2) The POR release level can be selected from 8 levels (1.67V, 1.97V, 2.07V, 2.37V, 2.57V, 2.87V, 3.86V, and 4.35V) through option configuration.
- Low-voltage detection reset (LVD) function
 - 1) LVD and POR functions are combined to generate resets when power is turned on and when power voltage falls below a certain level.
 - 2) The use / disuse of the LVD function and the low voltage threshold level (7 levels: 1.91V, 2.01V, 2.31V, 2.51V, 2.81V, 3.79V, 4.28V).

■Standby Function

- HALT mode: Halts instruction execution while allowing the peripheral circuits to continue operation.
 - 1) Oscillation is not halted automatically.
 - 2) There are three ways of resetting the HALT mode.
 - (1) Setting the reset pin to the low level
 - (2) System resetting by watchdog timer or low-voltage detection
 - (3) Occurrence of an interrupt
- HOLD mode: Suspends instruction execution and the operation of the peripheral circuits.
 - 1) The RC oscillators automatically stop operation.
 - 2) There are four ways of resetting the HOLD mode.
 - (1) Setting the reset pin to the lower level.
 - (2) System resetting by watchdog timer or low-voltage detection
 - (3) Having an interrupt source established at either INT0, INT1, INT2
 - * INT0 and INT1 HOLD mode reset is available only when level detection is set.

■On-chip Debugger

• Supports software debugging with the IC mounted on the target board.

■Data Security Function (flash versions only)

• Protects the program data stored in flash memory from unauthorized read or copy. Note: This data security function does not necessarily provide absolute data security.

■Development Tools

• On-chip-debugger : TCB87 TypeC + LC87F0N04A

■Programming Boards

Package	Programming boards
SSOP16(225mil)	W87F0NS

Flash ROM Programmer

Maker		Model	Supported version	Device
	Single	AF9709/AF9709B/AF9709C	Pov 02 29 or lator	87F008SU
	Programmer	(Including Ando Electric Co., Ltd. models)	Rev 03.20 01 later	(3B247)
Flash Support Group, Inc.		AF9723/AF9723B(Main body)		
(FSG)	Gang	(Including Ando Electric Co., Ltd. models)	-	-
	Programmer	AF9833(Unit)		
		(Including Ando Electric Co., Ltd. models)	-	-
	Single/Gang	SKK / SKK Type B	Application Version	
	Programmer	(SanyoFWS)	1.07 or later	
	Gang	SKK-4G	Chip Data Version	
Convo	Programmer	(SanyoFWS)	2.40 or later	
Sanyo			Application Version	LC67F0IN04
	In-circuit/Gang	SKK-DBG Type C	1.07 or later	
	Programmer	(SanyoFWS)	Chip Data Version	
			2.40 or later	

For information about AF-Series:

Flash Support Group, Inc. TEL: +81-53-459-1050 E-mail: sales@j-fsg.co.jp

Pin Assignment

Top view

SANYO: SSOP16(225mil) "Lead-/Halogen-free Type"

SSOP16	NAME
9	P14/SI1/SB1/INT0/T0LCP
10	P15/SCK1/INT1/T0HCP/CMP2O
11	P16/AN4/T1PWML/CMP2IB(+)
12	P17/AN5/T1PWMH/CMP2IA(-)/BUZ
13	P00/MP2OT0
14	P01/MP2OT0
15	P02/MP2OT1/CKO
16	P03/MP2OT1

SSOP16	NAME
1	RES
2	V _{SS} 1
3	OWP0
4	V _{DD} 1
5	P10/AN0/INT2/T0LCP/T0IN
6	P11/AN1/INT3/T0HCP/T0IN/CMP1IB(+)
7	P12/AN2/CMP1IA(-)
8	P13/SO1/AN3/CMP1O

System Block Diagram

Pin Description

Pin Name	I/O	Description					Option		
V _{SS} 1	-	- power supply pin					No		
V _{DD} 1	-	+ power supply p	power supply pin					No	
Port 0	I/O	• 4-bit I/O port						Yes	
P00 to P03		 I/O specifiable i 	n 1 bit units						
		 Pull-up resistors 	s can be turned o	on and off in 1 bit	units.				
		 Pin functions 							
		P00: MP2OT0(F	PWM output)						
		P01: MP2OT0 (PWM output)						
		P02: MP2OT1(F	PWM output) / Sy	stem clock outpu	ıt				
		P03: MP2OT1 (-bit I/O port						
Port 1	I/O	• 8-bit I/O port	bit I/O port						
P10 to P17		I/O specifiable i	D specifiable in 1 bit units						
		Pull-up resistors	Ill-up resistors can be turned on and off in 1 bit units.						
		Pin functions D10: AND(AD or							
		F TO. ANO(AD Co	P10: AN0(AD converter input) / INT2 input / HOLD reset input /						
			onverter input) / I	NT3 input (with n	oise filter) /				
		timer 0 ev	ent input / timer ()H capture input	(CMP1(+) input				
		P12 [·] AN2(AD co	onverter input) / (CMP1(-) input					
		P13: SIO1 data	output / AN3(AD	converter input)	/ CMP1 output				
		P14: SIO1 data	input / bus I/O / I	NT0 input / HOL	D reset input / tin	ner 0L capture in	put		
		P15: SIO1 clock	(I/O / INT1 input	/ HOLD reset inp	out / timer 0H cap	ture input / CMP	2 output		
		P16: Timer 1PV	VML output / CMI	P2(+) input / AN4	(AD converter in	put)			
		P17: Timer 1PV	VMH output / bee	per output / CMF	2(-) input / AN5(AD converter inp	ut)		
		Interrupt acknowl	edge type						
			Rising	Falling	Rising &	Hlovel			
			Rising	1 annig	Falling	TTIEVEI	Lievei		
		INT0	enable	enable	disable	enable	enable		
		INT1	enable	enable	disable	enable	enable		
		INT2	enable	enable	enable	disable	disable		
		INT3	T2 enable enable enable disable disable T3 enable enable enable disable disable						
0\W/P0	1/0	On ohis datas						N-	
	1/0		r (exclusive pin)					NO	
RED	I/O	External reset Inp	out / internal rese	t output				No	

Port Output Types

The table below lists the types of port outputs and the presence/absence of a pull-up resistor. Data can be read into any input port even if it is in the output mode.

Port Name	Option selected in units of	Option type	Output type	Pull-up resistor
P00 to P03	1 bit	1	CMOS	Programmable
P10 to P17		2	Nch-open drain	Programmable

User Option Table

Option Name	Option to be Applied on	Flash-ROM Version	Option Selected in Units of	Option Selection
Port output type	P00 to P03	0	1 bit	CMOS
				Nch-open drain
	P10 to P17	0	1 bit	CMOS
				Nch-open drain
Low-voltage detection	Detect function	0	-	Enable:Use
reset function				Disable:Not Used
	Detect level	0	-	7-level
Power-on reset function	Power-On reset level	0	-	8-level

Recommended Unused Pin Connections

Dest News	Recommended Unused Pin Connections				
Роп Name	Board	Software			
P00 to P03	Open	Output low			
P10 to P17	Open	Output low			

On-chip Debugger Pin Connection Requirements

Install and connect a limiting resistor (100Ω) to the on-chip debugger dedicated pin (OWP0) on the user board and pull the pin down $(100k\Omega)$. It is recommended to install a dedicated connector to accept the cable to the debugging tool (TCB87 Type C). The connector must accommodate three lines, i.e., VSS1, OWP0, and VDD1.

Absolute Maximum Ratings at $Ta = 25^{\circ}C$, $V_{SS}1 = 0V$

	Demonster	Querrale al	Dia (Derrogalos	Oradikiran			Specif	ication	
	Parameter	Symbol	Pin/Remarks	Conditions	V _{DD} [V]	min	typ	max	unit
Maximum supply voltage		V _{DD} max	V _{DD} 1			-0.3		+6.5	
Inp	out voltage	VI	RES			-0.3		V _{DD} +0.3	V
Inp vol	ut/output tage	VIO	Ports 0, 1			-0.3		V _{DD} +0.3	
current	Peak output current	IOPH(1)	Ports 0, 1	CMOS output select Per 1 applicable pin		-10			
vel output	Mean output current (Note 1-1)	IOMH(1)	Ports 0, 1	CMOS output select Per 1 applicable pin		-7.5			
gh le	Total output	$\Sigma IOAH(1)$	Ports 0	Total of all applicable pins		-25			
Ξ	current	ΣIOAH(2)	Ports 1	Total of all applicable pins		-25			
urrent	Peak output current	IOPL(1)	Ports0, 1	Per 1 applicable pin				20	mA
/el output c	Mean output current (Note 1-1)	IOML(1)	Ports 0, 1	Per 1 applicable pin				15	
w lev	Total output	$\Sigma IOAL(1)$	Ports 0	Total of all applicable pins				45	
Γo	current	ΣIOAL(2)	Ports 1	Total of all applicable pins				45	
Po	wer dissipation	Pdmax	SSOP16	Ta=-40 to +85°C Package with thermal resistance board (Note 1-2)				238	mW
Op ten	erating ambient	Topr				-40		+85	*
Sto	orage ambient	Tstg				-55		+125	-U

Note 1-1: The mean output current is a mean value measured over 100ms.

Note 1-2: SEMI standards thermal resistance board (size: 76.1×114.3×1.6tmm, glass epoxy) is used.

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

Deservator	Querrale al	Dia (Desserve)	Oraditions			Specif	ication	
Parameter	Symbol	Pin/Remarks	Conditions	V _{DD} [V]	min	typ	max	unit
Operating supply voltage	V _{DD} (1)	V _{DD} 1	$0.291 \mu s \leq tCYC \leq 200 \mu s$		2.8		5.5	
Memory sustaining supply voltage	V _{HD}	V _{DD} 1	RAM and register contents sustained in HOLD mode.		2.0			
High level input voltage	V _{IH} (1)	Ports 1		2.8 to 5.5	0.3V _{DD} +0.7		V _{DD}	
	V _{IH} (2)	Ports 0		2.8 to 5.5	0.3V _{DD} +0.7		V _{DD}	V
	V _{IH} (3)	RES		2.8 to 5.5	0.75V _{DD}		V _{DD}	v
Low level input voltage	V _{IL} (1)	Ports 1		4.0 to 5.5	V _{SS}		0.1V _{DD} +0.4	
				2.8 to 4.0	V _{SS}		0.2V _{DD}	
	V _{IL} (2)	Ports 0		4.0 to 5.5	V _{SS}		0.15V _{DD} +0.4	
				2.8 to 4.0	V _{SS}		0.2V _{DD}	
	V _{IL} (3)	RES		2.8 to 5.5	V _{SS}		0.25V _{DD}	
Instruction cycle time (Note 2-1)	tCYC			2.8 to 5.5	0.291		200	μs
Oscillation frequency	FmMRC(1)		Internal High-speed RC oscillation. (Note 2-2)	2.8 to 5.5	9.7	10.0	10.3	MHz
range	FmMRC(2)		Internal High-speed RC oscillation. Ta=0°C to 85°C (Note 2-2)	2.8 to 5.5	9.75	10.0	10.25	MHz
	FmRC		Internal Medium-speed RC oscillation	2.8 to 5.5	0.5	1.0	2.0	MHz
	FmSRC		Internal Slow-speed RC oscillation for watchdog timer.	2.8 to 5.5	15	30	60	kHz

Allowable Operating Conditions at $Ta = -40^{\circ}C$ to $+85^{\circ}C$, $V_{SS}1 = 0V$

Note 2-1: Relationship between tCYC and oscillation frequency is 3/FmMRC at a division ratio of 1/1 and 6/FmMRC at a division ratio of 1/2.

Note 2-2: When switching the system clock, allow an oscillation stabilization time of 100µs or longer after the High-speed RC oscillator circuit transmits from the "oscillation stopped" to "oscillation enabled" state.

5						Specifica	ation	
Parameter	Symbol	Pin/Remarks	Conditions	V _{DD} [V]	min	typ	max	unit
High level input current	I _{IH} (1)	Ports 0, 1 RES	Output disabled Pull-up resistor off VIN=VDD (Including output Tr's off leakage current)	2.8 to 5.5			1	
Low level input current	l _{IL} (1)	Ports 0, 1 RES	Output disabled Pull-up resistor off VIN=VSS (Including output Tr's off leakage current)	2.8 to 5.5	-1			μΑ
High level output	V _{OH} (1)	Ports 0, 1	I _{OH} =-1mA	4.5 to 5.5	V _{DD} -1			
voltage	V _{OH} (2)		I _{OH} =-0.35mA	2.8 to 5.5	V _{DD} -0.4			
	V _{OH} (3)	Port0	I _{OH} =-6mA	4.5 to 5.5	V _{DD} -1			
	V _{OH} (4)	(Note 3-1)	I _{OH} =-1.4mA	2.8 to 5.5	V _{DD} -0.4			V
Low level output	V _{OL} (1)	Ports 0, 1	I _{OL} =10mA	4.5 to 5.5			1.5	
voltage	V _{OL} (2)		I _{OL} =1.4mA	2.8 to 5.5			0.4	
Pull-up resistance	Rpu(1)	Ports 0, 1	V _{OH} =0.9V _{DD}	4.5 to 5.5	15	35	80	
	Rpu(2)			2.8 to 4.5	18	50	230	kΩ
Hysteresis voltage	VHYS	P10(INT2), P11(INT3), P14,P15, RES		2.8 to 5.5		0.1 V _{DD}		V
Pin capacitance	СР	All pins	For pins other than that under test: VIN=VSS f=1MHz Ta=25°C	2.8 to 5.5		10		pF

Electrical Characteristics at $Ta = -40^{\circ}C$ to $+85^{\circ}C$, $V_{SS}1 = 0V$

Note 3-1: When Ports0 selected MCPWM2.

SIO1 Serial I/O CI	naracteristics at Ta = -40° C to $+85^{\circ}$ C, V _{SS} 1 = 0V (Note 4)
--------------------	---

		D	Querrale al	Pin/	O an dition a			Spec	ification	
	ł	Parameter	Symbol	Remarks	Conditions	V _{DD} [V]	min	typ	max	unit
	×	Frequency	tSCK(3)	SCK1(P15)	• See Fig. 4.		2			
	put cloc	Low level pulse width	tSCKL(3)			2.8 to 5.5	1			
clock	Ч	High level pulse width	tSCKH(3)				1			tCYC
Serial	ç	Frequency	tSCK(4)	SCK1(P15)	CMOS output selected See Fig. 4.		2			
	itput clo	Low level pulse width	tSCKL(4)			2.8 to 5.5		1/2		10.01/
	no	High level pulse width	tSCKH(4)					1/2		ISCK
input	Da	ta setup time	tsDI(2)	SB1(P14), SI1(P14)	 Must be specified with respect to rising edge of SIOCLK. 		0.05			
Serial	Da	ta hold time	thDI(2)		• See Fig. 4.	2.8 to 5.5	0.05			
Serial output	Ou	utput delay time	tdD0(4)	SO1(P13), SB1(P14)	 Must be specified with respect to falling edge of SIOCLK. Must be specified as the time to the beginning of output state change in open drain output mode. See Fig. 4. 	2.8 to 5.5			(1/2)tCYC +0.08	μs

Note 4: These specifications are theoretical values. Add margin depending on its use.

Pulse Input Conditions at $Ta = -40^{\circ}C$ to $+85^{\circ}C$, $V_{SS}1 = 0V$

D i						Speci	fication	
Parameter	Symbol	Pin/Remarks	Conditions	V _{DD} [V]	min	typ	max	unit
High/low level pulse width	tPIH(1) tPIL(1)	INT0(P14), INT1(P15), INT2(P10)	 Interrupt source flag can be set. Event inputs for timer 0 or 1 are enabled. 	2.8 to 5.5	1			
	tPIH(2) tPIL(2)	INT3(P11) when noise filter time constant is 1/1	 Interrupt source flag can be set. Event inputs for timer 0 are enabled. 	2.8 to 5.5	2			101/0
	tPIH(3) tPIL(3)	INT3(P11) when noise filter time constant is 1/32	 Interrupt source flag can be set. Event inputs for timer 0 are enabled. 	2.8 to 5.5	64			tCYC
	tPIH(4) tPIL(4)	INT3(P11) when noise filter time constant is 1/128	 Interrupt source flag can be set. Event inputs for timer 0 are enabled. 	2.8 to 5.5	256			
	tPIL(5)	RES	 Resetting is enabled. 	2.8 to 5.5	200			μs

AD Converter Characteristics at $V_{SS}1 = 0V$

<10bits AD Converter Mode/Ta = -40° C to $+85^{\circ}$ C >

D	0					Specifi	cation	
Parameter	Symbol	Pin/Remarks	Conditions	V _{DD} [V]	min	typ	max	unit
Resolution	Ν	AN0(P10) to		2.8 to 5.5		10		bit
Absolute accuracy	ET	AN3(P13) AN4(P16)	(Note 6-1)	2.8 to 5.5			±4	LSB
Conversion time	TCAD	AN5(P17)	See Conversion time calculation	4.0 to 5.5	7.8		65.6	
			formulas. (Note 6-2)	2.8 to 5.5	15		65.6	μs
Analog input voltage range	VAIN			2.8 to 5.5	V _{SS}		V _{DD}	V
Analog port	IAINH		VAIN=V _{DD}	2.8 to 5.5			1	•
input current	IAINL		VAIN=V _{SS}	2.8 to 5.5	-1			μΑ

<8bits AD Converter Mode/Ta = -40° C to $+85^{\circ}$ C >

Deverseter	O make al	Dia /D a sta a sta	Que a distinue a			Specifi	cation	
Parameter	Symbol	Pin/Remarks	Conditions	V _{DD} [V]	min	typ	max	unit
Resolution	Ν	AN0(P10) to		2.8 to 5.5		8		bit
Absolute accuracy	ET	AN3(P13) AN4(P16)	(Note 6-1)	2.8 to 5.5			±1.5	LSB
Conversion time	TCAD	AN5(P17)	See Conversion time calculation	4.0 to 5.5	2.85		25.0	
			formulas. (Note 6-2)	2.8 to 5.5	5.5		25.0	μs
Analog input voltage range	VAIN			2.8 to 5.5	V _{SS}		V _{DD}	V
Analog port	IAINH		VAIN=V _{DD}	2.8 to 5.5			1	
input current	IAINL]	VAIN=V _{SS}	2.8 to 5.5	-1			μA

Conversion time calculation formulas:

10bits AD Converter Mode: TCAD(Conversion time) = $((40/(AD \text{ division ratio}))+2)\times(1/3)\times tCYC$

8bits AD Converter Mode: TCAD(Conversion time) = $((28/(AD \text{ division ratio}))+2)\times(1/3)\times tCYC$

External oscillation	Operating supply voltage range	System division ratio	Cycle time	AD division ratio (ADDIV)		AD conversion time (TCAD)	
(FmMRC)	(V _{DD})	(SYSDIV)	(tCYC)	10bit AD	8bit AD	10bit AD	8bit AD
	4.0V to 5.5V	1/1	300ns	1/2	1/1	8.5µs	2.9µs
10MHz	2.8V to 5.5V	1/1	300ns	1/4	1/2	17µs	5.8µs

Note 6-1: The quantization error (±1/2LSB) must be excluded from the absolute accuracy. The absolute accuracy must be measured in the microcontroller's state in which no I/O operations occur at the pins adjacent to the analog input channel.

Note 6-2: The conversion time refers to the period from the time an instruction for starting a conversion process till the time the conversion results register(s) are loaded with a complete digital conversion value corresponding to the analog input value.

The conversion time is 2 times the normal-time conversion time when:

• The first AD conversion is performed in the 10-bit AD conversion mode after a system reset.

• The first AD conversion is performed after the AD conversion mode is switched from 8-bit to 10-bit conversion mode.

Power-on Reset (POR) Characteristics at Ta = -40 °C to +85 °C, $V_{SS}1 = 0V$

						Specif	ication	
Parameter	Symbol	Pin/Remarks	Conditions	Option selected voltage	min	typ	max	unit
POR release	PORRL		 Select from option. 	1.67V	1.55	1.67	1.79	
voltage			(Note 7-1)	1.97V	1.85	1.97	2.09	
				2.07V	1.95	2.07	2.19	
				2.37V	2.25	2.37	2.49	
				2.57V	2.45	2.57	2.69	
				2.87V	2.75	2.87	2.99	V
				3.86V	3.73	3.86	3.99	
				4.35V	4.21	4.35	4.49	
Detection voltage unknown state	POUKS		• See Fig. 6. (Note 7-2)			0.7	0.95	
Power supply rise time	PORIS		 Power supply rise time from 0V to 1.6V. 				100	ms

Note7-1: The POR release level can be selected out of 8 levels only when the LVD reset function is disabled. Note7-2: POR is in an unknown state before transistors start operation.

Low Voltage Detection Reset (LVD) Characteristics at Ta = -40 °C to +85 °C, $V_{SS}1=0$ V

				_		Specific	cation	
Parameter	Symbol	Pin/Remarks	Conditions	Option selected voltage	min	typ	max	unit
LVD reset voltage	LVDET		 Select from option. 	1.91V	1.81	1.91	2.01	
(Note 8-2)			(Note 8-1)	2.01V	1.91	2.01	2.11	
			(Note 8-3)	2.31V	2.21	2.31	2.41	
			• See Fig. 7.	2.51V	2.41	2.51	2.61	V
				2.81V	2.71	2.81	2.91	
				3.79V	3.69	3.79	3.89	
				4.28V	4.18	4.28	4.38	
LVD hysteresys	LVHYS			1.91V		55		
width				2.01V		55		
				2.31V		55		
				2.51V		55		mV
				2.81V		60		
				3.79V		65		
				4.28V		65		
Detection voltage unknown state	LVUKS		• See Fig. 7. (Note 8-4)			0.7	0.95	V
Low voltage detection minimum width (Reply sensitivity)	TLVDW		• LVDET-0.5V • See Fig. 8.		0.2			ms

Note8-1: The LVD reset level can be selected out of 7 levels only when the LVD reset function is enabled.

Note8-2: LVD reset voltage specification values do not include hysteresis voltage.

Note8-3: LVD reset voltage may exceed its specification values when port output state changes and/or when a large current flows through port.

Note8-4: LVD is in an unknown state before transistors start operation.

D	0	Pin/				Specifi	cation	
Parameter	Symbol	Remarks	Conditions	V _{DD} [V]	min	typ	max	unit
Input common-	VCMIN	P12(CMP1IA),						
mode voltage		P11(CMP1IB),		2 8 to 5 5			V _{DD}	V
(Note9-1)		P17(CMP2IA),		2.0 10 5.5	^v SS		-1.5V	v
		P16(CMP2IB)						
Offset voltage	VCPOFF(1)	P12(CMP1IA),	 Input common-mode voltage range 					
		P11(CMP1IB),	 CMP1 minus input 					
		P17(CMP2IA),	= CMP1IA	2.8 to 5.5			±20	mV
		P16(CMP2IB)	 CMP2 minus input 					
			= CMP2IA					
	VCPOFF(2)	P12(CMP1IA),	 Input common-mode voltage range 					
		P11(CMP1IB),	CMP1 minus input					
		P17(CMP2IA),	= CMP1vref (Note9-2)	2.8 to 5.5			±40	mV
		P16(CMP2IB)	 CMP2 minus input 					
			= CMP2 vref (Note9-2)					
CMP	tCRT	P13(CMP1O),	 Input common-mode voltage range 					
response		P15(CMP2O)	 Input amplitude=100mV, 					
speed			Over drive=50mV					
			CMP1 minus input	2.8 to 5.5		200		ns
			= CMP1IA					
			CMP2 minus input					
			= CMP2IA					

Comparator Characteristics at Ta = -40 °C to +85 °C, $V_{SS}1 = 0V$

Note9-1: When VDD=5V, input voltage is effective from 0 to 3.5V.

Note9-2:

Rang1: CMP1vref1= (CMP1vref-Register<3:0>+1)/16 × VDD × 0.64

CMP2vref2= (CMP2vref-Register<3:0> + 1)/16 × $V_{DD} \times 0.64$

Rang2: CMP1vref1= (CMP1vref-Register<3:0>+1)/64 × V_{DD} × 0.64

 $CMP2vref2=(CMP2vref-Register<3:0>+1)/64\times V_{DD}\times 0.64$

*: Range1/Range2 setting by a register is common to comparators 1 and 2.

Consumption Current Characteristics at Ta = -40 °C to +85 °C, $V_{SS}1 = 0$ V

Deveryotes	Quarteral	Pin/	Que d'étant			Specifi	cation	
Parameter	Symbol	Remarks	Conditions	V _{DD} [V]	min	typ	max	unit
Normal mode consumption current (Note 10-1) (Note 10-2)	IDDOP(1)	V _{DD} 1	 Internal Medium speed RC oscillation stopped. System clock set to internal High speed RC oscillation(10MHz). 1/1 frequency division ratio 	2.8 to 5.5		3.4	4.8	mA
	IDDOP(2)		 Internal High speed RC oscillation stopped. System clock set to internal Medium speed RC oscillation. 1/2 frequency division ratio 	2.8 to 5.5		0.2	0.4	
HALT mode consumption current (Note 10-1) (Note 10-2)	IDDHALT(1)	V _{DD} 1	 HALT mode Internal Medium speed RC oscillation stopped. System clock set to internal High speed RC oscillation(10MHz). 1/1 frequency division ratio 	2.8 to 5.5		1.6	2.3	mA
	IDDHALT(2)	V _{DD} 1	 HALT mode Internal High speed RC oscillation stopped. System clock set to internal Medium speed RC oscillation. 1/2 frequency division ratio 	2.8 to 5.5		0.10	0.19	
HOLD mode consumption current	IDDHOLD(1)	V _{DD} 1	HOLD mode	2.8 to 5.5		0.03	32	
(Note 10-1) (Note 10-2) (Note 10-3)	IDDHOLD(2)		HOLD mode • LVD option selected	2.8 to 5.5		3	35	μΑ

Note10-1: Values of the consumption current do not include current that flows into the output transistors and internal pull-up resistors.

Note10-2: The consumption current values do not include operational current of LVD function if not specified. Note10-3: The amplifier / comparator circuit operates in the HOLD mode.

F-ROM Programming Characteristics at $Ta = +10^{\circ}C$ to $+55^{\circ}C$, $V_{SS}1 = 0V$

Deservation	Querrale al	Din/Domort/o	Ormitterre	_	Specification				
Parameter	Symbol	Pin/Remarks	Conditions	V _{DD} [V]	min	typ	max	unit	
Onboard	IDDFW(1)	V _{DD} 1	Only current of the Flash block.						
programming				2.8 to 5.5		5	10	mA	
current									
Programming	tFW(1)		Erasing time			20	30	ms	
time	tFW(2)		Programming time	2.8 to 5.5		40	60	μS	

Figure 1 AC Timing Measurement Point

Note:

External circuits for reset may vary depending on the usage of POR and LVD. Please refer to the user's manual for more information.

Figure 3 Reset Circuit

Figure 4 Serial I/O Output Waveforms

Figure 5 Pulse Input Timing Signal Waveform

(RESET pin: Pull-up resistor R_{RES} only)

- The POR function generates a reset only when power is turned on starting at the VSS level.
- No stable reset will be generated if power is turned on again when the power level does not go down to the VSS level as shown in (a). If such a case is anticipated, use the LVD function together with the POR function or implement an external reset circuit.
- A reset is generated only when the power level goes down to the VSS level as shown in (b) and power is turned on again after this condition continues for $100\mu s$ or longer.

(RESET pin: Pull-up resistor R_{RES} only)

- Resets are generated both when power is turned on and when the power level lowers.
- A hysteresis width (LVHYS) is provided to prevent the repetitions of reset release and entry cycles near the detection level.

Figure 8 Low voltage detection minimum width (Example of momentary power loss/Voltage variation waveform)

ON Semiconductor and the ON logo are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death masociated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equa

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

onsemi: LC87F0N04AUJD-H