AFM912N

Airfast RF Power LDMOS Transistor

Rev. 0 — November 2022 Data Sheet: Technical Data

Designed for handheld two-way radio applications with frequencies from 136 to 941 MHz. The high gain, ruggedness and wideband performance of this device make it ideal for large-signal, common-source amplifier applications in handheld radio equipment.

Typical Performance (7.5 Vdc, T_A = 25°C, CW)

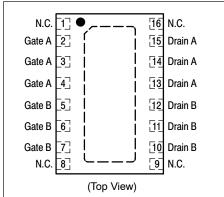
Frequency (MHz)	Gain Compression	P _{out} (W)	G _{ps} (dB)	η _D (%)
941	P1dB	12.5	13.3	65.2
	P3dB	15.7	11.3	69.5

Load Mismatch/Ruggedness

Frequency (MHz)	Signal Type	VSWR	P _{in} (dBm)	Test Voltage	Result
941	CW	> 10:1 at all Phase Angles	32.9 (3 dB Overdrive)	10.0	No Device Degradation

Features

- Characterized for operation from 136 to 941 MHz
- Unmatched input and output allowing wide frequency range utilization
- Device can be used single-ended or in a push-pull configuration
- Integrated ESD protection
- · Integrated stability enhancements
- Wideband full power across each band
- Extreme ruggedness
- High linearity for: TETRA, SSB


Typical Applications

- · Output stage VHF band handheld radio
- Output stage UHF band handheld radio
- Output stage for 700-800 MHz handheld radio

AFM912N

136–941 MHz, 12 W, 7.5 V WIDEBAND AIRFAST RF POWER LDMOS TRANSISTOR

Note: Exposed backside of the package is the source terminal for the transistor.

Figure 1. Pin Connections

Table 1. Maximum Ratings

Rating	Symbol	Value	Unit
Drain-Source Voltage	V _{DSS}	-0.5, +30	Vdc
Gate-Source Voltage	V_{GS}	-6.0, +12	Vdc
Operating Voltage	V_{DD}	0 to 12.5	Vdc
Storage Temperature Range	T _{stg}	-65 to +150	°C
Case Operating Temperature Range	T _C	-40 to +150	°C
Operating Junction Temperature Range (1)	TJ	-40 to +150	°C
Total Device Dissipation @ T _C = 25°C Derate above 25°C	P _D	142 1.14	W W/°C

Table 2. Thermal Characteristics

Characteristic		Value ⁽²⁾	Unit
Thermal Resistance, Junction to Case Case Temperature 78°C, 12.6 W CW, 7.5 Vdc, I _{DQ(A+B)} = 130 mA, 941 MHz	$R_{ heta JC}$	0.88	°C/W

Table 3. ESD Protection Characteristics

Test Methodology	Class
Human Body Model (per JS-001-2017)	Class 1C, passes 1000 V
Charge Device Model (per JS-002-2014)	Class C3, passes 1200 V

Table 4. Moisture Sensitivity Level

Test Methodology	Rating	Package Peak Temperature	Unit
Per JESD22-A113, IPC/JEDEC J-STD-020	3	260	°C

Table 5. Electrical Characteristics (T_A = 25°C unless otherwise noted)

Characteristic	Symbol	Min	Тур	Max	Unit
Off Characteristics ⁽³⁾	·				
Zero Gate Voltage Drain Leakage Current $(V_{DS} = 30 \text{ Vdc}, V_{GS} = 0 \text{ Vdc})$	I _{DSS}	_	_	10	μAdc
Gate-Source Leakage Current (V _{GS} = 5 Vdc, V _{DS} = 0 Vdc)	I _{GSS}	_	_	500	nAdc
On Characteristics ⁽³⁾	·				
Gate Threshold Voltage $(V_{DS} = 10 \text{ Vdc}, I_D = 78 \mu\text{Adc})$	V _{GS(th)}	1.7	2.1	2.6	Vdc
Drain-Source On-Voltage (V _{GS} = 10 Vdc, I _D = 780 mAdc)	V _{DS(on)}	_	0.11	0.15	Vdc
Forward Transconductance (V _{DS} = 7.5 Vdc, I _D = 4.7 Adc)	9 _{fs}	_	4.4	_	S

- 1. Continuous use at maximum temperature will affect MTTF.
- 2. Refer to AN1955, Thermal Measurement Methodology of RF Power Amplifiers. Go to http://www.nxp.com/RF and search for AN1955.
- 3. Each side of device measured separately.

(continued)

Data Sheet: Technical Data 2 / 13

Table 5. Electrical Characteristics ($T_A = 25$ °C unless otherwise noted) (continued)

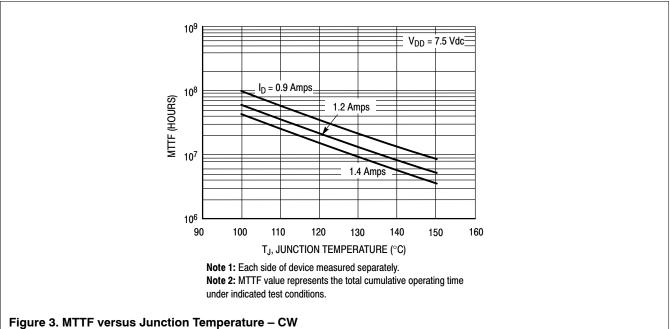
Characteristic	Symbol	Min	Тур	Max	Unit
Oynamic Characteristics (1)					
Reverse Transfer Capacitance (V_{DS} = 7.5 Vdc \pm 30 mV(rms)ac @ 1 MHz, V_{GS} = 0 Vdc)	C _{rss}	_	1.7	_	pF
Output Capacitance (V_{DS} = 7.5 Vdc \pm 30 mV(rms)ac @ 1 MHz, V_{GS} = 0 Vdc)	C _{oss}		39.8		pF
Input Capacitance (V _{DS} = 7.5 Vdc, V _{GS} = 0 Vdc \pm 30 mV(rms)ac @ 1 MHz)	C _{iss}	_	68.9	_	pF

 $\textbf{Typical Performance} \text{ (In NXP Test Fixture, 50 ohm system) } V_{DD} = 7.5 \text{ Vdc}, I_{DQ(A+B)} = 130 \text{ mA}, P_{out} = 12 \text{ W}, f = 941 \text{ MHz}$

Power Gain	G _{ps}	_	13.3	_	dB
Drain Efficiency	η_{D}	_	65.2	_	%
Input Return Loss	IRL	_	-17	_	dB

Load Mismatch/Ruggedness (In NXP Test Fixture, 50 ohm system) $I_{DQ(A+B)} = 130 \text{ mA}$

Frequency (MHz)	Signal Type	VSWR	P _{in} (dBm)	Test Voltage, V _{DD}	Result
941	CW	> 10:1 at all Phase Angles	32.9 (3 dB Overdrive)	10.0	No Device Degradation


Table 6. Ordering Information

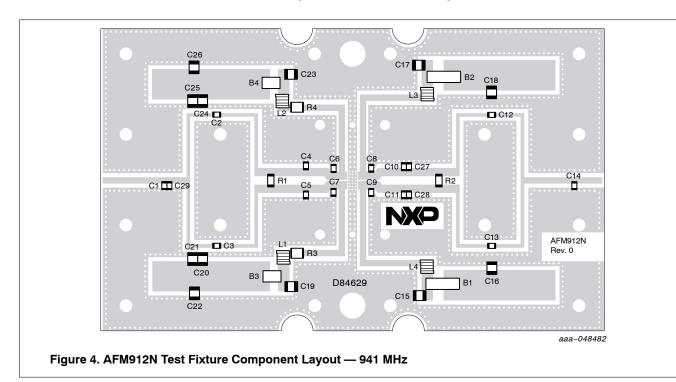
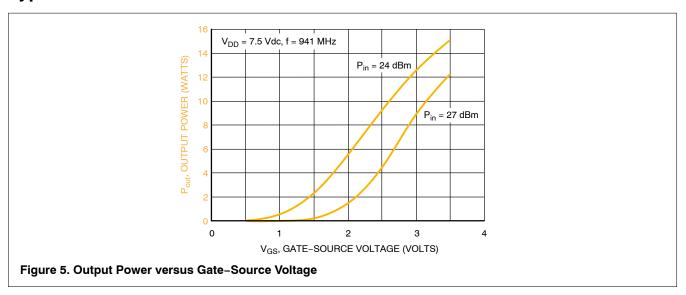
Device	Tape and Reel Information	Package
AFM912NT1	T1 Suffix = 1,000 Units, 16 mm Tape Width, 7-inch Reel	DFN 4×6

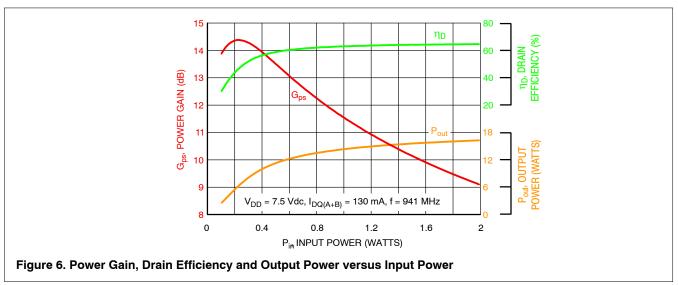
^{1.} Each side of device measured separately.

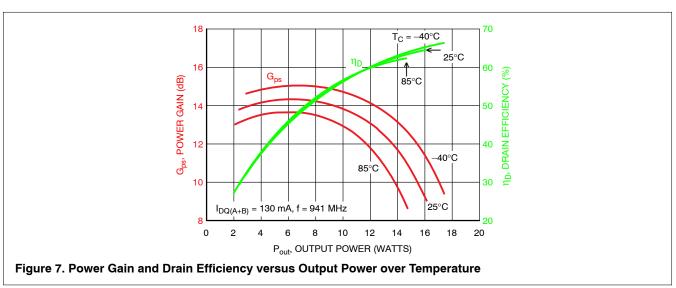
Typical Characteristics

Data Sheet: Technical Data 4/13

941 MHz Test Fixture — $3'' \times 5''$ (7.8 cm \times 12.7 cm)

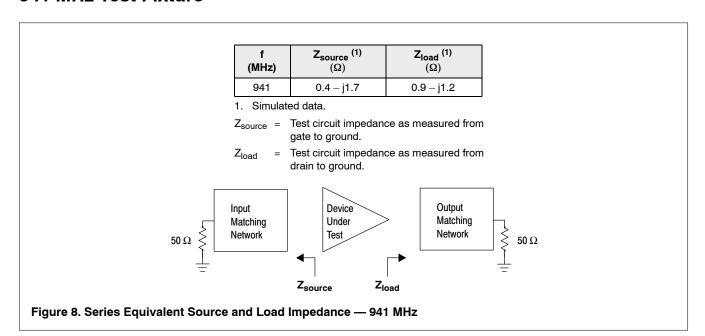




Table 7. AFM912N Test Fixture Component Designations and Values — 941 MHz


Part	Description	Part Number	Manufacturer
B1, B2	Long RF Bead	2743021447	Fair-Rite
B3, B4	Short RF Bead	2743019447	Fair-Rite
C1	2 pF Chip Capacitor	600F2R0BT250XT	ATC
C2, C3	8.2 pF Chip Capacitor	600F8R2BT250XT	ATC
C4, C5	6.8 pF Chip Capacitor	600F6R8BT250XT	ATC
C6, C7, C8, C9	9.1 pF Chip Capacitor	600F9R1BT250XT	ATC
C10, C11	5.6 pF Chip Capacitor	600F5R6BT250XT	ATC
C12, C13	150 pF Chip Capacitor	600F151JT250XT	ATC
C14	3 pF Chip Capacitor	600F3R0BT250XT	ATC
C15, C17, C19, C23	1 μF Chip Capacitor	GRM32CR72A105KA35L	Murata
C16, C18, C22, C26	10 μF Chip Capacitor	C3225X7S1H106M250AB	TDK
C20, C21, C24, C25	0.1 μF Chip Capacitor	GRM32MR71H104JA01L	Murata
C27, C28	0.2 pF Chip Capacitor	600F0R2BT250XT	ATC
C29	5.1 pF Chip Capacitor	600F5R1BT250XT	ATC
L1, L2	8 nH Inductor, 3 Turns	A03TKLC	Coilcraft
L3, L4	5 nH Inductor, 2 Turns	A02TJLC	Coilcraft
R1, R2	100 Ω, 1/4 W Chip Resistor	CRCW1206100RFKEA	Vishay
R3, R4	3.3 Ω, 1/2 W Chip Resistor	ERJ-14YJ3R3U	Panasonic
PCB	Rogers RO4350B, 0.030", e _r = 3.66	D84629	MTL

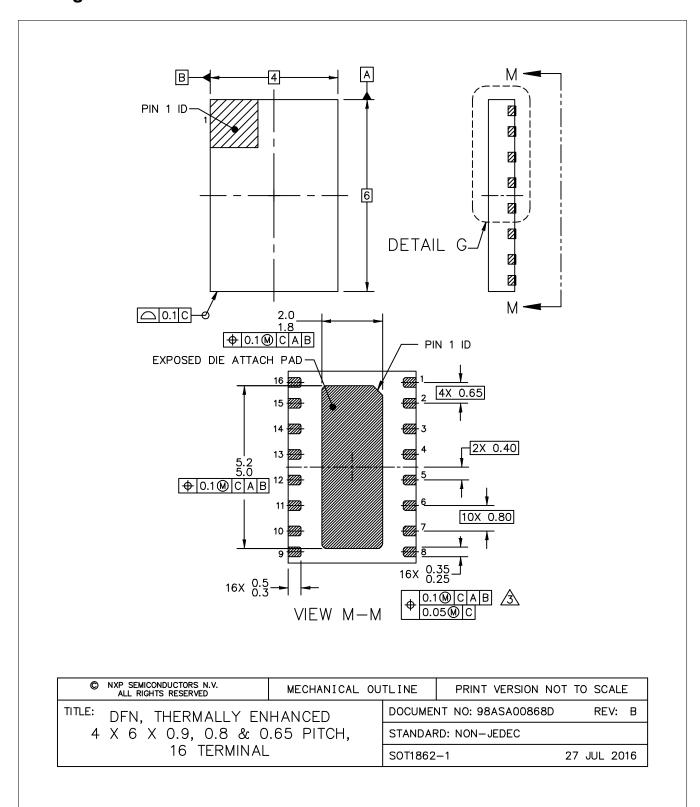
AFM912N Airfast RF Power LDMOS Transistor, Rev. 0, November 2022

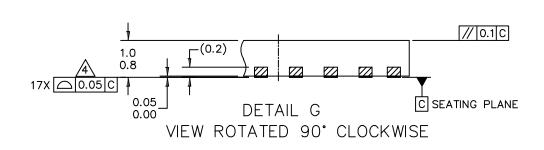
Typical Characteristics — 941 MHz Test Fixture



Data Sheet: Technical Data 6 / 13

941 MHz Test Fixture


Data Sheet: Technical Data 7/13


Figure 9. Product Marking

Data Sheet: Technical Data 8 / 13

Package Information

Data Sheet: Technical Data 9 / 13

0	NXP SEMICONDUCTORS N.V. ALL RIGHTS RESERVED	MECHANICAL OUTLINE		PRINT VERSION NOT TO SCALE		
TITLE:	TITLE: DFN, THERMALLY ENHANCED 4 X 6 X 0.9, 0.8 & 0.65 PITCH,			NT NO: 98ASA00868D	REV: B	
				RD: NON-JEDEC		
16 TERMINAL			SOT1862		JUL 2016	

Data Sheet: Technical Data 10 / 13

NOTES:

- 1. DIMENSIONING & TOLERANCING CONFIRM TO ASME Y14.5M-1994.
- 2. ALL DIMENSIONS ARE IN MILLIMETERS. ANGLES ARE IN DEGREES.

THIS DIMENSION APPLIES TO METALLIZED TERMINAL AND IS MEASURED BETWEEN 0.25 MM AND 0.30 MM FROM TERMINAL TIP.

/4.\ COPLANARITY APPLIES TO THE EXPOSED HEAT SLUG AS WELL AS THE TERMINALS.

NXP SEMICONDUCTORS N ALL RIGHTS RESERVED		OUTLINE	PRINT VERSION NOT TO SCALE		
TITLE: DFN, THERMALLY ENHANCED			NT NO: 98ASA00868D	REV: B	
4 X 6 X 0.9,	STANDA	STANDARD: NON-JEDEC			
16 T	SOT1862	2–1	27 JUL 2016		

Data Sheet: Technical Data 11 / 13

Product Documentation, Software and Tools

Refer to the following resources to aid your design process.

Application Notes

- AN1907: Solder Reflow Attach Method for High Power RF Devices in Over-Molded Plastic Packages
- AN1955: Thermal Measurement Methodology of RF Power Amplifiers

Engineering Bulletins

• EB212: Using Data Sheet Impedances for RF LDMOS Devices

Software

• Electromigration MTTF Calculator

Development Tools

· Printed Circuit Boards

Revision History

The following table summarizes revisions to this document.

Revision	Date	Description	
0	Nov. 2022	Initial release of data sheet	

Data Sheet: Technical Data 12 / 13

How to Reach Us

Home Page: nxp.com

Web Support: nxp.com/support

Information in this document is provided solely to enable system and software implementers to use NXP products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits based on the information in this document. NXP reserves the right to make changes without further notice to any products herein.

NXP makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does NXP assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in NXP data sheets and/or specifications can and do vary in different applications, and actual performance may vary over time. All operating parameters, including "typicals," must be validated for each customer application by customer's technical experts. NXP does not convey any license under its patent rights nor the rights of others. NXP sells products pursuant to standard terms and conditions of sale, which can be found at the following address: nxp.com/SalesTermsandConditions.

NXP, the NXP logo, Freescale, the Freescale logo and Airfast are trademarks of NXP B.V. All other product or service names are the property of their respective owners.

© NXP B.V. 2022

All rights reserved.

For more information, please visit: http://www.nxp.com
For sales office addresses, please send an email to: salesaddresses@nxp.com

Date of release: November 2022 Document identifier: AFM912N

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

NXP:

AFM912NT1