

DES Series

High Temperature Low Loss Lead Type Disc Ceramic Capacitors for General Purpose

Product specifications in this catalog are as of Dec. 2017, and are subject to change or obsolescence without notice.

Please consult the approval sheet before ordering. Please read rating and Cautions first.

⚠ CAUTION

1. OPERATING VOLTAGE

When DC-rated capacitors are to be used in AC or ripple current circuits, be sure to maintain the Vp-p value of the applied voltage or the Vo-p which contains DC bias within the rated voltage range. When the voltage is started to apply to the circuit or it is stopped applying, the irregular voltage may be generated for a transit period because of resonance or switching. Be sure to use a capacitor within rated voltage containing these irregular voltage.

When DC-rated capacitors are to be used in input circuits from commercial power source (AC filter), be sure to use Safety Recognized Capacitors because various regulations on withstand voltage or impulse withstand established for each equipment should be taken into considerations.

Voltage	DC Voltage	DC+AC Voltage	AC Voltage	Pulse Voltage(1)	Pulse Voltage(2)
Positional Measurement	Vo-p	Vo-p	Vp-p	Vp-p	Vp-p

2. OPERATING TEMPERATURE AND SELF-GENERATED HEAT

Keep the surface temperature of a capacitor below the upper limit of its rated operating temperature range. Be sure to take into account the heat generated by the capacitor itself.

When the capacitor is used in a high-frequency current, pulse current or the like, it may have the self-generated heat due to dielectric-loss. The frequency of applied voltage should be in less than 300kHz in sine wave. Applied voltage should be the load such as self-generated heat is within 15 °C on the condition of atmosphere temperature 25 °C. When measuring, use a thermocouple of small thermal capacity-K of φ0.1mm and be in the condition where capacitor is not affected by radiant heat of other components and wind of surroundings. Excessive heat may lead to deterioration of the capacitor's characteristics and reliability.(Never attempt to perform measurement with the cooling fan running. Otherwise, accurate measurement cannot be ensured.)

3. FAIL-SAFE

When capacitor would be broken, failure may result in a short circuit. Be sure to provide an appropriate fail-safe function like a fuse on your product if failure would follow an electric shock, fire or fume.

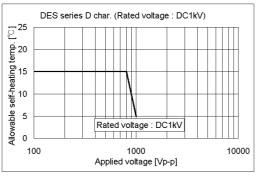
4. LOAD REDUCTION AND SELF-GENERATED HEAT DURING APPLICATION OF HIGH-FREQUENCY AND HIGH-VOLTAGE

Since the heat generated by the low-dissipation capacitor itself is low, its allowable power is much higher than the general B characteristic. However, in case such an applied load that the self-heating temperature is 20 °C at the rated voltage, the allowable power may be exceeded.

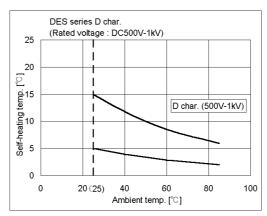
Therefore, when using the low-dissipation capacitors in a high-frequency and high-voltage circuit with a frequency of 1kHz or higher, make sure that the Vp-p values including the DC bias, do not exceed the applied voltage value specified in Table 1. Also make sure that the self-heating temperature (the difference between the capacitor's surface temperature and the capacitor's ambient temperature) at an ambient temperature of 25 °C does not exceed the value specified in Table 1.

As shown in Fig. 2, the self-heating temperature depends on the ambient temperature. Therefore, if you are not able to set the ambient temperature to approximately 25 °C, please contact our sales representatives or product engineers.

<Table 1> Allowable Conditions at High-frequency

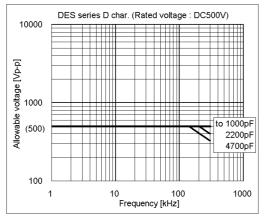

	DC	Allowable Condit	ions at High-frequency *3	Consoiter's	
Temp.	DC		Capacitor's		
Char.	Rated	Applied Voltage	Self-heating Temp.	Ambient	
Criar.	Voltage	(max.)	(25 °C Ambient Temp.) *1	Temp. *2	
	500V	500Vp-p	15 °C max.		
D	1kV	800Vp-p	15 °C max.	-25 to +85 °C	
	IKV	1000Vp-p	5 °C max.		

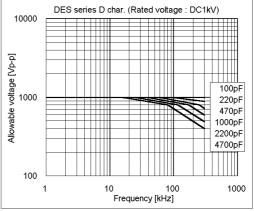
^{*1} Fig. 1 shows the relationship between the applied voltage and the allowable self-heating temperature regarding 1kV rated voltage of the DES series D characteristic.


^{*2} When the ambient temperature is 85 to 125 °C, the applied voltage needs to be further reduced. If the low-dissipation capacitors needs to be used at an ambient temperature of 85 to 125 °C, please contact our sales representatives or product engineers.

^{*3} Fig. 3 shows reference data on the allowable voltage-frequency characteristic for a sine wave voltage.

<Fig. 1> Relationship Between Applied Voltage and Self-heating Temperature [Allowable Self-heating Temp. at 25 °C Ambient Temp.]




<Fig. 2> Dependence of Self-heating Temperature on Ambient Temperature

<Fig. 3> Allowable Voltage (Sine Wave Voltage) – Frequency Characteristic [At Ambient Temperature of 85 °C or less]

Because of the influence of harmonics, when the applied voltage is a rectangular wave or pulse wave voltage (instead of a sine wave voltage), the heat generated by the capacitor is higher than the value obtained by application of the sine wave with the same fundamental frequency. Roughly calculated for reference, the allowable voltage for a rectangular wave or pulse wave corresponds approximately to the allowable voltage for a sine wave whose fundamental frequency is twice as large as that of the rectangular wave or pulse wave. This allowable voltage, however, varies depending on the voltage and current waveforms. Therefore, you are requested to make sure that the self-heating temperature is not higher than the value specified in Table 1.

5. VIBRATION AND IMPACT

Do not expose a capacitor or its leads to excessive shock or vibration during use.

6. SOLDERING

When soldering this product to a PCB/PWB, do not exceed the solder heat resistance specification of the capacitor. Subjecting this product to excessive heating could melt the internal junction solder and may result in thermal shocks that can crack the ceramic element.

When soldering capacitor with a soldering iron, it should be performed in following conditions.

Temperature of iron tip: 400 °C max. Soldering iron wattage: 50W max. Soldering time: 3.5 s max.

7. BONDING, RESIN MOLDING AND COATING

In case of bonding, molding or coating this product, verify that these processes do not affect the quality of capacitor by testing the performance of the bonded, molded or coated product in the intended equipment.

In case of the amount of applications, dryness / hardening conditions of adhesives and molding resins containing organic solvents (ethyl acetate, methyl ethyl ketone, toluene, etc.) are unsuitable, the outer coating resin of a capacitor is damaged by the organic solvents and it may result, worst case, in a short circuit.

The variation in thickness of adhesive, molding resin or coating may cause a outer coating resin cracking and/or ceramic element cracking of a capacitor in a temperature cycling.

8. TREATMENT AFTER BONDING, RESIN MOLDING AND COATING

When the outer coating is hot (over 100 $^{\circ}$ C) after soldering, it becomes soft and fragile. So please be careful not to give it mechanical stress.

Failure to follow the above cautions may result, worst case, in a short circuit and cause fuming or partial dispersion when the product is used.

9. OPERATING AND STORAGE ENVIRONMENT

The insulating coating of capacitors does not form a perfect seal; therefore, do not use or store capacitors in a corrosive atmosphere, especially where chloride gas, sulfide gas, acid, alkali, salt or the like are present. And avoid exposure to moisture. Before cleaning, bonding, or molding this product, verify that these processes do not affect product quality by testing the performance of a cleaned, bonded or molded product in the intended equipment. Store the capacitors where the temperature and relative humidity do not exceed -10 to 40 °C and 15 to 85%. Use capacitors within 6 months after delivered. Check the solderability after 6 months or more.

10. LIMITATION OF APPLICATIONS

Please contact us before using our products for the applications listed below which require especially high reliability for the prevention of defects which might directly cause damage to the third party's life, body or property.

- 1. Aircraft equipment
- 2. Aerospace equipment
- 3. Undersea equipment
- 4. Power plant control equipment
- 5. Medical equipment
- 6. Transportation equipment (vehicles, trains, ships, etc.)
- 7. Traffic signal equipment
- 8. Disaster prevention / crime prevention equipment
- 9. Data-processing equipment exerting influence on public
- 10. Application of similar complexity and/or reliability requirements to the applications listed in the above.

NOTICE

1. CLEANING (ULTRASONIC CLEANING)

To perform ultrasonic cleaning, observe the following conditions.

Rinse bath capacity: Output of 20 watts per liter or less.

Rinsing time : 5 min maximum.

Do not vibrate the PCB/PWB directly.

Excessive ultrasonic cleaning may lead to fatigue destruction of the lead wires.

2. CAPACITANCE CHANGE OF CAPACITORS

Capacitance might change greatly depending on a surrounding temperature or an applied voltage. So, it is not likely to be able to use for the time constant circuit. Please contact us if you need a detail information.

⚠ NOTE

- 1.Please make sure that your product has been evaluated in view of your specifications with our product being mounted to your product.
- 2. You are requested not to use our product deviating from this specification.

EGD24E

1. Application

This specification is applied to High Temperature Low Loss Lead Type Disc Ceramic Capacitors of Class 2 of DES series used for General Electric equipment.

Do not use these products in any automotive power train or safety equipment including battery chargers for electric vehicles and plug-in hybrids.

2. Rating

2-1. Operating temperature range

-25 ~ +125°C

2-2. Part number configuration

ex.) DES D3 3A 332 K A3 B
Series Temperature Rated Capacitance characteristic voltage Capacitance tolerance code style code specification

•Temperature characteristic

Code	Temperature characteristic
D3	D

Please confirm detailed specification on [Specification and test methods].

Rated voltage

Code	Rated voltage
2H	DC500V
3A	DC1kV

Capacitance

The first two digits denote significant figures; the last digit denotes the multiplier of 10 in pF. ex.) In case of 332.

$$33 \times 10^2 = 3300 pF$$

• Capacitance tolerance

Please refer to [Part number list].

• Lead code

Code	Lead style
A*	Vertical crimp long type
J*	Vertical crimp short type
N*	Vertical crimp taping type

^{*} Please refer to [Part number list].

Solder coated copper wire is applied for termination.

• Packing style code

Code	Packing type						
В	Bulk type						
Α	Ammo pack taping type						

• Individual specification

In case part number cannot be identified without 'individual specification', it is added at the end of part number.

3. Marking

Series code : Abbreviation (S)
Temperature characteristic : Letter code
Nominal capacitance : 3 digit system

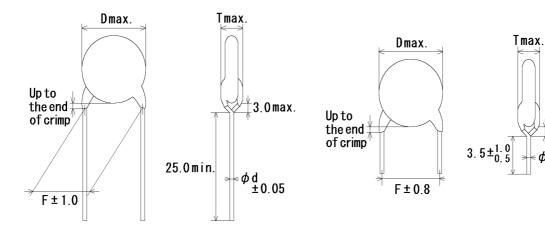
Capacitance tolerance : Code(Omitted for maximum body diameter φ 6mm and under.)

Rated voltage : Letter code(Omitted for the rated voltage DC500V.)

Company name code : Abbreviation 🚱

(Omitted for maximum body diameter ϕ 9mm and under)

Manufacturing year : Letter code(The last digit of A.D. year.)


Manufacturing month : Code

(Example)

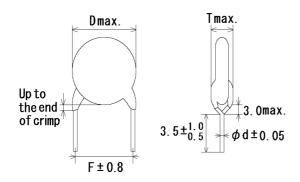
S D 332K 1KV (H 0D

4. Part number list

Vertical crimp long type (Lead code: A*) ·Vertical crimp short type
(Lead code:J*)

Note) The mark '*' of lead code differ from lead spacing(F) and lead diameter(d).

Please see the following list about details.


Unit · mm

3. Omax.

 ϕ d ± 0.05

										Unit :	mm
T.C. Cap.		Cap. tol.	Customer Part Number	Murata Part Number	DC Rated Volt.	Dir	nensi	on (m	m)	Lead	Pack qty.
1.0.	(pF)	Сар. Ю.	Customer Fait Number	iviulata Falt Nullibel	(V)	D	Т	F	d	(.()(1 ((pcs)
D	100	±10%		DESD32H101KA2B	500	6.0	4.0	5.0	0.6	A2	500
D	150	±10%		DESD32H151KA2B	500	6.0	4.0	5.0	0.6	A2	500
D	220	±10%		DESD32H221KA2B	500	6.0	4.0	5.0	0.6	A2	500
D	330	±10%		DESD32H331KA2B	500	6.0	4.0	5.0	0.6	A2	500
D	470	±10%		DESD32H471KA2B	500	6.0	4.0	5.0	0.6	A2	500
D	680	±10%		DESD32H681KA2B	500	6.0	4.0	5.0	0.6	A2	500
D	1000	±10%		DESD32H102KA2B	500	8.0	4.0	5.0	0.6	A2	250
D	1500	±10%		DESD32H152KA2B	500	9.0	4.0	5.0	0.6	A2	250
D	2200	±10%		DESD32H222KA2B	500	10.0	4.0	5.0	0.6	A2	250
D	3300	±10%		DESD32H332KA3B	500	12.0	4.0	7.5	0.6	А3	200
D	4700	±10%		DESD32H472KA3B	500	14.0	4.0	7.5	0.6	А3	200
D	100	±10%		DESD33A101KA2B	1000	6.0	4.5	5.0	0.6	A2	500
D	150	±10%		DESD33A151KA2B	1000	6.0	4.5	5.0	0.6	A2	500
D	220	±10%		DESD33A221KA2B	1000	6.0	4.5	5.0	0.6	A2	500
D	330	±10%		DESD33A331KA2B	1000	6.0	4.5	5.0	0.6	A2	500
D	470	±10%		DESD33A471KA2B	1000	7.0	4.5	5.0	0.6	A2	500
D	680	±10%		DESD33A681KA2B	1000	8.0	4.5	5.0	0.6	A2	250
D	1000	±10%		DESD33A102KA2B	1000	9.0	4.5	5.0	0.6	A2	250
D	1500	±10%		DESD33A152KA2B	1000	10.0	4.5	5.0	0.6	A2	250
D	2200	±10%		DESD33A222KA3B	1000	12.0	4.5	7.5	0.6	А3	200
D	3300	±10%		DESD33A332KA3B	1000	14.0	4.5	7.5	0.6	А3	200
D	4700	±10%		DESD33A472KA3B	1000	17.0	4.5	7.5	0.6	А3	100
D	100	±10%		DESD32H101KJ2B	500	6.0	4.0	5.0	0.6	J2	500
D	150	±10%		DESD32H151KJ2B	500	6.0	4.0	5.0	0.6	J2	500
D	220	±10%		DESD32H221KJ2B	500	6.0	4.0	5.0	0.6	J2	500
D	330	±10%		DESD32H331KJ2B	500	6.0	4.0	5.0	0.6	J2	500
D	470	±10%		DESD32H471KJ2B	500	6.0	4.0	5.0	0.6	J2	500

Vertical crimp short type (Lead code: J*)

Note) The mark '*' of lead code differ from lead spacing(F) and lead diameter(d).
Please see the following list about details.

										Office.	111111
T.C.	Сар.	Cap. tol.	Customer Part Number	Murata Part Number	DC Rated Volt.	Dir	mensi	on (m	m)	Lead	Pack qty.
1.0.	(pF)	<i>Б</i> ар. ю.	Customer Fait Number	Murata Fart Number	(V)	D	Т	F	d	Code	(pcs)
D	680	±10%		DESD32H681KJ2B	500	6.0	4.0	5.0	0.6	J2	500
D	1000	±10%		DESD32H102KJ2B	500	8.0	4.0	5.0	0.6	J2	500
D	1500	±10%		DESD32H152KJ2B	500	9.0	4.0	5.0	0.6	J2	500
D	2200	±10%		DESD32H222KJ2B	500	10.0	4.0	5.0	0.6	J2	500
D	3300	±10%		DESD32H332KJ3B	500	12.0	4.0	7.5	0.6	J3	250
D	4700	±10%		DESD32H472KJ3B	500	14.0	4.0	7.5	0.6	J3	250
D	100	±10%		DESD33A101KJ2B	1000	6.0	4.5	5.0	0.6	J2	500
D	150	±10%		DESD33A151KJ2B	1000	6.0	4.5	5.0	0.6	J2	500
D	220	±10%		DESD33A221KJ2B	1000	6.0	4.5	5.0	0.6	J2	500
D	330	±10%		DESD33A331KJ2B	1000	6.0	4.5	5.0	0.6	J2	500
D	470	±10%		DESD33A471KJ2B	1000	7.0	4.5	5.0	0.6	J2	500
D	680	±10%		DESD33A681KJ2B	1000	8.0	4.5	5.0	0.6	J2	500
D	1000	±10%		DESD33A102KJ2B	1000	9.0	4.5	5.0	0.6	J2	500
D	1500	±10%		DESD33A152KJ2B	1000	10.0	4.5	5.0	0.6	J2	500
D	2200	±10%		DESD33A222KJ3B	1000	12.0	4.5	7.5	0.6	J3	250
D	3300	3300 ±10% DESD33A332KJ3B 1000 14.0 4.5 7.5		0.6	J3	250					
D	4700	±10%		DESD33A472KJ3B	1000	17.0	4.5	7.5	0.6	J3	200

·Vartical crimp taping type (Lead code:N*)

Note) The mark '*' of lead code differ from lead spacing(F), lead diameter(d) and pitch of component(P). Please see the following list or taping specification about details.

-										ווונ . ו	11111	
T.C.	Cap.	Cap.	Customer Part Number	Murata Part Number	DC Rated volt.		Dime	nsion	(mm)		Lead	Pack
1.0.	(pF)	tol.	I. Customer i art number	Marata i art i vumber	(V)	D	Т	F	d	Р	code	qty. (pcs)
D	100	±10%		DESD32H101KN2A	500	6.0	4.0	5.0	0.6	12.7	N2	1500
D	150	±10%		DESD32H151KN2A	500	6.0	4.0	5.0	0.6	12.7	N2	1500
D	220	±10%		DESD32H221KN2A	500	6.0	4.0	5.0	0.6	12.7	N2	1500
D	330	±10%		DESD32H331KN2A	500	6.0	4.0	5.0	0.6	12.7	N2	1500
D	470	±10%		DESD32H471KN2A	500	6.0	4.0	5.0	0.6	12.7	N2	1500
D	680	±10%		DESD32H681KN2A	500	6.0	4.0	5.0	0.6	12.7	N2	1500
D	1000	±10%		DESD32H102KN2A	500	8.0	4.0	5.0	0.6	12.7	N2	1500
D	1500	±10%		DESD32H152KN2A	500	9.0	4.0	5.0	0.6	12.7	N2	1500
D	2200	±10%		DESD32H222KN2A	500	10.0	4.0	5.0	0.6	12.7	N2	1500
D	3300	±10%		DESD32H332KN3A	500	12.0	4.0	7.5	0.6	15.0	N3	1000
D	4700	±10%		DESD32H472KN7A	500	14.0	4.0	7.5	0.6	30.0	N7	500
D	100	±10%		DESD33A101KN2A	1000	6.0	4.5	5.0	0.6	12.7	N2	1500
D	150	±10%		DESD33A151KN2A	1000	6.0	4.5	5.0	0.6	12.7	N2	1500
D	220	±10%		DESD33A221KN2A	1000	6.0	4.5	5.0	0.6	12.7	N2	1500
D	330	±10%		DESD33A331KN2A	1000	6.0	4.5	5.0	0.6	12.7	N2	1500
D	470	±10%		DESD33A471KN2A	1000	7.0	4.5	5.0	0.6	12.7	N2	1500
D	680	±10%		DESD33A681KN2A	1000	8.0	4.5	5.0	0.6	12.7	N2	1500
D	1000	±10%		DESD33A102KN2A	1000	9.0	4.5	5.0	0.6	12.7	N2	1500
D	1500	±10%		DESD33A152KN2A	1000	10.0	4.5	5.0	0.6	12.7	N2	1500
D	2200	±10%		DESD33A222KN3A	1000	12.0	4.5	7.5	0.6	15.0	N3	1000
D	3300	±10%		DESD33A332KN7A	1000	14.0	4.5	7.5	0.6	30.0	N7	500
D	4700	±10%		DESD33A472KN7A	1000	17.0	4.5	7.5	0.6	30.0	N7	500

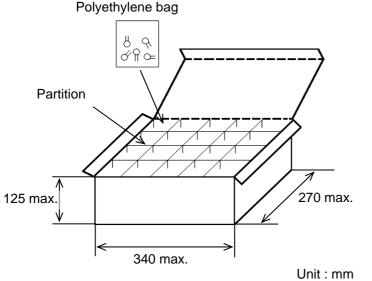
5. Sp	ecification and test	methods										
No.	Ite	m	Specific	ation		Test method						
1	Appearance and o	Popearance and dimensions No marked defect on appear form and dimensions. Please refer to [Part number to part number number to part number num		ns.	for visible evidence of defect.							
2	Marking		To be easily legible					y naked eyes.				
3	Dielectric strength Between lead wires No failure. Body insulation No failure.		Dielectric Between lead		Dielectric Between lead No failure.			The c DC vo rated rated applie	apacitor slottage of 2 voltage: Devotage: Devotage (Ired between	hould not I 00% of the C1kV) or a case of r a the lead	oe damage rated vol DC voltage ated voltag wires for 1	ed when tage (In case o e of 250% of th ge: DC500V) a
			(Charge/Discharge current≤50mA.) The capacitor is placed in the container with metal balls of diameter 1mm so that each lead wire, shortcircuited, is kept about 2mm off the balls as shown in the figure, and AC1250V (r.m.s.)<50/60Hz> is applied for 1 to 5 s between capacitor lead wires and small metals. (Charge/Discharge current≤50mA.)									
4	Insulation	Between lead	10 000M Ω min.						measured with			
	Resistance (I.R.)	wires			DC50	0±50V wit	hin 60±5 s	of chargin	ng.			
5	Capacitance		Within specified to	lerance.				The capacitance should be measured at 20°C v		ed at 20°C with		
6	Dissipation Factor	(D.F.)	0.3% max.		The d				The dissipation factor should be measured at 20°			
7	Temperature char	acteristic	Within +20/-30%		The capacitance measurement should be m							
	, , , , , , , , , , , , , , , , , , ,		(Temp. range:-25 t	o +125°C)	each	step speci	fied in Tab	le.				
				Step Temp.(°C)	1 20±2	2 -25±3	3 20±2	4 125±2	5 20±2			
8	Strength of lead	Pull	Lead wire should not cut off. Capacitor should not be broken.		of the gradu direct	capacitor	and apply th lead wir capacitor o	right, fix the a tensile verified in the railup to 10N	weight <i>//////</i>			
		Bending	nding		Each lead wire should be subjected to 5N of weight and bent 90° at the point of egress, in one direction, then returned to its original position and bent 90° in the opposite direction at the rate of one bend in 2 to 3 s.							
9	Vibration resistance	Appearance Capacitance D.F.	No marked defect. Within specified tolerance. 0.3% max.		suppor range about to 55H	The capacitor should be firmly soldered to the supporting lead wire and vibrated at a frequency range of 10 to 55Hz, 1.5mm in total amplitude, with about a 1min rate of vibration change from 10Hz to 55Hz and back to 10Hz. Apply for a total of 6 h;						
10 Solderability of leads * "room condition" Temperature: 15 to 35°C			Lead wire should be with uniformly coal direction over 3/4 circumferential directions.	ted on the axia of the	2 h each in 3 mutually perpendict dered The lead wire of a capacitor shou ethanol solution of 25wt% rosin a solder for 2±0.5 s. In both cases to		or should rosin and cases the	be dipped into a then into molte depth of dippir				

NI-	1,		Reference or	
No. 11	Ite Soldering effect	m Appearance	Specification No marked defect.	Test method The lead wire should be immersed into the melted
''	(Non-preheat)	Capacitance	Within ± 10%	The lead wire should be immersed into the melted solder of 350±10°C up to about 1.5 to 2.0mm from
	(change	VVIIIII ± 1070	the main body for 3.5±0.5 s.
		Dielectric	Per item 3.	Pre-treatment :
		strength		Capacitor should be stored at 125±3°C for 1 h,
		(Between lead		then placed at *room condition for 24±2 h
		wires)		before initial measurements.
				Post-treatment :
				Capacitor should be stored for 24±2 h at *room condition.
12	Soldering effect	Appearance	No marked defect.	First the capacitor should be stored at 120+0/-5°C
İ	(On-preheat)	Capacitance	Within ± 10%	for 60+0/-5 s.
		change		Then, as in figure, the lead wires should be
		Dielectric	Per item 3.	immersed solder of 260+0/-5°C up to 1.5 to 2.0mm from the root of terminal for 7.5+0/-1 s.
		strength (Between lead		noni the root of terminal for 7.3±0/-1 5.
		wires)		Thermal
		/		insulating
				1.5 1.5 to 2.0mm
				solder
				Pre-treatment:
				Capacitor should be stored at 125±3°C for 1 h,
				then placed at *room condition for 24±2 h
				before initial measurements. Post-treatment:
				Capacitor should be stored for 24±2 h at *room
				condition.
13	Temperature	Appearance	No marked defect.	The capacitor should be subjected to 5 temperature
	cycle	Capacitance	Within ±10%	cycles.
		change	0.4% max.	<temperature cycle=""></temperature>
		D.F.	0.4% max. 1 000MΩ min.	Step Temperature(°C) Time(min) 1 -25+3 30
		Dielectric	Per item 3.	1 -25±3 30 2 Room Temp. 3
		strength		3 125±3 30
		(Between lead		4 Room Temp. 3
		wires)		Cycle time : 5 cycle
				Pre-treatment :
				Capacitor should be stored at 125±3°C for 1 h,
				then placed at *room condition for 24±2 h
				before initial measurements. Post-treatment:
				Capacitor should be stored for 24±2 h at *room
L_				condition.
14	Humidity	Appearance	No marked defect.	Set the capacitor for 500 +24/-0 h at 40±2°C in 90
	(Under steady	Capacitance	Within ±10%	to 95% relative humidity.
	state)	change D.F.	0.4% max.	Pre-treatment:
		I.R.	0.4% max. 1000MΩ min.	Capacitor should be stored at 125±3°C for 1 h, then placed at *room condition for 24±2 h
		1.13.	1 GOOIVIS 2 ITIII I.	before initial measurements.
				Post-treatment :
				Capacitor should be stored for 1 to 2 h at *room
L	11	A	No seed of the se	condition.
15	Humidity loading	Appearance	No marked defect.	Apply the rated voltage for 500 +24/-0 h at 40±2°C
		Capacitance change	Within ±10%	in 90 to 95% relative humidity.
		D.F.	0.6% max.	(Charge/Discharge current≤50mA.) Pre-treatment:
		I.R.	1000MΩ min.	Capacitor should be stored at 125±3°C for 1 h,
				then placed at *room condition for 24±2 h
				before initial measurements.
				Post-treatment :
				Capacitor should be stored for 1 to 2 h at *room
* "	m condition" Tomas	 	Palativa humidity: 45 to 75%	condition. Atmospheric pressure: 86 to 106kPa
100	an condition tempe	อเลเนเซ. 10 เป 35°C	, itelative numiulty. 45 to 75%, <i>F</i>	ninospileno pressure. 00 to 100kFa

			Reference only	
No.	Ite	m	Specification	Test method
16	Life	Appearance	No marked defect.	Apply a DC voltage of 200% of the rated voltage
		Capacitance	Within ±10%	(In case of rated voltage:DC500V) or DC voltage of
		change	VVIGIIII ± 1070	150% of the rated voltage (In case of rated
			0.49/ may	voltage:DC1kV) for 1000 +48/-0 h at 125±2°C and
		D.F.	0.4% max.	relative humidity of 50% max
		I.R.	2000M $Ω$ min.	(Charge/Discharge current≤50mA.)
				Pre-treatment:
				Capacitor should be stored at 125±3°C for 1 h,
				then placed at *room condition for 24±2 h
				before initial measurements.
				Post-treatment:
				Capacitor should be stored at 125±3°C for 1 h, then
				placed at *room condition for 24±2 h.
^ "roc	om condition" Tempe	erature: 15 to 35°C	Relative humidity: 45 to 75%, Atmo	ospheric pressure: 86 to 106kPa
l				

ESDES01A

6.Packing specification

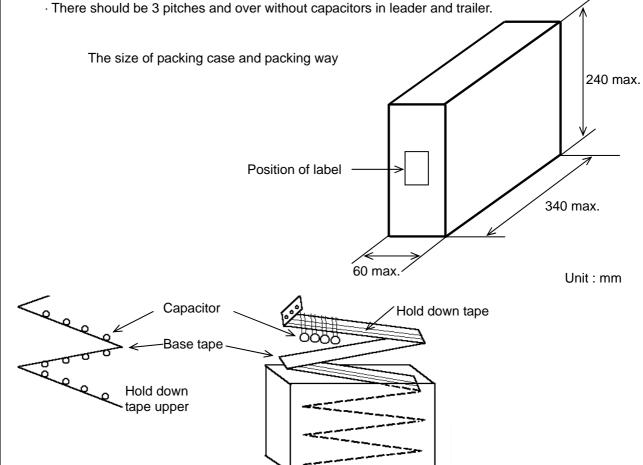

•Bulk type (Packing style code : B)

The number of packing = *1 Packing quantity *2 n

The size of packing case and packing way

*1 : Please refer to [Part number list].

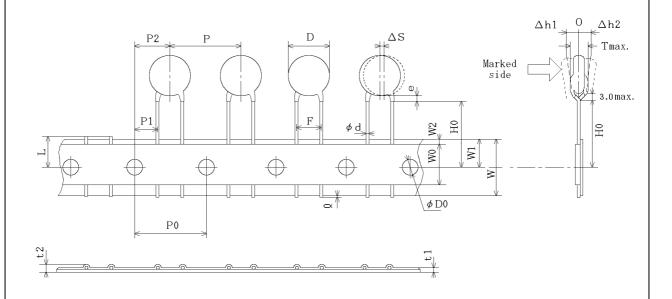
*2 : Standard n = 20 (bag)



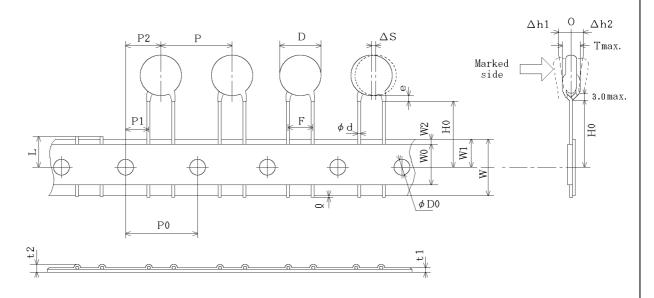
Note)

The outer package and the number of outer packing be changed by the order getting amount.

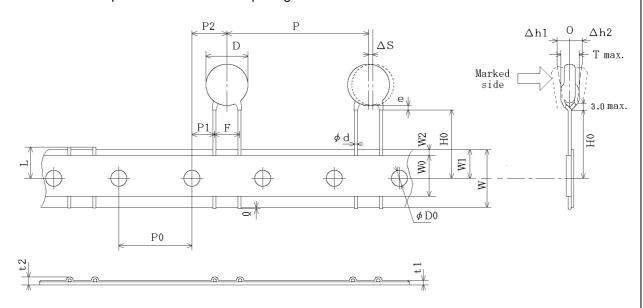
•Ammo pack taping type (Packing style code : A)


- · The tape with capacitors is packed zigzag into a case.
- · When body of the capacitor is piled on other body under it.

7. Taping specification

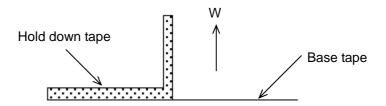

7-1. Dimension of capacitors on tape

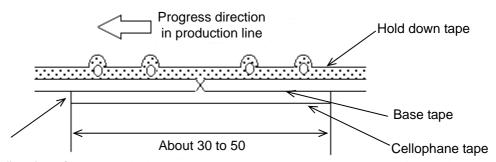
Vertical crimp taping type < Lead code : N2 > Pitch of component 12.7mm / Lead spacing 5.0mm


Item	Code	Dimensions	Remarks	
Pitch of component	Р	12.7±1.0		
Pitch of sprocket hole	P0	12.7±0.3		
Lead spacing	F	5.0±0.2		
Length from hole center to component center	P2	6.35±1.3	Deviation of progress direction	
Length from hole center to lead	P1	3.85±0.7		
Body diameter	D	Please refer to [Part number list].		
Deviation along tape, left or right	ΔS	0±1.0	They include deviation by lead bend.	
Carrier tape width	W	18.0±0.5		
Position of sprocket hole	W1	9.0±0.5	Deviation of tape width direction	
Lead distance between reference and bottom planes	Н0	18.0± ^{2.0}		
Protrusion length	Q	+0.5~-1.0		
Diameter of sprocket hole	φ D 0	4.0±0.1		
Lead diameter	φd	0.60±0.05		
Total tape thickness	t1	0.6±0.3		
Total thickness, tape and lead wire	t2	1.5 max.	They include hold down tape thickness.	
Deviation across tape, front	∆h1	1.0 may		
Deviation across tape, rear	∆h2	1.0 max.		
Portion to cut in case of defect	L	11.0± ⁰ _{1.0}		
Hold down tape width	W0	11.5 min.		
Hold down tape position	W2	1.5±1.5		
Coating extension on lead	е	Up to the end of crimp		
Body thickness	Т	Please refer to [Part number list].		

Vertical crimp taping type < Lead code : N3 > Pitch of component 15.0mm / Lead spacing 7.5mm

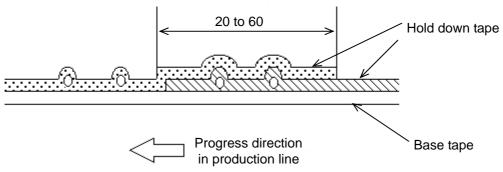
Item	Code	Dimensions	Remarks	
Pitch of component	Р	15.0±2.0		
Pitch of sprocket hole	P0	15.0±0.3		
Lead spacing	F	7.5±1.0		
Length from hole center to component center	P2	7.5±1.5		
Length from hole center to lead	P1	3.75±1.0	Deviation of progress direction	
Body diameter	D	Please refer to [Part number list].		
Deviation along tape, left or right	ΔS	0±2.0	They include deviation by lead bend .	
Carrier tape width	W	18.0±0.5		
Position of sprocket hole	W1	9.0±0.5	Deviation of tape width direction	
Lead distance between reference and bottom planes	НО	18.0±2.0		
Protrusion length	Q	+0.5~-1.0		
Diameter of sprocket hole	φ D 0	4.0±0.1		
Lead diameter	φd	0.60±0.05		
Total tape thickness	t1	0.6±0.3		
Total thickness, tape and lead wire	t2	1.5 max.	They include hold down tape thickness.	
Deviation across tape, front	∆h1	2.0		
Deviation across tape, rear	∆h2	2.0 max.		
Portion to cut in case of defect	L	11.0± ⁰ _{1.0}		
Hold down tape width	W0	11.5 min.		
Hold down tape position	W2	1.5±1.5		
Coating extension on lead	е	Up to the end of crimp		
Body thickness	Т	Please refer to [Part number list].		


Vertical crimp taping type < Lead code : N7 > Pitch of component 30.0mm /Lead spacing 7.5mm


Item	Code	Dimensions	Remarks		
Pitch of component	Р	30.0±2.0			
Pitch of sprocket hole	P0	15.0±0.3			
Lead spacing	F	7.5±1.0			
Length from hole center to component center	P2	7.5±1.5	Deviation of progress direction		
Length from hole center to lead	P1	3.75±1.0			
Body diameter	D	Please refer to [to [Part number list].		
Deviation along tape, left or right	ΔS	0±2.0	They include deviation by lead bend.		
Carrier tape width	W	18.0±0.5			
Position of sprocket hole	W1	9.0±0.5	Deviation of tape width direction		
Lead distance between reference and bottom planes	НО	18.0± ^{2.0}			
Protrusion length	Q	+0.5~-1.0			
Diameter of sprocket hole	φ D 0	4.0±0.1			
Lead diameter	φd	0.60±0.05			
Total tape thickness	t1	0.6±0.3			
Total thickness, tape and lead wire	t2	1.5 max.	They include hold down tape thickness.		
Deviation across tape, front	∆h1	2.0			
Deviation across tape, rear	∆h2	2.0 max.			
Portion to cut in case of defect	L	11.0±00			
Hold down tape width	W0	11.5 min.			
Hold down tape position	W2	1.5±1.5			
Coating extension on lead	е	Up to the end of crimp			
Body thickness	Т	Please refer to [Part number list].			

7-2. Splicing way of tape

1) Adhesive force of tape is over 3N at test condition as below.


- 2) Splicing of tape
 - a) When base tape is spliced
 - •Base tape should be spliced by cellophane tape. (Total tape thickness should be less than 1.05mm.)

No lifting for the direction of progressing

Unit: mm

- b) When hold down tape is spliced
 - •Hold down tape should be spliced with overlapping. (Total tape thickness should be less than 1.05mm.)

- c) When both tape are spliced
 - •Base tape and hold down tape should be spliced with splicing tape.
- 3) Missing components
 - •There should be no consecutive missing of more than three components.
 - •The number of missing components should be not more than 0.5% of total components that should be present in a Ammo pack.

EU RoHS RoHS指令への対応

This products of the following crresponds to EU RoHS 当製品は以下の欧州RoHSに対応しています。

(1) RoHS

EU RoHs 2011/65/EC compliance 2011/65/EC(改正RoHS指令)に対応

maximum concentration values tolerated by weight in homogeneous materials

- •1000 ppm maximum Lead
- •1000 ppm maximum Mercury
- •100 ppm maximum Cadmium
- •1000 ppm maximum Hexavalent chromium
- •1000 ppm maximum Polybrominated biphenyls (PBB)
- •1000 ppm maximum Polybrominated diphenyl ethers (PBDE)

鉛:1000ppm以下 水銀:1000ppm以下 カドミウム:100ppm以下 六価クロム:1000ppm以下

ポリ臭化ビフェニル(PBB): 1000ppm以下

ポリ臭化ジフェニルエーテル(PBDE): 1000ppm以下

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Murata:

DESD33A222KN3A	DESD33A101KA2E	DESD32H681KN2A	DESD32H101KN2	A DESD32H151KN2A
DESD32H331KN2A	DESD32H221KN2A	DESD32H101KA2B	DESD32H101KJ2B	DESD32H102KA2B
DESD32H102KJ2B	DESD32H102KN2A	DESD32H151KA2B	DESD32H151KJ2B	DESD32H152KA2B
DESD32H152KJ2B	DESD32H152KN2A	DESD32H221KA2B	DESD32H221KJ2B	DESD32H222KA2B
DESD32H222KJ2B	DESD32H222KN2A	DESD32H331KA2B	DESD32H331KJ2B	DESD32H332KA3B
DESD32H332KJ3B	DESD32H332KN3A	DESD32H471KA2B	DESD32H471KJ2B	DESD32H471KN2A
DESD32H472KA3B	DESD32H472KJ3B	DESD32H472KN7A	DESD32H681KA2B	DESD32H681KJ2B
DESD33A101KJ2B	DESD33A101KN2A	DESD33A102KA2B	DESD33A102KJ2B	DESD33A102KN2A
DESD33A151KA2B	DESD33A151KJ2B	DESD33A151KN2A	DESD33A152KA2B	DESD33A152KJ2B
DESD33A152KN2A	DESD33A221KA2B	DESD33A221KJ2B	DESD33A221KN2A	DESD33A222KA3B
DESD33A222KJ3B	DESD33A331KA2B	DESD33A331KJ2B	DESD33A331KN2A	DESD33A332KA3B
DESD33A332KJ3B	DESD33A332KN7A	DESD33A471KA2B	DESD33A471KJ2B	DESD33A471KN2A
DESD33A472KA3B	DESD33A472KJ3B	DESD33A472KN7A	DESD33A681KA2B	DESD33A681KJ2B
DESD33A681KN2A				