

DC MOTOR PULSE WIDTH MODULATOR

Description

The SG1731 is a pulse width modulator circuit designed specifically for DC motor control. It provides a bi-directional pulse train output in response to the magnitude and polarity of an analog error signal input. The device is useful as the control element in motor-driven servo systems for precision positioning and speed control, as well as in audio modulators and amplifiers using carrier frequencies to 350 kHz.

The circuit contains a triangle waveform oscillator, a wideband operational amplifier for error voltage—generation, a summing/ scaling network for level-shifting the triangle waveform, externally programmable PWM comparators and dual ±100 mA, ±22 V totem pole drivers with commutation diodes for full bridge output. A SHUTDOWN terminal forces the drivers into a floating high-impedance state when driven LOW. Supply voltage to the control circuitry and to the output drivers may be from either dual positive and negative supplies, or single-ended.

Features

- ±3.5 V to ±15 V Control Supply
- ±2.5 V to ±22 V Driver Supply
- Dual 100 mA Source/Sink Output Drivers
- 5 kHz to 350 kHz Oscillator Range
- High Slew Rate Error Amplifier
- Adjustable Deadband Operation
- Digital SHUTDOWN Input

High Reliability Features

- Available to MIL-STD-883
- Available to DSCC
 - Standard Microcircuit Drawing (SMD)
- MSC-AMS level "S" Processing Available

Block Diagram

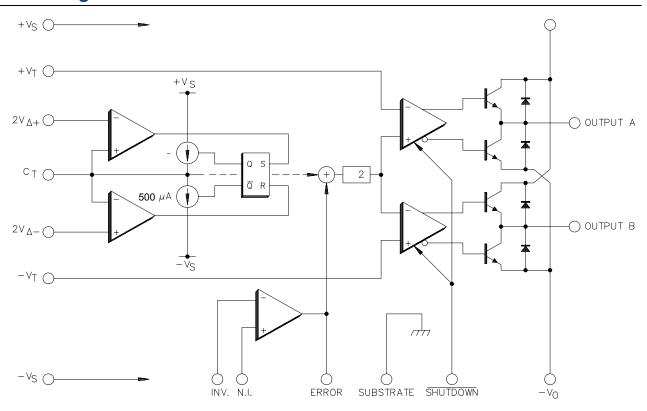


Figure 1 · Block Diagram

Absolute Maximum Ratings (Note 1)

Supply Voltage (±V _s)	±18 V
Analog Inputs	±V _s
Digital Inputs (SHUTDOWN)	
Output Driver Supply Voltage (±V _o)	±25 V
Source/Sink Output Current (continuous)	200 mA
Source/Sink Output Current (peak, 500 ns)	400 mA

Note 1. Values beyond which damage may occur. Extended operation at the maximum levels may degrade performance and affect reliability.

Output Driver Diode Current (continuous)
Operating Junction Temperature
Hermetic (J - Package) 150°C
Plastic (N - Package) 150°C
Storage Temperature Range65°C to 150°C
Lead Temperature (Soldering, 10 Seconds) 300°C
RoHS Peak Package Solder Reflow Temp.(40 sec. max. exp.) 260°C (+0, -5)

Thermal Data

J Package:

N Package

L Package

Note A. Junction Temperature Calculation: $T_J = T_A + (P_D \times \theta_{JA})$. Note B. The above numbers for θ_{JC} are maximums for the limiting thermal resistance of the package in a standard mounting configuration. The θ_{JA} numbers are meant to be guidelines for the thermal performance of the device/pc-board system. All of the above assume no ambient airflow.

Recommended Operating Conditions (Note 2)

Supply Voltage Range (±V _s)	±3.5 V to ±15 \
Error Amp Common-Mode Range	$-V_{s} + 3 V \text{ to } V_{s} - 3 V$
Output Driver Supply Voltage Range	±2.5 V to ±22 V
Source/Sink Output Current (continuous)	100 m/
Source/Sink Output Current (peak, 500 ns).	200 m/
Output Driver Diode Current (continuous)	100 m/
Output Driver Diode Current (peak, 500 ns).	200 mA

Electrical Characteristics

(Unless otherwise specified, these specifications apply over the operating ambient temperatures for SG1731 with -55°C \leq T_A \leq 125°C, SG2731 with -25°C \leq T_A \leq 85°C, SG3731 with 0°C \leq T_A \leq 70°C, V_S = \pm 15 V, and V_O = \pm 22 V. Low duty cycle pulse testing techniques are used which maintains junction and case temperatures equal to the ambient temperature.)

Parameter	Test Conditions		SG1731/2731/3731		
		Min.	Тур.	Max.	Units
Oscillator Section					
C _⊤ Charging Current	$T_A = 25^{\circ}C$	450	500	550	μΑ
	$T_A = T_{MIN}$ to T_{MAX}	400		600	μΑ
2V∆± Input Bias Current	$V_{CM} = \pm 5 V$			-20	μΑ
Initial Oscillator Frequency	$C_{T} = 1000 \text{ pF}, 2V\Delta \pm = \pm 5 \text{ V}, T_{A} = 25^{\circ}\text{C}$	22.5	25.0	27.5	kHz
Temperature Stability (Note 3)	$C_{T} = 1000 \text{ pF}, 2V\Delta \pm = \pm 5 \text{ V}$			10	%
Error Amplifier Section (Note 5)					
Input Offset Voltage				10	mV
Input Bias Current				3	μΑ
Input Offset Current				600	nA
Open Loop Voltage Gain	$R_{i} = 2 k\Omega$	70			dB
Output Voltage Swing	$R_{i}^{\perp} = 2 k\Omega$	±10			V
Common-Mode Rejection Ratio		70			dB
Slew Rate (Notes 3 and 4)	$T_A = 25^{\circ}C$	5	10		V/μs
Unity Gain Bandwidth (Notes 3 and 4)	$T_A = 25^{\circ}C$	0.7	1		MHz
PWM Comparators					
Input Bias Current	$\pm V_T = \pm 3 \text{ V}$			6	μΑ

Electrical Characteristics (Continued)

Parameter	Took Conditions	SG173	SG1731/2731/3731		
Parameter	Test Conditions		Typ. Max.	Units	
SHUTDOWN Section					
Logic Threshold	-V _s = -3.5 V to -15 V	V _s +0.8	V _s +2.0	V	
SHUTDOWN HIGH Current	$V_{\overline{SHUTDOWN}} = -V_S + 2.4 V$		400	μΑ	
SHUTDOWN LOW Current	$V_{\text{SHUTDOWN}}^{\text{SHUTDOWN}} = -V_{\text{S}}^{\text{SHUTDOWN}}$		-1.0	mA	
Output Drivers (Each Output)					
HIGH Output Voltage	I _{SOURCE} = 20 mA	19.2		V	
	I _{SOURCE} = 100 mA	19.0		V	
LOW Output Voltage	$I_{SINK} = 20 \text{ mA}$		-19.2	V	
	I _{SINK} = 100 mA		-19.0	V	
Driver Risetime	C = 1000 pF		300	ns	
Driver Falltime	C = 1000 pF		300	ns	
Total Supply Current	•	1			
V _s Supply Current	$V_{\overline{SHUTDOWN}} = -V_S + 0.8 V$		14	mA	
V _o Supply Current	$V_{\frac{\text{SHUTDOWN}}{\text{SHUTDOWN}}} = -V_{\text{S}} + 0.8 \text{ V}$ $V_{\frac{\text{SHUTDOWN}}{\text{SHUTDOWN}}} = -V_{\text{S}} + 0.8 \text{ V}$		6	mA	

Note 3. These parameters, although guaranteed, are not tested in production.

Note 5. $V_{CM} = \pm 12 \text{ V}.$

Note 4. Unity Gain Inverting 10 k Ω Feedback Resistance.

Application Information

SUPPLY VOLTAGE

The SG1731 requires a supply voltage for the control circuitry (V_s) and for the power output drivers (V_o). Each supply may be either balanced positive and negative with respect to ground, or single-ended. The only restrictions are:

- 1. The voltage between +V $_{\rm S}$ and -V $_{\rm S}$ must be at least 7.0 V; but no more than 44 V.
- 2. The voltage between +V $_{\rm o}$ and -V $_{\rm o}$ must be at least 5.0 V; but no more than 44 V.
- 3. +V_o must be at least 5 V more positive than -V_s. This eliminates the combination of a single-ended positive control supply with a single-ended negative driver supply.

SUBSTRATE CONNECTION

The substrate connection (Pin 10) must always be connected to either $-V_s$ or $-V_o$, whichever is more negative. The substrate must also be well bypassed to ground with a high quality capacitor.

OSCILLATOR

The triangle oscillator consists of two voltage comparators, a set/reset flip-flop, a bi-directional 500 μA current source, and an external timing capacitor $C_{_T}$. A positive reference voltage $(2V\Delta+)$ applied to Pin 2 determines the positive peak value of the triangle, and a negative reference voltage $(2V\Delta-)$ at Pin 7 sets the negative peak value of the triangle waveform. Since the value of the internal current source is fixed at a nominal $\pm 500~\mu A$, the oscillator period is a function of the selected peak-to-peak voltage excursion and the value of $C_{_T}$. The theoretical expression for the oscillator period is:

$$T_{OSC} = \frac{2C_T dV}{5 \times 10^{-4}}$$
 (Eq.1)

where \mathbf{C}_{T} is the timing capacitor in Farads and dV is $\mathbf{V}_{\mathsf{OSC}}$ in Volts peak-to-peak.

As a design aid, the solutions to Equation 1 over the recommended range of T_{OSC} and V_{OSC} are given in graphic form in Figure 1. The lower limit on T_{OSC} is 1.85 μs , corresponding to a maximum frequency of 350 kHz. The maximum value of $V_{\text{OSC}},~(2V\Delta +)$ - $(2V\Delta -),~is~10~V$ peak-to-peak for linear waveforms.

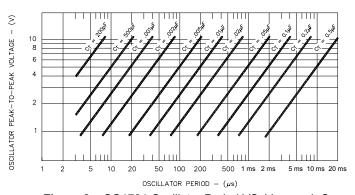


Figure 2 · SG1731 Oscillator Period VS. V_{OSC} and C_T

ERROR AMPLIFIER

The error amplifier of the SG1731 is a conventional internally-compensated operational amplifier with low output impedance. All of the usual feedback and frequency compensation techniques may be use to control the closed-loop gain characteristics. The control supply voltage $\pm V_{\rm S}$ will determine the input common mode range and output voltage swing; both will extend to within 3 V of the $V_{\rm S}$ supply.

PULSE WIDTH MODULATION

Pulse width modulation occurs by comparing the triangle waveform to a fixed upper (+V $_{\rm T}$) and lower (-V $_{\rm T}$) threshold voltage. A crossing above the upper threshold causes Output A to switch to the HIGH state, and a crossing below

Application Information (Continued)

the lower threshold causes Output B to switch to the HIGH state. If $\pm V_s$ is less than ± 8 V then $\pm V_{\tau}$ can be obtained with resistors from $\pm V_s$. If $\pm V_s$ is greater than ± 8 V use zeners.

Threshold crossings are generated by shifting the triangle waveform up and down with the error voltage (Pin 5). A positive error voltage will result in a pulse width modulated output at Driver A (Pin 13). Similarly, a negative error voltage produces a pulse train at Driver B (Pin 12). Figure 2 illustrates this process for the case where $V_{\Delta}+$ is greater than $V_{\tau}.$

It is important to note that the triangle shifting circuit also attenuates the waveform seen at $C_{\scriptscriptstyle T}$ by a factor of 2. This results in a waveform at the PWM comparators with a positive peak of V $\!\Delta +$ and a negative peak of V $\!\Delta -$, and must be taken into account when selecting the values for +V $_{\scriptscriptstyle T}$ and -V $_{\scriptscriptstyle T}$.

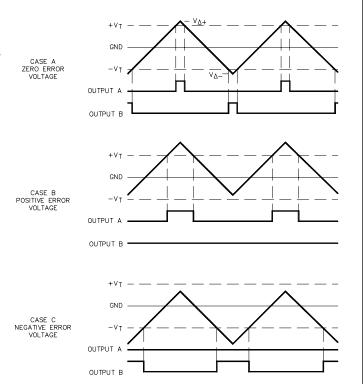


Figure 3 - Pulse Width Modulation with No Deadband

Application Circuits

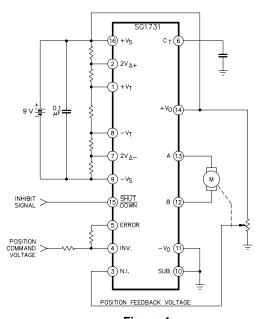
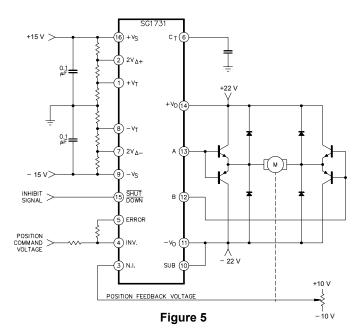
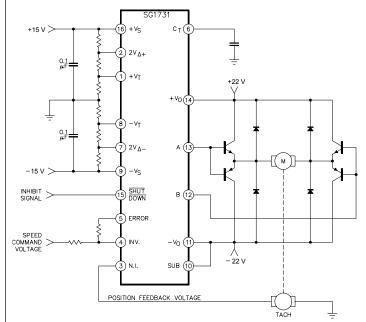



Figure 4


In this simple battery-powered position servo, the control supply and driver supply are both single-ended positive with respect to ground.

A high torque position servo is obtained by buffering the output drivers to obtain higher output current.

Application Circuits (Continued)

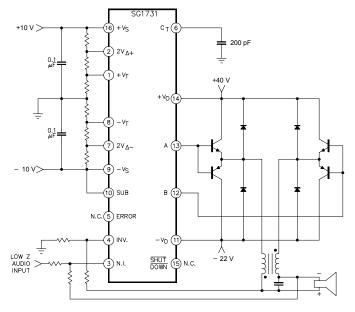


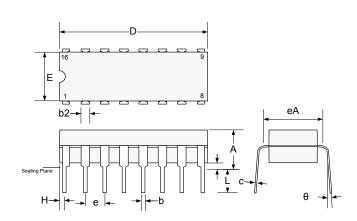
Figure 6

Bi-directional speed control results when the feedback voltage transducer is a tachometer.

Figure 7

The two-quadrant transfer function of the SG1731 is ideal for pulse width modulated audio power amplifiers.

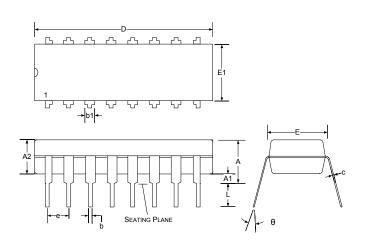
Connection Diagrams & Ordering Information (See Notes Below)


Package	Part No.	Ambient Temperature Range	Connection Diagram		
16-PIN CERAMIC DIP J - PACKAGE	SG1731J- 883B SG1731J-DESC SG1731J	-55°C to 125°C -55°C to 125°C -55°C to 125°C	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		
16-PIN PLASTIC DIP N - PACKAGE	SG2731N SG3731N	-25°C to 85°C 0°C to 70°C	N Package: RoHS / Pb-free 100% Matte Tin Lead Finish		
20-PIN CERAMIC LEADLESS CHIP CARRIER L- PACKAGE	SG1731L SG1731L- 883B	-55°C to 125°C -55°C to 125°C	1 NC 2 +VT 3 2VΔ+ 4 N.I.INPUT 5 5 INV.INPUT 6 6 NC 7 ERROR 8 CT 9 2VΔ- 10 -VT 1 NC 12 -VS 13 SUBSTRATE 14 -VO 15 15 OUTPUT B 16 NC 17 15 OUTPUT A 18 +VO 19 SHUTDOWN 20 +VS		

- Note 1. All packages are viewed from the top.
- Note 2. Contact factory for leadless chip carrier availability.
- Note 3. Hermetic Packages J, L use Sn63/Pb37 hot solder lead finish, Contact factory for availability of RoHS versions.

Package Outline Dimensions

Controlling dimensions are in inches, metric equivalents are shown for general information.



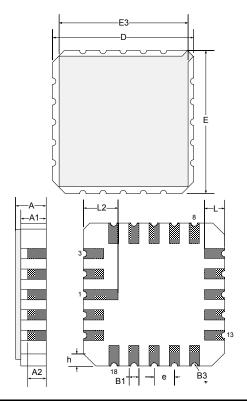
DIM	MILLIMETERS		INCHES	
DIN	MIN	MAX	MIN	MAX
Α	-	5.08	1	0.200
b	0.38	0.51	0.015	0.020
b2	1.04	1.65	0.045	0.065
С	0.20	0.38	0.008	0.015
D	19.30	19.94	0.760	0.785
Е	5.59	7.11	0.220	0.280
е	2.54 BSC		0.100 BSC	
eA	7.37	7.87	0.290	0.310
Н	0.63	1.78	0.025	0.070
L	3.18	5.08	0.125	0.200
α	-	15°	-	15°
Q	0.51	1.02	0.020	0.040

Note:

Dimensions do not include protrusions; these shall not exceed 0.155mm (.006") on any side. Lead dimension shall not include solder coverage.

Figure 8 · J 16-Pin Ceramic Dual Inline Package Dimensions

DIM	MILLIMETERS INC		HES	
DIN	MIN	MAX	MIN	MAX
Α	-	5.33	-	0.210
A1	0.38	-	0.015	1
A2	3.30	Тур.	0.13	0 Тур.
b	0.36	0.56	0.014	0.022
b1	1.14	1.78	0.045	0.070
С	0.20	0.36	0.008	0.014
D	18.67	19.69	0.735	0.775
е	2.54 BSC		0.100 BSC	
E	7.62	8.26	0.300	0.325
E1	6.10	7.11	0.240	0.280
L	2.92	0.381	0.115	0.150
θ	-	15°	-	15°


Note:

Dimensions do not include protrusions; these shall not exceed 0.155mm (.006") on any side. Lead dimension shall not include solder coverage.

Figure 9 · N 16-Pin Plastic Dual Inline Package Dimensions

Package Outline Dimensions (Continued)

DIM	MILLIMETERS		INCHES	
DIN	MIN	MAX	MIN	MAX
D/E	8.64	9.14	0.340	0.360
E3	-	8.128	1	0.320
е	1.270	BSC	0.050	BSC
B1	0.635 TYP		0.025 TYP	
L	1.02	1.52	0.040	0.060
Α	1.626	2.286	0.064	0.090
h	1.016 TYP		0.040 TYP	
A1	1.372	1.68	0.054	0.066
A2	-	1.168	ī	0.046
L2	1.91	2.41	0.075	0.95
В3	0.20	3R	0.008R	

Note:

All exposed metalized area shall be gold plated 60 micro-inch minimum thickness over nickel plated unless otherwise specified in purchase order.

Figure 10 · L 20-Pin Ceramic LCC Package Outline Dimensions

Microsemi Corporate Headquarters One Enterprise, Aliso Viejo, CA 92656 USA

Within the USA: +1 (800) 713-4113 Outside the USA: +1 (949) 380-6100 Sales: +1 (949) 380-6136

Fax: +1 (949) 215-4996

E-mail: sales.support@microsemi.com

© 2015 Microsemi Corporation. All rights reserved. Microsemi and the Microsemi logo are trademarks of Microsemi Corporation. All other trademarks and service marks are the property of their respective owners.

Microsemi Corporation (Nasdag: MSCC) offers a comprehensive portfolio of semiconductor and system solutions for communications, defense & security, aerospace and industrial markets. Products include high-performance and radiation-hardened analog mixed-signal integrated circuits, FPGAs, SoCs and ASICs; power management products; timing and synchronization devices and precise time solutions, setting the world's standard for time; voice processing devices; RF solutions; discrete components; security technologies and scalable anti-tamper products; Power-over-Ethernet ICs and midspans; as well as custom design capabilities and services. Microsemi is headquartered in Aliso Viejo, Calif., and has approximately 3,400 employees globally. Learn more at www.microsemi.com.

Microsemi makes no warranty, representation, or guarantee regarding the information contained herein or the suitability of its products and services for any particular purpose, nor does Microsemi assume any liability whatsoever arising out of the application or use of any product or circuit. The products sold hereunder and any other products sold by Microsemi have been subject to limited testing and should not be used in conjunction with mission-critical equipment or applications. Any performance specifications are believed to be reliable but are not verified, and Buyer must conduct and complete all performance and other testing of the products, alone and together with, or installed in, any end-products. Buyer shall not rely on any data and performance specifications or parameters provided by Microsemi. It is the Buyer's responsibility to independently determine suitability of any products and to test and verify the same. The information provided by Microsemi hereunder is provided "as is, where is" and with all faults, and the entire risk associated with such information is entirely with the Buyer. Microsemi does not grant, explicitly or implicitly, to any party any patent rights, licenses, or any other IP rights, whether with regard to such information itself or anything described by such information. Information provided in this document is proprietary to Microsemi, and Microsemi reserves the right to make any changes to the information in this document or to any products and services at any time without notice.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Microchip:

SG117T-DESC SG1731L SG1731J SG1731J-883B SG1731J-DESC SG1731L-883B SG1731L-883B-TR