

# **CEC1712**

## **Cryptographic Embedded Controller**

## **Operating Conditions**

- Operating Voltages: 3.3 V and 1.8 V
- Operating Temperature Range: -40 °C to 85 °C

#### **Low Power Modes**

- Chip is designed to always operate in Lowest Power state during Normal Operation
- Supports all 5 ACPI Power States for PC platforms
- Supports 2 Chip-level Sleep Modes: Light Sleep and Heavy Sleep
  - Low Standby Current in Sleep Modes

## ARM® Cortex-M4 Embedded Processor

- · Programmable clock frequency up to 48 MHz
- · Fixed point processor
- · Single 4GByte Addressing Space
- Nested Vectored Interrupt Controller (NVIC)
  - Maskable Interrupt Controller
  - Maskable hardware wake up events
  - 8 Levels of priority, individually assignable by vector
- EC Interrupt Aggregator expands number of Interrupt sources supported or reduces number of vectors needed
- Complete ARM<sup>®</sup> Standard debug support
  - JTAG-Based DAP port, comprised of SWJ-DP and AHB-AP debugger access functions

## **Memory Components**

- 256 KB Code/Data SRAM
  - 224 KB optimized for code performance
  - 32 KB optimized for data performance
- 64 Bytes Battery Powered Storage SRAM
- 288 Bytes OTP
  - In circuit programmable
- ROM
  - Contains Boot ROM
  - Contains Runtime APIs for built-in functions

#### Clocks

- 48 MHz Internal PLL
- · 32 kHz Clock Sources
  - Internal 32 kHz silicon oscillator

- External 32 kHz crystal (XTAL) source
- External single-ended 32 kHz clock source

#### **Package Options**

- 84 pin WFBGA

## **Security Features**

- · Boot ROM Secure Boot Loader
  - Hardware Root of trust using Secure Boot and Immutable code using ECDSA P-384 and SHA-384
  - Supports 2 Code Images in external SPI Flash (Primary and Fall back image)
  - Authenticates SPI Flash image before loading
  - Support AES-256 Encrypted SPI Flash images
  - Key Revocation
  - Roll back protection
  - DICE support
- · Hardware Accelerators:
  - Multi purpose AES Crypto Engine:
    - Support for 128-bit 256-bit key length
    - Supports Battery Authentication applications
  - Digital Signature Algorithm Support
    - Support for ECDSA and EC\_KCDSA
  - Cryptographic Hash Engine
    - Support for SHA-1, SHA-256 to SHA-512
  - Public Key Crypto Engine
    - Hardware support for RSA and Elliptic Curve asymmetric public key algorithms
    - RSA keys length of 1024 to 4096 bits
    - ECC Prime Field keys up to 571 bits
    - ECC Binary Field keys up to 571 bits
    - Microcoded support for standard public key algorithms
  - OTP for storing Keys and IDs
    - Lockable on 32 B boundaries to prevent read access or write access
  - True Random Number Generator
  - 1 kbit FIFO
  - JTAG Disabled by default

#### **Peripheral Features**

- One Serial Peripheral Interface (SPI) Master Controller
  - Dual and Quad I/O Support
  - Flexible Clock Rates
  - Support for 1.8V and 3.3V slave devices
  - SPI Burst Capable
  - SPI Controller Operates with Internal DMA Controller with CRC Generation
  - Mappable to 2 ports (only 1 port active at a time)
  - SPI interface can be disabled after loading code
- Internal DMA Controller
  - Hardware or Firmware Flow Control
  - Firmware Initiated Memory-to-Memory transfers
  - Hardware CRC-32 Generator on Channel 0
  - 12-Hardware DMA Channels support five SMBus Master/Slave Controllers and One SPI Controller
- I2C/SMBus Controllers
  - 5 I2C/SMBus controllers
  - 3 I2C only controllers without the Network layer
  - 10 Configurable I2C ports
    - Full Crossbar switch allows any port to be connected to any controller
  - Supports Promiscuous mode of operation
  - Fully Operational on Standby Power
  - Multi-Master Capable
  - Supports Clock Stretching
  - Programmable Bus Speeds
  - 1 MHz Capable
  - Supports DMA Network Layer
- · General Purpose I/O Pins
  - Inputs
    - Asynchronous rising and falling edge wakeup detection Interrupt High or Low Level
  - Outputs:
    - Push Pull or Open Drain output
    - Programmable power well emulation
  - Pull up or pull down resistor control
    - Automatically disabling pull-up resistors when output driven low
    - Automatically disabling pull-down resistors when output driven high
  - Programmable drive strength
  - Two separate1.8V/3.3V configurable IO regions
  - Group or individual control of GPIO data

- 8 Over voltage tolerant GPIO pins
- Glitch protection and Under-Voltage Protection on all GPIO pins
- Input Capture and Compare timer
  - Six 32-bit Capture Registers
  - 11 Input Pins (ICTx)
    - Full Crossbar switch allows any port to be connected to any capture register
  - 32-bit Free-running timer
  - One 32-bit Compare Register output
  - Capture, Compare and Overflow Interrupts
- Universal Asynchronous Receiver Transmitter (UART)
  - Three High Speed NS16C550A Compatible UARTs with Send/Receive 16-Byte FIFOs
    - UART1 Configurable 2-pin/4-pin
    - UART2 2-pin
    - UART3 2-pin
  - Programmable Main Power or Standby Power Functionality
  - Standard Baud Rates to 115.2 Kbps, Custom Baud Rates to 1.5 Mbps
- · Programmable Timer Interface
  - Two16-bit Auto-reloading Timer Instances
    - 16 bit Pre-Scale divider
    - Halt and Reload control
    - Auto Reload
  - Two 32-bit Auto-reloading Timer Instances
    - 16 bit Pre-Scale divider
    - Halt and Reload control
    - Auto Reload
  - Three Operating Modes per Instance: Timer (Reload or Free-Running) or One-shot.
    - Event Mode is not supported
- · 32-bit RTOS Timer
  - Runs Off 32kHz Clock Source
  - Continues Counting in all the Chip Sleep States regardless of Processor Sleep State
  - Counter is Halted when Embedded Controller is Halted (e.g., JTAG debugger active, break points)
  - Generates wake-capable interrupt event
- Watch Dog Timer (WDT)
  - Generates an interrupt prior to resetting
- 6 Programmable Pulse Width Modulator (PWM) outputs
  - Multiple Clock Rates
  - 16-Bit ON & 16-Bit OFF Counters
- · 2 Fan Tachometer Inputs
  - 16 Bit Resolution
- · Breathing LED Interface
  - Two Blinking/Breathing LEDs

- Programmable Blink Rates
- Piecewise Linear Breathing LED Output Controller
  - Provides for programmable rise and fall waveforms
- Operational in EC Sleep States
- Both 5V tolerant LED pins

## **Analog Features**

- · ADC Interface
  - 10-bit or 12-bit readings supported
  - ADC Conversion time 500nS/channel
  - 5 Channels
  - External voltage reference
  - Supports thermistor temperature readings

## **Battery Powered Peripherals**

- · Real Time Clock (RTC)
  - VBAT Powered
  - 32KHz Crystal Oscillator or External singleended 32 kHz clock source
  - Time-of-Day and Calendar Registers
  - Programmable Alarms
  - Supports Leap Year and Daylight Savings Time
- · Hibernation Timer Interface
  - Two 32.768 KHz Driven Timers
  - Programmable Wake-up from 0.5ms to 128 Minutes
- · Week Timer
  - System Power Present Input Pin
    - Week Alarm Event only generated when System Power is Available
  - Power-up Event
  - Week Alarm Interrupt with 1 Second to 8.5 Year Time-out
  - Sub-Week Alarm Interrupt with 0.50 Seconds
    - 72.67 hours time-out
  - 1 Second and Sub-second Interrupts
- VBAT-Powered Control Interface (VCI)
  - 2 Active-low VCI Inputs
  - System Power Present Detection for gating RTC wake events
  - Optional filter
- Battery- powered General purpose Output (BGPO)

## **Debug Features**

- · 2-pin Serial Wire Debug (SWD) interface
- · 4-Pin JTAG interface for Boundary Scan
- · Trace FIFO Debug Port (TFDP)

#### TO OUR VALUED CUSTOMERS

It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and enhanced as new volumes and updates are introduced.

If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via E-mail at docerrors@microchip.com. We welcome your feedback.

#### **Most Current Data Sheet**

To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:

#### http://www.microchip.com

You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page. The last character of the literature number is the version number, (e.g., DS30000000A is version A of document DS30000000).

#### **Errata**

An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of silicon and revision of document to which it applies.

To determine if an errata sheet exists for a particular device, please check with one of the following:

- Microchip's Worldwide Web site; http://www.microchip.com
- Your local Microchip sales office (see last page)

When contacting a sales office, please specify which device, revision of silicon and data sheet (include -literature number) you are using.

## **Customer Notification System**

Register on our web site at www.microchip.com to receive the most current information on all of our products.

## **Table Of Contents**

| 1.0 General Description                 | 6   |
|-----------------------------------------|-----|
| 2.0 Pin Configuration                   |     |
| 3.0 Device Inventory                    |     |
| 4.0 Power, Clocks, and Resets           | 65  |
| 5.0 ARM M4 Based Embedded Controller    | 80  |
| 6.0 RAM and ROM                         | 90  |
| 7.0 Internal DMA Controller             |     |
| 8.0 EC Interrupt Aggregator             | 108 |
| 9.0 Chip Configuration                  | 117 |
| 10.0 UART                               |     |
| 11.0 GPIO Interface                     |     |
| 12.0 Watchdog Timer (WDT)               |     |
| 13.0 16/32 Bit Basic Timer              |     |
| 14.0 Input Capture and Compare Timer    |     |
| 15.0 Hibernation Timer                  |     |
| 16.0 RTOS Timer                         |     |
| 17.0 Real Time Clock                    |     |
| 18.0 Week Timer                         | 201 |
| 19.0 TACH                               | 211 |
| 20.0 PWM                                | 218 |
| 21.0 Analog to Digital Converter        |     |
| 22.0 Blinking/Breathing LED             | 235 |
| 23.0 I2C/SMBus Interface                |     |
| 24.0 Quad SPI Master Controller         |     |
| 25.0 Trace FIFO Debug Port (TFDP)       |     |
| 26.0 VBAT-Powered Control Interface     |     |
| 27.0 VBAT-Powered RAM                   |     |
| 28.0 VBAT Register Bank                 | 291 |
| 29.0 EC Subsystem Registers             | 294 |
| 30.0 Security Features                  |     |
| 31.0 OTP Block                          |     |
| 32.0 Test Mechanisms                    |     |
| 33.0 Electrical Specifications          |     |
| 34.0 Timing Diagrams                    | 319 |
| Appendix A: Data Sheet Revision History |     |
| The Microchip Web Site                  |     |
| Customer Change Notification Service    |     |
| Customer Support                        |     |
| Product Identification System           |     |

## 1.0 GENERAL DESCRIPTION

The CEC1712 device is a low power integrated embedded controller designed with strong cryptographic support. The CEC1712 is a highly-configurable, mixed-signal, advanced I/O controller architecture. It contains a 32-bit ARM® Cortex-M4 processor core with closely-coupled memory for optimal code execution and data access. An internal ROM, embedded in the design, is used to store the power on/boot sequence and APIs available during run time. When VTR\_CORE is applied to the device, the secure boot loader API is used to download the custom firmware image from the system's shared SPI Flash device, thereby allowing system designers to customize the device's behavior.

The CEC1712 device is directly powered by a minimum of two separate suspend supply planes (VBAT and VTR). The CEC1712 has two banks of I/O pins that are able to operate at either 3.3 V or 1.8 V. Operating at 1.8V allows the CEC1712 to interface with the latest platform controller hubs and will lower the overall power consumed by the device, Whereas 3.3V allows this device to be integrated into legacy platforms that require 3.3V operation.

The CEC1712 secure boot loader authenticates and optionally decrypts the SPI Flash OEM boot image using the AES-256, ECDSA P-384, SHA-384 cryptographic hardware accelerators. The CEC1712 hardware accelerators support 128-bit and 256-bit AES encryption, ECDSA and EC\_KCDSA signing algorithms, 1024-bits to 4096-bits RSA and Elliptic asymmetric public key algorithms, and a True Random Number Generator (TRNG). Runtime APIs are provided in the ROM for customer application code to use the cryptographic hardware. Additionally, the device offers lockable OTP storage for private keys and IDs. Additional features supported include Key Revocation, Roll back protection and DICE.

CEC1712 offers a software development system interface that includes a Trace FIFO debug port and a 2-pin Serail wire debug (SWD)/ JTAG interface

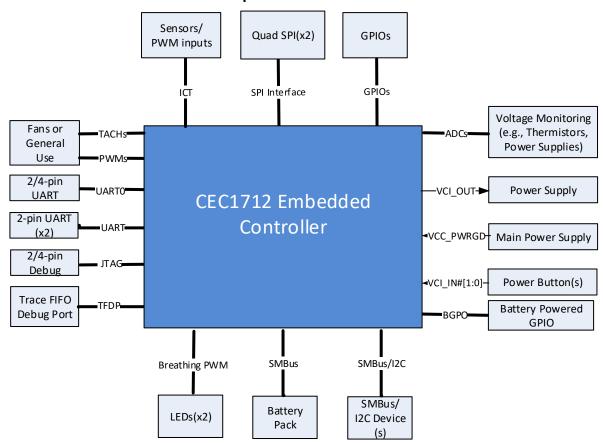
## 1.1 Family Features

TABLE 1-1: CEC1712 FEATURE LIST

| Features                        | CEC1712 -84 WFBGA     |
|---------------------------------|-----------------------|
| Package                         | 84 pin WFBGA          |
| Device ID                       | 0023_A2               |
| Boundary Scan JTAG ID           | 0223_2445             |
| CPU                             | 32-bit ARM® Cortex-M4 |
| SRAM                            | 256 kB                |
| Code/Data Options (Primary use) | 224kB/32kB            |
| Battery Backed SRAM             | 64 bytes              |
| Trace FIFO Debug Port           | Yes                   |
| Internal DMA Channels           | 12                    |
| 32-bit Timer                    | 2                     |
| 16-bit Timer                    | 2                     |
| Capture Timer Registers         | 6                     |
| ICT Channels                    | 11                    |
| Compare Timer                   | Yes                   |
| Watchdog Timer (WDT)            | 1                     |
| Hibernation Timer               | 2                     |
| Week Timer                      | 1                     |
| Sub Week Timer                  | 1                     |
| RTC                             | 1                     |
| RTOS Timer                      | 1                     |
| Keyboard Matrix scan support    | No                    |
| SMBus 2.0 Host Controllers      | 5                     |

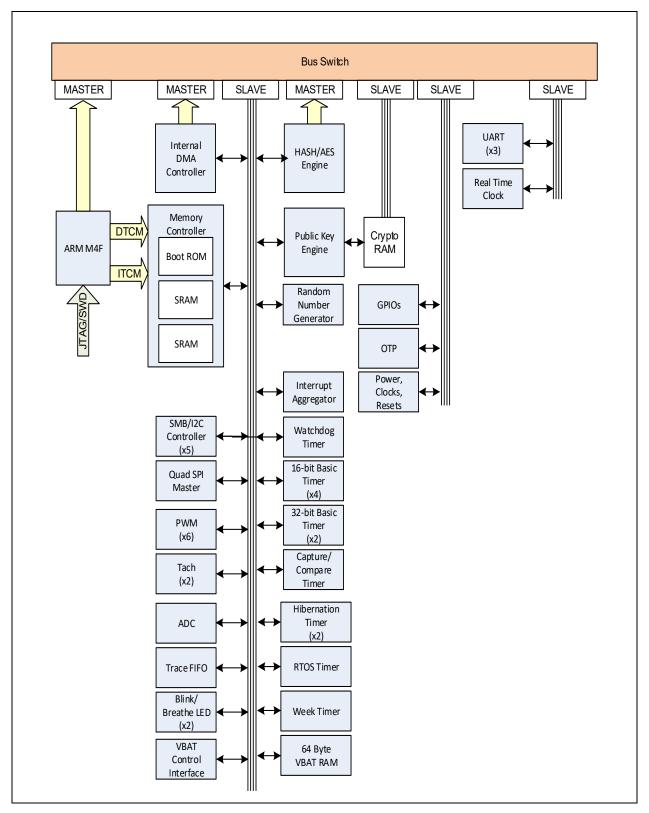
TABLE 1-1: CEC1712 FEATURE LIST (CONTINUED)

| Features                                               | CEC1712 -84 WFBGA                                                |
|--------------------------------------------------------|------------------------------------------------------------------|
| Package                                                | 84 pin WFBGA                                                     |
| I2C Host Controllers                                   | 3                                                                |
| I2C/SMBus Ports                                        | 10                                                               |
| QMSPI Controller                                       | 1 Controller/2 ports                                             |
| PWMs                                                   | 6                                                                |
| Tachometers (TACHs)                                    | 2                                                                |
| GPIOs                                                  | 68                                                               |
| Over voltage protected Pads                            | 8                                                                |
| 10/12- bit ADC Channels                                | 5                                                                |
| UARTs                                                  | 3<br>UART0: 2/4 pin configurable<br>UART1: 2 pin<br>UART2: 2 pin |
| Battery powered GPIO                                   | 1                                                                |
| VBAT powered Control Interface inputs                  | 2                                                                |
| 2 Pin parallel XTAL Oscillator                         | Yes                                                              |
| Single ended external 32kHz clock input (XTAL2)        | Yes                                                              |
| JTAG                                                   | 4-pin/2-pin                                                      |
| AES Hardware Support                                   | 128-256 bit                                                      |
| SHA Hashing Support                                    | SHA-1 to SHA-512                                                 |
| Public Key Cryptography Support                        | RSA: 4K bit<br>ECC: 571 bit                                      |
| True Random Number Generator                           | 1K bit                                                           |
| Root of Trust                                          | Yes                                                              |
| Secure Boot                                            | Yes                                                              |
| Immutable Code                                         | Yes                                                              |
| Customer OTP                                           | 288 bytes                                                        |
| Optional OTP Selectable Features (No                   | ote 1)                                                           |
| QA Testing                                             | Yes                                                              |
| JTAG Disable                                           | Yes                                                              |
| Authentication                                         | Yes                                                              |
| Encrypt ECDH Private Key (Bytes 0-31)                  | Yes                                                              |
| AES Encryption Mandatory                               | Yes                                                              |
| OTP Write Lock - [0] ECDH Private<br>Key               | Yes                                                              |
| OTP Write Lock - [4] Authentication<br>Key - Public Qx | Yes                                                              |
| OTP Write Lock - [5] Authentication<br>Key - Public Qy | Yes                                                              |
| OTP Write Lock - [6] ECDH Public<br>Key 2, Public Rx   | Yes                                                              |
| OTP Write Lock - [7] ECDH Public<br>Key 2, Public Ry   | Yes                                                              |
| TAG0 SPI Flash Base Address                            | Yes                                                              |


Note 1: Please refer to Boot ROM document for below set of optional OTP selectable feature.

## 1.2 Boot ROM

Following the release of the RESET\_EC signal, the processor will start executing code in the Boot ROM. The Boot ROM executes the SPI Flash Loader, which downloads User Code from SPI Flash and stores it in the internal Code RAM. Refer to CEC1712 Boot ROM document for further details.


## 1.3 System Block Diagram

## 1.4 CEC1712 Internal Address Spaces



The Internal Embedded Controller can access any register in the EC Address Space or Host Address Space.

FIGURE 1-1: BLOCK DIAGRAM



## 2.0 PIN CONFIGURATION

## 2.1 Description

The Pin Configuration chapter includes Pin List, Pin Multiplexing.

## 2.2 Terminology and Symbols for Pins/Buffers

## 2.2.1 BUFFER TERMINOLOGY

| Term   | Definition                                                                                                                                                                                          |
|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| #      | The '#' sign at the end of a signal name indicates an active-low signal                                                                                                                             |
| n      | The lowercase 'n' preceding a signal name indicates an active-low signal                                                                                                                            |
| PWR    | Power                                                                                                                                                                                               |
|        | Programmable as Input, Output, Open Drain Output, Bi-directional or Bi-directional with Open Drain Output. Configurable drive strength from 2ma to12ma.                                             |
| PIO    | Note: All GPIOs have programmable drive strength options of 2ma, 4ma, 8ma and 12ma. GPIO pin drive strength is determined by the Pin Control Register Defaults field in the Pin Control Register 2. |
| In     | I Type Input Buffer.                                                                                                                                                                                |
| O2     | O-2 mA Type Buffer.                                                                                                                                                                                 |
| PECI   | PECI Input/Output. These pins operate at the processor voltage level (VREF_VTT)                                                                                                                     |
| SB-TSI | SB-TSI Input/Output. These pins operate at the processor voltage level (VREF_VTT)                                                                                                                   |

#### 2.2.2 PIN NAMING CONVENTIONS

- Pin Name is composed of the multiplexed options separated by '/'. E.g., GPIOxxxx/SignalA/SignalB.
- The first signal shown in a pin name is the default signal. E.g., GPIOxxxx/SignalA/SignalB means the GPIO is the default signal.
- Parenthesis '()' are used to list aliases or alternate functionality for a single mux option.
- Square brackets '[]' are used to indicate there is a Strap Option on a pin. This is always shown as the last signal on the Pin Name.
- Signal Names appended with a numeric value indicates the Instance Number. E.g., PWM0, PWM1, etc. indicates
  that PWM0 is the PWM output for PWM Instance 0, PWM1 is the PWM output for PWM Instance 1, etc. The
  instance number may be omitted if there in only one instance of the IP block implemented.

#### 2.3 Pin List

TABLE 2-1: CEC1712 PIN MAP

| Ball map | Signal                  |
|----------|-------------------------|
|          |                         |
| D2       | nRESET_IN               |
| F3       | GPIO057/VCC_PWRGD       |
| E2       | GPIO106/PWROK           |
| B2       | GPIO051/ICT1_TACH1      |
| A3       | GPIO050/ICT0_TACH0      |
| F2       | GPIO200/ADC00/TRACEDAT0 |
| G2       | GPIO201/ADC01/TRACEDAT1 |
| H2       | GPIO202/ADC02/TRACEDAT2 |
| G1       | GPIO203/ADC03/TRACEDAT3 |
| H1       | GPIO204/ADC04           |

| Ball map | Signal                                |
|----------|---------------------------------------|
| D1       | VSS                                   |
| J8       | GPIO070/I2C14_SDA                     |
| K8       | GPIO071/I2C14_SCL                     |
| J6       | GPIO063/PWM6_ALT/ICT8                 |
| K3       | GPI0224/SHD_I01                       |
| K2       | GPIO016/SHD_IO3/ICT3                  |
| K4       | GPIO227/SHD_IO2                       |
| K5       | GPIO223/SHD_IO0                       |
| K7       | GPIO055/PWM2/SHD_CS0#                 |
| K6       | GPIO056/PWM3/SHD_CLK                  |
| K1       | GPIO012/I2C07_SDA                     |
| J2       | GPIO013/I2C07_SCL                     |
| J5       | GPIO130/I2C01_SDA                     |
| J9       | GPIO131/I2C01_SCL                     |
| J3       | GPI0020                               |
| J4       | GPI0021                               |
| J7       | GPIO002/PWM5/SHD_CS1#                 |
| H6       | GPIO015/PWM7/ICT10                    |
| H5       | GPI0032                               |
| A9       | GPIO132/I2C06_SDA                     |
| В7       | GPIO140/I2C06_SCL/ICT5                |
| K9       | GPIO026/I2C12_SDA                     |
| K10      | GPIO053/PWM0                          |
| J10      | GPIO027/I2C12_SCL                     |
| G7       | GPIO030/I2C10_SDA                     |
| H9       | GPIO107/I2C10_SCL                     |
| H10      | GPIO120                               |
| G9       | GPIO112                               |
| G10      | GPIO113/ICT9                          |
| G4       | GPI0034                               |
| F9       | GPIO170/UART1_TX[JTAG_STRAP]          |
| F8       | GPIO171/UART1_RX                      |
| E8       | JTAG_RST#                             |
| D9       | GPIO104/UART0_TX/TFDP_CLK[VTR2_STRAP] |
| E9       | GPIO105/UART0_RX/TFDP_DATA/TRACECLK   |
| C9       | GPIO046/ICT11                         |
| B8       | GPIO047/PWM3_ALT/ICT13                |
| D10      | GPIO121/PVT_IO0                       |
| B10      | GPIO122/PVT_IO1                       |
| E10      | GPIO123/PVT_IO2                       |
| F10      | GPIO126/PVT_IO3                       |
| C10      | GPIO124/PVT_CS#/ICT12                 |
| A10      | GPIO125/PVT_CLK                       |
| C6       | GPIO127                               |

| Ball map | Signal                              |
|----------|-------------------------------------|
| D7       | GPIO156/LED0                        |
| B9       | GPIO157/LED1                        |
| C5       | GPIO045/PWM2_ALT/ICT14              |
| A6       | GPIO165/32KHZ_IN/CTOUT0             |
| C2       | GPIO145/I2C09_SDA/JTAG_TDI/UART2_RX |
| B6       | GPIO146/I2C09_SCL/JTAG_TDO/UART2_TX |
| A7       | GPIO147/I2C15_SDA/JTAG_CLK          |
| B3       | GPIO150/I2C15_SCL/JTAG_TMS          |
| E7       | GPIO143/I2C04_SDA/UART0_CTS#        |
| D6       | GPIO144/I2C04_SCL/UART0_RTS#        |
| A8       | GPI0004/I2C00_SCL                   |
| B5       | GPIO003/I2C00_SDA                   |
| A5       | VCI_IN3#/GPIO000                    |
| B4       | VCI_IN0#/GPIO163                    |
| B1       | BGPO0/GPIO253                       |
| A1       | VCI_OUT/GPIO250                     |
| A4       | XTAL1                               |
| A2       | XTAL2                               |
| D4       | VSS_ANALOG                          |
| C1       | VTR_PLL                             |
| D5       | VBAT                                |
| E4       | VSS                                 |
| E1       | VTR_REG                             |
| E3       | VREF_ADC                            |
| F7       | VSS                                 |
| G6       | VTR1                                |
| F4       | VTR_ANALOG                          |
| F1       | VR_CAP                              |
| G5       | VTR2                                |
| J1       | VSS_ADC                             |

**Note:** GPIO055/PWM2/SHD\_CS0# should be pulled up for proper boot up of the chip.

## 2.4 Pin Multiplexing

## 2.4.1 DEFAULT STATE

The default state for analog pins is Input. The default state for all pins that default to a GPIO function is input/output/interrupt disabled. The default state for pins that differ is shown in the Section 3.5, "GPIO Register Assignments". Entries for the Default State column are

O2ma-Low: Push-Pull output, Slow slew rate, 2ma drive strength, grounded
 O2ma-High Push-Pull output, Slow slew rate, 2ma drive strength, high output

• PU Input, with pull-up resistor enabled

#### 2.4.2 POWER RAIL

The Power Rail column defines the power pin that provides I/O power for the signal pin.

#### 2.4.3 BUFFER TYPES

The Buffer Type column defines the type of Buffer associated with each signal. Some pins have signals with two different buffer types sharing the pin; in this case, table shows the buffer type for each of the signals that share the pin.

Input signals muxed with GPIOs are marked as "I"

Output signals muxed with GPIOs are marked as "PIO", because the GPIO input path is always active even when the alternate function selected is "output only". So the GPIO input can be read to see the level of the output signal.

Pad Types are defined in the Section 33.0, "Electrical Specifications," on page 310.

- I/O Pad Types are defined in Section 33.2.4, "DC Electrical Characteristics for I/O Buffers," on page 312.
- The abbreviation "PWR" is used to denote power pins. The power supplies are defined in Section 33.2.1, "Power Supply Operational Characteristics," on page 310.

#### 2.4.4 GLITCH PROTECTION

Pins with glitch protection are glitch-free tristate pins and will not drive out while their associated power rail is rising. These glitch-free tristate pins require either an external pull-up or pull-down to set the state of the pin high or low.

Note: If the pin needs to default low, a 1M ohm (max) external pull-down is required.

All pins are glitch protected.

**Note:** The power rail must rise monotonically in order for glitch protection to operate.

#### 2.4.5 OVER-VOLTAGE PROTECTION

If a pin is over-voltage protected (over-voltage protection = YES) then the following is true: If the pad is powered by 1.8V +/- 5% (operational) it can tolerate up to 3.63V on the pad. This allows for a pull-up to 3.3V power rail +/- 10%. If the pad is powered by 3.3V +/- 5% (operational) it can tolerate up to 5.5V on the pad. This allows for a pull-up to 5.0V power rail +/- 10%.

If a pin is not over-voltage protected (over-voltage protection = NO) then the following is true: If the pad is powered by 1.8V + 1.5% (operational), it can tolerate up to 1.8V + 1.0% (i.e., +1.98V max). If the pad is powered by 3.3V + 1.5% (operational) it can tolerate up to 3.3V + 1.0% (i.e., +3.63V max).

## 2.4.6 UNDER-VOLTAGE PROTECTION

Pins that are identified as having Under-voltage PROTECTION may be configured so they will not sink excess current if powered by 3.3V and externally pulled up to 1.8V. The following configuration requirements must be met.

- · If the pad is an output only pad type and it is configured as either open drain or the output is disabled.
- If the pin is a GPIO pin with a PIO pad type then is must be configured as open drain output with the input disabled. The input is disabled by setting the GPIO Power Gating Signals (PGS) bits to 11b.

All pins are under voltage protected.

#### 2.4.7 BACKDRIVE PROTECTION

Assuming that the external voltage on the pin is within the parameters defined for the specific pad type, the backdrive protected pin will not sink excess current when it is at a lower potential than the external circuit. There are two cases where this occurs:

- · The pad power is off and the external circuit is powered
- The pad power is on and the external circuitry is pulled to a higher potential than the pad power. This may occur on 3.3V powered pads that are 5V tolerant or on 1.8V powered pads that are 3.6V tolerant.

#### 2.4.8 EMULATED POWER WELL

Power well emulation for GPIOs and for signals that are multiplexed with GPIO signals is controlled by the Power Gating Signals (PGS) option in the GPIO Pin Control Register. The Emulated Power Well column in the Pin Multiplexing table defines the power gating programming options supported for each signal.

Note: VBAT powered signals do not support power emulation and must program the PGS bit field to 00b (VTR)

#### 2.4.9 GATED STATE

This column defines the internal value of an input signal when either its emulated power well is inactive or it is not selected by the GPIO alternate function MUX. A value of "No Gate" means that the internal signal always follows the pin even when the emulated power well is inactive.

**Note:** Gated state is only meaningful to the operation of input signals. A gated state on an output pin defines the internal behavior of the GPIO MUX and does not imply pin behavior.

Note: Only the pins that are 5V tolerant have an entry in the 5VT column in the Pin Description Table.

## 2.4.10 NOTES

The below notes are for all tables in this chapter.

## **TABLE 2-2: NUMBERED NOTES**

| NOTE    | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Note 1  | An external cap must be connected as close to the VR_CAP pin/ball as possible with a routing resistance and CAP ESR of less than 100mohms. The capacitor value is 1uF and must be ceramic with X5R or X7R dielectric. The cap pin/ball should remain on the top layer of the PCB and traced to the CAP. Avoid adding vias to other layers to minimize inductance.                                                                                                                                                                                                                                                                  |
| Note 2  | This SMBus ports supports 1 Mbps operation as defined by I2C. For 1 Mbps I2C recommended capacitance/pull-up relationships from Intel, refer to the Shark Bay platform guide, Intel ref number 486714. Refer to the PCH - SMBus 2.0/SMLink Interface Design Guidelines, Bus Capacitance/Pull-Up Resistor Relationship.                                                                                                                                                                                                                                                                                                             |
| Note 4  | The voltage on the ADC pins must not exceed 3.6 V or damage to the device will occur.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Note 5  | The VCI pins may be used as GPIOs. The VCI input signals are not gated by selecting the GPIO alternate function. Firmware must disable (i.e., gate) these inputs by writing the bits in the VCI Input Enable Register when the GPIO function is enabled.                                                                                                                                                                                                                                                                                                                                                                           |
| Note 6  | The Over voltage protected GPIO pins will not support the Repeater mode mentioned in the GPIO pin configuration register                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Note 7  | Refer Configurable Signal Routing section under Pin Configuration chapter for details on using the <signal> and <signal>_ALT. Both <signal> and <signal>_ALT cannot be enabled simultaneously.</signal></signal></signal></signal>                                                                                                                                                                                                                                                                                                                                                                                                 |
| Note 8  | <signal> with '#' as suffix will be shown as <signal>_n in MPLab Tools</signal></signal>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Note 9  | 32kHz_IN is named CLK32kHz_IN in MPLab Tools                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Note 10 | Clock Enable Register Bits [3:2] should be configured to be driven by single ended 32Khz source. Connect the pin to SUSCLK from PCH.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Note 11 | When the JTAG_RST# pin is not asserted (logic'1'), the JTAG or ARM SWJ signal functions in the JTAG interface are unconditionally routed to the GPIO interface; the Pin Control register for these GPIO pins has no effect. When the JTAG_RST# pin is asserted (logic'0'), the signal functions in the JTAG interface are not routed to the interface and the Pin Control Register for these GPIO pins controls the muxing. The pin control registers can not route the JTAG interface to the pins. System Board Designer should terminate this pin in all functional state using jumpers and pull-up or pull down resistors, etc. |
| Note 12 | The JTAG signals TDI,TDO,TMS,TCK are muxed with GPIO pins. Routing of JTAG signals to these pins are dependent on DEBUG ENABLE REGISTER bits [2:0] and JTAG_RST# pin (Note . To configure these GPIO pins for non JTAG functions, pull JTAG_RST# low externally and select the appropriate alternate function in the Pin Control Register                                                                                                                                                                                                                                                                                          |
| Note 13 | The BGPO pins may be used as GPIO. For this the BGPO power control register and GPIO pin control register needs to be configured                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Note 14 | GPIO000/VCI_IN3#, if not used must be connected to VBAT through a high impedance resistor of the order of 100k                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |

## TABLE 2-2: NUMBERED NOTES

| NOTE   | Description                                                                   |  |  |  |
|--------|-------------------------------------------------------------------------------|--|--|--|
| Note 1 | 5 External pull up should be added on GPIO055/SHD_CS0# pin for proper booting |  |  |  |

## 2.4.11 CEC1712 MULTIPLEXING

## TABLE 2-3: CEC1712 PIN MULTIPLEXING

| Mux<br>Value  | Signal Name | Buffer<br>Type | Drive<br>Strength | PAD<br>Power<br>Well | Emulated<br>Power<br>Well | Gated<br>State | OverVolt-<br>age<br>Protect | Back-<br>drive<br>Protect | Notes |
|---------------|-------------|----------------|-------------------|----------------------|---------------------------|----------------|-----------------------------|---------------------------|-------|
| Default:      | nRESET_IN   | I              |                   | VTR1                 | PGS=00<br>(only)          |                |                             | Yes                       |       |
| 1             | Reserved    |                |                   |                      |                           |                |                             |                           |       |
| 2             | Reserved    |                |                   |                      |                           |                |                             |                           |       |
| 3             | Reserved    |                |                   |                      |                           |                |                             |                           |       |
| Default:<br>0 | GPIO057     | PIO            |                   | VTR1                 | All PGS options           | No Gate        | Yes                         | Yes                       |       |
| 1             | VCC_PWRGD   | PIO            |                   |                      | PGS=00<br>(only)          | High           |                             |                           |       |
| 2             | Reserved    |                |                   |                      |                           |                |                             |                           |       |
| 3             | Reserved    |                |                   |                      |                           |                |                             |                           |       |
| Default:      | GPIO106     | PIO            |                   | VTR1                 | All PGS options           | No Gate        |                             | Yes                       |       |
| 1             | PWROK       | PIO            |                   |                      | PGS=00<br>(only)          | NA             |                             |                           |       |
| 2             | Reserved    |                |                   |                      |                           |                |                             |                           |       |
| 3             | Reserved    |                |                   |                      |                           |                |                             |                           |       |
| Default:<br>0 | GPIO051     | PIO            |                   | VTR1                 | All PGS options           | No Gate        |                             | Yes                       |       |
| 1             | ICT1_TACH1  | PIO            |                   |                      | All PGS options           | Low            |                             |                           |       |
| 2             | Reserved    |                |                   |                      |                           |                |                             |                           |       |
| 3             | Reserved    |                |                   |                      |                           |                |                             |                           |       |
| Default:      | GPIO050     | PIO            |                   | VTR1                 | All PGS options           | No Gate        |                             | Yes                       |       |
| 1             | ICT0_TACH0  | PIO            |                   |                      | All PGS options           | Low            |                             |                           |       |
| 2             | Reserved    |                |                   |                      |                           |                |                             |                           |       |
| 3             | Reserved    |                |                   |                      |                           |                |                             |                           |       |
| Default:      | GPIO200     | PIO            |                   | VTR1                 | All PGS options           | No Gate        |                             | No                        |       |

TABLE 2-3: CEC1712 PIN MULTIPLEXING

| Mux<br>Value  | Signal Name | Buffer<br>Type | Drive<br>Strength | PAD<br>Power<br>Well | Emulated<br>Power<br>Well | Gated<br>State | OverVolt-<br>age<br>Protect | Back-<br>drive<br>Protect | Notes  |
|---------------|-------------|----------------|-------------------|----------------------|---------------------------|----------------|-----------------------------|---------------------------|--------|
| 1             | ADC00       | I_AN           |                   |                      | PGS=00<br>(only)          | Low            |                             |                           | Note 4 |
| 2             | Reserved    |                |                   |                      |                           |                |                             |                           |        |
| 3             | Reserved    |                |                   |                      |                           |                |                             |                           |        |
| Default:<br>0 | GPIO201     | PIO            |                   | VTR1                 | All PGS options           | No Gate        |                             | No                        |        |
| 1             | ADC01       | I_AN           |                   |                      | PGS=00<br>(only)          | Low            |                             |                           | Note 4 |
| 2             | Reserved    |                |                   |                      | , ,,                      |                |                             |                           |        |
| 3             | Reserved    |                |                   |                      |                           |                |                             |                           |        |
| Default:      | GPIO202     | PIO            |                   | VTR1                 | All PGS options           | No Gate        |                             | No                        |        |
| 1             | ADC02       | I_AN           |                   |                      | PGS=00<br>(only)          | Low            |                             |                           | Note 4 |
| 2             | Reserved    |                |                   |                      | , , ,                     |                |                             |                           |        |
| 3             | Reserved    |                |                   |                      |                           |                |                             |                           |        |
| Default:      | GPIO203     | PIO            |                   | VTR1                 | All PGS options           | No Gate        |                             | No                        |        |
| 1             | ADC03       | I_AN           |                   |                      | PGS=00<br>(only)          | Low            |                             |                           | Note 4 |
| 2             | Reserved    |                |                   |                      |                           |                |                             |                           |        |
| 3             | Reserved    |                |                   |                      |                           |                |                             |                           |        |
| Default:      | GPIO204     | PIO            |                   | VTR1                 | All PGS options           | No Gate        |                             | No                        |        |
| 1             | ADC04       | I_AN           |                   |                      | PGS=00<br>(only)          | Low            |                             |                           | Note 4 |
| 2             | Reserved    |                |                   |                      |                           |                |                             |                           |        |
| 3             | Reserved    |                |                   |                      |                           |                |                             |                           |        |
| Default:<br>0 | GPIO070     | PIO            |                   | VTR2                 | All PGS options           | No Gate        |                             | Yes                       |        |
| 1             | Reserved    |                |                   |                      |                           |                |                             |                           |        |
| 2             | I2C14_SDA   | PIO            |                   |                      | All PGS options           | High           |                             |                           |        |
| 3             | Reserved    |                |                   |                      |                           |                |                             |                           |        |
| Default:<br>0 | GPIO071     | PIO            |                   | VTR2                 | All PGS options           | No Gate        |                             | Yes                       |        |
| 1             | Reserved    |                |                   |                      |                           |                |                             |                           |        |
| 2             | I2C14_SCL   | PIO            |                   |                      | All PGS options           | High           |                             |                           |        |
| 3             | Reserved    |                |                   |                      |                           |                |                             |                           |        |

TABLE 2-3: CEC1712 PIN MULTIPLEXING

| Mux<br>Value  | Signal Name | Buffer<br>Type | Drive<br>Strength | PAD<br>Power<br>Well | Emulated<br>Power<br>Well | Gated<br>State | OverVolt-<br>age<br>Protect | Back-<br>drive<br>Protect | Notes      |
|---------------|-------------|----------------|-------------------|----------------------|---------------------------|----------------|-----------------------------|---------------------------|------------|
| Default:      | GPIO063     | PIO            |                   | VTR2                 | All PGS                   | No Gate        |                             | Yes                       |            |
| 0             |             | PIO            |                   | VIRZ                 | options                   | No Gale        |                             | res                       |            |
| 1             | Reserved    |                |                   |                      |                           |                |                             |                           |            |
| 2             | PWM6_ALT    | PIO            |                   |                      | All PGS options           | NA             |                             |                           | Note 7     |
| 3             | ICT8        | I              |                   |                      | All PGS options           | Low            |                             |                           |            |
| Default:      | GPIO224     | PIO            |                   | VTR2                 | All PGS                   | No Gate        |                             | Yes                       |            |
| 0             |             |                |                   |                      | options                   |                |                             |                           |            |
| 1             | Reserved    |                |                   |                      |                           |                |                             |                           |            |
| 2             | SHD_IO1     | PIO            |                   |                      | All PGS options           | Low            |                             |                           |            |
| 3             | Reserved    |                |                   |                      |                           |                |                             |                           |            |
| Default:      | GPIO016     | PIO            |                   | VTR2                 | All PGS options           | No Gate        |                             | Yes                       |            |
| 1             | Reserved    |                |                   |                      | '                         |                |                             |                           |            |
| 2             | SHD_IO3     | PIO            |                   |                      | All PGS options           | Low            |                             |                           |            |
| 3             | ICT3        | PIO            |                   |                      | All PGS options           | Low            |                             |                           |            |
|               |             |                |                   |                      |                           |                |                             |                           |            |
| Default:<br>0 | GPIO227     | PIO            |                   | VTR2                 | All PGS options           | No Gate        |                             | Yes                       |            |
| 1             | SHD_IO2     | PIO            |                   |                      | All PGS options           | Low            |                             |                           |            |
| 2             | Reserved    |                |                   |                      |                           |                |                             |                           |            |
| 3             | Reserved    |                |                   |                      |                           |                |                             |                           |            |
| Default:<br>0 | GPIO223     | PIO            |                   | VTR2                 | All PGS options           | No Gate        |                             | Yes                       |            |
| 1             | SHD_IO0     | PIO            |                   |                      | All PGS options           | Low            |                             |                           |            |
| 2             | Reserved    |                | 1                 |                      | -                         |                |                             |                           |            |
| 3             | Reserved    |                |                   |                      |                           |                |                             |                           |            |
| Default:      | GPIO055     | PIO            |                   | VTR2                 | All PGS options           | No Gate        |                             | Yes                       |            |
| 1             | PWM2        | PIO            |                   |                      | All PGS options           | NA             |                             |                           |            |
| 2             | SHD_CS0#    | PIO            |                   |                      | All PGS options           | NA             |                             |                           | Note<br>15 |
| 3             | Reserved    |                |                   |                      |                           |                |                             |                           |            |
|               |             |                |                   |                      |                           |                |                             |                           |            |

TABLE 2-3: CEC1712 PIN MULTIPLEXING

| Mux<br>Value  | Signal Name | Buffer<br>Type | Drive<br>Strength | PAD<br>Power<br>Well | Emulated<br>Power<br>Well | Gated<br>State | OverVolt-<br>age<br>Protect | Back-<br>drive<br>Protect | Notes  |
|---------------|-------------|----------------|-------------------|----------------------|---------------------------|----------------|-----------------------------|---------------------------|--------|
| Default:<br>0 | GPIO056     | PIO            |                   | VTR2                 | All PGS options           | No Gate        |                             | Yes                       |        |
| 1             | PWM3        | PIO            |                   |                      | All PGS options           | NA             |                             |                           |        |
| 2             | SHD_CLK     | PIO            |                   |                      | All PGS options           | NA             |                             |                           |        |
| 3             | Reserved    |                |                   |                      |                           |                |                             |                           |        |
| Default:<br>0 | GPIO012     | PIO            |                   | VTR2                 | All PGS options           | No Gate        | Yes                         | Yes                       |        |
| 1             | I2C07_SDA   | PIO            |                   |                      | All PGS options           | High           |                             |                           | Note 2 |
| 2             | Reserved    |                |                   |                      |                           |                |                             |                           |        |
| 3             | Reserved    |                |                   |                      |                           |                |                             |                           |        |
| Default:      | GPIO013     | PIO            |                   | VTR2                 | All PGS options           | No Gate        | Yes                         | Yes                       |        |
| 1             | 12C07_SCL   | PIO            |                   |                      | All PGS options           | High           |                             |                           | Note 2 |
| 2             | Reserved    |                |                   |                      |                           |                |                             |                           |        |
| 3             | Reserved    |                |                   |                      |                           |                |                             |                           |        |
| Default:      | GPIO130     | PIO            |                   | VTR2                 | All PGS options           | No Gate        | Yes                         | Yes                       |        |
| 1             | I2C01_SDA   | PIO            |                   |                      | All PGS options           | High           |                             |                           | Note 2 |
| 2             | Reserved    |                |                   |                      |                           |                |                             |                           |        |
| 3             | Reserved    |                |                   |                      |                           |                |                             |                           |        |
| Default:<br>0 | GPIO131     | PIO            |                   | VTR2                 | All PGS options           | No Gate        | Yes                         | Yes                       |        |
| 1             | I2C01_SCL   | PIO            |                   |                      | All PGS options           | High           |                             |                           | Note 2 |
| 2             | Reserved    |                |                   |                      |                           |                |                             |                           |        |
| 3             | Reserved    |                |                   |                      |                           |                |                             |                           |        |
| Default:<br>0 | GPIO020     | PIO            |                   | VTR1                 | All PGS options           | No Gate        |                             | Yes                       |        |
| 1             | Reserved    |                |                   |                      |                           |                |                             |                           |        |
| 2             | Reserved    |                |                   |                      |                           |                |                             |                           |        |
| 3             | Reserved    |                |                   |                      |                           |                |                             |                           |        |
| Default:<br>0 | GPIO021     | PIO            |                   | VTR1                 | All PGS options           | No Gate        |                             | Yes                       |        |
| 1             | Reserved    |                |                   |                      |                           |                |                             |                           |        |
| 2             | Reserved    |                |                   |                      |                           |                |                             |                           |        |

TABLE 2-3: CEC1712 PIN MULTIPLEXING

| Mux<br>Value  | Signal Name | Buffer<br>Type | Drive<br>Strength | PAD<br>Power<br>Well | Emulated<br>Power<br>Well | Gated<br>State | OverVolt-<br>age<br>Protect | Back-<br>drive<br>Protect | Notes |
|---------------|-------------|----------------|-------------------|----------------------|---------------------------|----------------|-----------------------------|---------------------------|-------|
| 3             | Reserved    |                |                   |                      |                           |                |                             |                           |       |
|               |             |                |                   |                      |                           |                |                             |                           |       |
| Default:      | GPIO002     | PIO            |                   | VTR2                 | All PGS                   | No Gate        |                             | Yes                       |       |
| 0             |             |                |                   |                      | options                   |                |                             |                           |       |
| 1             | PWM5        | PIO            |                   |                      | All PGS options           | NA             |                             |                           |       |
| 2             | SHD_CS1#    | PIO            |                   |                      | All PGS                   | High           |                             |                           |       |
| 2             | 0110_001#   |                |                   |                      | options                   | l ligii        |                             |                           |       |
| 3             | Reserved    |                |                   |                      | -                         |                |                             |                           |       |
|               |             |                |                   |                      |                           |                |                             |                           |       |
| Default:<br>0 | GPIO015     | PIO            |                   | VTR2                 | All PGS options           | No Gate        |                             | Yes                       |       |
| 1             | PWM7        | PIO            |                   |                      | All PGS                   | NA             |                             |                           |       |
| 2             | ICT10       | 1              |                   |                      | options                   | Low            |                             |                           |       |
|               |             | I              |                   |                      | All PGS options           | Low            |                             |                           |       |
| 3             | Reserved    |                |                   |                      |                           |                |                             |                           |       |
| Defection     | CDIO022     | DIO            |                   | V/TD4                | All DCC                   | No Gate        |                             | Vaa                       |       |
| Default:<br>0 | GPIO032     | PIO            |                   | VTR1                 | All PGS options           | No Gate        |                             | Yes                       |       |
| 1             | Reserved    |                |                   |                      |                           |                |                             |                           |       |
| 2             | Reserved    |                |                   |                      |                           |                |                             |                           |       |
| 3             | Reserved    |                |                   |                      |                           |                |                             |                           |       |
|               |             |                |                   |                      |                           |                |                             |                           |       |
| Default:<br>0 | GPIO132     | PIO            |                   | VTR1                 | All PGS options           | No Gate        |                             | Yes                       |       |
| 1             | I2C06_SDA   | PIO            |                   |                      | All PGS options           | High           |                             |                           |       |
| 2             | Reserved    |                |                   |                      |                           |                |                             |                           |       |
| 3             | Reserved    |                |                   |                      |                           |                |                             |                           |       |
|               |             |                |                   |                      |                           |                |                             |                           |       |
| Default:<br>0 | GPIO140     | PIO            |                   | VTR1                 | All PGS options           | No Gate        |                             | Yes                       |       |
| 1             | 12C06_SCL   | PIO            |                   |                      | All PGS options           | High           |                             |                           |       |
| 2             | ICT5        | PIO            |                   |                      | All PGS                   | Low            |                             |                           |       |
| _             |             |                |                   |                      | options                   |                |                             |                           |       |
| 3             | Reserved    |                |                   |                      |                           |                |                             |                           |       |
|               |             |                |                   |                      |                           |                |                             |                           |       |
| Default:<br>0 | GPIO026     | PIO            |                   | VTR1                 | All PGS options           | No Gate        |                             | Yes                       |       |
| 1             | Reserved    |                |                   |                      |                           |                |                             |                           |       |
| 2             | Reserved    |                |                   |                      |                           |                |                             |                           |       |
| 3             | I2C12_SDA   | PIO            |                   |                      | All PGS options           | High           |                             |                           |       |
|               |             |                |                   |                      |                           |                |                             |                           |       |

TABLE 2-3: CEC1712 PIN MULTIPLEXING

| Mux<br>Value  | Signal Name | Buffer<br>Type | Drive<br>Strength | PAD<br>Power<br>Well | Emulated<br>Power<br>Well | Gated<br>State | OverVolt-<br>age<br>Protect | Back-<br>drive<br>Protect | Notes |
|---------------|-------------|----------------|-------------------|----------------------|---------------------------|----------------|-----------------------------|---------------------------|-------|
| Default:<br>0 | GPIO053     | PIO            |                   | VTR2                 | All PGS options           | No Gate        |                             | Yes                       |       |
| 1             | PWM0        | PIO            |                   |                      | All PGS options           | NA             |                             |                           |       |
| 2             | Reserved    |                |                   |                      |                           |                |                             |                           |       |
| 3             | Reserved    |                |                   |                      |                           |                |                             |                           |       |
| Default:<br>0 | GPIO027     | PIO            |                   | VTR1                 | All PGS options           | No Gate        |                             | Yes                       |       |
| 1             | Reserved    |                |                   |                      |                           |                |                             |                           |       |
| 2             | Reserved    |                |                   |                      |                           |                |                             |                           |       |
| 3             | I2C12_SCL   | PIO            |                   |                      | All PGS options           | High           |                             |                           |       |
| Default:      | GPIO030     | PIO            |                   | VTR1                 | All PGS options           | No Gate        |                             | Yes                       |       |
| 1             | Reserved    |                |                   |                      |                           |                |                             |                           |       |
| 2             | I2C10_SDA   | PIO            |                   |                      | All PGS options           | High           |                             |                           |       |
| 3             | Reserved    |                |                   |                      |                           |                |                             |                           |       |
| Default:<br>0 | GPIO107     | PIO            |                   | VTR1                 | All PGS options           | No Gate        |                             | Yes                       |       |
| 1             | Reserved    |                |                   |                      |                           |                |                             |                           |       |
| 2             | Reserved    |                |                   |                      |                           |                |                             |                           |       |
| 3             | I2C10_SCL   | PIO            |                   |                      | All PGS options           | High           |                             |                           |       |
| Default:<br>0 | GPIO120     | PIO            |                   | VTR1                 | All PGS options           | No Gate        |                             | Yes                       |       |
| 1             | Reserved    |                |                   |                      |                           |                |                             |                           |       |
| 2             | Reserved    |                |                   |                      |                           |                |                             |                           |       |
| 3             | Reserved    |                |                   |                      |                           |                |                             |                           |       |
| Default:      | GPIO112     | PIO            |                   | VTR1                 | All PGS options           | No Gate        |                             | Yes                       |       |
| 1             | Reserved    |                |                   |                      |                           |                |                             |                           |       |
| 2             | Reserved    |                |                   |                      |                           |                |                             |                           |       |
| 3             | Reserved    |                |                   |                      |                           |                |                             |                           |       |
| Default:<br>0 | GPIO113     | PIO            |                   | VTR1                 | All PGS options           | No Gate        |                             | Yes                       |       |
| 1             | Reserved    |                |                   |                      |                           |                |                             |                           |       |
| 2             | ICT9        | I              |                   |                      | All PGS options           | Low            |                             |                           |       |

TABLE 2-3: CEC1712 PIN MULTIPLEXING

| Mux<br>Value  | Signal Name | Buffer<br>Type | Drive<br>Strength | PAD<br>Power<br>Well | Emulated<br>Power<br>Well | Gated<br>State | OverVolt-<br>age<br>Protect | Back-<br>drive<br>Protect | Notes         |
|---------------|-------------|----------------|-------------------|----------------------|---------------------------|----------------|-----------------------------|---------------------------|---------------|
| 3             | Reserved    |                |                   |                      |                           |                |                             |                           |               |
|               |             |                |                   |                      |                           |                |                             |                           |               |
| Default:<br>0 | GPIO034     | PIO            |                   | VTR1                 | All PGS options           | No Gate        |                             | Yes                       |               |
| 1             | Reserved    |                |                   |                      |                           |                |                             |                           |               |
| 2             | Reserved    |                |                   |                      |                           |                |                             |                           |               |
| 3             | Reserved    |                |                   |                      |                           |                |                             |                           |               |
|               |             |                |                   |                      |                           |                |                             |                           |               |
| Default:<br>0 | GPIO170     | PIO            | PU                | VTR1                 | All PGS options           | No Gate        |                             | Yes                       |               |
| 1             | UART1_TX    | PIO            |                   |                      | All PGS options           | NA             |                             |                           |               |
| 2             | Reserved    |                |                   |                      |                           |                |                             |                           |               |
| 3             | Reserved    |                |                   |                      |                           |                |                             |                           |               |
| Strap         | JTAG_STRAP  | PIO            |                   |                      |                           |                |                             |                           |               |
| Default:<br>0 | GPIO171     | PIO            |                   | VTR1                 | All PGS options           | No Gate        |                             | Yes                       |               |
| 1             | UART1_RX    | PIO            |                   |                      | All PGS options           | Low            |                             |                           |               |
| 2             | Reserved    |                |                   |                      | -                         |                |                             |                           |               |
| 3             | Reserved    |                |                   |                      |                           |                |                             |                           |               |
|               |             |                |                   |                      |                           |                |                             |                           |               |
| Default:<br>0 | JTAG_RST#   | I              |                   | VTR1                 | N/A                       |                |                             | Yes                       | Note<br>11,12 |
| 1             | Reserved    |                |                   |                      |                           |                |                             |                           |               |
| 2             | Reserved    |                |                   |                      |                           |                |                             |                           |               |
| 3             | Reserved    |                |                   |                      |                           |                |                             |                           |               |
|               |             |                |                   |                      |                           |                |                             |                           |               |
| Default:<br>0 | GPIO104     | PIO            |                   | VTR1                 | All PGS options           | No Gate        |                             | Yes                       |               |
| 1             | UART0_TX    | PIO            |                   |                      | All PGS options           | NA             |                             |                           |               |
| 2             | TFDP_CLK    | PIO            |                   |                      | All PGS options           | NA             |                             |                           |               |
| 3             | Reserved    |                |                   |                      |                           |                |                             |                           |               |
| Strap         | VTR2_STRAP  | PIO            |                   |                      |                           |                |                             |                           |               |
| Default:<br>0 | GPIO105     | PIO            |                   | VTR1                 | All PGS options           | No Gate        |                             | Yes                       |               |
| 1             | UART0_RX    | PIO            |                   |                      | All PGS options           | Low            |                             |                           |               |
| 2             | TFDP_DATA   | PIO            |                   |                      | All PGS options           | NA             |                             |                           |               |
| 3             | Reserved    |                |                   |                      | †                         |                |                             |                           |               |
|               |             |                |                   |                      |                           |                |                             |                           |               |
| Default:<br>0 | GPIO046     | PIO            |                   | VTR1                 | All PGS options           | No Gate        |                             | Yes                       |               |

TABLE 2-3: CEC1712 PIN MULTIPLEXING

| Mux<br>Value  | Signal Name | Buffer<br>Type | Drive<br>Strength | PAD<br>Power<br>Well | Emulated<br>Power<br>Well | Gated<br>State | OverVolt-<br>age<br>Protect | Back-<br>drive<br>Protect | Notes  |
|---------------|-------------|----------------|-------------------|----------------------|---------------------------|----------------|-----------------------------|---------------------------|--------|
| 1             | KSO2        | PIO            |                   |                      | All PGS options           | NA             |                             |                           |        |
| 2             | Reserved    |                |                   |                      |                           |                |                             |                           |        |
| 3             | ICT11       | I              |                   |                      | All PGS options           | Low            |                             |                           |        |
| Default:      | GPIO047     | PIO            |                   | VTR1                 | All PGS options           | No Gate        |                             | Yes                       |        |
| 1             | Reserved    |                |                   |                      |                           |                |                             |                           |        |
| 2             | PWM3_ALT    | PIO            |                   |                      | All PGS options           | NA             |                             |                           | Note 7 |
| 3             | ICT13       | I              |                   |                      | All PGS options           | Low            |                             |                           |        |
| Default:<br>0 | GPIO121     | PIO            |                   | VTR1                 | All PGS options           | No Gate        |                             | Yes                       |        |
| 1             | PVT_IO0     | PIO            |                   |                      | All PGS options           | Low            |                             |                           |        |
| 2             | Reserved    |                |                   |                      |                           |                |                             |                           |        |
| 3             | Reserved    |                |                   |                      |                           |                |                             |                           |        |
|               |             |                |                   |                      |                           |                |                             |                           |        |
| Default:<br>0 | GPIO122     | PIO            |                   | VTR1                 | All PGS options           | No Gate        |                             | Yes                       |        |
| 1             | PVT_IO1     | PIO            |                   |                      | All PGS options           | Low            |                             |                           |        |
| 2             | Reserved    |                |                   |                      |                           |                |                             |                           |        |
| 3             | Reserved    |                |                   |                      |                           |                |                             |                           |        |
| Default:      | GPIO123     | PIO            |                   | VTR1                 | All PGS options           | No Gate        | Yes                         | Yes                       |        |
| 1             | PVT_IO2     | PIO            |                   |                      | All PGS options           | Low            |                             |                           |        |
| 2             | Reserved    |                |                   |                      |                           |                |                             |                           |        |
| 3             | Reserved    |                |                   |                      |                           |                |                             |                           |        |
| Default:<br>0 | GPIO126     | PIO            |                   | VTR1                 | All PGS options           | No Gate        |                             | Yes                       |        |
| 1             | PVT_IO3     | PIO            |                   |                      | All PGS options           | Low            |                             |                           |        |
| 2             | Reserved    |                |                   |                      | -                         |                |                             |                           |        |
| 3             | Reserved    |                |                   |                      |                           |                |                             |                           |        |
| Default:<br>0 | GPIO124     | PIO            |                   | VTR1                 | All PGS options           | No Gate        |                             | Yes                       |        |
| 1             | PVT_CS#     | PIO            |                   |                      | All PGS options           | NA             |                             |                           |        |

TABLE 2-3: CEC1712 PIN MULTIPLEXING

| Mux<br>Value  | Signal Name | Buffer<br>Type | Drive<br>Strength | PAD<br>Power<br>Well | Emulated<br>Power<br>Well | Gated<br>State | OverVolt-<br>age<br>Protect | Back-<br>drive<br>Protect | Notes |
|---------------|-------------|----------------|-------------------|----------------------|---------------------------|----------------|-----------------------------|---------------------------|-------|
| 2             | Reserved    |                |                   |                      |                           |                |                             |                           |       |
| 3             | ICT12       | I              |                   |                      | All PGS options           | Low            |                             |                           |       |
| Default:      | GPIO125     | PIO            |                   | VTR1                 | All PGS options           | No Gate        |                             | Yes                       |       |
| 1             | PVT_CLK     | PIO            |                   |                      | All PGS options           | NA             |                             |                           |       |
| 2             | Reserved    |                |                   |                      |                           |                |                             |                           |       |
| 3             | Reserved    |                |                   |                      |                           |                |                             |                           |       |
| Default:      | GPIO127     | PIO            |                   | VTR1                 | All PGS options           | No Gate        |                             | Yes                       |       |
| 1             | Reserved    |                |                   |                      |                           |                |                             |                           |       |
| 2             | Reserved    |                |                   |                      |                           |                |                             |                           |       |
| 3             | Reserved    |                |                   |                      |                           |                |                             |                           |       |
| Default:<br>0 | GPIO156     | PIO            |                   | VTR1                 | All PGS options           | No Gate        | Yes                         | Yes                       |       |
| 1             | LED0        | PIO            |                   |                      | All PGS options           | NA             |                             |                           |       |
| 2             | Reserved    |                |                   |                      |                           |                |                             |                           |       |
| 3             | Reserved    |                |                   |                      |                           |                |                             |                           |       |
| Default:      | GPIO157     | PIO            |                   | VTR1                 | All PGS options           | No Gate        | Yes                         | Yes                       |       |
| 1             | LED1        | PIO            |                   |                      | All PGS options           | NA             |                             |                           |       |
| 2             | Reserved    |                |                   |                      |                           |                |                             |                           |       |
| 3             | Reserved    |                |                   |                      |                           |                |                             |                           |       |
| Default:<br>0 | GPIO045     | PIO            |                   | VTR1                 | All PGS options           | No Gate        |                             | Yes                       |       |
| 1             | Reserved    |                |                   |                      |                           |                |                             |                           |       |
| 2             | PWM2_ALT    | PIO            |                   |                      | All PGS options           | NA             |                             |                           |       |
| 3             | ICT14       | I              |                   |                      | All PGS options           | Low            |                             |                           |       |
| Default:<br>0 | GPIO165     | PIO            |                   | VTR1                 | All PGS options           | No Gate        |                             | Yes                       |       |
| 1             | 32KHZ_IN    | PIO            |                   |                      | PGS=00<br>(only)          | Low            |                             |                           |       |
| 2             | Reserved    |                |                   |                      |                           |                |                             |                           |       |
| 3             | СТОИТО      | PIO            |                   |                      | All PGS options           | NA             |                             |                           |       |

TABLE 2-3: CEC1712 PIN MULTIPLEXING

| Mux<br>Value  | Signal Name | Buffer<br>Type | Drive<br>Strength | PAD<br>Power<br>Well | Emulated<br>Power<br>Well | Gated<br>State | OverVolt-<br>age<br>Protect | Back-<br>drive<br>Protect | Notes |
|---------------|-------------|----------------|-------------------|----------------------|---------------------------|----------------|-----------------------------|---------------------------|-------|
| Default:      | GPIO145     | PIO            |                   | VTR1                 | All PGS options           | No Gate        |                             | Yes                       |       |
| 1             | I2C09_SDA   | PIO            |                   |                      | All PGS options           | High           |                             |                           |       |
| 2             | UART2_RX    | I              |                   |                      | All PGS options           | Low            |                             |                           |       |
| 3             | Reserved    |                |                   |                      |                           |                |                             |                           |       |
| Default:<br>0 | GPIO146     | PIO            |                   | VTR1                 | All PGS options           | No Gate        |                             | Yes                       |       |
| 1             | I2C09_SCL   | PIO            |                   |                      | All PGS options           | High           |                             |                           |       |
| 2             | UART2_TX    | PIO            |                   |                      | All PGS options           | NA             |                             |                           |       |
| 3             | Reserved    |                |                   |                      |                           |                |                             |                           |       |
| Default:<br>0 | GPIO147     | PIO            |                   | VTR1                 | All PGS options           | No Gate        |                             | Yes                       |       |
| 1             | I2C15_SDA   | PIO            |                   |                      | All PGS options           | High           |                             |                           |       |
| 2             | Reserved    |                |                   |                      |                           |                |                             |                           |       |
| 3             | Reserved    |                |                   |                      |                           |                |                             |                           |       |
| Default:<br>0 | GPIO150     | PIO            |                   | VTR1                 | All PGS options           | No Gate        |                             | Yes                       |       |
| 1             | I2C15_SCL   | PIO            |                   |                      | All PGS options           | High           |                             |                           |       |
| 2             | Reserved    |                |                   |                      |                           |                |                             |                           |       |
| 3             | Reserved    |                |                   |                      |                           |                |                             |                           |       |
| Default:      | GPIO143     | PIO            |                   | VTR1                 | All PGS options           | No Gate        |                             | Yes                       |       |
| 1             | I2C04_SDA   | PIO            |                   |                      | All PGS options           | High           |                             |                           |       |
| 2             | UART0_CTS#  | I              |                   |                      | All PGS options           | High           |                             |                           |       |
| 3             | Reserved    |                |                   |                      |                           |                |                             |                           |       |
| Default:<br>0 | GPIO144     | PIO            |                   | VTR1                 | All PGS options           | No Gate        |                             | Yes                       |       |
| 1             | I2C04_SCL   | PIO            |                   |                      | All PGS options           | High           |                             |                           |       |
| 2             | UART0_RTS#  | PIO            |                   |                      | All PGS options           | NA             |                             |                           |       |
| 3             | Reserved    |                |                   |                      |                           |                |                             |                           |       |

TABLE 2-3: CEC1712 PIN MULTIPLEXING

| Mux<br>Value  | Signal Name | Buffer<br>Type | Drive<br>Strength | PAD<br>Power<br>Well | Emulated<br>Power<br>Well | Gated<br>State | OverVolt-<br>age<br>Protect | Back-<br>drive<br>Protect | Notes      |
|---------------|-------------|----------------|-------------------|----------------------|---------------------------|----------------|-----------------------------|---------------------------|------------|
| Default:<br>0 | GPIO004     | PIO            |                   | VTR1                 | All PGS options           | No Gate        |                             | Yes                       |            |
| 1             | 12C00_SCL   | PIO            |                   |                      | All PGS options           | High           |                             |                           |            |
| 2             | Reserved    |                |                   |                      |                           |                |                             |                           |            |
| 3             | Reserved    |                |                   |                      |                           |                |                             |                           |            |
| Default:<br>0 | GPIO003     | PIO            |                   | VTR1                 | All PGS options           | No Gate        |                             | Yes                       |            |
| 1             | I2C00_SDA   | PIO            |                   |                      | All PGS options           | High           |                             |                           |            |
| 2             | Reserved    |                |                   |                      |                           |                |                             |                           |            |
| 3             | Reserved    |                |                   |                      |                           |                |                             |                           |            |
| 0             | GPIO000     | PIO            |                   | VBAT                 | All PGS options           | No Gate        |                             | Yes                       |            |
| Default:<br>1 | VCI_IN3#    | ILLK           |                   |                      | PGS=00<br>(only)          | No Gate        |                             |                           | Note<br>14 |
| 2             | Reserved    |                |                   |                      |                           |                |                             |                           |            |
| 3             | Reserved    |                |                   |                      |                           |                |                             |                           |            |
| 0             | GPIO163     | PIO            |                   | VBAT                 | All PGS options           | No Gate        |                             | Yes                       |            |
| Default:<br>1 | VCI_IN0#    | ILLK           |                   |                      | PGS=00<br>(only)          | No Gate        |                             |                           | Note 5     |
| 2             | Reserved    |                |                   |                      |                           |                |                             |                           |            |
| 3             | Reserved    |                |                   |                      |                           |                |                             |                           |            |
| 0             | GPIO253     | PIO            |                   | VBAT                 | All PGS options           | No Gate        |                             | Yes                       |            |
| Default:<br>1 | BGPO0       | PIO            | O2ma-<br>Low      |                      | PGS=00<br>(only)          | NA             |                             |                           | Note<br>13 |
| 2             | Reserved    |                |                   |                      |                           |                |                             |                           |            |
| 3             | Reserved    |                |                   |                      |                           |                |                             |                           |            |
| 0             | GPIO250     | PIO            |                   | VBAT                 | All PGS options           | No Gate        |                             | Yes                       |            |
| Default:<br>1 | VCI_OUT     | PIO            | O2ma-<br>High     |                      | PGS=00<br>(only)          | NA             |                             |                           |            |
| 2             | Reserved    |                |                   |                      |                           |                |                             |                           |            |
| 3             | Reserved    |                |                   |                      |                           |                |                             |                           |            |
|               |             |                |                   |                      |                           |                |                             |                           |            |

## 2.5 Configurable Signal Routing

To accommodate the signal routing across packages, some Signals are routed to more than one GPIO. At any given time, only the <Signal> or <Signal>\_ALT can be selected. Both cannot be selected at the same time.

## 2.5.1 SIGNAL DESCRIPTION BY INTERFACE

TABLE 2-4: SIGNAL DESCRIPTION BY INTERFACE

| SIG_NAME  | Description                           | Notes                                                                                                                            |
|-----------|---------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|
|           | ADC                                   |                                                                                                                                  |
| ADCxx     | ADC channel input                     | Note 5 'xx' is the index of the ADC input. Refer Family features table to find the number of ADC inputs supported in the package |
|           | Miscellaneous                         |                                                                                                                                  |
|           | I2C/SMBus Controller                  |                                                                                                                                  |
| I2Cxx_SDA | I2C/SMBus Controller Port 0 Data      | Note 2 'xx' is the index of the I2C port. Refer Family features table to find the number of I2C ports supported in the package   |
| I2Cxx_SCL | I2C/SMBus Controller Port 0 Clock     | Note 2                                                                                                                           |
|           | GPIO                                  |                                                                                                                                  |
| GPIOx     | General Purpose Input Output Pins     |                                                                                                                                  |
|           | PCR Interface                         |                                                                                                                                  |
| 32KHZ_OUT | 32.768 KHz Digital Output             |                                                                                                                                  |
| 32KHZ_IN  | 32.768 KHz Digital Input              |                                                                                                                                  |
| nRESET_IN | External System Reset Input           |                                                                                                                                  |
|           | PECI                                  |                                                                                                                                  |
| PECI_DAT  | PECI Bus                              |                                                                                                                                  |
| VREF_VTT  | Processor Interface Voltage Reference |                                                                                                                                  |
| Qua       | ad Mode SPI Controller ports          |                                                                                                                                  |
| PVT_CS#   | Private SPI Chip Select               | SPI_CS0# of QMSPI Controller                                                                                                     |
| PVT_IO0   | Private SPI Data 0                    | SPI_IO0 of QMSPI Controller                                                                                                      |
| PVT_IO1   | Private SPI Data 1                    | SPI_IO1 of QMSPI Controller                                                                                                      |
| PVT_IO2   | Private SPI Data 2                    | SPI_IO2 of QMSPI Controller                                                                                                      |
| PVT_IO3   | Private SPI Data 3                    | SPI_IO3 of QMSPI Controller                                                                                                      |
| PVT_CLK   | Private SPI Clock                     | SPI_CLK of QMSPI Controller                                                                                                      |
| SHD_CS1#  | Shared SPI Chip Select1               | SPI_CS1# of QMSPI ControleIr                                                                                                     |
| SHD_CS0#  | Shared SPI Chip Select                | SPI_CS0# of QMSPI Controller                                                                                                     |
| SHD_IO0   | Shared SPI Data 0                     | SPI_IO0 of QMSPI Controller                                                                                                      |
| SHD_IO1   | Shared SPI Data 1                     | SPI_IO1 of QMSPI Controller                                                                                                      |
| SHD_IO2   | Shared SPI Data 2                     | SPI_IO2 of QMSPI Controller                                                                                                      |
| SHD_IO3   | Shared SPI Data 3                     | SPI_IO3 of QMSPI Controller                                                                                                      |
| SHD_CLK   | Shared SPI Clock                      | SPI_CLK of QMSPI Controller                                                                                                      |

TABLE 2-4: SIGNAL DESCRIPTION BY INTERFACE (CONTINUED)

| SIG_NAME   | Description                          | Notes                                                                                                                     |
|------------|--------------------------------------|---------------------------------------------------------------------------------------------------------------------------|
|            | FAN PWM and Tachometer               |                                                                                                                           |
| ICT0_TACH0 | Fan Tachometer Input 0               |                                                                                                                           |
| ICT1_TACH1 | Fan Tachometer Input 1               |                                                                                                                           |
| ICT2_TACH2 | Fan Tachometer Input 2               |                                                                                                                           |
| TACH3      | Fan Tachometer Input 3               |                                                                                                                           |
| PWMx       | Pulse Width Modulator Output         | 'x' is the index of the PWM output. Refer Family features table to find the number of PWM                                 |
|            |                                      | outputs supported in the package                                                                                          |
| ı          | nput Capture/Compare timer           |                                                                                                                           |
| ICTx       | Input capture timer input            | 'x' is the index of the PWM output. Refer Family features table to find the number of ICT inputs supported in the package |
| CTOUT0     | Compare timer 0 toggle output        |                                                                                                                           |
| CTOUT1     | Compare timer 1 toggle output        |                                                                                                                           |
|            | Serial ports                         |                                                                                                                           |
| UART_CLK   | UART Baud Clock Input                |                                                                                                                           |
| UART0_RX   | UART Receive Data (RXD)              |                                                                                                                           |
| UART0_TX   | UART Transmit Data (TXD)             |                                                                                                                           |
| UART0_CTS# | Clear to Send Input                  |                                                                                                                           |
| UART0_RTS# | Request to Send Output               |                                                                                                                           |
| UART0_RI#  | Ring Indicator Input                 |                                                                                                                           |
| UART0_DCD# | Data Carrier Detect Input            |                                                                                                                           |
| UART0_DSR# | Data Set Ready Input                 |                                                                                                                           |
| UART0_DTR# | Data Terminal Ready Output           |                                                                                                                           |
|            | JTAG                                 |                                                                                                                           |
| JTAG_RST#  | JTAG test active low reset           | Note 11,12                                                                                                                |
| JTAG_TDI   | JTAG test data in                    | Note 11,12                                                                                                                |
| JTAG_TDO   | JTAG test data out                   | Note 11,12                                                                                                                |
| JTAG_CLK   | JTAG test clk; SWDCLK                | Note 11,12                                                                                                                |
| JTAG_TMS   | JTAG test mode select; SWDIO         | Note 11,12                                                                                                                |
| TFDP_DATA  | Trace FIFO debug port - data         |                                                                                                                           |
| TFDP_CLK   | Trace FIFO debug port - clock        |                                                                                                                           |
| TRACECLK   | ARM Embedded Trace Macro Clock       | Trace Port is enabled by setting TRACE_EN bit of ETM Trace enable register in EC Register Bank                            |
| TRACEDATA0 | ARM Embedded Trace Macro Data 0      |                                                                                                                           |
| TRACEDATA1 | ARM Embedded Trace Macro Data 1      |                                                                                                                           |
| TRACEDATA2 | ARM Embedded Trace Macro Data 2      |                                                                                                                           |
| TRACEDATA3 | ARM Embedded Trace Macro Data 3      |                                                                                                                           |
|            | Power pins                           |                                                                                                                           |
| VREF_ADC   | ADC Reference Voltage                |                                                                                                                           |
| VSS_ADC    | Analog ADC supply associated ground  |                                                                                                                           |
| VBAT       | VBAT supply                          |                                                                                                                           |
| VR_CAP     | Internal Voltage Regulator Capacitor | Note 1                                                                                                                    |

TABLE 2-4: SIGNAL DESCRIPTION BY INTERFACE (CONTINUED)

| SIG_NAME | Description                 | Notes |
|----------|-----------------------------|-------|
| VSS      | VTR associated ground       |       |
| VSS_VBAT | VBAT associated ground      |       |
| VTR1     | VTR Suspend Power Supply    |       |
| VTR2     | Peripheral Power Supply     |       |
| VTR_PLL  | PLL power supply            |       |
| VTR_REG  | Main Regulator Power supply |       |

#### 2.5.2 STRAPPING OPTIONS

GPIO170 is used for the TAP Controller select strap. If any of the JTAG TAP controllers are used, GPIO170 must only be configured as an output to a VTRx powered external function. GPIO170 may only be configured as an input when the JTAG TAP controllers are not needed or when an external driver does not violate the Slave Select Timing.See Section 32.2.1, "TAP Controller Select Strap Option".

TABLE 2-5: STRAP PINS

| Pin Name | Strap Name | Strap Define and Value                                                                                                                                       | I/O Power<br>Rail |
|----------|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| GPIO170  | JTAG_STRAP | 1= Boundary Scan The JTAG Port is used to access the Boundary scan TAP controller 0= Normal Operation The JTAG port is used to access the ARM TAP Controller | VTR1              |
| GPIO104  | VTR2_STRAP | Voltage Level strap is used to determine if the Shared Flash interface must be configured for 3.3V or 1.8V operation 1= 3.3V Operation 0= 1.8V Operation     | VTR1              |

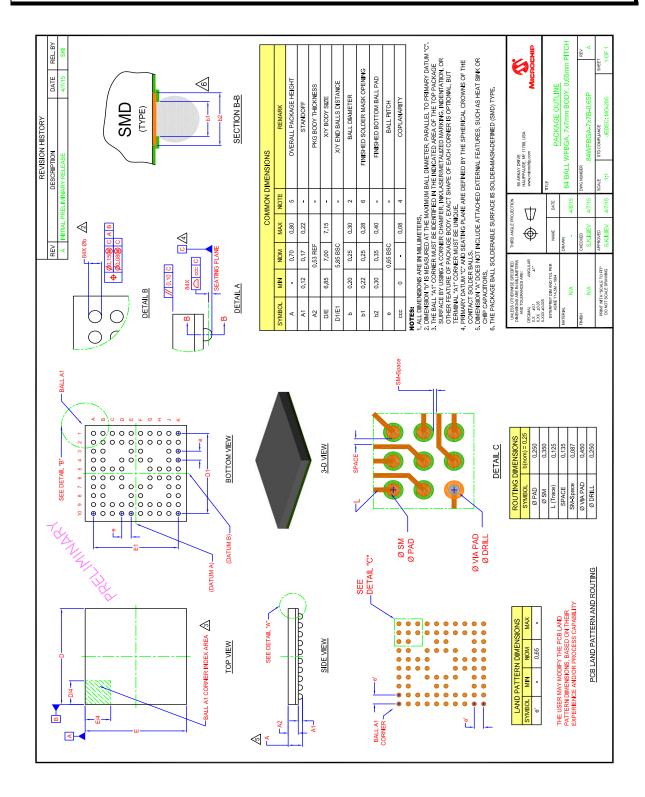
## 2.6 Pin Default State Through Power Transitions

The power state and power state transitions illustrated in the following tables are defined in Section 4.0, "Power, Clocks, and Resets". Pin behavior in this table assumes no specific programming to change the pin state. All GPIO default pins that have the same behavior are described in the table generically as GPIOXXX.

TABLE 2-6: PIN DEFAULT STATE THROUGH POWER TRANSITIONS

| Signal    | VBAT<br>Applied | VBAT<br>Stable | VTR<br>Applied | RESET_<br>SYS<br>De-<br>asserted | RESET_<br>SYS<br>Asserted | VTR<br>Un-<br>powered | VBAT<br>Un-<br>powered | Note      |
|-----------|-----------------|----------------|----------------|----------------------------------|---------------------------|-----------------------|------------------------|-----------|
| GPIO170   | un-<br>powered  | un-<br>powered | High           | ln                               | Z                         | glitch                | un-<br>powered         |           |
| GPIOXXX   | un-<br>powered  | un-<br>powered | Z              | Z                                | Z                         | glitch                | un-<br>powered         | Note<br>D |
| nRESET_IN | un-<br>powered  | un-<br>powered | Low            | ln                               | Z                         | glitch                | un-<br>powered         |           |
| BGPOx     | Out=0           | Out=0          | Retain         | Retain                           | Retain                    | Retain                | un-<br>powered         | Note<br>B |
| VCI_INx#  | ln              | ln             | ln             | ln                               | ln                        | ln                    | un-<br>powered         |           |

TABLE 2-6: PIN DEFAULT STATE THROUGH POWER TRANSITIONS


| Signal  | VBAT<br>Applied | VBAT<br>Stable | VTR<br>Applied | RESET_<br>SYS<br>De-<br>asserted | RESET_<br>SYS<br>Asserted | VTR<br>Un-<br>powered | VBAT<br>Un-<br>powered | Note      |
|---------|-----------------|----------------|----------------|----------------------------------|---------------------------|-----------------------|------------------------|-----------|
| VCI_OUT | Out<br>logic    | Out<br>logic   | Out<br>logic   | Out<br>logic                     | Out<br>logic              | Out<br>logic          | un-<br>powered         | Note<br>C |
| XTAL1   | Crystal<br>In   | Crystal<br>In  | Crystal<br>In  | Crystal<br>In                    | Crystal<br>In             | Crystal<br>In         | Crystal<br>In          |           |
| XTAL2   | Crystal<br>Out  | Crystal<br>Out | Crystal<br>Out | Crystal<br>Out                   | Crystal<br>Out            | Crystal<br>Out        | Crystal<br>Out         |           |

| Legend (P) = I/O state is driven by protocol while power is applied. | Notes<br>Note D: | Does not include GPIO170                                                       |
|----------------------------------------------------------------------|------------------|--------------------------------------------------------------------------------|
| Z = Tristate<br>In = Input                                           | Note B:          | Pin is programmable by the EC and retains its value through a VTR power cycle. |
|                                                                      |                  |                                                                                |

## 2.7 Package Information

## 2.7.1 84 PIN WFBGA/SX1 PACKAGE

**Note:** For the most current package drawings, see the Microchip Packaging Specification at <a href="http://www.microchip.com/packaging">http://www.microchip.com/packaging</a>.



## 3.0 DEVICE INVENTORY

## 3.1 Conventions

| Term     | Definition                                                                                                                                                                 |
|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Block    | Used to identify or describe the logic or IP Blocks implemented in the device.                                                                                             |
| Reserved | Reserved registers and bits defined in the following table are read only values that return 0 when read. Writes to these reserved registers have no effect.                |
| TEST     | Microchip Reserved locations which should not be modified from their default value. Changing a TEST register or a TEST field within a register may cause unwanted results. |
| b        | The letter 'b' following a number denotes a binary number.                                                                                                                 |
| h        | The letter 'h' following a number denotes a hexadecimal number.                                                                                                            |

Register access notation is in the form "Read / Write". A Read term without a Write term means that the bit is read-only and writing has no effect. A Write term without a Read term means that the bit is write-only, and assumes that reading returns all zeros.

| Register Field<br>Type | Field Description                                                                   |
|------------------------|-------------------------------------------------------------------------------------|
| R                      | Read: A register or bit with this attribute can be read.                            |
| W                      | Write: A register or bit with this attribute can be written.                        |
| RS                     | Read to Set: This bit is set on read.                                               |
| RC                     | Read to Clear: Content is cleared after the read. Writes have no effect.            |
| WC or W1C              | Write One to Clear: writing a one clears the value. Writing a zero has no effect.   |
| WZC                    | Write Zero to Clear: writing a zero clears the value. Writing a one has no effect.  |
| WS or W1S              | Write One to Set: writing a one sets the value to 1. Writing a zero has no effect.  |
| WZS                    | Write Zero to Set: writing a zero sets the value to 1. Writing a one has no effect. |

## 3.2 Block Overview and Base Addresses

Table 3-1, "Base address" lists all the IP components, referred to as Blocks, implemented in the design. The registers implemented in each block are accessible by the embedded controller (EC) at an offset from the Base Address shown in Table 3-1, "Base address". The registers can also be accessed by various hosts in the system as below

- 1. I2C: I2C host access is handled by firmware
- 2. JTAG: JTAG port has access to all the registers defined in Table 3-1, "Base address".

TABLE 3-1: BASE ADDRESS

| Feature                        | Instance | Logical Device Number | Base Address |
|--------------------------------|----------|-----------------------|--------------|
|                                |          |                       |              |
| Watchdog Timer                 |          |                       | 4000_0400h   |
| 16-bit Basic Timer             | 0        |                       | 4000_0C00h   |
| 16-bit Basic Timer             | 1        |                       | 4000_0C20h   |
| 32-bit Basic Timer             | 0        |                       | 4000_0C80h   |
| 32-bit Basic Timer             | 1        |                       | 4000_0CA0h   |
| Capture-Compare Timers         |          |                       | 4000_1000h   |
| DMA Controller                 |          |                       | 4000_2400h   |
| SMB-I2C Controller             | 0        |                       | 4000_4000h   |
| SMB-I2C Controller             | 1        |                       | 4000_4400h   |
| SMB-I2C Controller             | 2        |                       | 4000_4800h   |
| SMB-I2C Controller             | 3        |                       | 4000_4C00h   |
| SMB-I2C Controller             | 4        |                       | 4000_5000h   |
| I2C Controller                 | 5        |                       | 4000_5100h   |
| I2C Controller                 | 6        |                       | 4000_5200h   |
| I2C Controller                 | 7        |                       | 4000_5300h   |
| Quad Master SPI                |          |                       | 4007_0000h   |
| 16-bit PWM                     | 0        |                       | 4000_5800h   |
| 16-bit PWM                     | 2        |                       | 4000_5820h   |
| 16-bit PWM                     | 3        |                       | 4000_5830h   |
| 16-bit PWM                     | 5        |                       | 4000_5850h   |
| 16-bit PWM                     | 6        |                       | 4000_5860h   |
| 16-bit PWM                     | 7        |                       | 4000_5870h   |
| 16-bit Tach                    | 0        |                       | 4000_6000h   |
| 16-bit Tach                    | 1        |                       | 4000_6010h   |
| RTOS Timer                     |          |                       | 4000_7400h   |
| ADC                            |          |                       | 4000_7C00h   |
| Trace FIFO                     |          |                       | 4000_8C00h   |
| Hibernation Timer              | 0        |                       | 4000_9800h   |
| Hibernation Timer              | 1        |                       | 4000_9820h   |
| VBAT Register Bank             |          |                       | 4000_A400h   |
| VBAT Powered RAM               |          |                       | 4000_A800h   |
| Week Timer                     |          |                       | 4000_AC80h   |
| VBAT-Powered Control Interface |          |                       | 4000_AE00h   |
| Blinking-Breathing LED         | 0        |                       | 4000_B800h   |
| Blinking-Breathing LED         | 1        |                       | 4000_B900h   |
| Interrupt Aggregator           |          |                       | 4000_E000h   |

TABLE 3-1: BASE ADDRESS

| Feature                  | Instance | Logical Device Number | Base Address |
|--------------------------|----------|-----------------------|--------------|
| EC Subsystem Registers   |          |                       | 4000_FC00h   |
| JTAG                     |          |                       | 4008_0000h   |
| Power, Clocks and Resets |          |                       | 4008_0100h   |
| GPIOs                    |          |                       | 4008_1000h   |
| UART                     | 0        | 9h                    | 400F_2400h   |
| UART                     | 1        | Ah                    | 400F_2800h   |
| UART                     | 2        | Bh                    | 400F_2C00h   |
| Real Time Clock          |          | 14h                   | 400F_5000h   |
| Global Configuration     |          | 3Fh                   | 400F_FF00h   |

## 3.3 Sleep Enable Register Assignments

TABLE 3-2: SLEEP ALLOCATION

| Block                | Instance | Bit<br>Position | Sleep Enable<br>Register | Clock Required<br>Register | Reset Enable<br>Register |
|----------------------|----------|-----------------|--------------------------|----------------------------|--------------------------|
| ITA O OTA D          |          | 0               | NIA.                     | 0                          | N/A                      |
| JTAG STAP            |          | 0               | NA                       | Clock Required 0           | NA                       |
| Interrupt<br>        |          | 0               | Sleep Enable 1           | Clock Required 1           | Reset Enable 1           |
| Tach                 | 0        | 2               | Sleep Enable 1           | Clock Required 1           | Reset Enable 1           |
| PWM                  | 0        | 4               | Sleep Enable 1           | Clock Required 1           | Reset Enable 1           |
| DMA                  |          | 6               | Sleep Enable 1           | Clock Required 1           | Reset Enable 1           |
| TFDP                 |          | 7               | Sleep Enable 1           | Clock Required 1           | Reset Enable 1           |
| PROCESSOR            |          | 8               | Sleep Enable 1           | Clock Required 1           | NA                       |
| WDT                  |          | 9               | NA                       | Clock Required 1           | Reset Enable 1           |
| SMB                  | 0        | 10              | Sleep Enable 1           | Clock Required 1           | Reset Enable 1           |
| Tach                 | 1        | 11              | Sleep Enable 1           | Clock Required 1           | Reset Enable 1           |
| PWM                  | 2        | 21              | Sleep Enable 1           | Clock Required 1           | Reset Enable 1           |
| PWM                  | 3        | 22              | Sleep Enable 1           | Clock Required 1           | Reset Enable 1           |
| PWM                  | 5        | 24              | Sleep Enable 1           | Clock Required 1           | Reset Enable 1           |
| PWM                  | 6        | 25              | Sleep Enable 1           | Clock Required 1           | Reset Enable 1           |
| PWM                  | 7        | 26              | Sleep Enable 1           | Clock Required 1           | Reset Enable 1           |
| EC Register Bank     |          | 29              | Sleep Enable 1           | Clock Required 1           | NA                       |
| Basic Timer 16       | 0        | 30              | Sleep Enable 1           | Clock Required 1           | Reset Enable 1           |
| Basic Timer 16       | 1        | 31              | Sleep Enable 1           | Clock Required 1           | Reset Enable 1           |
| UART                 | 0        | 1               | Sleep Enable 2           | Clock Required 2           | Reset Enable 2           |
| UART                 | 1        | 2               | Sleep Enable 2           | Clock Required 2           | Reset Enable 2           |
| Global Configuration |          | 12              | NA                       | Clock Required 2           | NA                       |
| RTC                  |          | 18              | NA                       | Clock Required 2           | NA                       |
| ADC                  |          | 3               | Sleep Enable 3           | Clock Required 3           | Reset Enable 3           |
| Hibernation Timer    | 0        | 10              | Sleep Enable 3           | Clock Required 3           | Reset Enable 3           |
| SMB                  | 1        | 13              | Sleep Enable 3           | Clock Required 3           | Reset Enable 3           |
| SMB                  | 2        | 14              | Sleep Enable 3           | Clock Required 3           | Reset Enable 3           |
| SMB                  | 3        | 15              | Sleep Enable 3           | Clock Required 3           | Reset Enable 3           |
| LED                  | 0        | 16              | Sleep Enable 3           | Clock Required 3           | Reset Enable 3           |
| LED                  | 1        | 17              | Sleep Enable 3           | Clock Required 3           | Reset Enable 3           |
| SMB                  | 4        | 20              | Sleep Enable 3           | Clock Required 3           | Reset Enable 3           |
| Basic Timer 32       | 0        | 23              | Sleep Enable 3           | Clock Required 3           | Reset Enable 3           |
| Basic Timer 32       | 1        | 24              | Sleep Enable 3           | Clock Required 3           | Reset Enable 3           |
| Hibernation Timer    | 1        | 29              | Sleep Enable 3           | Clock Required 3           | Reset Enable 3           |
| CCT                  | 0        | 30              | Sleep Enable 3           | Clock Required 3           | Reset Enable 3           |
| RTOS Timer           |          | 6               | NA NA                    | Clock Required 4           | Reset Enable 4           |
| Quad SPI Master      |          | 8               | Sleep Enable 4           | Clock Required 4           | Reset Enable 4           |
| I2C                  | 5        | 10              | Sleep Enable 4           | Clock Required 4           | Reset Enable 4           |
| I2C                  | 6        | 11              | Sleep Enable 4           | Clock Required 4           | Reset Enable 4           |
| I2C                  | 7        | 12              | Sleep Enable 4           | Clock Required 4           | Reset Enable 4           |

## 3.4 Interrupt Aggregator Bit Assignments

TABLE 3-3: GIRQ\_MAPPING

| Agg IRQ | Agg<br>Bits | HWB<br>Instance<br>Name | Interrupt Event | Wake<br>event | Source description   | Agg<br>NVIC | Direct<br>NVIC |
|---------|-------------|-------------------------|-----------------|---------------|----------------------|-------------|----------------|
| GIRQ8   | 0           | GPIO140                 | GPIO Event      | Yes           | GPIO Interrupt Event | 0           | N/A            |
|         | 1-2         | Reserved                |                 |               |                      |             |                |
|         | 3           | GPIO143                 | GPIO Event      | Yes           | GPIO Interrupt Event |             |                |
|         | 4           | GPIO144                 | GPIO Event      | Yes           | GPIO Interrupt Event |             |                |
|         | 5           | GPIO145                 | GPIO Event      | Yes           | GPIO Interrupt Event |             |                |
|         | 6           | GPIO146                 | GPIO Event      | Yes           | GPIO Interrupt Event |             |                |
|         | 7           | GPIO147                 | GPIO Event      | Yes           | GPIO Interrupt Event |             |                |
|         | 8           | GPIO150                 | GPIO Event      | Yes           | GPIO Interrupt Event |             |                |
|         | 9-13        | Reserved                |                 |               |                      |             |                |
|         | 14          | GPIO156                 | GPIO Event      | Yes           | GPIO Interrupt Event |             |                |
|         | 15          | GPIO157                 | GPIO Event      | Yes           | GPIO Interrupt Event |             |                |
|         | 16          | Reserved                |                 |               |                      |             |                |
|         | 17          | GPIO161                 | GPIO Event      | Yes           | GPIO Interrupt Event |             |                |
|         | 18          | Reserved                |                 |               |                      |             |                |
|         | 19          | GPIO163                 | GPIO Event      | Yes           | GPIO Interrupt Event |             |                |
|         | 20          | Reserved                |                 |               |                      |             |                |
|         | 21          | GPIO165                 | GPIO Event      | Yes           | GPIO Interrupt Event |             |                |
|         | 22-<br>23   | Reserved                |                 |               |                      |             |                |
|         | 24          | GPIO170                 | GPIO Event      | Yes           | GPIO Interrupt Event |             |                |
|         | 25          | GPIO171                 | GPIO Event      | Yes           | GPIO Interrupt Event |             |                |
|         | 25          | Reserved                |                 |               |                      |             |                |
|         | 26          | GPIO172                 | GPIO Event      | Yes           | GPIO Interrupt Event |             |                |
|         | 27-<br>28   | Reserved                |                 |               |                      |             |                |
|         | 29          | GPIO175                 | GPIO Event      | Yes           | GPIO Interrupt Event |             |                |
|         | 30-<br>31   | Reserved                |                 |               |                      |             |                |
| GIRQ9   | 0-3         | Reserved                |                 |               |                      | 1           | N/A            |
|         | 4           | GPIO104                 | GPIO Event      | Yes           | GPIO Interrupt Event |             |                |
|         | 5           | GPIO105                 | GPIO Event      | Yes           | GPIO Interrupt Event |             |                |
|         | 6           | GPIO106                 | GPIO Event      | Yes           | GPIO Interrupt Event |             |                |
|         | 7           | GPIO107                 | GPIO Event      | Yes           | GPIO Interrupt Event |             |                |
|         | 8-9         | Reserved                |                 |               |                      |             |                |
|         | 10          | GPIO112                 | GPIO Event      | Yes           | GPIO Interrupt Event |             |                |
|         | 11-15       | Reserved                |                 |               |                      |             |                |
|         | 16          | GPIO120                 | GPIO Event      | Yes           | GPIO Interrupt Event |             |                |
|         | 17          | GPIO121                 | GPIO Event      | Yes           | GPIO Interrupt Event |             |                |
|         | 18          | GPIO122                 | GPIO Event      | Yes           | GPIO Interrupt Event |             |                |
|         | 19          | GPIO123                 | GPIO Event      | Yes           | GPIO Interrupt Event |             |                |

## **CEC1712**

TABLE 3-3: GIRQ\_MAPPING

|         | Λαα         | HWB              |                 | Wake  |                      | Agg  | Direct |
|---------|-------------|------------------|-----------------|-------|----------------------|------|--------|
| Agg IRQ | Agg<br>Bits | Instance<br>Name | Interrupt Event | event | Source description   | NVIC | NVIC   |
|         | 20          | GPIO124          | GPIO Event      | Yes   | GPIO Interrupt Event |      |        |
|         | 20          | Reserved         |                 |       |                      |      |        |
|         | 21          | GPIO125          | GPIO Event      | Yes   | GPIO Interrupt Event |      |        |
|         | 22          | GPIO126          | GPIO Event      | Yes   | GPIO Interrupt Event |      |        |
|         | 23          | GPIO127          | GPIO Event      | Yes   | GPIO Interrupt Event |      |        |
|         | 24          | GPIO130          | GPIO Event      | Yes   | GPIO Interrupt Event |      |        |
|         | 25          | GPIO131          | GPIO Event      | Yes   | GPIO Interrupt Event |      |        |
|         | 26          | GPIO132          | GPIO Event      | Yes   | GPIO Interrupt Event |      |        |
|         | 27-<br>31   | Reserved         |                 |       |                      |      |        |
| GIRQ10  | 0-4         | Reserved         |                 |       |                      | 2    | N/A    |
|         | 5           | GPIO045          | GPIO Event      | Yes   | GPIO Interrupt Event |      |        |
|         | 6           | GPIO046          | GPIO Event      | Yes   | GPIO Interrupt Event |      |        |
|         | 7           | GPIO047          | GPIO Event      | Yes   | GPIO Interrupt Event |      |        |
|         | 8           | GPIO050          | GPIO Event      | Yes   | GPIO Interrupt Event |      |        |
|         | 9           | GPIO051          | GPIO Event      | Yes   | GPIO Interrupt Event |      |        |
|         | 10          | Reserved         |                 |       |                      |      |        |
|         | 11          | GPIO053          | GPIO Event      | Yes   | GPIO Interrupt Event |      |        |
|         | 12          | Reserved         |                 |       |                      |      |        |
|         | 13          | GPIO055          | GPIO Event      | Yes   | GPIO Interrupt Event |      |        |
|         | 14          | GPIO056          | GPIO Event      | Yes   | GPIO Interrupt Event |      |        |
|         | 15          | GPIO057          | GPIO Event      | Yes   | GPIO Interrupt Event |      |        |
|         | 16-<br>18   | Reserved         |                 |       |                      |      |        |
|         | 19          | GPIO063          | GPIO Event      | Yes   | GPIO Interrupt Event |      |        |
|         | 20-<br>23   | Reserved         |                 |       |                      |      |        |
|         | 24          | GPIO070          | GPIO Event      | Yes   | GPIO Interrupt Event |      |        |
|         | 25          | GPIO071          | GPIO Event      | Yes   | GPIO Interrupt Event |      |        |
|         | 26-<br>31   | Reserved         |                 |       |                      |      |        |
| GIRQ11  | 0           | GPIO000          | GPIO Event      | Yes   | GPIO Interrupt Event | 3    | N/A    |
|         | 1           | Reserved         |                 |       |                      |      |        |
|         | 2           | GPIO002          | GPIO Event      | Yes   | GPIO Interrupt Event |      |        |
|         | 3           | GPIO003          | GPIO Event      | Yes   | GPIO Interrupt Event |      |        |
|         | 4           | GPIO004          | GPIO Event      | Yes   | GPIO Interrupt Event |      |        |
|         | 5-9         | Reserved         |                 |       |                      |      |        |
|         | 10          | GPIO012          | GPIO Event      | Yes   | GPIO Interrupt Event |      |        |
|         | 11          | GPIO013          | GPIO Event      | Yes   | GPIO Interrupt Event |      |        |
|         | 12          | Reserved         |                 | 1     | ·                    |      |        |
|         | 13          | GPIO015          | GPIO Event      | Yes   | GPIO Interrupt Event |      |        |
|         | 14          | GPIO016          | GPIO Event      | Yes   | GPIO Interrupt Event |      |        |
|         | 15-<br>17   | Reserved         |                 |       | ·                    |      |        |

TABLE 3-3: GIRQ\_MAPPING

| IABLE 3-3: |             | GIRQ_WAPPING            |                 |               |                                               |             |                |  |  |
|------------|-------------|-------------------------|-----------------|---------------|-----------------------------------------------|-------------|----------------|--|--|
| Agg IRQ    | Agg<br>Bits | HWB<br>Instance<br>Name | Interrupt Event | Wake<br>event | Source description                            | Agg<br>NVIC | Direct<br>NVIC |  |  |
|            | 16          | GPIO020                 | GPIO Event      | Yes           | GPIO Interrupt Event                          |             |                |  |  |
|            | 17          | GPIO021                 | GPIO Event      | Yes           | GPIO Interrupt Event                          |             |                |  |  |
|            | 18-<br>21   | Reserved                |                 |               |                                               |             |                |  |  |
|            | 22          | GPIO026                 | GPIO Event      | Yes           | GPIO Interrupt Event                          |             |                |  |  |
|            | 23          | GPIO027                 | GPIO Event      | Yes           | GPIO Interrupt Event                          |             |                |  |  |
|            | 24          | GPIO030                 | GPIO Event      | Yes           | GPIO Interrupt Event                          |             |                |  |  |
|            | 25          | Reserved                |                 |               |                                               |             |                |  |  |
|            | 26          | GPIO032                 | GPIO Event      | Yes           | GPIO Interrupt Event                          |             |                |  |  |
|            | 27          | Reserved                |                 |               |                                               |             |                |  |  |
|            | 28          | GPIO034                 | GPIO Event      | Yes           | GPIO Interrupt Event                          |             |                |  |  |
|            | 29-<br>31   | Reserved                |                 |               |                                               |             |                |  |  |
| GIRQ12     | 0           | GPIO200                 | GPIO Event      | Yes           | GPIO Interrupt Event                          | 4           | N/A            |  |  |
|            | 1           | GPIO201                 | GPIO Event      | Yes           | GPIO Interrupt Event                          |             |                |  |  |
|            | 2           | GPIO202                 | GPIO Event      | Yes           | GPIO Interrupt Event                          |             |                |  |  |
|            | 3           | GPIO203                 | GPIO Event      | Yes           | GPIO Interrupt Event                          |             |                |  |  |
|            | 4           | GPIO204                 | GPIO Event      | Yes           | GPIO Interrupt Event                          |             |                |  |  |
|            | 5-18        | Reserved                |                 |               |                                               |             |                |  |  |
|            | 19          | GPIO223                 | GPIO Event      | Yes           | GPIO Interrupt Event                          |             |                |  |  |
|            | 20          | GPIO224                 | GPIO Event      | Yes           | GPIO Interrupt Event                          |             |                |  |  |
|            | 21-<br>22   | Reserved                |                 |               |                                               |             |                |  |  |
|            | 23          | GPIO227                 | GPIO Event      | Yes           | GPIO Interrupt Event                          |             |                |  |  |
|            | 24-<br>31   | Reserved                |                 |               |                                               |             |                |  |  |
| GIRQ13     | 0           | SMB-I2C<br>Controller0  | SMB-I2C         | No            | SMB-I2C Controller 0 Interrupt<br>Event       | 5           | 20             |  |  |
|            | 1           | SMB-I2C<br>Controller1  | SMB-I2C         | No            | SMB-I2C Controller 1 Interrupt<br>Event       |             | 21             |  |  |
|            | 2           | SMB-I2C<br>Controller2  | SMB-I2C         | No            | SMB-I2C Controller 2 Interrupt<br>Event       |             | 22             |  |  |
|            | 3           | SMB-I2C<br>Controller3  | SMB-I2C         | No            | SMB-I2C Controller 3 Interrupt<br>Event       |             | 23             |  |  |
|            | 4           | SMB-I2C<br>Controller4  | SMB-I2C         | No            | SMB-I2C Controller 4 Interrupt<br>Event       |             | 158            |  |  |
|            | 5           | I2C Control-<br>ler5    | I2C             | No            | Slave I2C Controller 5 Inter-<br>rupt Event   |             | 168            |  |  |
|            | 6           | I2C Control-<br>ler6    | I2C             | No            | Slave I2C Controller 6 Inter-<br>rupt Event   |             | 169            |  |  |
|            | 7           | I2C Control-<br>ler7    | I2C             | No            | Slave I2C Controller 7 Inter-<br>rupt Event   |             | 170            |  |  |
|            | 8-31        | Reserved                |                 |               |                                               |             |                |  |  |
| GIRQ14     | 0           | DMA Control-<br>ler     | DMA0            | No            | DMA Controller - Channel 0<br>Interrupt Event | 6           | 24             |  |  |

TABLE 3-3: GIRQ\_MAPPING

| Agg IRQ | Agg<br>Bits | HWB<br>Instance<br>Name | Interrupt Event | Wake<br>event | Source description                                  | Agg<br>NVIC | Direct<br>NVIC |
|---------|-------------|-------------------------|-----------------|---------------|-----------------------------------------------------|-------------|----------------|
|         | 1           | DMA Control-<br>ler     | DMA1            | No            | DMA Controller - Channel 1<br>Interrupt Event       |             | 25             |
|         | 2           | DMA Control-<br>ler     | DMA2            | No            | DMA Controller - Channel 2<br>Interrupt Event       |             | 26             |
|         | 3           | DMA Control-<br>ler     | DMA3            | No            | DMA Controller - Channel 3<br>Interrupt Event       |             | 27             |
|         | 4           | DMA Control-<br>ler     | DMA4            | No            | DMA Controller - Channel 4<br>Interrupt Event       |             | 28             |
|         | 5           | DMA Control-<br>ler     | DMA5            | No            | DMA Controller - Channel 5<br>Interrupt Event       |             | 29             |
|         | 6           | DMA Control-<br>ler     | DMA6            | No            | DMA Controller - Channel 6<br>Interrupt Event       |             | 30             |
|         | 7           | DMA Control-<br>ler     | DMA7            | No            | DMA Controller - Channel 7<br>Interrupt Event       |             | 31             |
|         | 8           | DMA Control-<br>ler     | DMA8            | No            | DMA Controller - Channel 8<br>Interrupt Event       |             | 32             |
|         | 9           | DMA Control-<br>ler     | DMA9            | No            | DMA Controller - Channel 9<br>Interrupt Event       |             | 33             |
|         | 10          | DMA Control-<br>ler     | DMA10           | No            | DMA Controller - Channel 10<br>Interrupt Event      |             | 34             |
|         | 11          | DMA Control-<br>ler     | DMA11           | No            | DMA Controller - Channel 11<br>Interrupt Event      |             | 35             |
|         | 12-<br>31   | Reserved                |                 |               |                                                     |             |                |
| GIRQ15  | 0           | UART 0                  | UART            | No            | UART Interrupt Event                                | 7           | 40             |
|         | 1           | UART 1                  | UART            | No            | UART Interrupt Event                                |             | 41             |
|         | 2-4         | Reserved                |                 |               |                                                     |             | 42             |
|         | 4           | UART2                   | UART            | No            | UART Interrupt Event                                |             | 44             |
|         | 5-31        | Reserved                |                 |               |                                                     |             | 45             |
| GIRQ17  | 0           | Reserved                |                 |               |                                                     |             | 70             |
|         | 1           | TACH 0                  | TACH            | No            | Tachometer 0 Interrupt Event                        |             | 71             |
|         | 2           | TACH 1                  | TACH            | No            | Tachometer 1 Interrupt Event                        |             | 72             |
|         | 3-7         | Reserved                |                 |               |                                                     |             |                |
|         | 8           | ADC Control-<br>ler     | ADC_Single_Int  | No            | ADC Controller - Single-Sample ADC Conversion Event |             | 78             |
|         | 9           | ADC Control-<br>ler     | ADC_Repeat_Int  | No            | ADC Controller - Repeat-Sample ADC Conversion Event |             | 79             |
|         | 10-<br>12   | Reserved                |                 |               |                                                     |             |                |
|         | 13          | Breathing<br>LED 0      | PWM_WDT         | No            | Blinking LED 0 Watchdog<br>Event                    |             | 83             |
|         | 14          | Breathing<br>LED 1      | PWM_WDT         | No            | Blinking LED 1 Watchdog<br>Event                    |             | 84             |
|         | 15-<br>31   | Reserved                |                 |               |                                                     |             |                |
| GIRQ18  | 0           | Reserved                |                 |               |                                                     | 10          |                |

TABLE 3-3: GIRQ\_MAPPING

| IADLL 3 | <del></del> | GINQ_WAFFI                             | 10                      |               |                                             |             |     |
|---------|-------------|----------------------------------------|-------------------------|---------------|---------------------------------------------|-------------|-----|
| Agg IRQ | Agg<br>Bits |                                        |                         | Wake<br>event | Source description                          | Agg<br>NVIC |     |
|         | 1           | Quad Master<br>SPI Controller          | QMSPI_INT               | No            | Master SPI Controller<br>Requires Servicing |             | 91  |
|         | 2-19        | Reserved                               |                         |               |                                             |             |     |
|         | 20          | Capture Compare Timer                  | CAPTURE TIMER           | No            | CCT Counter Event                           |             | 146 |
|         | 21          | Capture Compare Timer                  | CAPTURE 0               | No            | CCT Capture 0 Event                         |             | 147 |
|         | 22          | Capture Compare Timer                  | CAPTURE 1               | No            | CCT Capture 1 Event                         |             | 148 |
|         | 23          | Capture Compare Timer                  | CAPTURE 2               | No            | CCT Capture 2 Event                         |             | 149 |
|         | 24          | Capture Compare Timer                  | CAPTURE 3               | No            | CCT Capture 3 Event                         |             | 150 |
|         | 25          | Capture Compare Timer                  | CAPTURE 4               | No            | CCT Capture 4 Event                         |             | 151 |
|         | 26          | Capture Compare Timer                  | CAPTURE 5               | No            | CCT Capture 5 Event                         |             | 152 |
|         | 27          | Capture Compare Timer                  | COMPARE 0               | No            | CCT Compare 0 Event                         |             | 153 |
|         | 28          | Capture Compare Timer                  | COMPARE 1               | No            | CCT Compare 1 Event                         |             | 154 |
|         | 29-<br>31   | Reserved                               |                         |               |                                             |             |     |
| GIRQ19  |             | Reserved                               |                         |               |                                             | 11          | 103 |
| GIRQ20  | 0-2         | Reserved                               |                         |               |                                             |             |     |
|         | 3           | OTP                                    | READY_INTR              | No            | OTP ready interrupt                         |             | 173 |
|         | 4-31        | Reserved                               |                         |               |                                             |             |     |
| GIRQ21  | 0-1         | Reserved                               |                         |               |                                             | 13          |     |
|         | 2           | WDT                                    | WDT_INT                 | Yes           | Watch Dog Timer Interupt                    |             | 171 |
|         | 3           | Week Alarm                             | WEEK_ALARM_INT          | Yes           | Week Alarm Interrupt.                       |             | 114 |
|         | 4           | Week Alarm                             | SUB-<br>_WEEK_ALARM_INT | Yes           | Sub-Week Alarm Interrupt                    |             | 115 |
|         | 5           | Week Alarm                             | ONE_SECOND              | Yes           | Week Alarm - One Second<br>Interrupt        |             | 116 |
|         | 6           | Week Alarm                             | SUB_SECOND              | Yes           | Week Alarm - Sub-second<br>Interrupt        |             | 117 |
|         | 7           | Week Alarm                             | SYSPWR_PRES             | Yes           | System power present pin interrupt          |             | 118 |
|         | 8           | RTC                                    | RTC                     | Yes           | Real Time Clock Interrupt                   |             | 119 |
|         | 9           | RTC                                    | RTC ALARM               | Yes           | Real Time Clock Alarm Inter-<br>rupt        |             | 120 |
|         | 10          | Reserved                               |                         |               |                                             |             |     |
|         | 11          | VBAT-Pow-<br>ered Control<br>Interface | VCI_IN0                 | Yes           | VCI_IN0 Active-low Input Pin<br>Interrupt   |             | 122 |

TABLE 3-3: GIRQ\_MAPPING

|         | Δαα         | HWB                                    |                    | Wake  |                                                                           | Agg  | Direct |
|---------|-------------|----------------------------------------|--------------------|-------|---------------------------------------------------------------------------|------|--------|
| Agg IRQ | Agg<br>Bits | Instance<br>Name                       | Interrupt Event    | event | Source description                                                        | NVIC | NVIC   |
|         | 14          | VBAT-Pow-<br>ered Control<br>Interface | VCI_IN3            | Yes   | VCI_IN3 Active-low Input Pin<br>Interrupt                                 |      | 125    |
|         | 15-<br>31   | Reserved                               |                    |       |                                                                           |      |        |
| GIRQ22  | 0           | Reserved                               |                    |       |                                                                           | N/A  | N/A    |
|         | 1           | SMB-I2C<br>Controller0                 | SMB-I2C _WAKE_ONLY | Yes   | Wake-Only Event (No Interrupt<br>Generated) - SMB-I2C.0<br>START Detected |      |        |
|         | 2           | SMB-I2C<br>Controller1                 | SMB-I2C _WAKE_ONLY | Yes   | Wake-Only Event (No Interrupt<br>Generated) - SMB-I2C.1<br>START Detected |      |        |
|         | 3           | SMB-I2C<br>Controller2                 | SMB-I2C _WAKE_ONLY | Yes   | Wake-Only Event (No Interrupt<br>Generated) - SMB-I2C.2<br>START Detected |      |        |
|         | 4           | SMB-I2C<br>Controller3                 | SMB-I2C _WAKE_ONLY | Yes   | Wake-Only Event (No Interrupt<br>Generated) - SMB-I2C.3<br>START Detected |      |        |
|         | 5           | SMB-I2C<br>Controller4                 | SMB-I2C _WAKE_ONLY | Yes   | Wake-Only Event (No Interrupt<br>Generated) - SMB-I2C.4<br>START Detected |      |        |
|         | 6           | I2C Control-<br>ler5                   | I2C                | Yes   | Slave I2C Controller 5 Wake Event                                         |      |        |
|         | 7           | I2C Control-<br>ler6                   | I2C                | Yes   | Slave I2C Controller 6 Wake Event                                         |      |        |
|         | 8           | I2C Control-<br>ler7                   | I2C                | Yes   | Slave I2C Controller 7 Wake<br>Event                                      |      |        |
|         | 6-31        | Reserved                               |                    |       |                                                                           |      |        |
| GIRQ23  | 0           | 16-Bit Basic<br>Timer 0                | Timer_16_0         | No    | Basic Timer Event                                                         | 14   | 136    |
|         | 1           | 16-Bit Basic<br>Timer 1                | Timer_16_1         | No    | Basic Timer Event                                                         |      | 137    |
|         | 2-3         | Reserved                               |                    |       |                                                                           |      |        |
|         | 4           | 32-Bit Basic<br>Timer 0                | Timer_32_0         | No    | Basic Timer Event                                                         |      | 140    |
|         | 5           | 32-Bit Basic<br>Timer 1                | Timer_32_1         | No    | Basic Timer Event                                                         |      | 141    |
|         | 6-9         | Reserved                               |                    |       |                                                                           |      |        |
|         | 10          | RTOS Timer                             | RTOS_TIMER         | Yes   | 32-bit RTOS Timer Event                                                   |      | 111    |
|         | 11          | RTOS Timer                             | SWI_0              | No    | Soft Interrupt request 0                                                  |      |        |
|         | 12          | RTOS Timer                             | SWI_1              | No    | Soft Interrupt request 1                                                  |      |        |
|         | 13          | RTOS Timer                             | SWI_2              | No    | Soft Interrupt request 2                                                  |      |        |
|         | 14          | RTOS Timer                             | SWI_3              | No    | Soft Interrupt request 3                                                  |      |        |
|         | 15          | Reserved                               |                    |       |                                                                           |      |        |
|         | 16          | Hibernation<br>Timer0                  | HTIMER             | Yes   | Hibernation Timer Event                                                   |      | 112    |
|         | 17          | Hibernation<br>Timer1                  | HTIMER             | Yes   | Hibernation Timer Event                                                   |      | 113    |

TABLE 3-3: GIRQ\_MAPPING

| Agg IRQ | Agg<br>Bits | HWB<br>Instance<br>Name | Interrupt Event | Wake<br>event | Source description   | Agg<br>NVIC | Direct<br>NVIC |
|---------|-------------|-------------------------|-----------------|---------------|----------------------|-------------|----------------|
|         | 18-<br>31   | Reserved                |                 |               |                      |             |                |
| GIRQ24  |             | Reserved                |                 |               |                      |             | N/A            |
| GIRQ25  |             | Reserved                |                 |               |                      |             | N/A            |
| GIRQ26  | 0-7         | Reserved                |                 |               |                      | 17          | N/A            |
|         | 8           | GPIO250                 | GPIO Event      | Yes           | GPIO Interrupt Event |             |                |
|         | 9-10        | Reserved                |                 |               |                      |             |                |
|         | 11          | GPIO253                 | GPIO Event      | Yes           | GPIO Interrupt Event |             |                |
|         | 12-<br>31   | Reserved                |                 |               |                      |             |                |

**Note:** Registers and bits associated with GPIOs not implemented are Reserved. Please refer to Section 2.3, "Pin List" for GPIOs implemented in the chip.

## 3.5 **GPIO Register Assignments**

All GPIOs except the below come up in default GPIO Input/output/interrupt disabled state. Pin control register defaults to 0x00008040.

TABLE 3-4: GPIO PIN CONTROL DEFAULT VALUES

| GPIO    | Pin control register value | Default function               |
|---------|----------------------------|--------------------------------|
| GPIO000 | 0x00001040                 | VCI_IN                         |
| GPIO163 | 0x00001040                 | VCI_IN                         |
| GPIO170 | 0x00000041                 | JTAG_STRAP BS (input, pull up) |
| GPIO250 | 0x00001240                 | VCI_OUT                        |

## 3.6 Register Map

TABLE 3-5: REGISTER MAP

| Block                 | Instance | Register                                   | Host<br>Type | Register<br>Address |
|-----------------------|----------|--------------------------------------------|--------------|---------------------|
| Watchdog Timer        | 0        | WDT Load Register                          |              | 40000400            |
| Watchdog Timer        | 0        | WDT Control Register                       |              | 40000404            |
| Watchdog Timer        | 0        | WDT Kick Register                          |              | 40000408            |
| Watchdog Timer        | 0        | WDT Count Register                         |              | 4000040C            |
| Watchdog Timer        | 0        | WDT Status Register                        |              | 40000410            |
| Watchdog Timer        | 0        | WDT Interrupt Enable Register              |              | 40000414            |
| 16-bit Basic Timer    | 0        | Timer Count Register                       |              | 40000C00            |
| 16-bit Basic Timer    | 0        | Timer Preload Register                     |              | 40000C04            |
| 16-bit Basic Timer    | 0        | Timer Status Register                      |              | 40000C08            |
| 16-bit Basic Timer    | 0        | Timer Int Enable Register                  |              | 40000C0C            |
| 16-bit Basic Timer    | 0        | Timer Control Register                     |              | 40000C10            |
| 16-bit Basic Timer    | 1        | Timer Count Register                       |              | 40000C20            |
| 16-bit Basic Timer    | 1        | Timer Preload Register                     |              | 40000C24            |
| 16-bit Basic Timer    | 1        | Timer Status Register                      |              | 40000C28            |
| 16-bit Basic Timer    | 1        | Timer Int Enable Register                  |              | 40000C2C            |
| 16-bit Basic Timer    | 1        | Timer Control Register                     |              | 40000C30            |
| 32-bit Basic Timer    | 0        | Timer Count Register                       |              | 40000C80            |
| 32-bit Basic Timer    | 0        | Timer Preload Register                     |              | 40000C84            |
| 32-bit Basic Timer    | 0        | Timer Status Register                      |              | 40000C88            |
| 32-bit Basic Timer    | 0        | Timer Int Enable Register                  |              | 40000C8C            |
| 32-bit Basic Timer    | 0        | Timer Control Register                     |              | 40000C90            |
| 32-bit Basic Timer    | 1        | Timer Count Register                       |              | 40000CA0            |
| 32-bit Basic Timer    | 1        | Timer Preload Register                     |              | 40000CA4            |
| 32-bit Basic Timer    | 1        | Timer Status Register                      |              | 40000CA8            |
| 32-bit Basic Timer    | 1        | Timer Int Enable Register                  |              | 40000CAC            |
| 32-bit Basic Timer    | 1        | Timer Control Register                     |              | 40000CB0            |
| Capture Compare Timer | 0        | Capture and Compare Timer Control Register |              | 40001000            |
| Capture Compare Timer | 0        | Capture Control 0 Register                 |              | 40001004            |
| Capture Compare Timer | 0        | Capture Control 1 Register                 |              | 40001008            |

TABLE 3-5: REGISTER MAP

| Block                 | Instance | Register                                    | Host<br>Type | Register<br>Address |
|-----------------------|----------|---------------------------------------------|--------------|---------------------|
| Capture Compare Timer | 0        | Free Running Timer Register                 |              | 4000100C            |
| Capture Compare Timer | 0        | Capture 0 Register                          |              | 40001010            |
| Capture Compare Timer | 0        | Capture 1 Register                          |              | 40001014            |
| Capture Compare Timer | 0        | Capture 2 Register                          |              | 40001018            |
| Capture Compare Timer | 0        | Capture 3 Register                          |              | 4000101C            |
| Capture Compare Timer | 0        | Capture 4 Register                          |              | 40001020            |
| Capture Compare Timer | 0        | Capture 5 Register                          |              | 40001024            |
| Capture Compare Timer | 0        | Compare 0 Register                          |              | 40001028            |
| Capture Compare Timer | 0        | Compare 1 Register                          |              | 4000102C            |
| Capture Compare Timer | 0        | ICT Mux Select Register                     |              | 40001030            |
| DMA Controller        | 0        | DMA Main Control Register                   |              | 40002400            |
| DMA Controller        | 0        | DMA Data Packet Register                    |              | 40002404            |
| DMA Controller        | 0        | TEST                                        |              | 40002408            |
| DMA Channel           | 0        | DMA Channel N Activate Register             |              | 40002440            |
| DMA Channel           | 0        | DMA Channel N Memory Start Address Register |              | 40002444            |
| DMA Channel           | 0        | DMA Channel N Memory End Address Register   |              | 40002448            |
| DMA Channel           | 0        | DMA Channel N Device Address                |              | 4000244C            |
| DMA Channel           | 0        | DMA Channel N Control Register              |              | 40002450            |
| DMA Channel           | 0        | DMA Channel N Interrupt Status Register     |              | 40002454            |
| DMA Channel           | 0        | DMA Channel N Interrupt Enable Register     |              | 40002458            |
| DMA Channel           | 0        | TEST                                        |              | 4000245C            |
| DMA Channel           | 0        | Channel N CRC Enable Register               |              | 40002460            |
| DMA Channel           | 0        | Channel N CRC Data Register                 |              | 40002464            |
| DMA Channel           | 0        | Channel N CRC Post Status Register          |              | 40002468            |
| DMA Channel           | 0        | TEST                                        |              | 4000246C            |
| DMA Channel           | 1        | DMA Channel N Activate Register             |              | 40002480            |
| DMA Channel           | 1        | DMA Channel N Memory Start Address Register |              | 40002484            |
| DMA Channel           | 1        | DMA Channel N Memory End Address Register   |              | 40002488            |
| DMA Channel           | 1        | DMA Channel N Device Address                |              | 4000248C            |
| DMA Channel           | 1        | DMA Channel N Control Register              |              | 40002490            |
| DMA Channel           | 1        | DMA Channel N Interrupt Status Register     |              | 40002494            |
| DMA Channel           | 1        | DMA Channel N Interrupt Enable Register     |              | 40002498            |
| DMA Channel           | 1        | TEST                                        |              | 4000249C            |
| DMA Channel           | 1        | Channel N Fill Enable Register              |              | 400024A0            |
| DMA Channel           | 1        | Channel N Fill Data Register                |              | 400024A4            |
| DMA Channel           | 1        | Channel N Fill Status Register              |              | 400024A8            |
| DMA Channel           | 1        | TEST                                        |              | 400024AC            |
| DMA Channel           | 2        | DMA Channel N Activate Register             |              | 400024C0            |
| DMA Channel           | 2        | DMA Channel N Memory Start Address Register |              | 400024C4            |
| DMA Channel           | 2        | DMA Channel N Memory End Address Register   |              | 400024C8            |
| DMA Channel           | 2        | DMA Channel N Device Address                |              | 400024CC            |
| DMA Channel           | 2        | DMA Channel N Control Register              |              | 400024D0            |
| DMA Channel           | 2        | DMA Channel N Interrupt Status Register     |              | 400024D4            |
| DMA Channel           | 2        | DMA Channel N Interrupt Enable Register     |              | 400024D8            |

TABLE 3-5: REGISTER MAP

| Block       | Instance | Register                                    | Host<br>Type | Register<br>Address |
|-------------|----------|---------------------------------------------|--------------|---------------------|
| DMA Channel | 2        | TEST                                        |              | 400024DC            |
| DMA Channel | 3        | DMA Channel N Activate Register             |              | 40002500            |
| DMA Channel | 3        | DMA Channel N Memory Start Address Register |              | 40002504            |
| DMA Channel | 3        | DMA Channel N Memory End Address Register   |              | 40002508            |
| DMA Channel | 3        | DMA Channel N Device Address                |              | 4000250C            |
| DMA Channel | 3        | DMA Channel N Control Register              |              | 40002510            |
| DMA Channel | 3        | DMA Channel N Interrupt Status Register     |              | 40002514            |
| DMA Channel | 3        | DMA Channel N Interrupt Enable Register     |              | 40002518            |
| DMA Channel | 3        | TEST                                        |              | 4000251C            |
| DMA Channel | 4        | DMA Channel N Activate Register             |              | 40002540            |
| DMA Channel | 4        | DMA Channel N Memory Start Address Register |              | 40002544            |
| DMA Channel | 4        | DMA Channel N Memory End Address Register   |              | 40002548            |
| DMA Channel | 4        | DMA Channel N Device Address                |              | 4000254C            |
| DMA Channel | 4        | DMA Channel N Control Register              |              | 40002550            |
| DMA Channel | 4        | DMA Channel N Interrupt Status Register     |              | 40002554            |
| DMA Channel | 4        | DMA Channel N Interrupt Enable Register     |              | 40002558            |
| DMA Channel | 4        | TEST                                        |              | 4000255C            |
| DMA Channel | 5        | DMA Channel N Activate Register             |              | 40002580            |
| DMA Channel | 5        | DMA Channel N Memory Start Address Register |              | 40002584            |
| DMA Channel | 5        | DMA Channel N Memory End Address Register   |              | 40002588            |
| DMA Channel | 5        | DMA Channel N Device Address                |              | 40002580            |
| DMA Channel | 5        | DMA Channel N Control Register              |              | 40002590            |
| DMA Channel | 5        | DMA Channel N Interrupt Status Register     |              | 40002594            |
| DMA Channel | 5        | DMA Channel N Interrupt Enable Register     |              | 40002598            |
| DMA Channel | 5        | TEST                                        |              | 40002590            |
| DMA Channel | 6        | DMA Channel N Activate Register             |              | 400025C0            |
| DMA Channel | 6        | DMA Channel N Memory Start Address Register |              | 400025C4            |
| DMA Channel | 6        | DMA Channel N Memory End Address Register   |              | 400025C8            |
| DMA Channel | 6        | DMA Channel N Device Address                |              | 400025C0            |
| DMA Channel | 6        | DMA Channel N Control Register              |              | 400025D0            |
| DMA Channel | 6        | DMA Channel N Interrupt Status Register     |              | 400025D4            |
| DMA Channel | 6        | DMA Channel N Interrupt Enable Register     |              | 400025D8            |
| DMA Channel | 6        | TEST                                        |              | 400025D0            |
| DMA Channel | 7        | DMA Channel N Activate Register             |              | 40002600            |
| DMA Channel | 7        | DMA Channel N Memory Start Address Register |              | 40002604            |
| DMA Channel | 7        | DMA Channel N Memory End Address Register   |              | 40002608            |
| DMA Channel | 7        | DMA Channel N Device Address                |              | 40002600            |
| DMA Channel | 7        | DMA Channel N Control Register              |              | 40002610            |
| DMA Channel | 7        | DMA Channel N Interrupt Status Register     |              | 40002614            |
| DMA Channel | 7        | DMA Channel N Interrupt Enable Register     |              | 40002618            |
| DMA Channel | 7        | TEST                                        |              | 40002610            |
| DMA Channel | 8        | DMA Channel N Activate Register             |              | 40002640            |
| DMA Channel | 8        | DMA Channel N Memory Start Address Register |              | 40002644            |
| DMA Channel | 8        | DMA Channel N Memory End Address Register   |              | 40002648            |

TABLE 3-5: REGISTER MAP

| Block       | Instance | Register                                    | Host<br>Type | Register<br>Address |
|-------------|----------|---------------------------------------------|--------------|---------------------|
| DMA Channel | 8        | DMA Channel N Device Address                |              | 4000264C            |
| DMA Channel | 8        | DMA Channel N Control Register              |              | 40002650            |
| DMA Channel | 8        | DMA Channel N Interrupt Status Register     |              | 40002654            |
| DMA Channel | 8        | DMA Channel N Interrupt Enable Register     |              | 40002658            |
| DMA Channel | 8        | TEST                                        |              | 4000265C            |
| DMA Channel | 9        | DMA Channel N Activate Register             |              | 40002680            |
| DMA Channel | 9        | DMA Channel N Memory Start Address Register |              | 40002684            |
| DMA Channel | 9        | DMA Channel N Memory End Address Register   |              | 40002688            |
| DMA Channel | 9        | DMA Channel N Device Address                |              | 4000268C            |
| DMA Channel | 9        | DMA Channel N Control Register              |              | 40002690            |
| DMA Channel | 9        | DMA Channel N Interrupt Status Register     |              | 40002694            |
| DMA Channel | 9        | DMA Channel N Interrupt Enable Register     |              | 40002698            |
| DMA Channel | 9        | TEST                                        |              | 4000269C            |
| DMA Channel | 10       | DMA Channel N Activate Register             |              | 400026C0            |
| DMA Channel | 10       | DMA Channel N Memory Start Address Register |              | 400026C4            |
| DMA Channel | 10       | DMA Channel N Memory End Address Register   |              | 400026C8            |
| DMA Channel | 10       | DMA Channel N Device Address                |              | 400026CC            |
| DMA Channel | 10       | DMA Channel N Control Register              |              | 400026D0            |
| DMA Channel | 10       | DMA Channel N Interrupt Status Register     |              | 400026D4            |
| DMA Channel | 10       | DMA Channel N Interrupt Enable Register     |              | 400026D8            |
| DMA Channel | 10       | TEST                                        |              | 400026DC            |
| DMA Channel | 11       | DMA Channel N Activate Register             |              | 40002700            |
| DMA Channel | 11       | DMA Channel N Memory Start Address Register |              | 40002704            |
| DMA Channel | 11       | DMA Channel N Memory End Address Register   |              | 40002708            |
| DMA Channel | 11       | DMA Channel N Device Address                |              | 4000270C            |
| DMA Channel | 11       | DMA Channel N Control Register              |              | 40002710            |
| DMA Channel | 11       | DMA Channel N Interrupt Status Register     |              | 40002714            |
| DMA Channel | 11       | DMA Channel N Interrupt Enable Register     |              | 40002718            |
| DMA Channel | 11       | TEST                                        |              | 4000271C            |
| I2C-SMB     | 0        | Control Register                            |              | 40004000            |
| I2C-SMB     | 0        | Status Register                             |              | 40004000            |
| I2C-SMB     | 0        | Own Address Register                        |              | 40004004            |
| I2C-SMB     | 0        | Data Register                               |              | 40004008            |
| I2C-SMB     | 0        | Master Command Register                     |              | 4000400C            |
| I2C-SMB     | 0        | Slave Command Register                      |              | 40004010            |
| I2C-SMB     | 0        | PEC Register                                |              | 40004014            |
| I2C-SMB     | 0        | Repeated START Hold Time Register           |              | 40004018            |
| I2C-SMB     | 0        | Completion Register                         |              | 40004020            |
| I2C-SMB     | 0        | Idle Scaling Register                       |              | 40004024            |
| I2C-SMB     | 0        | Configuration Register                      |              | 40004028            |
| I2C-SMB     | 0        | Bus Clock Register                          |              | 4000402C            |
| I2C-SMB     | 0        | Block ID Register                           |              | 40004030            |
| I2C-SMB     | 0        | Revision Register                           |              | 40004034            |
| I2C-SMB     | 0        | Bit-Bang Control Register                   |              | 40004038            |

TABLE 3-5: REGISTER MAP

| Block   | Instance | Register                          | Host<br>Type | Register<br>Address |
|---------|----------|-----------------------------------|--------------|---------------------|
| I2C-SMB | 0        | TEST                              |              | 4000403C            |
| I2C-SMB | 0        | Data Timing Register              |              | 40004040            |
| I2C-SMB | 0        | Time-Out Scaling Register         |              | 40004044            |
| I2C-SMB | 0        | Slave Transmit Buffer Register    |              | 40004048            |
| I2C-SMB | 0        | Slave Receive Buffer Register     |              | 4000404C            |
| I2C-SMB | 0        | Master Transmit Buffer Register   |              | 40004050            |
| I2C-SMB | 0        | Master Receive Buffer Register    |              | 40004054            |
| I2C-SMB | 0        | TEST                              |              | 40004058            |
| I2C-SMB | 0        | TEST                              |              | 4000405C            |
| I2C-SMB | 0        | Wake Status Register              |              | 40004060            |
| I2C-SMB | 0        | Wake Enable Register              |              | 40004064            |
| I2C-SMB | 0        | TEST                              |              | 40004068            |
| I2C-SMB | 0        | Slave address                     |              | 4000406C            |
| I2C-SMB | 0        | Promiscuous Interrupt             |              | 40004070            |
| I2C-SMB | 0        | Promiscuous Interrupt Enable      |              | 40004074            |
| I2C-SMB | 0        | Promiscuous Control               |              | 40004078            |
| I2C-SMB | 1        | Control Register                  |              | 40004400            |
| I2C-SMB | 1        | Status Register                   |              | 40004400            |
| I2C-SMB | 1        | Own Address Register              |              | 40004404            |
| I2C-SMB | 1        | Data Register                     |              | 40004408            |
| I2C-SMB | 1        | Master Command Register           |              | 4000440C            |
| I2C-SMB | 1        | Slave Command Register            |              | 40004410            |
| I2C-SMB | 1        | PEC Register                      |              | 40004414            |
| I2C-SMB | 1        | Repeated START Hold Time Register |              | 40004418            |
| I2C-SMB | 1        | Completion Register               |              | 40004420            |
| I2C-SMB | 1        | Idle Scaling Register             |              | 40004424            |
| I2C-SMB | 1        | Configuration Register            |              | 40004428            |
| I2C-SMB | 1        | Bus Clock Register                |              | 4000442C            |
| I2C-SMB | 1        | Block ID Register                 |              | 40004430            |
| I2C-SMB | 1        | Revision Register                 |              | 40004434            |
| I2C-SMB | 1        | Bit-Bang Control Register         |              | 40004438            |
| I2C-SMB | 1        | TEST                              |              | 4000443C            |
| I2C-SMB | 1        | Data Timing Register              |              | 40004440            |
| I2C-SMB | 1        | Time-Out Scaling Register         |              | 40004444            |
| I2C-SMB | 1        | Slave Transmit Buffer Register    |              | 40004448            |
| I2C-SMB | 1        | Slave Receive Buffer Register     |              | 4000444C            |
| I2C-SMB | 1        | Master Transmit Buffer Register   |              | 40004450            |
| I2C-SMB | 1        | Master Receive Buffer Register    |              | 40004454            |
| I2C-SMB | 1        | TEST                              |              | 40004458            |
| I2C-SMB | 1        | TEST                              |              | 4000445C            |
| I2C-SMB | 1        | Wake Status Register              |              | 40004460            |
| I2C-SMB | 1        | Wake Enable Register              |              | 40004464            |
| I2C-SMB | 1        | TEST                              |              | 40004468            |
| I2C-SMB | 1        | Slave address                     |              | 4000446C            |

TABLE 3-5: REGISTER MAP

| Block   | Instance | Register Host<br>Type             | 3        |
|---------|----------|-----------------------------------|----------|
| I2C-SMB | 1        | Promiscuous Interrupt             | 40004470 |
| I2C-SMB | 1        | Promiscuous Interrupt Enable      | 40004474 |
| I2C-SMB | 1        | Promiscuous Control               | 40004478 |
| I2C-SMB | 2        | Control Register                  | 40004800 |
| I2C-SMB | 2        | Status Register                   | 40004800 |
| I2C-SMB | 2        | Own Address Register              | 40004804 |
| I2C-SMB | 2        | Data Register                     | 40004808 |
| I2C-SMB | 2        | Master Command Register           | 4000480C |
| I2C-SMB | 2        | Slave Command Register            | 40004810 |
| I2C-SMB | 2        | PEC Register                      | 40004814 |
| I2C-SMB | 2        | Repeated START Hold Time Register | 40004818 |
| I2C-SMB | 2        | Completion Register               | 40004820 |
| I2C-SMB | 2        | Idle Scaling Register             | 40004824 |
| I2C-SMB | 2        | Configuration Register            | 40004828 |
| I2C-SMB | 2        | Bus Clock Register                | 4000482C |
| I2C-SMB | 2        | Block ID Register                 | 40004830 |
| I2C-SMB | 2        | Revision Register                 | 40004834 |
| I2C-SMB | 2        | Bit-Bang Control Register         | 40004838 |
| I2C-SMB | 2        | TEST                              | 4000483C |
| I2C-SMB | 2        | Data Timing Register              | 40004840 |
| I2C-SMB | 2        | Time-Out Scaling Register         | 40004844 |
| I2C-SMB | 2        | Slave Transmit Buffer Register    | 40004848 |
| I2C-SMB | 2        | Slave Receive Buffer Register     | 4000484C |
| I2C-SMB | 2        | Master Transmit Buffer Register   | 40004850 |
| I2C-SMB | 2        | Master Receive Buffer Register    | 40004854 |
| I2C-SMB | 2        | TEST                              | 40004858 |
| I2C-SMB | 2        | TEST                              | 4000485C |
| I2C-SMB | 2        | Wake Status Register              | 40004860 |
| I2C-SMB | 2        | Wake Enable Register              | 40004864 |
| I2C-SMB | 2        | TEST                              | 40004868 |
| I2C-SMB | 2        | Slave address                     | 4000486C |
| I2C-SMB | 2        | Promiscuous Interrupt             | 40004870 |
| I2C-SMB | 2        | Promiscuous Interrupt Enable      | 40004874 |
| I2C-SMB | 2        | Promiscuous Control               | 40004878 |
| I2C-SMB | 3        | Control Register                  | 40004C00 |
| I2C-SMB | 3        | Status Register                   | 40004C00 |
| I2C-SMB | 3        | Own Address Register              | 40004C04 |
| I2C-SMB | 3        | Data Register                     | 40004C08 |
| I2C-SMB | 3        | Master Command Register           | 40004C0C |
| I2C-SMB | 3        | Slave Command Register            | 40004C10 |
| I2C-SMB | 3        | PEC Register                      | 40004C14 |
| I2C-SMB | 3        | Repeated START Hold Time Register | 40004C18 |
| I2C-SMB | 3        | Completion Register               | 40004C20 |
| I2C-SMB | 3        | Idle Scaling Register             | 40004C24 |

TABLE 3-5: REGISTER MAP

| Block   | Instance | Register Hos<br>Typ               |          |
|---------|----------|-----------------------------------|----------|
| I2C-SMB | 3        | Configuration Register            | 40004C28 |
| I2C-SMB | 3        | Bus Clock Register                | 40004C2C |
| I2C-SMB | 3        | Block ID Register                 | 40004C30 |
| I2C-SMB | 3        | Revision Register                 | 40004C34 |
| I2C-SMB | 3        | Bit-Bang Control Register         | 40004C38 |
| I2C-SMB | 3        | TEST                              | 40004C3C |
| I2C-SMB | 3        | Data Timing Register              | 40004C40 |
| I2C-SMB | 3        | Time-Out Scaling Register         | 40004C44 |
| I2C-SMB | 3        | Slave Transmit Buffer Register    | 40004C48 |
| I2C-SMB | 3        | Slave Receive Buffer Register     | 40004C4C |
| I2C-SMB | 3        | Master Transmit Buffer Register   | 40004C50 |
| I2C-SMB | 3        | Master Receive Buffer Register    | 40004C54 |
| I2C-SMB | 3        | TEST                              | 40004C58 |
| I2C-SMB | 3        | TEST                              | 40004C5C |
| I2C-SMB | 3        | Wake Status Register              | 40004C60 |
| I2C-SMB | 3        | Wake Enable Register              | 40004C64 |
| I2C-SMB | 3        | TEST                              | 40004C68 |
| I2C-SMB | 3        | Slave address                     | 40004C6C |
| I2C-SMB | 3        | Promiscuous Interrupt             | 40004C70 |
| I2C-SMB | 3        | Promiscuous Interrupt Enable      | 40004C74 |
| I2C-SMB | 3        | Promiscuous Control               | 40004C78 |
| I2C-SMB | 4        | Control Register                  | 40005000 |
| I2C-SMB | 4        | Status Register                   | 40005000 |
| I2C-SMB | 4        | Own Address Register              | 40005004 |
| I2C-SMB | 4        | Data Register                     | 40005008 |
| I2C-SMB | 4        | Master Command Register           | 4000500C |
| I2C-SMB | 4        | Slave Command Register            | 40005010 |
| I2C-SMB | 4        | PEC Register                      | 40005014 |
| I2C-SMB | 4        | Repeated START Hold Time Register | 40005018 |
| I2C-SMB | 4        | Completion Register               | 40005020 |
| I2C-SMB | 4        | Idle Scaling Register             | 40005024 |
| I2C-SMB | 4        | Configuration Register            | 40005028 |
| I2C-SMB | 4        | Bus Clock Register                | 4000502C |
| I2C-SMB | 4        | Block ID Register                 | 40005030 |
| I2C-SMB | 4        | Revision Register                 | 40005034 |
| I2C-SMB | 4        | Bit-Bang Control Register         | 40005038 |
| I2C-SMB | 4        | TEST                              | 4000503C |
| I2C-SMB | 4        | Data Timing Register              | 40005040 |
| I2C-SMB | 4        | Time-Out Scaling Register         | 40005044 |
| I2C-SMB | 4        | Slave Transmit Buffer Register    | 40005048 |
| I2C-SMB | 4        | Slave Receive Buffer Register     | 4000504C |
| I2C-SMB | 4        | Master Transmit Buffer Register   | 40005050 |
| I2C-SMB | 4        | Master Receive Buffer Register    | 40005054 |
| I2C-SMB | 4        | TEST                              | 40005058 |

TABLE 3-5: REGISTER MAP

| Block   | Instance | Register Hos<br>Type              |          |
|---------|----------|-----------------------------------|----------|
| I2C-SMB | 4        | TEST                              | 4000505C |
| I2C-SMB | 4        | Wake Status Register              | 40005060 |
| I2C-SMB | 4        | Wake Enable Register              | 40005064 |
| I2C-SMB | 4        | TEST                              | 40005068 |
| I2C-SMB | 4        | Slave address                     | 4000506C |
| I2C-SMB | 4        | Promiscuous Interrupt             | 40005070 |
| I2C-SMB | 4        | Promiscuous Interrupt Enable      | 40005074 |
| I2C-SMB | 4        | Promiscuous Control               | 40005078 |
| I2C     | 0        | Control Register                  | 40005100 |
| I2C     | 0        | Status Register                   | 40005100 |
| I2C     | 0        | Own Address Register              | 40005104 |
| I2C     | 0        | Data Register                     | 40005108 |
| I2C     | 0        | Repeated START Hold Time Register | 40005118 |
| I2C     | 0        | Completion Register               | 40005120 |
| I2C     | 0        | Configuration Register            | 40005128 |
| I2C     | 0        | Bus Clock Register                | 4000512C |
| I2C     | 0        | Block ID Register                 | 40005130 |
| I2C     | 0        | Revision Register                 | 40005134 |
| I2C     | 0        | Bit-Bang Control Register         | 40005138 |
| I2C     | 0        | TEST                              | 4000513C |
| I2C     | 0        | Data Timing Register              | 40005140 |
| I2C     | 0        | Time-Out Scaling Register         | 40005144 |
| I2C     | 0        | TEST                              | 40005158 |
| I2C     | 0        | TEST                              | 4000515C |
| I2C     | 0        | Wake Status Register              | 40005160 |
| I2C     | 0        | Wake Enable Register              | 40005164 |
| I2C     | 0        | TEST                              | 40005168 |
| I2C     | 0        | Slave address                     | 4000516C |
| I2C     | 0        | Promiscuous Interrupt             | 40005170 |
| I2C     | 0        | Promiscuous Interrupt Enable      | 40005174 |
| I2C     | 0        | Promiscuous Control               | 40005178 |
| I2C     | 1        | Control Register                  | 40005200 |
| I2C     | 1        | Status Register                   | 40005200 |
| I2C     | 1        | Own Address Register              | 40005204 |
| I2C     | 1        | Data Register                     | 40005208 |
| I2C     | 1        | Repeated START Hold Time Register | 40005218 |
| I2C     | 1        | Completion Register               | 40005220 |
| I2C     | 1        | Configuration Register            | 40005228 |
| I2C     | 1        | Bus Clock Register                | 4000522C |
| I2C     | 1        | Block ID Register                 | 40005230 |
| I2C     | 1        | Revision Register                 | 40005234 |
| I2C     | 1        | Bit-Bang Control Register         | 40005238 |
| I2C     | 1        | TEST                              | 4000523C |
| I2C     | 1        | Data Timing Register              | 40005240 |

TABLE 3-5: REGISTER MAP

| Block | Instance | Register                            | Host<br>Type | Register<br>Address |
|-------|----------|-------------------------------------|--------------|---------------------|
| I2C   | 1        | Time-Out Scaling Register           |              | 40005244            |
| I2C   | 1        | TEST                                |              | 40005258            |
| I2C   | 1        | TEST                                |              | 4000525C            |
| I2C   | 1        | Wake Status Register                |              | 40005260            |
| I2C   | 1        | Wake Enable Register                |              | 40005264            |
| I2C   | 1        | TEST                                |              | 40005268            |
| I2C   | 1        | Slave address                       |              | 4000526C            |
| I2C   | 1        | Promiscuous Interrupt               |              | 40005270            |
| I2C   | 1        | Promiscuous Interrupt Enable        |              | 40005274            |
| I2C   | 1        | Promiscuous Control                 |              | 40005278            |
| I2C   | 2        | Control Register                    |              | 40005300            |
| I2C   | 2        | Status Register                     |              | 40005300            |
| I2C   | 2        | Own Address Register                |              | 40005304            |
| I2C   | 2        | Data Register                       |              | 40005308            |
| I2C   | 2        | Repeated START Hold Time Register   |              | 40005318            |
| I2C   | 2        | Completion Register                 |              | 40005320            |
| I2C   | 2        | Configuration Register              |              | 40005328            |
| I2C   | 2        | Bus Clock Register                  |              | 4000532C            |
| I2C   | 2        | Block ID Register                   |              | 40005330            |
| I2C   | 2        | Revision Register                   |              | 40005334            |
| I2C   | 2        | Bit-Bang Control Register           |              | 40005338            |
| I2C   | 2        | TEST                                |              | 4000533C            |
| I2C   | 2        | Data Timing Register                |              | 40005340            |
| I2C   | 2        | Time-Out Scaling Register           |              | 40005344            |
| I2C   | 2        | TEST                                |              | 40005358            |
| I2C   | 2        | TEST                                |              | 4000535C            |
| I2C   | 2        | Wake Status Register                |              | 40005360            |
| I2C   | 2        | Wake Enable Register                |              | 40005364            |
| I2C   | 2        | TEST                                |              | 40005368            |
| I2C   | 2        | Slave address                       |              | 4000536C            |
| I2C   | 2        | Promiscuous Interrupt               |              | 40005370            |
| I2C   | 2        | Promiscuous Interrupt Enable        |              | 40005374            |
| I2C   | 2        | Promiscuous Control                 |              | 40005378            |
| QMSPI | 0        | QMSPI Mode Register                 |              | 40070000            |
| QMSPI | 0        | QMSPI Control Register              |              | 40070004            |
| QMSPI | 0        | QMSPI Execute Register              |              | 40070008            |
| QMSPI | 0        | QMSPI Interface Control Register    |              | 4007000C            |
| QMSPI | 0        | QMSPI Status Register               |              | 40070010            |
| QMSPI | 0        | QMSPI Buffer Count Status Register  |              | 40070014            |
| QMSPI | 0        | QMSPI Interrupt Enable Register     |              | 40070018            |
| QMSPI | 0        | QMSPI Buffer Count Trigger Register |              | 4007001C            |
| QMSPI | 0        | QMSPI Transmit Buffer Register      |              | 40070020            |
| QMSPI | 0        | QMSPI Receive Buffer Register       |              | 40070024            |
|       |          | <b>~</b>                            |              |                     |

TABLE 3-5: REGISTER MAP

| Block       | Instance | Register Host<br>Type                | - 3      |
|-------------|----------|--------------------------------------|----------|
| QMSPI       | 0        | QMSPI Description Buffer 0 Register  | 40070030 |
| QMSPI       | 0        | QMSPI Description Buffer 1 Register  | 40070034 |
| QMSPI       | 0        | QMSPI Description Buffer 2 Register  | 40070038 |
| QMSPI       | 0        | QMSPI Description Buffer 3 Register  | 4007003C |
| QMSPI       | 0        | QMSPI Description Buffer 4 Register  | 40070040 |
| QMSPI       | 0        | QMSPI Description Buffer 5 Register  | 40070044 |
| QMSPI       | 0        | QMSPI Description Buffer 6 Register  | 40070048 |
| QMSPI       | 0        | QMSPI Description Buffer 7 Register  | 4007004C |
| QMSPI       | 0        | QMSPI Description Buffer 8 Register  | 40070050 |
| QMSPI       | 0        | QMSPI Description Buffer 9 Register  | 40070054 |
| QMSPI       | 0        | QMSPI Description Buffer 10 Register | 40070058 |
| QMSPI       | 0        | QMSPI Description Buffer 11 Register | 4007005C |
| QMSPI       | 0        | QMSPI Description Buffer 12 Register | 40070060 |
| QMSPI       | 0        | QMSPI Description Buffer 13 Register | 40070064 |
| QMSPI       | 0        | QMSPI Description Buffer 14 Register | 40070068 |
| QMSPI       | 0        | QMSPI Description Buffer 15 Register | 4007006C |
| 16-bit PWM  | 0        | PWMx Counter ON Time Register        | 40005800 |
| 16-bit PWM  | 0        | PWMx Counter OFF Time Register       | 40005804 |
| 16-bit PWM  | 0        | PWMx Configuration Register          | 40005808 |
| 16-bit PWM  | 0        | TEST                                 | 4000580C |
| 16-bit PWM  | 2        | PWMx Counter ON Time Register        | 40005820 |
| 16-bit PWM  | 2        | PWMx Counter OFF Time Register       | 40005824 |
| 16-bit PWM  | 2        | PWMx Configuration Register          | 40005828 |
| 16-bit PWM  | 2        | TEST                                 | 4000582C |
| 16-bit PWM  | 3        | PWMx Counter ON Time Register        | 40005830 |
| 16-bit PWM  | 3        | PWMx Counter OFF Time Register       | 40005834 |
| 16-bit PWM  | 3        | PWMx Configuration Register          | 40005838 |
| 16-bit PWM  | 3        | TEST                                 | 4000583C |
| 16-bit PWM  | 5        | PWMx Counter ON Time Register        | 40005850 |
| 16-bit PWM  | 5        | PWMx Counter OFF Time Register       | 40005854 |
| 16-bit PWM  | 5        | PWMx Configuration Register          | 40005858 |
| 16-bit PWM  | 5        | TEST                                 | 4000585C |
| 16-bit PWM  | 6        | PWMx Counter ON Time Register        | 40005860 |
| 16-bit PWM  | 6        | PWMx Counter OFF Time Register       | 40005864 |
| 16-bit PWM  | 6        | PWMx Configuration Register          | 40005868 |
| 16-bit PWM  | 6        | TEST                                 | 4000586C |
| 16-bit PWM  | 7        | PWMx Counter ON Time Register        | 40005870 |
| 16-bit PWM  | 7        | PWMx Counter OFF Time Register       | 40005874 |
| 16-bit PWM  | 7        | PWMx Configuration Register          | 40005878 |
| 16-bit PWM  | 7        | TEST                                 | 4000587C |
| 16-bit Tach | 0        | TACHx Control Register               | 40006000 |
| 16-bit Tach | 0        | TACHx Status Register                | 40006004 |
| 16-bit Tach | 0        | TACHx High Limit Register            | 40006008 |
| 16-bit Tach | 0        | TACHx Low Limit Register             | 4000600C |

TABLE 3-5: REGISTER MAP

| Block              | Instance | Register                             | Host<br>Type | Register<br>Address |
|--------------------|----------|--------------------------------------|--------------|---------------------|
| 16-bit Tach        | 1        | TACHx Control Register               |              | 40006010            |
| 16-bit Tach        | 1        | TACHx Status Register                |              | 40006014            |
| 16-bit Tach        | 1        | TACHx High Limit Register            |              | 40006018            |
| 16-bit Tach        | 1        | TACHx Low Limit Register             |              | 4000601C            |
| RTOS Timer         | 0        | RTOS Timer Count Register            |              | 40007400            |
| RTOS Timer         | 0        | RTOS Timer Preload Register          |              | 40007404            |
| RTOS Timer         | 0        | RTOS Timer Control Register          |              | 40007408            |
| RTOS Timer         | 0        | Soft Interrupt Register              |              | 4000740C            |
| ADC                | 0        | ADC Control Register                 |              | 40007C00            |
| ADC                | 0        | ADC Delay Register                   |              | 40007C04            |
| ADC                | 0        | ADC Status Register                  |              | 40007C08            |
| ADC                | 0        | ADC Single Register                  |              | 40007C0C            |
| ADC                | 0        | ADC Repeat Register                  |              | 40007C10            |
| ADC                | 0        | ADC Channel 0 Reading Register       |              | 40007C14            |
| ADC                | 0        | ADC Channel 1 Reading Register       |              | 40007C18            |
| ADC                | 0        | ADC Channel 2 Reading Register       |              | 40007C10            |
| ADC                | 0        | ADC Channel 3 Reading Register       |              | 40007C20            |
| ADC                | 0        | ADC Channel 4 Reading Register       |              | 40007C24            |
| ADC                | 0        | ADC Channel 5 Reading Register       |              | 40007C28            |
| ADC                | 0        | ADC Channel 6 Reading Register       |              | 40007C20            |
| ADC                | 0        | ADC Channel 7 Reading Register       |              | 40007C30            |
| ADC                | 0        | ADC Channel 8 Reading Register       |              | 40007C34            |
| ADC                | 0        | ADC Channel 9 Reading Register       |              | 40007C38            |
| ADC                | 0        | ADC Channel 10 Reading Register      |              | 40007C30            |
| ADC                | 0        | ADC Channel 11 Reading Register      |              | 40007C40            |
| ADC                | 0        | ADC Configuration Register           |              | 40007C70            |
| ADC                | 0        | VREF Channel Register                |              | 40007C80            |
| ADC                | 0        | VREF Control Register                |              | 40007C84            |
| ADC                | 0        | SAR ADC Control Register             |              | 40007C88            |
| ADC                | 0        | SAR ADC Config Register              |              | 40007C80            |
| TFDP               | 0        | Debug Data Register                  |              | 40008C00            |
| TFDP               | 0        | Debug Control Register               |              | 40008C04            |
| Hibernation Timer  | 0        | HTimer Preload Register              |              | 40009800            |
| Hibernation Timer  | 0        | HTimer Control Register              |              | 40009804            |
| Hibernation Timer  | 0        | HTimer Count Register                |              | 40009808            |
| Hibernation Timer  | 1        | HTimer Preload Register              |              | 40009820            |
| Hibernation Timer  | 1        | HTimer Control Register              |              | 40009824            |
| Hibernation Timer  | 1        | HTimer Count Register                |              | 40009828            |
| VBAT Register Bank | 0        | Power-Fail and Reset Status Register |              | 4000A400            |
| VBAT Register Bank | 0        | TEST                                 |              | 4000A404            |
| VBAT Register Bank | 0        | Clock Enable Register                |              | 4000A408            |
| VBAT Register Bank | 0        | TEST                                 |              | 4000A400            |
| VBAT Register Bank | 0        | TEST                                 |              | 4000A410            |
| VBAT Register Bank | 0        | TEST                                 |              | 4000A414            |

TABLE 3-5: REGISTER MAP

| Block                             | Instance | Register                                          | Host<br>Type | Register<br>Address |
|-----------------------------------|----------|---------------------------------------------------|--------------|---------------------|
| VBAT Register Bank                | 0        | TEST                                              |              | 4000A41C            |
| VBAT Register Bank                | 0        | Monotonic Counter Register                        |              | 4000A420            |
| VBAT Register Bank                | 0        | Counter HiWord Register                           |              | 4000A424            |
| VBAT Register Bank                | 0        | TEST                                              |              | 4000A428            |
| VBAT Register Bank                | 0        | TEST                                              |              | 4000A42C            |
| VBAT Powered RAM                  | 0        | Registers                                         |              | 4000A800            |
| Week Timer                        | 0        | Control Register                                  |              | 4000AC80            |
| Week Timer                        | 0        | Week Alarm Counter Register                       |              | 4000AC84            |
| Week Timer                        | 0        | Week Timer Compare Register                       |              | 4000AC88            |
| Week Timer                        | 0        | Clock Divider Register                            |              | 4000AC8C            |
| Week Timer                        | 0        | Sub-Second Programmable Interrupt Select Register |              | 4000AC90            |
| Week Timer                        | 0        | Sub-Week Control Register                         |              | 4000AC94            |
| Week Timer                        | 0        | Sub-Week Alarm Counter Register                   |              | 4000AC98            |
| Week Timer                        | 0        | BGPO Data Register                                |              | 4000AC9C            |
| Week Timer                        | 0        | BGPO Power Register                               |              | 4000ACA0            |
| Week Timer                        | 0        | BGPO Reset Register                               |              | 4000ACA4            |
| VBAT-Powered Control<br>Interface | 0        | VCI Register                                      |              | 4000AE00            |
| VBAT-Powered Control<br>Interface | 0        | Latch Enable Register                             |              | 4000AE04            |
| VBAT-Powered Control<br>Interface | 0        | Latch Resets Register                             |              | 4000AE08            |
| VBAT-Powered Control<br>Interface | 0        | VCI Input Enable Register                         |              | 4000AE0C            |
| VBAT-Powered Control<br>Interface | 0        | Holdoff Count Register                            |              | 4000AE10            |
| VBAT-Powered Control<br>Interface | 0        | VCI Polarity Register                             |              | 4000AE14            |
| VBAT-Powered Control<br>Interface | 0        | VCI Posedge Detect Register                       |              | 4000AE18            |
| VBAT-Powered Control<br>Interface | 0        | VCI Negedge Detect Register                       |              | 4000AE1C            |
| VBAT-Powered Control<br>Interface | 0        | VCI Buffer Enable Register                        |              | 4000AE20            |
| Blinking-Breathing PWM            | 0        | LED Configuration Register                        |              | 4000B800            |
| Blinking-Breathing PWM            | 0        | LED Limits Register                               |              | 4000B804            |
| Blinking-Breathing PWM            | 0        | LED Delay Register                                |              | 4000B808            |
| Blinking-Breathing PWM            | 0        | LED Update Stepsize Register                      |              | 4000B80C            |
| Blinking-Breathing PWM            | 0        | LED Update Interval Register                      |              | 4000B810            |
| Blinking-Breathing PWM            | 0        | LED Output Delay                                  |              | 4000B814            |
| Blinking-Breathing PWM            | 1        | LED Configuration Register                        |              | 4000B900            |
| Blinking-Breathing PWM            | 1        | LED Limits Register                               |              | 4000B904            |
| Blinking-Breathing PWM            | 1        | LED Delay Register                                |              | 4000B908            |
| Blinking-Breathing PWM            | 1        | LED Update Stepsize Register                      |              | 4000B90C            |
| Blinking-Breathing PWM            | 1        | LED Update Interval Register                      |              | 4000B910            |
| Blinking-Breathing PWM            | 1        | LED Output Delay                                  |              | 4000B914            |

TABLE 3-5: REGISTER MAP

| Block                | Instance | RAGISTAY                     | ost<br>pe | Register<br>Address |
|----------------------|----------|------------------------------|-----------|---------------------|
| Interrupt Aggregator | 0        | GIRQ8 Source Register        |           | 4000E000            |
| Interrupt Aggregator | 0        | GIRQ8 Enable Set Register    |           | 4000E004            |
| Interrupt Aggregator | 0        | GIRQ8 Result Register        |           | 4000E008            |
| Interrupt Aggregator | 0        | GIRQ8 Enable Clear Register  |           | 4000E000            |
| Interrupt Aggregator | 0        | GIRQ9 Source Register        |           | 4000E01             |
| Interrupt Aggregator | 0        | GIRQ9 Enable Set Register    |           | 4000E01             |
| Interrupt Aggregator | 0        | GIRQ9 Result Register        |           | 4000E01             |
| Interrupt Aggregator | 0        | GIRQ9 Enable Clear Register  |           | 4000E02             |
| Interrupt Aggregator | 0        | GIRQ10 Source Register       |           | 4000E02             |
| Interrupt Aggregator | 0        | GIRQ10 Enable Set Register   |           | 4000E02             |
| Interrupt Aggregator | 0        | GIRQ10 Result Register       |           | 4000E03             |
| Interrupt Aggregator | 0        | GIRQ10 Enable Clear Register |           | 4000E03             |
| Interrupt Aggregator | 0        | GIRQ11 Source Register       |           | 4000E03             |
| Interrupt Aggregator | 0        | GIRQ11 Enable Set Register   |           | 4000E04             |
| Interrupt Aggregator | 0        | GIRQ11 Result Register       |           | 4000E04             |
| Interrupt Aggregator | 0        | GIRQ11 Enable Clear Register |           | 4000E04             |
| Interrupt Aggregator | 0        | GIRQ12 Source Register       |           | 4000E05             |
| Interrupt Aggregator | 0        | GIRQ12 Enable Set Register   |           | 4000E05             |
| Interrupt Aggregator | 0        | GIRQ12 Result Register       |           | 4000E05             |
| Interrupt Aggregator | 0        | GIRQ12 Enable Clear Register |           | 4000E05             |
| Interrupt Aggregator | 0        | GIRQ13 Source Register       |           | 4000E06             |
| Interrupt Aggregator | 0        | GIRQ13 Enable Set Register   |           | 4000E06             |
| Interrupt Aggregator | 0        | GIRQ13 Result Register       |           | 4000E06             |
| Interrupt Aggregator | 0        | GIRQ13 Enable Clear Register |           | 4000E07             |
| Interrupt Aggregator | 0        | GIRQ14 Source Register       |           | 4000E07             |
| Interrupt Aggregator | 0        | GIRQ14 Enable Set Register   |           | 4000E07             |
| Interrupt Aggregator | 0        | GIRQ14 Result Register       |           | 4000E08             |
| Interrupt Aggregator | 0        | GIRQ14 Enable Clear Register |           | 4000E08             |
| Interrupt Aggregator | 0        | GIRQ15 Source Register       |           | 4000E08             |
| Interrupt Aggregator | 0        | GIRQ15 Enable Set Register   |           | 4000E09             |
| Interrupt Aggregator | 0        | GIRQ15 Result Register       |           | 4000E09             |
| Interrupt Aggregator | 0        | GIRQ15 Enable Clear Register |           | 4000E09             |
| Interrupt Aggregator | 0        | GIRQ16 Source Register       |           | 4000E0A             |
| Interrupt Aggregator | 0        | GIRQ16 Enable Set Register   |           | 4000E0A             |
| Interrupt Aggregator | 0        | GIRQ16 Result Register       |           | 4000E0A             |
| Interrupt Aggregator | 0        | GIRQ16 Enable Clear Register |           | 4000E0A             |
| Interrupt Aggregator | 0        | GIRQ17 Source Register       |           | 4000E0B             |
| Interrupt Aggregator | 0        | GIRQ17 Enable Set Register   |           | 4000E0B             |
| Interrupt Aggregator | 0        | GIRQ17 Result Register       |           | 4000E0B             |
| Interrupt Aggregator | 0        | GIRQ17 Enable Clear Register |           | 4000E0C             |
| Interrupt Aggregator | 0        | GIRQ18 Source Register       |           | 4000E0C             |
| Interrupt Aggregator | 0        | GIRQ18 Enable Set Register   |           | 4000E0C             |
| Interrupt Aggregator | 0        | GIRQ18 Result Register       |           | 4000E0D             |
| Interrupt Aggregator | 0        | GIRQ18 Enable Clear Register |           | 4000E0D             |

TABLE 3-5: REGISTER MAP

| Block                | Instance | Register                     | lost<br>ype | Register<br>Address |
|----------------------|----------|------------------------------|-------------|---------------------|
| Interrupt Aggregator | 0        | GIRQ19 Source Register       |             | 4000E0DC            |
| Interrupt Aggregator | 0        | GIRQ19 Enable Set Register   |             | 4000E0E0            |
| Interrupt Aggregator | 0        | GIRQ19 Result Register       |             | 4000E0E4            |
| Interrupt Aggregator | 0        | GIRQ19 Enable Clear Register |             | 4000E0E8            |
| Interrupt Aggregator | 0        | GIRQ20 Source Register       |             | 4000E0F0            |
| Interrupt Aggregator | 0        | GIRQ20 Enable Set Register   |             | 4000E0F4            |
| Interrupt Aggregator | 0        | GIRQ20 Result Register       |             | 4000E0F8            |
| Interrupt Aggregator | 0        | GIRQ20 Enable Clear Register |             | 4000E0FC            |
| Interrupt Aggregator | 0        | GIRQ21 Source Register       |             | 4000E104            |
| Interrupt Aggregator | 0        | GIRQ21 Enable Set Register   |             | 4000E108            |
| Interrupt Aggregator | 0        | GIRQ21 Result Register       |             | 4000E10C            |
| Interrupt Aggregator | 0        | GIRQ21 Enable Clear Register |             | 4000E110            |
| Interrupt Aggregator | 0        | GIRQ22 Source Register       |             | 4000E118            |
| Interrupt Aggregator | 0        | GIRQ22 Enable Set Register   |             | 4000E11C            |
| Interrupt Aggregator | 0        | GIRQ22 Result Register       |             | 4000E120            |
| Interrupt Aggregator | 0        | GIRQ22 Enable Clear Register |             | 4000E124            |
| Interrupt Aggregator | 0        | GIRQ23 Source Register       |             | 4000E12C            |
| Interrupt Aggregator | 0        | GIRQ23 Enable Set Register   |             | 4000E130            |
| Interrupt Aggregator | 0        | GIRQ23 Result Register       |             | 4000E134            |
| Interrupt Aggregator | 0        | GIRQ23 Enable Clear Register |             | 4000E138            |
| Interrupt Aggregator | 0        | GIRQ24 Source Register       |             | 4000E140            |
| Interrupt Aggregator | 0        | GIRQ24 Enable Set Register   |             | 4000E144            |
| Interrupt Aggregator | 0        | GIRQ24 Result Register       |             | 4000E148            |
| Interrupt Aggregator | 0        | GIRQ24 Enable Clear Register |             | 4000E14C            |
| Interrupt Aggregator | 0        | GIRQ25 Source Register       |             | 4000E154            |
| Interrupt Aggregator | 0        | GIRQ25 Enable Set Register   |             | 4000E158            |
| Interrupt Aggregator | 0        | GIRQ25 Result Register       |             | 4000E15C            |
| Interrupt Aggregator | 0        | GIRQ25 Enable Clear Register |             | 4000E160            |
| Interrupt Aggregator | 0        | GIRQ26 Source Register       |             | 4000E168            |
| Interrupt Aggregator | 0        | GIRQ26 Enable Set Register   |             | 4000E16C            |
| Interrupt Aggregator | 0        | GIRQ26 Result Register       |             | 4000E170            |
| Interrupt Aggregator | 0        | GIRQ26 Enable Clear Register |             | 4000E174            |
| Interrupt Aggregator | 0        | Block Enable Set Register    |             | 4000E200            |
| Interrupt Aggregator | 0        | Block Enable Clear Register  |             | 4000E204            |
| Interrupt Aggregator | 0        | Block IRQ Vector Register    |             | 4000E208            |
| EC Register Bank     | 0        | TEST                         |             | 4000FC00            |
| EC Register Bank     | 0        | AHB Error Address Register   |             | 4000FC04            |
| EC Register Bank     | 0        | TEST                         |             | 4000FC08            |
| EC Register Bank     | 0        | TEST                         |             | 4000FC0C            |
| EC Register Bank     | 0        | TEST                         |             | 4000FC10            |
| EC Register Bank     | 0        | AHB Error Control Register   |             | 4000FC14            |
| EC Register Bank     | 0        | Interrupt Control Register   |             | 4000FC18            |
| EC Register Bank     | 0        | ETM TRACE Enable Register    |             | 4000FC1C            |
| EC Register Bank     | 0        | Debug Enable Register        |             | 4000FC20            |

TABLE 3-5: REGISTER MAP

| Block                   | Instance | Register Hos<br>Typ              |          |
|-------------------------|----------|----------------------------------|----------|
| EC Register Bank        | 0        | TEST                             | 4000FC24 |
| EC Register Bank        | 0        | WDT Event Count Register         | 4000FC28 |
| EC Register Bank        | 0        | PECI DISABLE Register            | 4000FC40 |
| EC Register Bank        | 0        | TEST                             | 4000FC44 |
| EC Register Bank        | 0        | TEST                             | 4000FC48 |
| EC Register Bank        | 0        | TEST                             | 4000FC4C |
| EC Register Bank        | 0        | TEST                             | 4000FC60 |
| EC Register Bank        | 0        | GPIO Bank Power Register         | 4000FC64 |
| EC Register Bank        | 0        | TEST                             | 4000FC68 |
| EC Register Bank        | 0        | TEST                             | 4000FC6C |
| EC Register Bank        | 0        | Vwire FW Override Register       | 4000FC90 |
| EC Register Bank        | 0        | Other IP trim Register           | 4000FCF0 |
| EC Register Bank        | 0        | TEST                             | 4000FD00 |
| EC Register Bank        | 0        | FW Scratch Register0             | 4000FD80 |
| EC Register Bank        | 0        | FW Scratch Register1             | 4000FD84 |
| EC Register Bank        | 0        | FW Scratch Register2             | 4000FD88 |
| EC Register Bank        | 0        | FW Scratch Register3             | 4000FD8C |
| Power Clocks and Resets | 0        | System Sleep Control Register    | 40080100 |
| Power Clocks and Resets | 0        | Processor Clock Control Register | 40080104 |
| Power Clocks and Resets | 0        | Slow Clock Control Register      | 40080108 |
| Power Clocks and Resets | 0        | Oscillator ID Register           | 4008010C |
| Power Clocks and Resets | 0        | PCR Power Reset Status Register  | 40080110 |
| Power Clocks and Resets | 0        | Power Reset Control Register     | 40080114 |
| Power Clocks and Resets | 0        | System Reset Register            | 40080118 |
| Power Clocks and Resets | 0        | TEST                             | 4008011C |
| Power Clocks and Resets | 0        | TEST                             | 40080120 |
| Power Clocks and Resets | 0        | Sleep Enable 0 Register          | 40080130 |
| Power Clocks and Resets | 0        | Sleep Enable 1 Register          | 40080134 |
| Power Clocks and Resets | 0        | Sleep Enable 2 Register          | 40080138 |
| Power Clocks and Resets | 0        | Sleep Enable 3 Register          | 4008013C |
| Power Clocks and Resets | 0        | Sleep Enable 4 Register          | 40080140 |
| Power Clocks and Resets | 0        | Clock Required 0 Register        | 40080150 |
| Power Clocks and Resets | 0        | Clock Required 1 Register        | 40080154 |
| Power Clocks and Resets | 0        | Clock Required 2 Register        | 40080158 |
| Power Clocks and Resets | 0        | Clock Required 3 Register        | 4008015C |
| Power Clocks and Resets | 0        | Clock Required 4 Register        | 40080160 |
| Power Clocks and Resets | 0        | Reset Enable 0 Register          | 40080170 |
| Power Clocks and Resets | 0        | Reset Enable 1 Register          | 40080174 |
| Power Clocks and Resets | 0        | Reset Enable 2 Register          | 40080178 |
| Power Clocks and Resets | 0        | Reset Enable 3 Register          | 4008017C |
| Power Clocks and Resets | 0        | Reset Enable 4 Register          | 40080180 |
| Power Clocks and Resets | 0        | Peripheral Reset Lock Register   | 40080184 |
| GPIO                    | 0        | GPIO000 Pin Control Register     | 40081000 |
| GPIO                    | 0        | GPIO002 Pin Control Register     | 40081008 |

TABLE 3-5: REGISTER MAP

| Block | Instance | Register Host<br>Type        | Register<br>Address |
|-------|----------|------------------------------|---------------------|
| GPIO  | 0        | GPIO003 Pin Control Register | 4008100C            |
| GPIO  | 0        | GPIO004 Pin Control Register | 40081010            |
| GPIO  | 0        | GPIO012 Pin Control Register | 40081028            |
| GPIO  | 0        | GPIO013 Pin Control Register | 4008102C            |
| GPIO  | 0        | GPIO015 Pin Control Register | 40081034            |
| GPIO  | 0        | GPIO016 Pin Control Register | 40081038            |
| GPIO  | 0        | GPIO020 Pin Control Register | 40081040            |
| GPIO  | 0        | GPIO021 Pin Control Register | 40081044            |
| GPIO  | 0        | GPIO026 Pin Control Register | 40081058            |
| GPIO  | 0        | GPIO027 Pin Control Register | 4008105C            |
| GPIO  | 0        | GPIO030 Pin Control Register | 40081060            |
| GPIO  | 0        | GPIO032 Pin Control Register | 40081068            |
| GPIO  | 0        | GPIO034 Pin Control Register | 40081070            |
| GPIO  | 0        | GPIO045 Pin Control Register | 40081094            |
| GPIO  | 0        | GPIO046 Pin Control Register | 40081098            |
| GPIO  | 0        | GPIO047 Pin Control Register | 4008109C            |
| GPIO  | 0        | GPIO050 Pin Control Register | 400810A0            |
| GPIO  | 0        | GPIO051 Pin Control Register | 400810A4            |
| GPIO  | 0        | GPIO053 Pin Control Register | 400810AC            |
| GPIO  | 0        | GPIO055 Pin Control Register | 400810B4            |
| GPIO  | 0        | GPIO056 Pin Control Register | 400810B8            |
| GPIO  | 0        | GPIO057 Pin Control Register | 400810BC            |
| GPIO  | 0        | GPIO063 Pin Control Register | 400810CC            |
| GPIO  | 0        | GPIO070 Pin Control Register | 400810E0            |
| GPIO  | 0        | GPI0071 Pin Control Register | 400810E4            |
| GPIO  | 0        | GPIO104 Pin Control Register | 40081110            |
| GPIO  | 0        | GPIO105 Pin Control Register | 40081114            |
| GPIO  | 0        | GPIO106 Pin Control Register | 40081118            |
| GPIO  | 0        | GPIO107 Pin Control Register | 4008111C            |
| GPIO  | 0        | GPIO112 Pin Control Register | 40081128            |
| GPIO  | 0        | GPIO113 Pin Control Register | 4008112C            |
| GPIO  | 0        | GPIO120 Pin Control Register | 40081140            |
| GPIO  | 0        | GPIO121 Pin Control Register | 40081144            |
| GPIO  | 0        | GPIO122 Pin Control Register | 40081148            |
| GPIO  | 0        | GPIO123 Pin Control Register | 4008114C            |
| GPIO  | 0        | GPIO124 Pin Control Register | 40081150            |
| GPIO  | 0        | GPIO125 Pin Control Register | 40081154            |
| GPIO  | 0        | GPIO126 Pin Control Register | 40081158            |
| GPIO  | 0        | GPIO127 Pin Control Register | 4008115C            |
| GPIO  | 0        | GPIO130 Pin Control Register | 40081160            |
| GPIO  | 0        | GPIO131 Pin Control Register | 40081164            |
| GPIO  | 0        | GPIO132 Pin Control Register | 40081168            |
| GPIO  | 0        | GPIO140 Pin Control Register | 40081180            |
| GPIO  | 0        | GPIO143 Pin Control Register | 4008118C            |

TABLE 3-5: REGISTER MAP

| Block | Instance | Register Hos                  | _        |
|-------|----------|-------------------------------|----------|
| GPIO  | 0        | GPIO144 Pin Control Register  | 40081190 |
| GPIO  | 0        | GPIO145 Pin Control Register  | 40081194 |
| GPIO  | 0        | GPIO146 Pin Control Register  | 40081198 |
| GPIO  | 0        | GPIO147 Pin Control Register  | 4008119C |
| GPIO  | 0        | GPIO150 Pin Control Register  | 400811A0 |
| GPIO  | 0        | GPIO156 Pin Control Register  | 400811B8 |
| GPIO  | 0        | GPIO157 Pin Control Register  | 400811BC |
| GPIO  | 0        | GPIO163 Pin Control Register  | 400811CC |
| GPIO  | 0        | GPIO165 Pin Control Register  | 400811D4 |
| GPIO  | 0        | GPIO170 Pin Control Register  | 400811E0 |
| GPIO  | 0        | GPIO171 Pin Control Register  | 400811E4 |
| GPIO  | 0        | GPIO200 Pin Control Register  | 40081200 |
| GPIO  | 0        | GPIO201 Pin Control Register  | 40081204 |
| GPIO  | 0        | GPIO202 Pin Control Register  | 40081208 |
| GPIO  | 0        | GPIO203 Pin Control Register  | 40081200 |
| GPIO  | 0        | GPIO204 Pin Control Register  | 40081210 |
| GPIO  | 0        | GPIO223 Pin Control Register  | 40081240 |
| GPIO  | 0        | GPIO224 Pin Control Register  | 40081250 |
| GPIO  | 0        | GPIO227 Pin Control Register  | 40081250 |
| GPIO  | 0        | GPIO250 Pin Control Register  | 400812A0 |
| GPIO  | 0        | GPIO253 Pin Control Register  | 400812AC |
| GPIO  | 0        | Input GPIO[000:036]           | 40081300 |
| GPIO  | 0        | Input GPIO[040:076]           | 40081304 |
| GPIO  | 0        | Input GPIO[100:127]           | 40081308 |
| GPIO  | 0        | Input GPIO[140:176]           | 40081300 |
| GPIO  | 0        | Input GPIO[200:236]           | 40081310 |
| GPIO  | 0        | Input GPIO[240:276]           | 40081314 |
| GPIO  | 0        | Output GPIO[000:036]          | 40081380 |
| GPIO  | 0        | Output GPIO[040:076]          | 40081384 |
| GPIO  | 0        | Output GPIO[100:127]          | 40081388 |
| GPIO  | 0        | Output GPIO[140:176]          | 40081380 |
| GPIO  | 0        | Output GPIO[200:236]          | 40081390 |
| GPIO  | 0        | Output GPI0[240:276]          | 40081394 |
| GPIO  | 0        | GPIO000 Pin Control2 Register | 40081500 |
| GPIO  | 0        | GPIO002 Pin Control2 Register | 40081508 |
| GPIO  | 0        | GPIO003 Pin Control2 Register | 40081500 |
| GPIO  | 0        | GPIO004 Pin Control2 Register | 40081510 |
| GPIO  | 0        | GPIO012 Pin Control2 Register | 40081528 |
| GPIO  | 0        | GPIO013 Pin Control2 Register | 4008152C |
| GPIO  | 0        | GPIO015 Pin Control2 Register | 40081534 |
| GPIO  | 0        | GPIO016 Pin Control2 Register | 40081538 |
| GPIO  | 0        | GPIO020 Pin Control2 Register | 40081540 |
| GPIO  | 0        | GPIO021 Pin Control2 Register | 40081544 |
|       |          |                               |          |

TABLE 3-5: REGISTER MAP

| Block | Instance | Register Ho                   | <br>Register<br>Address |
|-------|----------|-------------------------------|-------------------------|
| GPIO  | 0        | GPIO027 Pin Control2 Register | 4008155C                |
| GPIO  | 0        | GPIO030 Pin Control2 Register | 40081560                |
| GPIO  | 0        | GPIO032 Pin Control2 Register | 40081568                |
| GPIO  | 0        | GPIO034 Pin Control2 Register | 40081570                |
| GPIO  | 0        | GPIO045 Pin Control2 Register | 40081594                |
| GPIO  | 0        | GPIO046 Pin Control2 Register | 40081598                |
| GPIO  | 0        | GPIO047 Pin Control2 Register | 4008159C                |
| GPIO  | 0        | GPIO050 Pin Control2 Register | 400815A0                |
| GPIO  | 0        | GPIO051 Pin Control2 Register | 400815A4                |
| GPIO  | 0        | GPIO053 Pin Control2 Register | 400815AC                |
| GPIO  | 0        | GPIO055 Pin Control2 Register | 400815B4                |
| GPIO  | 0        | GPIO056 Pin Control2 Register | 400815B8                |
| GPIO  | 0        | GPIO057 Pin Control2 Register | 400815BC                |
| GPIO  | 0        | GPIO063 Pin Control2 Register | 400815CC                |
| GPIO  | 0        | GPIO070 Pin Control2 Register | 400815E0                |
| GPIO  | 0        | GPIO071 Pin Control2 Register | 400815E4                |
| GPIO  | 0        | GPIO104 Pin Control2 Register | 40081610                |
| GPIO  | 0        | GPIO105 Pin Control2 Register | 40081614                |
| GPIO  | 0        | GPIO106 Pin Control2 Register | 40081618                |
| GPIO  | 0        | GPIO107 Pin Control2 Register | 4008161C                |
| GPIO  | 0        | GPIO112 Pin Control2 Register | 40081628                |
| GPIO  | 0        | GPIO113 Pin Control2 Register | 4008162C                |
| GPIO  | 0        | GPIO120 Pin Control2 Register | 40081640                |
| GPIO  | 0        | GPIO121 Pin Control2 Register | 40081644                |
| GPIO  | 0        | GPIO122 Pin Control2 Register | 40081648                |
| GPIO  | 0        | GPIO123 Pin Control2 Register | 4008164C                |
| GPIO  | 0        | GPIO124 Pin Control2 Register | 40081650                |
| GPIO  | 0        | GPIO125 Pin Control2 Register | 40081654                |
| GPIO  | 0        | GPIO126 Pin Control2 Register | 40081658                |
| GPIO  | 0        | GPIO127 Pin Control2 Register | 4008165C                |
| GPIO  | 0        | GPIO130 Pin Control2 Register | 40081660                |
| GPIO  | 0        | GPIO131 Pin Control2 Register | 40081664                |
| GPIO  | 0        | GPIO132 Pin Control2 Register | 40081668                |
| GPIO  | 0        | GPIO140 Pin Control2 Register | 40081680                |
| GPIO  | 0        | GPIO143 Pin Control2 Register | 4008168C                |
| GPIO  | 0        | GPIO144 Pin Control2 Register | 40081690                |
| GPIO  | 0        | GPIO145 Pin Control2 Register | 40081694                |
| GPIO  | 0        | GPIO146 Pin Control2 Register | 40081698                |
| GPIO  | 0        | GPIO147 Pin Control2 Register | 4008169C                |
| GPIO  | 0        | GPIO150 Pin Control2 Register | 400816A0                |
| GPIO  | 0        | GPIO156 Pin Control2 Register | 400816B8                |
| GPIO  | 0        | GPIO157 Pin Control2 Register | 400816BC                |
| GPIO  | 0        | GPIO163 Pin Control2 Register | 400816CC                |
| GPIO  | 0        | GPIO165 Pin Control2 Register | 400816D4                |

TABLE 3-5: REGISTER MAP

| Block | Instance | Register                                      | Host<br>Type | Register<br>Address |
|-------|----------|-----------------------------------------------|--------------|---------------------|
| GPIO  | 0        | GPIO170 Pin Control2 Register                 |              | 400816E0            |
| GPIO  | 0        | GPIO171 Pin Control2 Register                 |              | 400816E4            |
| GPIO  | 0        | GPIO200 Pin Control2 Register                 |              | 40081700            |
| GPIO  | 0        | GPIO201 Pin Control2 Register                 |              | 40081704            |
| GPIO  | 0        | GPIO202 Pin Control2 Register                 |              | 40081708            |
| GPIO  | 0        | GPIO203 Pin Control2 Register                 |              | 4008170C            |
| GPIO  | 0        | GPIO204 Pin Control2 Register                 |              | 40081710            |
| GPIO  | 0        | GPIO223 Pin Control2 Register                 |              | 4008174C            |
| GPIO  | 0        | GPIO224 Pin Control2 Register                 |              | 40081750            |
| GPIO  | 0        | GPIO227 Pin Control2 Register                 |              | 4008175C            |
| GPIO  | 0        | GPIO250 Pin Control2 Register                 |              | 400817A0            |
| GPIO  | 0        | GPIO253 Pin Control2 Register                 |              | 400817AC            |
| UART  | 0        | Receive Buffer Register                       | Run-<br>time | 400F2400            |
| UART  | 0        | Transmit Buffer Register                      | Run-<br>time | 400F2400            |
| UART  | 0        | Programmable Baud Rate Generator LSB Register | Run-<br>time | 400F2400            |
| UART  | 0        | Programmable Baud Rate Generator MSB Register | Run-<br>time | 400F2401            |
| UART  | 0        | Interrupt Enable Register                     | Run-<br>time | 400F2401            |
| UART  | 0        | FIFO Control Register                         | Run-<br>time | 400F2402            |
| UART  | 0        | Interrupt Identification Register             | Run-<br>time | 400F2402            |
| UART  | 0        | Line Control Register                         | Run-<br>time | 400F2403            |
| UART  | 0        | Modem Control Register                        | Run-<br>time | 400F2404            |
| UART  | 0        | Line Status Register                          | Run-<br>time | 400F2405            |
| UART  | 0        | Modem Status Register                         | Run-<br>time | 400F2406            |
| UART  | 0        | Scratchpad Register                           | Run-<br>time | 400F2407            |
| UART  | 0        | Activate Register                             | Con-<br>fig  | 400F2730            |
| UART  | 0        | Configuration Select Register                 | Con-<br>fig  | 400F27F0            |
| UART  | 1        | Receive Buffer Register                       | Run-<br>time | 400F2800            |
| UART  | 1        | Transmit Buffer Register                      | Run-<br>time | 400F2800            |
| UART  | 1        | Programmable Baud Rate Generator LSB Register | Run-<br>time | 400F2800            |

TABLE 3-5: REGISTER MAP

| Block | Instance | Register                                      | Host<br>Type | Register<br>Address |
|-------|----------|-----------------------------------------------|--------------|---------------------|
| UART  | 1        | Programmable Baud Rate Generator MSB Register | Run-<br>time | 400F2801            |
| UART  | 1        | Interrupt Enable Register                     | Run-<br>time | 400F2801            |
| UART  | 1        | FIFO Control Register                         | Run-<br>time | 400F2802            |
| UART  | 1        | Interrupt Identification Register             | Run-<br>time | 400F2802            |
| UART  | 1        | Line Control Register                         | Run-<br>time | 400F2803            |
| UART  | 1        | Modem Control Register                        | Run-<br>time | 400F2804            |
| UART  | 1        | Line Status Register                          | Run-<br>time | 400F2805            |
| UART  | 1        | Modem Status Register                         | Run-<br>time | 400F2806            |
| UART  | 1        | Scratchpad Register                           | Run-<br>time | 400F2807            |
| UART  | 1        | Activate Register                             | Con-<br>fig  | 400F2B30            |
| UART  | 1        | Configuration Select Register                 | Con-<br>fig  | 400F2BF0            |
| UART  | 2        | Receive Buffer Register                       | Run-<br>time | 400F2C00            |
| UART  | 2        | Transmit Buffer Register                      | Run-<br>time | 400F2C00            |
| UART  | 2        | Programmable Baud Rate Generator LSB Register | Run-<br>time | 400F2C00            |
| UART  | 2        | Programmable Baud Rate Generator MSB Register | Run-<br>time | 400F2C01            |
| UART  | 2        | Interrupt Enable Register                     | Run-<br>time | 400F2C01            |
| UART  | 2        | FIFO Control Register                         | Run-<br>time | 400F2C02            |
| UART  | 2        | Interrupt Identification Register             | Run-<br>time | 400F2C02            |
| UART  | 2        | Line Control Register                         | Run-<br>time | 400F2C03            |
| UART  | 2        | Modem Control Register                        | Run-<br>time | 400F2C04            |
| UART  | 2        | Line Status Register                          | Run-<br>time | 400F2C05            |
| UART  | 2        | Modem Status Register                         | Run-<br>time | 400F2C06            |
| UART  | 2        | Scratchpad Register                           | Run-<br>time | 400F2C07            |
| UART  | 2        | Activate Register                             | Con-<br>fig  | 400F2F30            |

TABLE 3-5: REGISTER MAP

| Block                | Instance | Register                           | Host<br>Type | Register<br>Address |
|----------------------|----------|------------------------------------|--------------|---------------------|
| UART                 | 2        | Configuration Select Register      | Con-<br>fig  | 400F2FF0            |
| Real Time Clock      | 0        | Seconds Register                   | Run-<br>time | 400F5000            |
| Real Time Clock      | 0        | Seconds Alarm Register             | Run-<br>time | 400F5001            |
| Real Time Clock      | 0        | Minutes Register                   | Run-<br>time | 400F5002            |
| Real Time Clock      | 0        | Minutes Alarm Register             | Run-<br>time | 400F5003            |
| Real Time Clock      | 0        | Hours Register                     | Run-<br>time | 400F5004            |
| Real Time Clock      | 0        | Hours Alarm Register               | Run-<br>time | 400F5005            |
| Real Time Clock      | 0        | Day of Week Register               | Run-<br>time | 400F5006            |
| Real Time Clock      | 0        | Day of Month Register              | Run-<br>time | 400F5007            |
| Real Time Clock      | 0        | Month Register                     | Run-<br>time | 400F5008            |
| Real Time Clock      | 0        | Year Register                      | Run-<br>time | 400F5009            |
| Real Time Clock      | 0        | Register A                         | Run-<br>time | 400F500A            |
| Real Time Clock      | 0        | Register B                         | Run-<br>time | 400F500B            |
| Real Time Clock      | 0        | Register C                         | Run-<br>time | 400F500C            |
| Real Time Clock      | 0        | Register D                         | Run-<br>time | 400F500D            |
| Real Time Clock      | 0        | Reserved                           | Run-<br>time | 400F500E            |
| Real Time Clock      | 0        | Reserved                           | Run-<br>time | 400F500F            |
| Real Time Clock      | 0        | RTC Control Register               | Run-<br>time | 400F5010            |
| Real Time Clock      | 0        | Week Alarm Register                | Run-         | 400F5014            |
| Real Time Clock      | 0        | Daylight Savings Forward Register  | Run-<br>time | 400F5018            |
| Real Time Clock      | 0        | Daylight Savings Backward Register | Run-<br>time | 400F501C            |
| Real Time Clock      | 0        | TEST                               | Run-         | 400F5020            |
| Global Configuration | 0        | Global Configuration Reserved      | Run-<br>time | 400FFF00            |
| Global Configuration | 0        | Control                            | Run-<br>time | 400FFF02            |

TABLE 3-5: REGISTER MAP

| Block                | Instance | Register                            | Host<br>Type | Register<br>Address |
|----------------------|----------|-------------------------------------|--------------|---------------------|
| Global Configuration | 0        | Logical Device Number               | Run-<br>time | 400FFF07            |
| Global Configuration | 0        | Device Revision                     | Run-<br>time | 400FFF1C            |
| Global Configuration | 0        | Device Sub ID                       | Run-<br>time | 400FFF1D            |
| Global Configuration | 0        | Device ID[7:0]                      | Run-<br>time | 400FFF1E            |
| Global Configuration | 0        | Device ID[15:0]                     | Run-<br>time | 400FFF1F            |
| Global Configuration | 0        | Legacy Device ID                    | Run-<br>time | 400FFF20            |
| Global Configuration | 0        | TEST                                | Run-<br>time | 400FFF28            |
| Global Configuration | 0        | TEST                                | Run-<br>time | 400FFF29            |
| Global Configuration | 0        | Test0                               | Run-<br>time | 400FFF2A            |
| Global Configuration | 0        | Test1                               | Run-<br>time | 400FFF2B            |
| Global Configuration | 0        | TEST                                | Run-<br>time | 400FFF2C            |
| Global Configuration | 0        | TEST                                | Run-<br>time | 400FFF2D            |
| Global Configuration | 0        | TEST                                | Run-<br>time | 400FFF2E            |
| Global Configuration | 0        | TEST                                | Run-<br>time | 400FFF2F            |
| ARM M4               | 0        | Auxiliary_Control                   |              | DFFFE008            |
| ARM M4               | 0        | SystemTick_Ctrl_Status              |              | DFFFE010            |
| ARM M4               | 0        | SystemTick_Reload_Value             |              | DFFFE014            |
| ARM M4               | 0        | SystemTick_Current_Value            |              | DFFFE018            |
| ARM M4               | 0        | SystemTick_Calibration_Value        |              | DFFFE01C            |
| ARM M4               | 0        | CPU_ID                              |              | DFFFED00            |
| ARM M4               | 0        | Interrupt_Ctl_and_State             |              | DFFFED04            |
| ARM M4               | 0        | Vector_Table_Offset                 |              | DFFFED08            |
| ARM M4               | 0        | Application_Interrupt_and_Reset_Ctl |              | DFFFED0C            |
| ARM M4               | 0        | System_Ctl                          |              | DFFFED10            |
| ARM M4               | 0        | Config_and_Ctl                      |              | DFFFED14            |
| ARM M4               | 0        | System_Handler_Priority1            |              | DFFFED18            |
| ARM M4               | 0        | System_Handler_Priority2            |              | DFFFED1C            |
| ARM M4               | 0        | System_Handler_Priority3            |              | DFFFED20            |
| ARM M4               | 0        | System_Handler_Ctl_and_State        |              | DFFFED24            |
| ARM M4               | 0        | Configurable_Fault_Status           |              | DFFFED28            |
| ARM M4               | 0        | Hard_Fault_Status                   |              | DFFFED2C            |
| ARM M4               | 0        | Debug_Fault_Status                  |              | DFFFED30            |
| ARM M4               | 0        | Debug_Halting_Ctl_and_Status        |              | DFFFEDF0            |

TABLE 3-5: REGISTER MAP

| Block  | Instance | Register                        |  | Register<br>Address |
|--------|----------|---------------------------------|--|---------------------|
| ARM M4 | 0        | Debug_Core_Register_Selector    |  | DFFFEDF4            |
| ARM M4 | 0        | Debug_Core_Register_Data        |  | DFFFEDF8            |
| ARM M4 | 0        | Debug_Exception_and_Monitor_Ctl |  | DFFFEDFC            |
| ARM M4 | 0        | Bus_Fault_Address               |  | DFFFED38            |
| ARM M4 | 0        | Auxiliary_Fault_Status          |  | DFFFED3C            |
| ARM M4 | 0        | Processor_Feature0              |  | DFFFED40            |
| ARM M4 | 0        | Processor_Feature1              |  | DFFFED44            |
| ARM M4 | 0        | Debug_Features0                 |  | DFFFED48            |
| ARM M4 | 0        | Auxiliary_Features0             |  | DFFFED4C            |
| ARM M4 | 0        | Memory_Model_Feature0           |  | DFFFED50            |
| ARM M4 | 0        | Memory_Model_Feature1           |  | DFFFED54            |
| ARM M4 | 0        | Memory_Model_Feature2           |  | DFFFED58            |
| ARM M4 | 0        | Memory_Model_Feature3           |  | DFFFED5C            |
| ARM M4 | 0        | Instruction_Set_Attributes0     |  | DFFFED60            |
| ARM M4 | 0        | Instruction_Set_Attributes1     |  | DFFFED64            |
| ARM M4 | 0        | Instruction_Set_Attributes2     |  | DFFFED68            |
| ARM M4 | 0        | Instruction_Set_Attributes3     |  | DFFFED6C            |
| ARM M4 | 0        | Instruction_Set_Attributes4     |  | DFFFED70            |
| ARM M4 | 0        | Coprocessor_Access_Ctl          |  | DFFFED88            |
| ARM M4 | 0        | Software_Triggered_Interrupt    |  | DFFFEF00            |

## 4.0 POWER, CLOCKS, AND RESETS

### 4.1 Introduction

The Power, Clocks, and Resets (PCR) chapter identifies all the power supplies, clock sources, and reset inputs to the chip and defines all the derived power, clock, and reset signals. In addition, this section identifies Power, Clock, and Reset events that may be used to generate an interrupt event, as well as, the Chip Power Management Features.

### 4.2 References

No references have been cited for this chapter.

## 4.3 Interrupts

The Power, Clocks, and Resets logic generates no events

### 4.4 Power

TABLE 4-1: POWER SOURCE DEFINITIONS

| Power Well | Nominal<br>Voltage | Description                                                                                                                                                                              | Source                |
|------------|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
| VTR_REG    | 1.8V - 3.3V        | This supply is used to derive the chip's core power.                                                                                                                                     | Pin Interface         |
| VTR_ANALOG | 3.3V               | 3.3V Analog Power Supply.                                                                                                                                                                |                       |
| VTR_PLL    | 3.3V               | 3.3V Power Supply for the 48MHz PLL. This must be connected to the same supply as VTR_ANALOG.                                                                                            | Pin Interface         |
| VTR1       | 3.3V               | 3.3V System Power Supply. This is typically connected to the "Always-on" or "Suspend" supply rails in system. This supply must be on prior to the system RSMRST# signal being deasserted | Pin Interface         |
| VTR2       | 3.3V or 1.8V       | 3.3V or 1.8V System Power Supply.<br>This supply is used to power one bank<br>of I/O pins. See Note 1.                                                                                   | Pin Interface         |
| VTR_CORE   | 1.2V               | The main power well for internal logic                                                                                                                                                   | Internal regulator    |
| VBAT       | 3.0V - 3.3V        | System Battery Back-up Power Well. This is the "coin-cell" battery.  GPIOs that share pins with VBAT signals are powered by this supply.                                                 | Pin Interface<br>VBAT |
| VSS        | 0V                 | Digital Ground                                                                                                                                                                           | Pin Interface         |

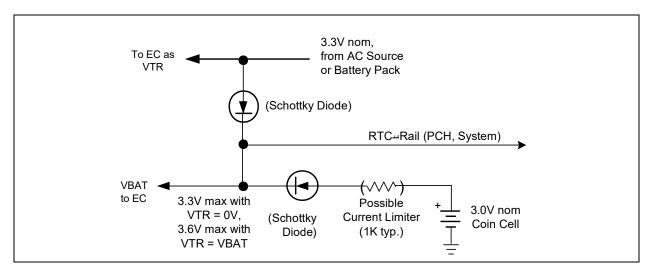
Note 1: See Section 4.4.1, "I/O Rail Requirements" for connection requirements for VTRx.

- **2:** The source for the Internal regulator is VTR\_REG.
- 3: VTR refers to VTR REG and VTR ANALOG.

#### 4.4.1 I/O RAIL REQUIREMENTS

All pins are powered by the power supply pins: VBAT, VTR1, VTR2. The VBAT supply must be 3V to 3.6V maximum, as shown in the following section. The VTR1 is fixed 3.3V and VTR2 pins may be connected to either a 3.3V or a 1.8V power supply as configured by the firmware.

If a power rail is not powered and stable when RESET\_SYS is de-asserted and is not required for booting, software can configure the pins on that bank appropriately by setting the corresponding bit in the GPIO Bank Power Register, once software can determine that the power supply is up and stable. All GPIOs in the bank must be left in their default state and not modified until the Bank Power is configured properly.


### 4.4.2 BATTERY CIRCUIT REQUIREMENTS

VBAT must always be present if VTR ANALOG is present.

Microchip recommends removing all power sources to the device defined in Table 4-1, "Power Source Definitions" and all external voltage references defined in Table 4-2, "Voltage Reference Definitions" before removing and replacing the battery. In addition, upon removing the battery, discharge the battery pin before replacing the battery.

The following external circuit is recommended to fulfill this requirement:

FIGURE 4-1: RECOMMENDED BATTERY CIRCUIT



### 4.4.3 VOLTAGE REFERENCES

Table 4-2 lists the External Voltage References to which the CEC1712 provides high impedance interfaces.

TABLE 4-2: VOLTAGE REFERENCE DEFINITIONS

| Power Well | Nominal Input<br>Voltage | Scaling Ratio | Nominal<br>Monitored<br>Voltage | Description                                                                                                 | Source        |
|------------|--------------------------|---------------|---------------------------------|-------------------------------------------------------------------------------------------------------------|---------------|
| VREF_VTT   | Variable                 | n/a           | Variable                        | Processor Voltage<br>External Voltage Reference<br>Used to scale Processor<br>Interface signals. (See Note) | Pin Interface |
| VREF_ADC   | Variable                 | n/a           | Variable                        | ADC Reference Voltage                                                                                       | Pin Interface |

**Note:** In order to achieve the lowest leakage current when both PECI and SB TSI are not used, set the VREF VTT Disable bit to 1. This bit is defined in PECI Disable Register bit 0.

### 4.4.4 SYSTEM POWER SEQUENCING

The following table defines the behavior of the main power rails in each of the defined ACPI power states.

TABLE 4-3: TYPICAL POWER SUPPLIES VS. ACPI POWER STATES

| Supply<br>Name | S0<br>(FULL<br>ON) | S1<br>(POS) | S3<br>(STR) | S4<br>(STD) | S5<br>(Soft Off) | G3<br>(MECH Off) | Description                       |
|----------------|--------------------|-------------|-------------|-------------|------------------|------------------|-----------------------------------|
| VTR1           | ON                 | ON          | ON          | ON          | ON               | OFF              | "Always-on" Supply                |
| VTR2           | ON                 | ON          | ON          | ON          | ON               | OFF              | 3.3V/1.8V Power Supply for Bank 2 |
| VBAT           | ON                 | ON          | ON          | ON<br>Note  | ON<br>Note       | ON<br>Note       | Battery Back-up Supply            |

**Note:** This device requires that the VBAT power is on when the VTR(Note 3) power supply is on. External circuitry, a diode isolation circuit, is implemented on the motherboard to extend the battery life. This external circuitry ensures the VBAT pin will derive power from the VTR power well when it is on. Therefore, the VBAT supply will never appear to be off when the VTR rail is on.

### 4.5 Clocks

The following section defines the clocks that are generated and derived.

### 4.5.1 RAW CLOCK SOURCES

The table defines raw clocks .

TABLE 4-4: SOURCE CLOCK DEFINITIONS

| Clock Name                       | Frequency               | Description                                                                                                                                                                                                                                                                                                                                                                          | Source                                                                       |
|----------------------------------|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|
| 32KHZ_IN                         | 32.768 kHz<br>(nominal) | Single-ended external clock input pin                                                                                                                                                                                                                                                                                                                                                | 32KHZ_IN pin                                                                 |
| 32.768 kHz Crystal<br>Oscillator | 32.768 kHz              | A 32.768 kHz parallel resonant crystal connected between the XTAL1 and XTAL2 pins. The accuracy of the clock depends on the accuracy of the crystal and the characteristics of the analog components used as part of the oscillator  The crystal oscillator source can bypass the crystal with a single-ended clock input. This option is configured with the Clock Enable Register. | Pin Interface (XTAL1 and XTAL2)  When used singled-ended, input pin is XTAL2 |
| 32.768 kHz Silicon<br>Oscillator | 32.768 kHz              | 32.768 kHz low power Internal Oscillator. The frequency is 32.768KHz ±2%.                                                                                                                                                                                                                                                                                                            | Internal Oscillator powered by VBAT.                                         |
| 32 MHz Ring<br>Oscillator        | 32MHz                   | The 32MHz Ring Oscillator is used to supply a clock for the 48MHz main clock domain while the 48MHz PLL is not locked. Its frequency can range from 12Mhz to 46MHz.                                                                                                                                                                                                                  | Powered by VTR_CORE.                                                         |
| 48 MHz PLL                       | 48MHz                   | The 48 MHz Phase Locked Loop generates a 48MHz clock locked to the VBAT 32KHz Clock                                                                                                                                                                                                                                                                                                  | Powered by VTR_CORE. May be stopped by Chip Power Management Features.       |

#### 4.5.2 CLOCK DOMAINS

TABLE 4-5: CLOCK DOMAIN DEFINITIONS

| Clock Domain     | Description                                                                                              |
|------------------|----------------------------------------------------------------------------------------------------------|
| VBAT 32KHz Clock | The clock source used as reference for PLL lock and System Clock controls.                               |
| 32KHz            | The clock source used by internal blocks that require an always-on low speed clock                       |
| 48MHz            | The main clock source used by most internal blocks                                                       |
| 100KHz           | A low-speed clock derived from the 48MHz clock domain. Used as a time base for PWMs and Tachs.           |
| EC_CLK           | The clock used by the EC processor. The frequency is determined by the Processor Clock Control Register. |

#### 4.5.3 48MHZ PLL

The 48MHz clock domain is primarily driven by a 48MHz PLL, which derives 48MHz from the VBAT 32KHz Clock domain. In Heavy Sleep mode, the 48MHz PLL is shut off. When the PLL is started, either from waking from the Heavy Sleep mode, or after a Power On Reset, the 32MHz ring oscillator becomes the clock source for the 48MHz clock domain until the PLL is stable. The PLL becomes stable after about 3ms after the VBAT 32KHz Clock is stable; until that time, the 48MHz clock domain may range from 16MHz to 48MHz, as this is the accuracy range of the 32MHz ring.

The PLL requires its own power 3.3V power supply, VTR\_PLL. This power rail must be active and stable no later than the latest of VTR\_REG and VTR\_ANALOG. There is no hardware detection of VTR\_PLL power good in the reset generator.

### 4.5.4 32KHZ CLOCK

The 32kHz Clock Domain may be sourced from a crystal oscillator, using an external crystal, by an internal 32kHz oscillator, or from a single-ended clock input. The external single-ended clock source can itself be sourced from the 32KHZ\_IN signal that is a GPIO alternate function or from the XTAL2 crystal pin. The Clock Enable Register is used to configure the source for the 32 kHz clock domain.

When VTR\_CORE is off, the 32 kHz clock domain can be disabled, for lowest standby power, or it can be kept running in order to provide a clock for the Real Time Clock or the Week Timer.

An external single-ended clock input for 32KHZ\_IN may be supplied by any accurate 32KHz clock source in the system. The SUSCLK output from the chipset may be used as the 32KHz source. SUSCLK must be present when VTR is on. See chipset documentation for details on the use of SUSCLK.

If firmware switches the 32KHz clock source, the 48MHz PLL will be shut off and then restarted. The 48MHz clock domain will become unlocked and be sourced from the 32 MHz Ring Oscillator until the 48MHz PLL is on and locked.

#### 4.5.4.1 VBAT 32KHz Clock

This clock source is used to drive the 48MHz PLL. VBAT 32KHz Clock should remain on while the 48Mhz PLL is ON. The internal source provides a reference for the Activity Detect that monitors the external clock input, as well as providing a low latency backup clock source when the Activity Detector cannot detect a clock on the external input.

The VBAT 32KHz Clock Internal Clock Source can be driven either by the 32.768 kHz Silicon Oscillator or the 32.768 kHz Crystal Oscillator.

### 4.5.4.2 External 32KHz Clock Activity Detector

When the EXT\_32K field in the Clock Enable Register is set for an external clock source an Activity Detector monitors the external 32KHz signal at all times. If there is no clock detected on the pin, the 32KHz clock domain is switched to the internal 32KHz silicon oscillator. If a clock is again detected on the pin, the 32KHz clock domain is switched to the pin

The following figure illustrates the 32KHz clock domain sourcing.

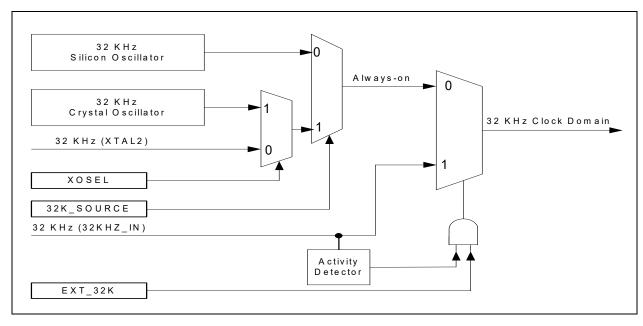
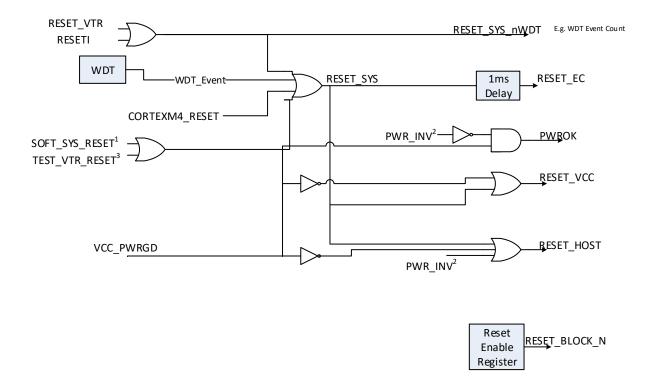



FIGURE 4-2: 32KHZ ACTIVITY DETECTOR

### 4.5.4.3 32KHz Crystal Oscillator

If the 32KHz source will never be the crystal oscillator, then the XTAL2 pin should be grounded. The XTAL1 pin should be left unconnected.

### 4.6 Resets


TABLE 4-6: DEFINITION OF RESET SIGNALS

| Reset      | Description                                                                      | Source                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|------------|----------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| RESET_VBAT | Internal VBAT Reset signal. This signal is used to reset VBAT powered registers. | RESET_VBAT is a pulse that is asserted at the rising edge of VTR power if the VBAT voltage is below a nominal 1.25V. RESET_VBAT is also asserted as a level if, while VTR power is not present, the coin cell is replaced with a new cell that delivers at least a nominal 1.25V. In this latter case RESET_VBAT is de-asserted when VTR power is applied. No action is taken if the coin cell is replaced, or if the VBAT voltage falls below 1.25 V nominal, while VTR power is present. |
| RESET_VTR  | Internal VTR Reset signal.                                                       | This internal reset signal is asserted as long as the reset generator determines that the output of the internal regulator is stable at its target voltage and that the voltage rail supplying the main clock PLL is at 3.3V.  Although most VTR_CORE-powered registers are reset on RESET_SYS, some registers are only reset on this reset.                                                                                                                                               |

TABLE 4-6: DEFINITION OF RESET SIGNALS (CONTINUED)

| Reset              | Description                                                                                                                                                                                                                                                                   | Source                                                                                                                                                                                                                                                                             |
|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| RESET_SYS          | Internal Reset signal. This signal is used to reset VTR_CORE powered registers.                                                                                                                                                                                               | RESET_SYS is the main global reset signal. This reset signal will be asserted if:  • RESET_VTR is asserted  • The nRESET_IN pin asserted  • A WDT Event event is asserted  • A soft reset is asserted by the SOFT_SYS_RESET bit in the System Reset Register  • ARM M4 SYSRESETREQ |
| RESET_VCC          | Performs a reset when Host power (VCC) is                                                                                                                                                                                                                                     | This signal is asserted if                                                                                                                                                                                                                                                         |
|                    | turned off                                                                                                                                                                                                                                                                    | Note: RESET_SYS is asserted                                                                                                                                                                                                                                                        |
| RESET_HOST         | Performs a reset when VCC_PWRGD is low                                                                                                                                                                                                                                        | This signal is asserted if  RESET_SYS is asserted  VCC_PWRGD is low  The PWR_INV bit in the Power Reset Control Register is '1b'1                                                                                                                                                  |
| WDT Event          | A WDT Event generates the RESET_SYS event. This signal resets VTR_CORE powered registers with the exception of the WDT Event Count Register register. Note that the glitch protect circuits do not activate on a WDT reset. WDT Event does not reset VBAT registers or logic. | This reset signal will be asserted if:  • A WDT Event event is asserted  This event is indicated by the WDT bit in the Power-Fail and Reset Status Register                                                                                                                        |
| RESET_SYS_n<br>WDT | Internal Reset signal. This signal is used to reset VTR_CORE powered registers not effected by a WDT Event  A RESET_SYS_nWDT is used to reset registers that need to be preserved through a WDT Event like a WDT Event Count Register.                                        | This reset signal will be asserted if:  • RESET_VTR is asserted  • The nRESET_IN pin asserted                                                                                                                                                                                      |
| RESET_EC           | Internal reset signal to reset the processor in the EC Subsystem.                                                                                                                                                                                                             | This reset is a stretched version of RESET_SYS. This reset asserts at the same time that RESET_SYS asserts and is held asserted for 1ms after RESET_SYS deasserts.                                                                                                                 |
| RESET_BLOCK<br>_N  | Each IP block in the device may be configured to be reset by setting the RESET_ENABLE register.                                                                                                                                                                               | This reset signal will be asserted if Block N RESET_ENABLE is set to 1 and Peripheral Reset Enable n Register is unlocked.                                                                                                                                                         |

#### FIGURE 4-3: RESETS BLOCK DIAGRAM



Note 1: SOFT\_SYS\_RESET is implemented in bit[8] of the System Reset Register Note 2: PWR\_INV is implemented in bit[0] of the Power Reset Control Register Note 3: TEST\_VTR\_RESET is implemented in bit [1] of the Host Global Test Register

## 4.7 Chip Power Management Features

This device is designed to always operate in its lowest power state during normal operation. In addition, this device offers additional programmable options to put individual logical blocks to sleep as defined in the following section, Section 4.7.1.

### 4.7.1 BLOCK LOW POWER MODES

All power related control signals are generated and monitored centrally in the chip's Power, Clocks, and Resets (PCR) block. The power manager of the PCR block uses a sleep interface to communicate with all the blocks. The sleep interface consists of three signals:

- <u>SLEEP\_ENABLE (request to sleep the block)</u> is generated by the PCR block. A group of SLEEP\_ENABLE signals are generated for every clock segment. Each group consists of a SLEEP\_ENABLE signal for every block in that clock segment.
- <u>CLOCK\_REQUIRED (request clock on)</u> is generated by every block. They are grouped by blocks on the same clock segment. The PCR monitors these signals to see when it can gate off clocks.

A block can always drive CLOCK\_REQUIRED low synchronously, but it <u>must</u> drive it high asynchronously since its internal clocks are gated and it has to assume that the clock input itself is gated. Therefore the block can only drive CLOCK REQUIRED high as a result of a register access or some other input signal.

The following table defines a block's power management protocol:

TABLE 4-7: POWER MANAGEMENT PROTOCOL

| Power State      | SLEEP_ENABLE | CLOCK_REQUIRED | Description                                                                                                                                                                                                                                                                                                   |
|------------------|--------------|----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Normal operation | Low          | Low            | Block is idle and NOT requesting clocks. The block gates its own internal clock.                                                                                                                                                                                                                              |
| Normal operation | Low          | High           | Block is NOT idle and requests clocks.                                                                                                                                                                                                                                                                        |
| Request sleep    | Rising Edge  | Low            | Block is IDLE and enters sleep mode immediately. The block gates its own internal clock. The block cannot request clocks again until SLEEP_ENABLE goes low.                                                                                                                                                   |
| Request sleep    | Rising Edge  | High then Low  | Block is not IDLE and will stop requesting clocks and enter sleep when it finishes what it is doing. This delay is block specific, but should be less than 1 ms. The block gates its own internal clock. After driving CLOCK_REQUIRED low, the block cannot request clocks again until SLEEP_ENABLE goes low. |
| Register Access  | Х            | High           | Register access to a block is always available regardless of SLEEP_ENABLE. Therefore the block ungates its internal clock and drives CLOCK_REQUIRED high during the access. The block will regate its internal clock and drive CLOCK_REQUIRED low when the access is done.                                    |

A wake event clears all SLEEP\_ENABLE bits momentarily, and then returns the SLEEP\_ENABLE bits back to their original state. The block that needs to respond to the wake event will do so.

The Sleep Enable, Clock Required and Reset Enable Registers are defined in Section 4.8.

### 4.7.2 CONFIGURING THE CHIP'S SLEEP STATES

The chip supports two sleep states: LIGHT SLEEP and HEAVY SLEEP. The chip will enter one of these two sleep states only when all the blocks have been commanded to sleep and none of them require a 48MHz clock source (i.e., all CLOCK\_REQUIRED status bits are 0), and the processor has executed its sleep instruction. These sleep states must be selected by firmware via the System Sleep Control bits implemented in the System Sleep Control Register prior to issuing the sleep instruction. Table 4-9, "System Sleep Modes" defines each of these sleep states.

There are two ways to command the chip blocks to enter sleep.

- 1. Assert the SLEEP ALL bit located in the System Sleep Control Register
- 2. Assert all the individual block sleep enable bits

Blocks will only enter sleep after their sleep signal is asserted and they no longer require the 48MHz source. Each block has a corresponding clock required status bit indicating when the block has entered sleep. The general operation is that a block will keep the 48MHz clock source on until it completes its current transaction. Once the block has completed its work, it deasserts its clock required signal. Blocks like timers, PWMs, etc. will de-assert their clock required signals immediately. See the individual block Low Power Mode sections to determine how each individual block enters sleep.

### 4.7.3 DETERMINING WHEN THE CHIP IS SLEEPING

The TST\_CLK\_OUT pin can be used to verify the chip's clock has stopped, which indicates the device is in LIGHT SLEEP or HEAVY SLEEP, as determined by the System Sleep Control Register. If the clock is toggling the chip is in the full on running state. if the clock is not toggling the chip has entered the programmed sleep state.

#### 4.7.4 WAKING THE CHIP FROM SLEEPING STATE

The chip will remain in the configured sleep state until it detects either a wake event or a full VTR\_CORE POR. A wake event occurs when a wake-capable interrupt is enabled and triggered. Interrupts that are not wake-capable cannot occur while the system is in LIGHT SLEEP or HEAVY SLEEP.

In LIGHT SLEEP, the 48MHz clock domain is gated off, but the 48 MHz PLL remains operational and locked to the 32KHz clock domain. On wake, the PLL output is ungated and the 48MHz clock domain starts immediately, with the PLL\_LOCK bit in the Oscillator ID Register set to '1'. Any device that requires an accurate clock, such as a UART, may be used immediately on wake.

In HEAVY SLEEP, the 48 MHz PLL is shut down. On wake, the 32 MHz Ring Oscillator is used to provide a clock source for the 48MHz clock domain until the PLL locks to the 32KHz clock domain. The ring oscillator starts immediately on wake, so there is no latency for the EC to start after a wake, However, the ring oscillator is only accurate to ±50%, so any device that requires an accurate 48MHz clock will not operate correctly until the PLL locks. The time to lock latency for the PLL is shown in Table 4-9, "System Sleep Modes".

The SLEEP\_ALL bit is automatically cleared when the processor responds to an interrupt. This applies to non-wake interrupts as well as wake interrupts, in the event an interrupt occurs between the time the processor issued a WAIT FOR INTERRUPT instruction and the time the system completely enters the sleep state.

Any JTAG access to the ARM/STAP will cause a pseudo-wake event where the clocks are turned on, but the CHip is still in sleep (SLEEP\_EN's and SLEEP\_ALL stay in the same state). This way the access can occur over JTAG, without changing the parts state, and the part can go back to sleep once the JTAG access is over.

### 4.7.4.1 Wake-Only Events

Some devices which respond to an external master require the 48MHz clock domain to operate but do not necessarily require and immediate processing by the EC. Wake-only events provide the means to start the 48MHz clock domain without triggering an EC interrupt service routine. This events are grouped into a single GIRQ, GIRQ22. Events that are enabled in that GIRQ will start the clock domain when the event occurs, but will not invoke an EC interrupt. The SLEEP\_ENABLE flags all remain asserted. If the activity for the event does not in turn trigger another EC interrupt, the CLOCK\_REQUIRED for the block will re-assert and the configured sleep state will be re-entered.

### 4.8 EC Registers

Registers for this block are shown in the following summary table. Addresses for each register are determined by adding the offset to the Base Address for the Power, Clocks, and Resets Block in the Block Overview and Base Address Table in Section 3.0, "Device Inventory".

TABLE 4-8: REGISTER SUMMARY

| Offset | Name                             |
|--------|----------------------------------|
| 0h     | System Sleep Control Register    |
| 4h     | Processor Clock Control Register |
| 8h     | Slow Clock Control Register      |
| Ch     | Oscillator ID Register           |
| 10h    | PCR Power Reset Status Register  |
| 14h    | Power Reset Control Register     |
| 18h    | System Reset Register            |
| 1Ch    | Reserved                         |
| 20h    | TEST                             |
| 30h    | Sleep Enable 0 Register          |
| 34h    | Sleep Enable 1 Register          |
| 38h    | Sleep Enable 2 Register          |
| 3Ch    | Sleep Enable 3 Register          |
| 40h    | Sleep Enable 4 Register          |
| 50h    | Clock Required 0 Register        |
| 54h    | Clock Required 1 Register        |
| 58h    | Clock Required 2 Register        |
| 5Ch    | Clock Required 3 Register        |
| 60h    | Clock Required 4 Register        |
| 70h    | Reset Enable 0 Register          |
| 74h    | Reset Enable 1 Register          |
| 78h    | Reset Enable 2 Register          |
| 7Ch    | Reset Enable 3 Register          |
| 80h    | Reset Enable 4 Register          |
| 84h    | Peripheral Reset Lock Register   |

All register addresses are naturally aligned on 32-bit boundaries. Offsets for registers that are smaller than 32 bits are reserved and must not be used for any other purpose.

The bit definitions for the Sleep Enable, Clock Required and Reset Enable Registers are defined in the Sleep Enable Register Assignments Table in Section 3.0, "Device Inventory".

# 4.9 Sleep Enable n Registers

### 4.9.1 SLEEP ENABLE N REGISTER

| Offset | See Sleep Enable Register Assignments Table in Section 3.0, "Device Inventory"                                                 |      |         |                |
|--------|--------------------------------------------------------------------------------------------------------------------------------|------|---------|----------------|
| Bits   | Description                                                                                                                    | Type | Default | Reset<br>Event |
| 31:0   | SLEEP_ENABLE                                                                                                                   | R/W  | 0h      | RESET<br>SYS   |
|        | 1=Block is commanded to sleep at next available moment 0=Block is free to use clocks as necessary                              |      |         | _313           |
|        | Unassigned bits are reserved. They must be set to '1b' when written. When read, unassigned bits return the last value written. |      |         |                |

### 4.9.2 CLOCK REQUIRED N REGISTER

| Offset | See Sleep Enable Register Assignments Table in Section 3.0, "Device Inventory"               |      |         |                |  |
|--------|----------------------------------------------------------------------------------------------|------|---------|----------------|--|
| Bits   | Description                                                                                  | Type | Default | Reset<br>Event |  |
| 31:0   | CLOCK_REQUIRED  1=Bock requires clocks                                                       | R    | 0h      | RESET<br>_SYS  |  |
|        | 0=Block does not require clocks  Unassigned bits are reserved and always return 0 when read. |      |         |                |  |

### 4.9.3 PERIPHERAL RESET ENABLE N REGISTER

| Offset | See Sleep Enable Register Assignments Table in Section 3.0, "Device Inventory"                             |      |         |                |
|--------|------------------------------------------------------------------------------------------------------------|------|---------|----------------|
| Bits   | Description                                                                                                | Type | Default | Reset<br>Event |
| 31:0   | PERIPHERAL_RESET_ENABLE  1= Will allow issue parallel reset to the peripherals. This is self clearing bit. | W    | 0h      | RESET<br>_SYS  |

### 4.9.4 SYSTEM SLEEP CONTROL REGISTER

| Offset | 0h                                                                                                                                                                                                                                                                                                                                                                                     |      |         |                |
|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|---------|----------------|
| Bits   | Description                                                                                                                                                                                                                                                                                                                                                                            | Туре | Default | Reset<br>Event |
| 31:9   | Reserved                                                                                                                                                                                                                                                                                                                                                                               | RES  | -       | -              |
| 8      | SLEEP_IMMEDIATE  0 = System will only allow entry into sleep after PLL locks.  1 = System will allow entry into Heavy Sleep before PLL locks.  Heavy Sleep : Any sleep state where the PLL is OFF.  Light Sleep : Any sleep state where the PLL is ON.                                                                                                                                 | R/W  | Oh      | RESET _SYS     |
| 7:4    | Reserved                                                                                                                                                                                                                                                                                                                                                                               | RES  | -       | -              |
| 3      | SLEEP_ALL  By setting this bit to '1b' and then issuing a WAIT FOR INTER- RUPT instruction, the EC can initiate the System Sleep mode.  When no device requires the main system clock, the system enters the sleep mode defined by the field SLEEP_MODE.  This bit is automatically cleared when the processor vectors to an interrupt.  1=Assert all sleep enables 0=Do not sleep all | R/W  | Oh      | RESET _SYS     |
| 2      | TEST Test bit. Should always be written with a '0b'.                                                                                                                                                                                                                                                                                                                                   | R/W  | 0h      | RESET<br>_SYS  |
| 1      | Reserved                                                                                                                                                                                                                                                                                                                                                                               | RES  | -       | -              |
| 0      | SLEEP_MODE Sleep modes differ only in the time it takes for the 48MHz clock domain to lock to 48MHz. The wake latency in all sleep modes is 0ms. Table 4-9 shows the time to lock latency for the different sleep modes.  1=Heavy Sleep 0=Light Sleep                                                                                                                                  | R/W  | Oh      | RESET<br>_SYS  |

### TABLE 4-9: SYSTEM SLEEP MODES

| SLEEP_MODE | Sleep State                                                            | Latency to<br>Lock | Description                                              |
|------------|------------------------------------------------------------------------|--------------------|----------------------------------------------------------|
| 0          | 0 LIGHT SLEEP 0 Output of the PLL is gated in sleep. The PLL remains o |                    | Output of the PLL is gated in sleep. The PLL remains on. |
| 1          | HEAVY SLEEP 3ms The PLL is shut down while in sleep.                   |                    | The PLL is shut down while in sleep.                     |

### 4.9.5 PROCESSOR CLOCK CONTROL REGISTER

| Offset | 04h                                                                                                                                                                                                                                                                                                                                                                                                                                  |      |         |                |
|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|---------|----------------|
| Bits   | Description                                                                                                                                                                                                                                                                                                                                                                                                                          | Type | Default | Reset<br>Event |
| 31:8   | Reserved                                                                                                                                                                                                                                                                                                                                                                                                                             | RES  | -       | -              |
| 7:0    | PROCESSOR_CLOCK_DIVIDE The following list shows examples of settings for this field and the resulting EC clock rate.  48=divide the 48MHz clock by 48 (1MHz processor clock) 16=divide the 48MHz clock by 16 (4MHz processor clock) 4=divide the 48MHz clock by 4 (12MHz processor clock) 3=divide the 48MHz clock by 3 (16MHz processor clock) 1=divide the 48MHz clock by 1 (48MHz processor clock) No other values are supported. | R/W  | 4h      | RESET<br>_SYS  |

### 4.9.6 SLOW CLOCK CONTROL REGISTER

| Offset | 08h                                                                                                                 |      |         |                |
|--------|---------------------------------------------------------------------------------------------------------------------|------|---------|----------------|
| Bits   | Description                                                                                                         | Type | Default | Reset<br>Event |
| 31:10  | Reserved                                                                                                            | RES  | -       | -              |
| 9:0    | SLOW_CLOCK_DIVIDE Configures the 100KHz clock domain.  n=Divide by n 0=Clock off The default setting is for 100KHz. | R/W  | 1E0h    | RESET _SYS     |

### 4.9.7 OSCILLATOR ID REGISTER

| Offset | 0Ch                                  |      |         |                |
|--------|--------------------------------------|------|---------|----------------|
| Bits   | Description                          | Type | Default | Reset<br>Event |
| 31:9   | Reserved                             | RES  | -       | -              |
| 8      | PLL_LOCK Phase Lock Loop Lock Status | R    | 0h      | RESET _SYS     |
| 7:0    | TEST                                 | R    | N/A     | RESET<br>_SYS  |

### 4.9.8 PCR POWER RESET STATUS REGISTER

| Offset | 10h                                                                                                                                                                                                                                                                                                         |       |         |                      |
|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|---------|----------------------|
| Bits   | Description                                                                                                                                                                                                                                                                                                 | Туре  | Default | Rese                 |
| 31:12  | Reserved                                                                                                                                                                                                                                                                                                    | RES   | -       | -                    |
| 10     | 32K_ACTIVE  1=The 32K clock input is present. The internal 32K clock is derived from the pin and the ring oscillator is synchronized to the external 32K clock  0=The 32K clock input is not present. The internal 32K clock is derived from the ring oscillator                                            | R     | -       | RESE<br>_SYS         |
| 9      | Reserved                                                                                                                                                                                                                                                                                                    | RES   | -       | -                    |
| 8      | WDT_EVENT This bit allows the application code to determine WDT_EVENT against RESET_VTR                                                                                                                                                                                                                     | R/W1C | 0h      | RESE<br>_SYS<br>_nWD |
| 7      | JTAG_RST# Indicates the JTAG_RST# pin status.  The JTAG TRST# input is gated off low when Boundary scan mode is enabled and will not be set in this mode.                                                                                                                                                   | R     | -       | RESE<br>_SYS         |
| 6      | RESET_SYS_STATUS Indicates the status of RESET_SYS.  The bit will not clear if a write 1 is attempted at the same time that a RESET_VTR occurs; this way a reset event is never missed.  1=A reset occurred 0=No reset occurred since the last time this bit was cleared                                    | R/WC  | 1h      | RESE<br>_SYS         |
| 5      | VBAT_RESET_STATUS Indicates the status of RESET_VBAT.  The bit will not clear if a write of '1'b is attempted at the same time that a VBAT_RST_N occurs, this way a reset event is never missed.  1=A reset occurred 0=No reset occurred while VTR_CORE was off or since the last time this bit was cleared | R/WC  | -       | RESE<br>_SYS         |
| 4      | RESET_VTR_STATUS Indicates the status of RESET_VTR event.                                                                                                                                                                                                                                                   | R/W1C | 1h      | RESE_VTF             |

**Note 1:** This read-only status bit always reflects the current status of the event and is not affected by any Reset events.

| Offset  | 10h                                                                                      |              |                 |                |
|---------|------------------------------------------------------------------------------------------|--------------|-----------------|----------------|
| Bits    | Description                                                                              | Type         | Default         | Reset<br>Event |
| 3       | RESET_HOST_STATUS Indicates the status of RESET_HOST.  1=Reset not active 0=Reset active | R            | -               | Note 1         |
| 1:0     | Reserved                                                                                 | RES          | -               | -              |
| Note 1: | This read-only status bit always reflects the current status of the even events.         | it and is no | t affected by a | any Reset      |

### 4.9.9 POWER RESET CONTROL REGISTER

| Offset | 14h                                                                                                                                                      |            |         |                |
|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------|------------|---------|----------------|
| Bits   | Description                                                                                                                                              | Туре       | Default | Reset<br>Event |
| 31:    | Reserved                                                                                                                                                 | RES        | -       | -              |
| 7:     | Reserved                                                                                                                                                 | RES        | -       | -              |
| 0      | PWR_INV This bit allows firmware to control when the Host receives an indication that the VCC power is valid, by controlling the state of the PWROK pin. | R /<br>R/W | 1h      | RESET<br>_SYS  |

### 4.9.10 SYSTEM RESET REGISTER

| Offset | 18h                                                                                                                                                                                 |      |         |                |
|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|---------|----------------|
| Bits   | Description                                                                                                                                                                         | Type | Default | Reset<br>Event |
| 31:9   | Reserved                                                                                                                                                                            | RES  | -       | -              |
| 8      | SOFT_SYS_RESET  A write of a '1' to this bit will force an assertion of the RESET_SYS reset signal, resetting the device. A write of a '0' has no effect.  Reads always return '0'. | W    | -       | -              |
| 7:0    | Reserved                                                                                                                                                                            | RES  | -       | -              |

### 4.9.11 PERIPHERAL RESET LOCK REGISTER

| Offset | 84h                                                                                                                                                                                                                    |      |               |                |
|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|---------------|----------------|
| Bits   | Description                                                                                                                                                                                                            | Type | Default       | Reset<br>Event |
| 31:0   | PCR_RST_EN _LOCK  If the lock is enabled, the peripherals cannot be reset by writing to the Reset enable register. Once Unlocked the Registers remain in the unlocked state until FW re-locks it with the Lock pattern | RW   | A6382D4<br>Dh | RESET<br>_SYS  |
|        | 0xA6382D4Dh = Lock Pattern<br>0xA6382D4Ch = Unlock Pattern                                                                                                                                                             |      |               |                |

### 5.0 ARM M4 BASED EMBEDDED CONTROLLER

#### 5.1 Introduction

This chapter contains a description of the ARM M4 Embedded Controller (EC).

The EC is built around an ARM<sup>®</sup> Cortex<sup>®</sup>-M4 Processor provided by Arm Ltd. (the "ARM M4 IP"). The ARM Cortex® M4 is a full-featured 32-bit embedded processor, implementing the ARMv7-M THUMB instruction set in hardware.

The ARM M4 IP is configured as a Von Neumann, Byte-Addressable, Little-Endian architecture. It provides a single unified 32-bit byte-level address, for a total direct addressing space of 4GByte. It has multiple bus interfaces, but these express priorities of access to the chip-level resources (Instruction Fetch vs. Data RAM vs. others), and they do not represent separate addressing spaces.

The ARM M4 is configured as follows.

- · Little-Endian byte ordering is selected at all times
- · Bit Banding is included for efficient bit-level access
- Debug features are included at "Ex+" level, defined as follows:
  - DWT Unit provides 4 Data Watchpoint comparators and Execution Monitoring
- Trace features are included at "Full" level, defined as follows:
  - DWT for reporting breakpoints and watchpoints
  - ITM for profiling and to timestamp and output messages from instrumented firmware builds
  - ETM for instruction tracing, and for enhanced reporting of Core and DWT events
  - The ARM-defined HTM trace feature is not included
- · NVIC Interrupt controller with 8 priority levels and up to 240 individually-vectored interrupt inputs
  - A Microchip-defined Interrupt Aggregator function (at chip level) may be used to group multiple interrupts onto single NVIC inputs
  - The ARM-defined WIC feature is not included. The Microchip Interrupt Aggregator function (at chip level) provides Wake control
- · Single entry Write Buffer is incorporated

#### 5.2 References

- 1. ARM Limited: Cortex®-M4 Technical Reference Manual, DDI0439C, 29 June 2010
- 2. ARM Limited: ARM®v7-M Architecture Reference Manual, DDI0403D, November 2010
- 3. NOTE: Filename DDI0403D\_arm\_architecture\_v7m\_reference\_manual\_errata\_markup\_1\_0.pdf
- 4. ARM® Generic Interrupt Controller Architecture version 1.0 Architecture Specification, IHI0048A, September 2008
- 5. ARM Limited: AMBA® Specification (Rev 2.0), IHI0011A, 13 May 1999
- ARM Limited: AMBA® 3 AHB-Lite Protocol Specification, IHI0033A, 6 June 2006
- 7. ARM Limited: AMBA® 3 ATB Protocol Specification, IHI0032A, 19 June 2006
- 8. ARM Limited: Cortex-M™ System Design Kit Technical Reference Manual, DDI0479B, 16 June 2011
- 9. ARM Limited: CoreSight™ v1.0 Architecture Specification, IHI0029B, 24 March 2005
- 10. ARM Limited: CoreSight™ Components Technical Reference Manual, DDI0314H, 10 July 2009
- 11. ARM Limited: ARM® Debug Interface v5 Architecture Specification, IHI0031A, 8 February 2006
- ARM Limited: ARM® Debug Interface v5 Architecture Specification ADIv5.1 Supplement, DSA09-PRDC-008772, 17 August 2009
- 13. ARM Limited: Embedded Trace Macrocell™ (ETMv1.0 to ETMv3.5) Architecture Specification, IHI0014Q, 23 September 2011
- 14. ARM Limited: CoreSight™ ETM™-M4 Technical Reference Manual, DDI0440C, 29 June 2010

### 5.3 Terminology

#### 5.3.1 ARM IP TERMS AND ACRONYMS

AHB

Advanced High-Performance Bus, a system-level on-chip **AMBA 2** bus standard. See Reference[5], ARM Limited: AMBA® Specification (Rev 2.0), IHI0011A, 13 May 1999.

AHB-AP

AHB Access Port, the AP option selected by Microchip for the DAP

· AHB-Lite

A Single-Master subset of the **AHB** bus standard: defined in the **AMBA 3** bus standard. See Reference[6], ARM Limited: AMBA® 3 AHB-Lite Protocol Specification, IHI0033A, 6 June 2006.

AMBA

The collective term for bus standards originated by ARM Limited.

AMBA 3 defines the IP's AHB-Lite and ATB bus interfaces.

AMBA 2 (AMBA Rev. 2.0) defines the EC's AHB bus interface.

AP

Any of the ports on the **DAP** subblock for accessing on-chip resources on behalf of the Debugger, independent of processor operations. A single **AHB-AP** option is currently selected for this function.

APB

Advanced Peripheral Bus, a limited 32-bit-only bus defined in **AMBA 2** for I/O register accesses. This term is relevant only to describe the **PPB** bus internal to the EC core. See Reference [5], ARM Limited: AMBA® Specification (Rev 2.0), IHI0011A, 13 May 1999.

ARMv7

The identifying name for the general architecture implemented by the **Cortex-M** family of IP products.

The **ARMv7** architecture has no relationship to the older "ARM 7" product line, which is classified as an "ARMv3" architecture, and is very different.

ATB

Interface standard for Trace data to the **TPIU** from **ETM** and/or **ITM** blocks, Defined in **AMBA 3**. See Reference[7], ARM Limited: AMBA® 3 ATB Protocol Specification, IHI0032A, 19 June 2006.

· Cortex-M4

The ARM designation for the specific IP selected for this product: a Cortex M4 processor core

• DAP

Debug Access Port, a subblock consisting of **DP** and **AP** subblocks.

• DP

Any of the ports in the **DAP** subblock for connection to an off-chip Debugger. A single **SWJ-DP** option is currently selected for this function, providing **JTAG** connectivity.

• DWT

Data Watchdog and Trace subblock. This contains comparators and counters used for data watchpoints and Core activity tracing.

• ETM

Embedded Trace Macrocell subblock. Provides enhancements for Trace output reporting, mostly from the **DWT** subblock. It adds enhanced instruction tracing, filtering, triggering and timestamping.

• FPB

FLASH Patch Breakpoint subblock. Provides either Remapping (Address substitution) or Breakpointing (Exception or Halt) for a set of Instruction addresses and Data addresses. See Section 8.3 of Reference [1], ARM Limited: Cortex®-M4 Technical Reference Manual, DDI0439C, 29 June 2010.

HTM

AHB Trace Macrocell. This is an optional subblock that is **not included**.

• ITM

Instrumentation Trace Macrocell subblock. Provides a HW Trace interface for "printf"-style reports from instrumented firmware builds, with timestamping also provided.

MFM-AP

A generic term for an **AP** that connects to a memory-mapped bus on-chip. For this product, this term is synony-mous with the AHB Access Port, **AHB-AP**.

NVIC

Nested Vectored Interrupt Controller subblock. Accepts external interrupt inputs. See References [2], ARM Limited: ARM®v7-M Architecture Reference Manual, DDI0403D, November 2010 and [4], ARM® Generic Interrupt Controller Architecture version 1.0 Architecture Specification, IHI0048A, September 2008.

PPB

Private Peripheral Bus: A specific APB bus with local connectivity within the EC.

· ROM Table

A ROM-based data structure in the Debug section that allows an external Debugger and/or a FW monitor to determine which of the Debug features are present.

SWJ-DP

Serial Wire / JTAG Debug Port, the DP option selected by Microchip for the DAP.

TPA

Trace Port Analyzer: any off-chip device that uses the TPIU output.

TPIL

Trace Port Interface Unit subblock. Multiplexes and buffers Trace reports from the ETM and ITM subblocks.

• WIC

Wake-Up Interrupt Controller. This is an optional subblock that is **not included**.

### 5.3.2 MICROCHIP TERMS AND ACRONYMS

· Interrupt Aggregator

This is a module that may be present at the chip level, which can combine multiple interrupt sources onto single interrupt inputs at the EC, causing them to share a vector.

• PMU

Processor Memory Unit, this is a module that may be present at the chip level containing any memory resources that are closely-coupled to the CEC1712 EC. It manages accesses from both the EC processor and chip-level bus masters.

#### 5.4 ARM M4 IP Interfaces

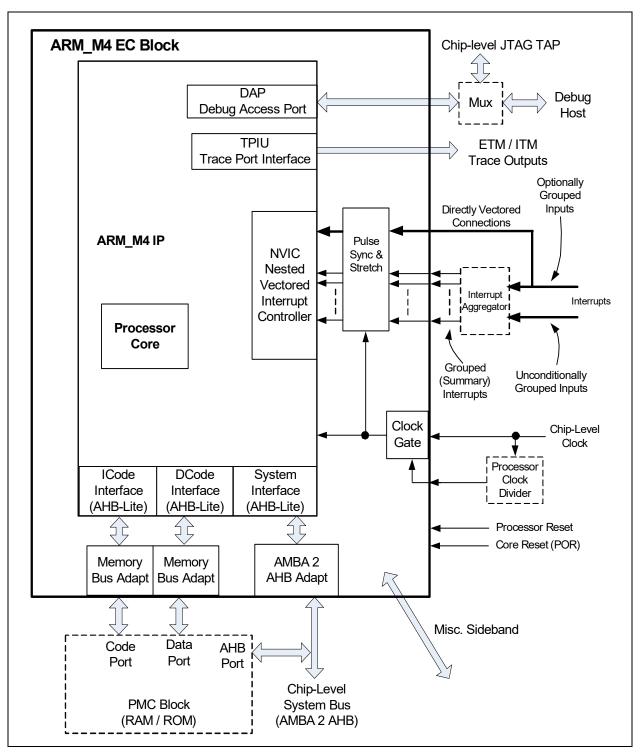
This section defines only the interfaces to the ARM IP itself. For the interfaces of the entire block, see Section 5.5, "Block External Interfaces".

The CEC1712 IP has the following major external interfaces, as shown in Figure 5-1, "ARM M4 Based Embedded Controller I/O Block Diagram":

- · ICode AHB-Lite Interface
- · DCode AHB-Lite Interface
- · System AHB-Lite Interface
- · Debug (JTAG) Interface
- · Trace Port Interface
- · Interrupt Interface

The EC operates on the model of a single 32-bit addressing space of byte addresses (4Gbytes, Von Neumann architecture) with Little-Endian byte ordering. On the basis of an internal decoder (part of the Bus Matrix shown in Figure 5-1), it routes Read/Write/Fetch accesses to one of three external interfaces, or in some cases internally (shown as the PPB interface).

The EC executes instructions out of closely-coupled memory via the ICode Interface. Data accesses to closely-coupled memory are handled via the DCode Interface. The EC accesses the rest of the on-chip address space via the System AHB-Lite interface. The Debugger program in the host can probe the EC and all EC addressable memory via the JTAG debug interface.


Aliased addressing spaces are provided at the chip level so that specific bus interfaces can be selected explicitly where needed. For example, the EC's Bit Banding feature uses the System AHB-Lite bus to access resources normally accessed via the DCode or ICode interface.

Note:

The EC executes most instructions in one clock cycle. If an instruction accesses code and data that are in different RAM blocks, then it takes one clock cycle to access both code and data (done in parallel). However, if the code and data blocks are in the same RAM block, then it takes two clock cycles (one clock for code access and one clock for data access) since it must do it sequentially.

### 5.5 Block External Interfaces

FIGURE 5-1: ARM M4 BASED EMBEDDED CONTROLLER I/O BLOCK DIAGRAM



### 5.6 Power, Clocks and Reset

This section defines the Power, Clock, and Reset parameters of the block.

#### 5.6.1 POWER DOMAINS

#### TABLE 5-1: POWER SOURCES

| Name     | Description                                                  |
|----------|--------------------------------------------------------------|
| VTR_CORE | The ARM M4 Based Embedded Controller is powered by VTR_CORE. |

#### 5.6.2 CLOCK INPUTS

#### 5.6.2.1 Basic Clocking

The basic clocking comes from a free-running Clock signal provided from the chip level.

#### TABLE 5-2: CLOCK INPUTS

| Name | Description                                                                                                                                       |
|------|---------------------------------------------------------------------------------------------------------------------------------------------------|
|      | The clock source to the EC. Division of the clock rate is determined by the PROCESSOR_CLOCK_DIVIDE field in the Processor Clock Control Register. |

### 5.6.2.2 System Tick Clocking

The System Tick clocking is controlled by a signal from chip-level logic. It is the 48MHz divided by the following:

- ((PROCESSOR CLOCK DIVIDE)x2)+1

#### 5.6.2.3 Debug JTAG Clocking

The Debug JTAG clocking comes from chip-level logic, which may multiplex or gate this clock. See Section 5.10, "Debugger Access Support".

### 5.6.2.4 Trace Clocking

The Clock for the Trace interface is identical to the 48MHz input.

#### 5.6.3 RESETS

The reset interface from the chip level is given below.

#### TABLE 5-3: RESET SIGNALS

| Name     | Description                                                |
|----------|------------------------------------------------------------|
| RESET_EC | The ARM M4 Based Embedded Controller is reset by RESET_EC. |

### 5.7 Interrupts

The ARM M4 Based Embedded Controller is equipped with an Interrupt Interface to respond to interrupts. These inputs go to the IP's NVIC block after a small amount of hardware processing to ensure their detection at varying clock rates. See Figure 5-1, "ARM M4 Based Embedded Controller I/O Block Diagram".

As shown in Figure 5-1, an Interrupt Aggregator block may exist at the chip level, to allow multiple related interrupts to be grouped onto the same NVIC input, and so allowing them to be serviced using the same vector. This may allow the same interrupt handler to be invoked for a group of related interrupt inputs. It may also be used to expand the total number of interrupt inputs that can be serviced.

The NMI (Non-Maskable Interrupt) connection is tied off and not used.

### 5.7.1 NVIC INTERRUPT INTERFACE

The NVIC interrupt unit can be wired to up to 240 interrupt inputs from the chip level. The interrupts that are actually connected from the chip level are defined in the Interrupt section.

All NVIC interrupt inputs can be programmed as either pulse or level triggered. They can also be individually masked, and individually assigned to their own hardware-managed priority level.

### 5.7.2 NVIC RELATIONSHIP TO EXCEPTION VECTOR TABLE ENTRIES

The Vector Table consists of 4-byte entries, one per vector. Entry 0 is not a vector, but provides an initial Reset value for the Main Stack Pointer. Vectors start with the Reset vector, at Entry #1. Entries up through #15 are dedicated for internal exceptions, and do not involve the NVIC.

NVIC entries in the Vector Table start with Entry #16, so that NVIC Interrupt #0 is at Entry #16, and all NVIC interrupt numbers are incremented by 16 before accessing the Vector Table.

The number of connections to the NVIC determines the necessary minimum size of the Vector Table, as shown below. It can extend as far as 256 entries (255 vectors, plus the non-vector entry #0).

A Vector entry is used to load the Program Counter (PC) and the EPSR.T bit. Since the Program Counter only expresses code addresses in units of two-byte Halfwords, bit[0] of the vector location is used to load the EPSR.T bit instead, selecting THUMB mode for exception handling. Bit[0] must be '1' in all vectors, otherwise a UsageFault exception will be posted (INVSTATE, unimplemented instruction set). If the Reset vector is at fault, the exception posted will be HardFault instead.

TABLE 5-4: EXCEPTION AND INTERRUPT VECTOR TABLE LAYOUT

| TABLE 5-4: EXCEPTION AND INTERRUPT VECTOR TABLE LAYOUT |                                       |                                                                |  |  |  |
|--------------------------------------------------------|---------------------------------------|----------------------------------------------------------------|--|--|--|
| Table Entry                                            | Exception<br>Number                   | Exception                                                      |  |  |  |
|                                                        | Special Entry for Reset Stack Pointer |                                                                |  |  |  |
| 0                                                      | (none)                                | Holds Reset Value for the Main Stack Pointer. Not a Vector.    |  |  |  |
|                                                        |                                       | Core Internal Exception Vectors start here                     |  |  |  |
| 1                                                      | 1                                     | Reset Vector (PC + EPSR.T bit)                                 |  |  |  |
| 2                                                      | 2                                     | NMI (Non-Maskable Interrupt) Vector                            |  |  |  |
| 3                                                      | 3                                     | HardFault Vector                                               |  |  |  |
| 4                                                      | 4                                     | MemManage Vector                                               |  |  |  |
| 5                                                      | 5                                     | BusFault Vector                                                |  |  |  |
| 6                                                      | 6                                     | UsageFault Vector                                              |  |  |  |
| 7                                                      | (none)                                | (Reserved by ARM Ltd.)                                         |  |  |  |
| 8                                                      | (none)                                | (Reserved by ARM Ltd.)                                         |  |  |  |
| 9                                                      | (none)                                | (Reserved by ARM Ltd.)                                         |  |  |  |
| 10                                                     | (none)                                | (Reserved by ARM Ltd.)                                         |  |  |  |
| 11                                                     | 11                                    | SVCall Vector                                                  |  |  |  |
| 12                                                     | 12                                    | Debug Monitor Vector                                           |  |  |  |
| 13                                                     | (none)                                | (Reserved by ARM Ltd.)                                         |  |  |  |
| 14                                                     | 14                                    | PendSV Vector                                                  |  |  |  |
| 15                                                     | 15                                    | SysTick Vector                                                 |  |  |  |
|                                                        |                                       | NVIC Interrupt Vectors start here                              |  |  |  |
| 16                                                     | 16                                    | NVIC Interrupt #0 Vector                                       |  |  |  |
|                                                        |                                       |                                                                |  |  |  |
| •                                                      | -                                     |                                                                |  |  |  |
| n + 16                                                 | n + 16                                | NV/C Interrupt the Vector                                      |  |  |  |
| n + 10                                                 | n + 16                                | NVIC Interrupt #n Vector                                       |  |  |  |
| :                                                      |                                       |                                                                |  |  |  |
|                                                        | -                                     |                                                                |  |  |  |
| max + 16                                               | max + 16                              | NVIC Interrupt #max Vector (Highest-numbered NVIC connection.) |  |  |  |
|                                                        |                                       | . Table size may (but need not) extend further.                |  |  |  |
|                                                        |                                       |                                                                |  |  |  |
|                                                        |                                       |                                                                |  |  |  |
| 255                                                    | 255                                   | NVIC Interrupt #239 (Architectural Limit of Exception Table)   |  |  |  |

#### 5.8 Low Power Modes

The ARM processor can enter Sleep or Deep Sleep modes internally. This action will cause an output signal Clock Required to be turned off, allowing clocks to be stopped from the chip level. However, Clock Required will still be held active, or set to active, unless all of the following conditions exist:

- · No interrupt is pending.
- · An input signal Sleep Enable from the chip level is active.
- The Debug JTAG port is inactive (reset or configured not present).

In addition, regardless of the above conditions, a chip-level input signal Force Halt may halt the processor and remove Clock Required.

### 5.9 Description

#### 5.9.1 BUS CONNECTIONS

There are three bus connections used from CEC1712 EC block, which are directly related to the IP bus ports. See Figure 5-1, "ARM M4 Based Embedded Controller I/O Block Diagram".

For the mapping of addresses at the chip level, see Section 3.0, "Device Inventory".

#### 5.9.1.1 Closely Coupled Instruction Fetch Bus

As shown in Figure 5-1, the AHB-Lite ICode port from the IP is converted to a more conventional SRAM memory-style bus and connected to the on-chip memory resources with routing priority appropriate to Instruction Fetches.

### 5.9.1.2 Closely Coupled Data Bus

As shown in Figure 5-1, the AHB-Lite DCode port from the IP is converted to a more conventional SRAM memory-style bus and connected to the on-chip memory resources with routing priority appropriate to fast Data Read/Write accesses.

### 5.9.1.3 Chip-Level System Bus

As shown in Figure 5-1, the AHB-Lite System port from the IP is converted from AHB-Lite to fully arbitrated multi-master capability (the AMBA 2 defined AHB bus: see Reference [5], ARM Limited: AMBA® Specification (Rev 2.0), IHI0011A, 13 May 1999). Using this bus, all addressable on-chip resources are available. The multi-mastering capability supports the Microchip DMA and EMI features if present, as well as the Bit-Banding feature of the IP itself.

As also shown in Figure 5-1, the Closely-Coupled memory resources are also available through this bus connection using aliased addresses. This is required in order to allow Bit Banding to be used in these regions, but it also allows them to be accessed by DMA and other bus masters at the chip level.

Note:

Registers with properties such as Write-1-to-Clear (W1C), Read-to-Clear and FIFOs need to be handled with appropriate care when being used with the bit band alias addressing scheme. Accessing such a register through a bit band alias address will cause the hardware to perform a read-modify-write, and if a W1C-type bit is set, it will get cleared with such an access. For example, using a bit band access to the Interrupt Aggregator, including the Interrupt Enables and Block Interrupt Status to clear an IRQ will clear all active IRQs.

#### 5.9.2 INSTRUCTION PIPELINING

There are no special considerations except as defined by ARM documentation.

### 5.10 Debugger Access Support

An external Debugger accesses the chip through a JTAG standard interface. The ARM Debug Access Port supports both the 2-pin SWD (Serial Wire Debug) interface and the 4-pin JTAG interface.

As shown in Figure 5-1, "ARM M4 Based Embedded Controller I/O Block Diagram", other resources at the chip level that share the JTAG port pins; for example chip-level Boundary Scan.

By default, debug access is disabled when the EC begins executing code. EC code enables debugging by writing the Debug Enable Register in the EC Subsystem Registers block.

#### TABLE 5-5: ARM JTAG ID

| ARM Debug Mode | JTAG ID    |
|----------------|------------|
| SW-DP (2-wire) | 0x2BA01477 |
| JTAG (4-wire)  | 0x4BA00477 |

### 5.10.1 DEBUG AND ACCESS PORTS (SWJ-DP AND AHB-AP SUBBLOCKS)

These two subblocks work together to provide access to the chip for the Debugger using the Debug JTAG connection, as described in Chapter 4 of the ARM Limited: ARM® Debug Interface v5 Architecture Specification, IHI0031A, 8 February 2006.

#### 5.10.2 BREAKPOINT, WATCHPOINT AND TRACE SUPPORT

See References [11], ARM Limited: ARM® Debug Interface v5 Architecture Specification, IHI0031A, 8 February 2006 and [12], ARM Limited: ARM® Debug Interface v5 Architecture Specification ADIv5.1 Supplement, DSA09-PRDC-008772, 17 August 2009. A summary of functionality follows.

Breakpoint and Watchpoint facilities can be programmed to do one of the following:

- Halt the processor. This means that the external Debugger will detect the event by periodically polling the state of the EC.
- Transfer control to an internal Debug Monitor firmware routine, by triggering the Debug Monitor exception (see Table 5-4, "Exception and Interrupt Vector Table Layout").

#### 5.10.2.1 Instrumentation Support (ITM Subblock)

The Instrumentation Trace Macrocell (ITM) is for profiling software. This uses non-blocking register accesses, with a fixed low-intrusion overhead, and can be added to a Real-Time Operating System (RTOS), application, or exception handler. If necessary, product code can retain the register access instructions, avoiding probe effects.

#### 5.10.2.2 HW Breakpoints and ROM Patching (FPB Subblock)

The Flash Patch and Breakpoint (FPB) block. This block can remap sections of ROM, typically Flash memory, to regions of RAM, and can set breakpoints on code in ROM. This block can be used for debug, and to provide a code or data patch to an application that requires field updates to a product in ROM.

### 5.10.2.3 Data Watchpoints and Trace (DWT Subblock)

The Debug Watchpoint and Trace (DWT) block provides watchpoint support, program counter sampling for performance monitoring, and embedded trace trigger control.

### 5.10.2.4 Trace Interface (ETM and TPIU)

The Embedded Trace Macrocell (ETM) provides instruction tracing capability. For details of functionality and usage, see References [13], ARM Limited: Embedded Trace Macrocell™ (ETMv1.0 to ETMv3.5) Architecture Specification, IHI0014Q, 23 September 2011 and [14], ARM Limited: CoreSight™ ETM™-M4 Technical Reference Manual, DDI0440C, 29 June 2010.

The Trace Port Interface Unit (TPIU) provides the external interface for the ITM, DWT and ETM.

# 5.11 Delay Register

# 5.11.1 DELAY REGISTER

| Offset | 1000_0000h                                                                                                                                                     |      |         |                |
|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|------|---------|----------------|
| Bits   | Description                                                                                                                                                    | Туре | Default | Reset<br>Event |
| 31:5   | Reserved                                                                                                                                                       | RES  | -       | -              |
| 4:0    | DELAY                                                                                                                                                          | R/W  | 0h      | RESET_         |
|        | Writing a value $n$ , from 0h to 31h, to this register will cause the ARM processor to stall for $(n+1)$ microseconds (that is, from 1 $\mu$ S to 32 $\mu$ S). |      |         |                |
|        | Reads will return the last value read immediately. There is no delay.                                                                                          |      |         |                |

### 6.0 RAM AND ROM

#### 6.1 SRAM

The CEC1712 contains two blocks of SRAM. The two SRAM blocks in the CEC1712 total 256KB. Both SRAM blocks can be used for either program or data accesses. Performance is enhanced when program fetches and data accesses are to different SRAM blocks, but a program will operate correctly even if both program and data accesses are targeting the same block simultaneously.

- · The first SRAM, which is optimized for code access, is 224KB
- · The second SRAM, which is optimized for data access, is32KB

### 6.2 ROM

The CEC1712 contains a 64KB block of ROM, located at address 00000000h in the ARM address space. The ROM contains boot code that is executed after the de-assertion of RESET\_SYS. The boot code loads an executable code image into SRAM. The ROM also includes a set of API functions that can be used for cryptographic functions, as well as loading SRAM with programs or data.

### 6.3 Additional Memory Regions

#### 6.3.1 ALIAS RAM

The Alias RAM region, starting at address 20000000h, is an alias of the SRAM located at 118000h, and is the same size as that SRAM block. EC software can access memory in either the primary address or in the alias region; however, access is considerably slower to the alias region. The alias region exists in order to enable the ARM bit-band region located at address 20000000h.

#### 6.3.2 RAM BIT-BAND REGION

The RAM bit-band region is an alias of the SRAM located at 118000h, except that each bit is aliased to bit 0 of a 32-bit doubleword in the bit-band region. The upper 31 bits in each doubleword of the bit-band region are always 0. The bit-band region is therefore 32 times the size of the SRAM region. It can be used for atomic updates of individual bits of the SRAM, and is a feature of the ARM architecture.

The bit-band region can only be accessed by the ARM processor. Accesses by any other bus master will cause a memory fault.

#### 6.3.3 CRYPTOGRAPHIC RAM

The cryptographic RAM is used by the cryptographic API functions in the ROM

#### 6.3.4 REGISTER BIT-BAND REGION

The Register bit-band region is an 32-to-1 alias of the device register space starting at address 40000000h and ending with the Host register space at 400FFFFF. Every bit in the register space is aliased to a byte in the Register bit-band region, and like the RAM bit-band region, can be used by EC software to read and write individual register bits. Only the EC Device Registers and the GPIO Registers can be accessed via the bit-band region.

A one bit write operation to a register bit in the bit-band region is implemented by the ARM processor by performing a read, a bit modification, followed by a write back to the same register. Software must be careful when using bit-banding if a register contains bits have side effects triggered by a read.

The bit-band region can only be accessed by the ARM processor. Accesses by any other bus master will cause a memory fault.

# 6.4 Memory Map

The memory map of the RAM and ROM is represented as follows:

FIGURE 6-1: MEMORY LAYOUT

| 0x43FF_FFFF ———                                |                                         |
|------------------------------------------------|-----------------------------------------|
| 0x4200_0000 ——                                 | 32MB<br>ARM Bit Band<br>Register Space  |
| 0x4010_57FF ——                                 |                                         |
| 0x4010_0000 ———                                | Crypto RAM                              |
| 0x400F_FFFF                                    | Hart Davis                              |
| 0x400F_0000<br>0x4008_FFFF                     | Host Device<br>Registers                |
| 0x4008_0000                                    | GPIO Registers                          |
| 0x4007_1FFF ——                                 |                                         |
| 0x4007_0000 ——                                 | ESPI Protected Segment                  |
| 0x4001_FFFF ——                                 | EC Device                               |
| 0x4000_0000                                    | Registers                               |
| 256KB model end address→0x220F_FFFF ———        | 1MB<br>ARM Bit Band<br>Alias RAM Region |
| 0x2200_0000 ——                                 | Alias KAW Region                        |
| 256KB end address→0x2000_7FFF ———              | 32KB Alias RAM                          |
| 0x2000_0000 ——                                 |                                         |
| 256KB end address → 0x0011_FFFF<br>0x0011_8000 | 32KB RAM                                |
| 0,00011_8000 ———                               | 224KB RAM                               |
| 256KB model start address → 0x000E_0000 ———    |                                         |
| 0x0000_FFFF ———                                |                                         |
| 0,000 0000                                     | 64KB Boot ROM                           |
| 0x0000_0000 ——                                 |                                         |

### 7.0 INTERNAL DMA CONTROLLER

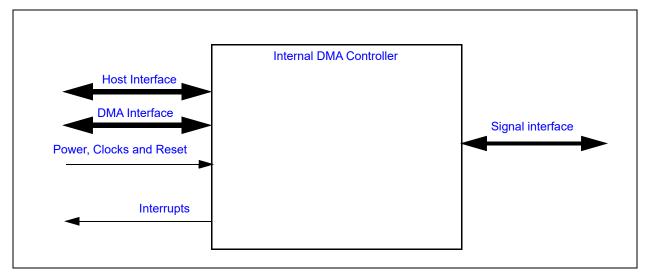
### 7.1 Introduction

The Internal DMA Controller transfers data to/from the source from/to the destination. The firmware is responsible for setting up each channel. Afterwards either the firmware or the hardware may perform the flow control. The hardware flow control exists entirely inside the source device. Each transfer may be 1, 2, or 4 bytes in size, so long as the device supports a transfer of that size. Every device must be on the internal 32-bit address space.

### 7.2 References

No references have been cited for this chapter.

### 7.3 Terminology


#### TABLE 7-1: TERMINOLOGY

| Term          | Definition                                                                                                                                                                                                                                                                                                                                                          |
|---------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| DMA Transfer  | This is a complete <b>DMA Transfer</b> which is done after the <b>Master Device</b> terminates the transfer, the Firmware Aborts the transfer or the DMA reaches its transfer limit.  A DMA Transfer may consist of one or more data packets.                                                                                                                       |
| Data Packet   | Each data packet may be composed of 1, 2, or 4 bytes. The size of the data packet is limited by the max size supported by both the source and the destination. Both source and destination will transfer the same number of bytes per packet.                                                                                                                       |
| Channel       | The Channel is responsible for end-to-end (source-to-destination) Data Packet delivery.                                                                                                                                                                                                                                                                             |
| Device        | A Device may refer to a Master or Slave connected to the DMA Channel. Each DMA Channel may be assigned one or more devices.                                                                                                                                                                                                                                         |
| Master Device | This is the master of the DMA, which determines when it is active. The Firmware is the master while operating in Firmware Flow Control. The Hardware is the master while operating in Hardware Flow Control.  The Master Device in Hardware Mode is selected by <b>DMA Channel Control:</b> Hardware Flow Control Device. It is the index of the Flow Control Port. |
| Slave Device  | The Slave Device is defined as the device associated with the targeted Memory Address.                                                                                                                                                                                                                                                                              |
| Source        | The DMA Controller moves data from the Source to the Destination. The Source provides the data. The Source may be either the Master or Slave Controller.                                                                                                                                                                                                            |
| Destination   | The DMA Controller moves data from the Source to the Destination. The Destination receives the data. The Destination may be either the Master or Slave Controller.                                                                                                                                                                                                  |

#### 7.4 Interface

This block is designed to be accessed internally via a registered host interface.

FIGURE 7-1: INTERNAL DMA CONTROLLER I/O DIAGRAM



### 7.5 Signal interface

This block doesn't have any external signals that may be routed to the pin interface. This DMA Controller is intended to be used internally to transfer large amounts of data without the embedded controller being actively involved in the transfer.

#### 7.6 Host Interface

The registers defined for the Internal DMA Controller are accessible by the various hosts as indicated in Section 3.2, "Block Overview and Base Addresses".

#### 7.7 DMA Interface

Each DMA Master Device that may engage in a DMA transfer must have a compliant DMA interface. The following table lists the DMA Devices in the CEC1712.

TABLE 7-2: DMA CONTROLLER DEVICE SELECTION

| Device Name          | Device Number (Note 1) | Controller Source |
|----------------------|------------------------|-------------------|
| SMB-I2C 0 Controller | 0                      | Slave             |
|                      | 1                      | Master            |
| SMB-I2C 1 Controller | 2                      | Slave             |
|                      | 3                      | Master            |
| SMB-I2C 2 Controller | 4                      | Slave             |
|                      | 5                      | Master            |
| SMB-I2C 3 Controller | 6                      | Slave             |
|                      | 7                      | Master            |
| SMB-I2C 4Controller  | 8                      | Transmit          |
|                      | 9                      | Receive           |

Note 1: The Device Number is programmed into field HARDWARE\_FLOW\_CONTROL\_DEVICE of the DMA Channel N Control Register register.

TABLE 7-2: DMA CONTROLLER DEVICE SELECTION (CONTINUED)

| Device Name      | Device Number<br>(Note 1) | Controller Source |
|------------------|---------------------------|-------------------|
| QMSPI Controller | 10                        | Transmit          |
|                  | 11                        | Receive           |

Note 1: The Device Number is programmed into field HARDWARE\_FLOW\_CONTROL\_DEVICE of the DMA Channel N Control Register register.

TABLE 7-3: DMA CONTROLLER MASTER DEVICES SIGNAL LIST

| Device Name          | Dev<br>Num | Device Signal Name     | Direction | Description                                                    |
|----------------------|------------|------------------------|-----------|----------------------------------------------------------------|
| SMB-I2C 0 Controller | 0          | SMB-I2C_SD-<br>MA_Req  | INPUT     | DMA request control from SMB-I2C Slave channel.                |
|                      |            | SMB-I2C_SD-<br>MA_Term | INPUT     | DMA termination control from SMB-I2C Slave channel.            |
|                      |            | SMB-I2C_SDMA<br>Done   | OUTPUT    | DMA termination control from DMA Controller to Slave channel.  |
|                      | 1          | SMB-I2C_MD-<br>MA_Req  | INPUT     | DMA request control from SMB-I2C Master channel.               |
|                      |            | SMB-I2C_MD-<br>MA_Term | INPUT     | DMA termination control from SMB-I2C Master channel.           |
|                      |            | SMB-I2C_MDMA<br>Done   | OUTPUT    | DMA termination control from DMA Controller to Master channel. |
| SMB-I2C 1 Controller | 2          | SMB-I2C_SD-<br>MA_Req  | INPUT     | DMA request control from SMB-I2C Slave channel.                |
|                      |            | SMB-I2C_SD-<br>MA_Term | INPUT     | DMA termination control from SMB-I2C Slave channel.            |
|                      |            | SMB-I2C_SDMA<br>Done   | OUTPUT    | DMA termination control from DMA Controller to Slave channel.  |
|                      | 3          | SMB-I2C_MD-<br>MA_Req  | INPUT     | DMA request control from SMB-I2C Master channel.               |
|                      |            | SMB-I2C_MD-<br>MA_Term | INPUT     | DMA termination control from SMB-I2C Master channel.           |
|                      |            | SMB-I2C_MDMA<br>Done   | OUTPUT    | DMA termination control from DMA Controller to Master channel. |
| SMB-I2C 2 Controller | 4          | SMB-I2C_SD-<br>MA_Req  | INPUT     | DMA request control from SMB-I2C Slave channel.                |
|                      |            | SMB-I2C_SD-<br>MA_Term | INPUT     | DMA termination control from SMB-I2C Slave channel.            |
|                      |            | SMB-I2C_SDMA<br>Done   | OUTPUT    | DMA termination control from DMA Controller to Slave channel.  |
|                      | 5          | SMB-I2C_MD-<br>MA_Req  | INPUT     | DMA request control from SMB-I2C Master channel.               |
|                      |            | SMB-I2C_MD-<br>MA_Term | INPUT     | DMA termination control from SMB-I2C Master channel.           |
|                      |            | SMB-I2C_MDMA<br>Done   | OUTPUT    | DMA termination control from DMA Controller to Master channel. |

TABLE 7-3: DMA CONTROLLER MASTER DEVICES SIGNAL LIST (CONTINUED)

| Device Name          | Dev | Device Signal Name     | Direction | Description                                                           |
|----------------------|-----|------------------------|-----------|-----------------------------------------------------------------------|
|                      | Num | <b>3</b>               |           | p                                                                     |
| SMB-I2C 3 Controller | 6   | SMB-I2C_SD-<br>MA_Req  | INPUT     | DMA request control from SMB-I2C Slave channel.                       |
|                      |     | SMB-I2C_SD-<br>MA_Term | INPUT     | DMA termination control from SMB-I2C Slave channel.                   |
|                      |     | SMB-I2C_SDMA<br>Done   | OUTPUT    | DMA termination control from DMA Controller to Slave channel.         |
|                      | 7   | SMB-I2C_MD-<br>MA_Req  | INPUT     | DMA request control from SMB-I2C Master channel.                      |
|                      |     | SMB-I2C_MD-<br>MA_Term | INPUT     | DMA termination control from SMB-I2C Master channel.                  |
|                      |     | SMB-I2C_MDMA<br>Done   | OUTPUT    | DMA termination control from DMA Controller to Master channel.        |
| SMB-I2C 4 Controller | 8   | SMB-I2C_SD-<br>MA_Req  | INPUT     | DMA request control from SMB-I2C Slave channel.                       |
|                      |     | SMB-I2C_SD-<br>MA_Term | INPUT     | DMA termination control from SMB-I2C Slave channel.                   |
|                      |     | SMB-I2C_SDMA<br>Done   | OUTPUT    | DMA termination control from DMA Controller to Slave channel.         |
|                      | 9   | SMB-I2C_MD-<br>MA_Req  | INPUT     | DMA request control from SMB-I2C Master channel.                      |
|                      |     | SMB-I2C_MD-<br>MA_Term | INPUT     | DMA termination control from SMB-I2C Master channel.                  |
|                      |     | SMB-I2C_MDMA<br>Done   | OUTPUT    | DMA termination control from DMA Controller to Master channel.        |
| Quad SPI Controller  | 10  | QSPI_TDMA_Req          | INPUT     | DMA request control from Quad SPI TX channel.                         |
|                      |     | QSPI_TDMA_Term         | INPUT     | DMA termination control from Quad SPI TX channel.                     |
|                      |     | QMSPI_TDMA<br>Done     | OUTPUT    | DMA termination control from DMA Controller to Quad SPI TDMA Channel. |
|                      | 11  | QSPI_RDMA_Req          | INPUT     | DMA request control from Quad SPI RX channel.                         |
|                      |     | QSPI_RDMA_Term         | INPUT     | DMA termination control from Quad SPI RX channel.                     |
|                      |     | QMSPI_RDMA<br>Done     | OUTPUT    | DMA termination control from DMA Controller to Quad SPI RDMA Channel. |

#### 7.8 Power, Clocks and Reset

This section defines the Power, Clock, and Reset parameters of the block.

#### 7.8.1 POWER DOMAINS

#### TABLE 7-4: POWER SOURCES

| Name     | Description                                                    |
|----------|----------------------------------------------------------------|
| VTR_CORE | This power well sources the registers and logic in this block. |

#### 7.8.2 CLOCK INPUTS

#### TABLE 7-5: CLOCK INPUTS

| Name  | Description                                               |
|-------|-----------------------------------------------------------|
| 48MHz | This clock signal drives selected logic (e.g., counters). |

#### 7.8.3 RESETS

#### TABLE 7-6: RESET SIGNALS

| Name      | Description                                                                                    |  |
|-----------|------------------------------------------------------------------------------------------------|--|
| RESET_SYS | This reset signal resets all of the registers and logic in this block.                         |  |
| RESET     | This reset is generated if either the RESET_SYS is asserted or the SOFT_RESET bit is asserted. |  |

### 7.9 Interrupts

This section defines the Interrupt Sources generated from this block.

#### TABLE 7-7: INTERRUPTS

| Source | Description                                      |
|--------|--------------------------------------------------|
| DMAx   | Direct Memory Access Channel x                   |
|        | This signal is generated by the STATUS_DONE bit. |

#### 7.10 Low Power Modes

The Internal DMA Controller may be put into a low power state by the chip's Power, Clocks, and Reset (PCR) circuitry.

When the block is commanded to go to sleep it will place the DMA block into sleep mode only after all transactions on the DMA have been completed. For Firmware Flow Controlled transactions, the DMA will wait until it hits its terminal count and clears the Go control bit. For Hardware Flow Control, the DMA will go to sleep after either the terminal count is hit, or the Master device flags the terminate signal.

### 7.11 Description

The CEC1712 features a 12 channel DMA controller. The DMA controller can autonomously move data from/to any DMA capable master device to/from any populated memory location. This mechanism allows hardware IP blocks to transfer large amounts of data into or out of memory without EC intervention.

The DMA has the following characteristics:

- · Data is only moved 1 Data Packet at a time
- Data only moves between devices that are accessible via the internal 32-bit address space
- The DMA Controller has 12 DMA Channels
- Each DMA Channel may be configured to communicate with any DMA capable device on the 32-bit internal address space. Each device has been assigned a device number. See Section 7.7, "DMA Interface".

The controller will access SRAM buffers only with incrementing addresses (that is, it cannot start at the top of a buffer, nor does it handle circular buffers automatically). The controller does not handle chaining (that is, automatically starting a new DMA transfer when one finishes).

#### 7.11.1 CONFIGURATION

The DMA Controller is enabled via the ACTIVATE bit in DMA Main Control Register register.

Each DMA Channel must also be individually enabled via the CHANNEL\_ACTIVATE bit in the DMA Channel N Activate Register to be operational.

Before starting a DMA transaction on a DMA Channel the host must assign a DMA Master to the channel via HARD-WARE\_FLOW\_CONTROL\_DEVICE. The host must not configure two different channels to the same DMA Master at the same time.

Data will be transfered between the DMA Master, starting at the programmed DEVICE\_ADDRESS, and the targeted memory location, starting at the MEMORY\_START\_ADDRESS. The address for either the DMA Master or the targeted memory location may remain static or it may increment. To enable the DMA Master to increment its address set the INCREMENT\_DEVICE\_ADDRESS bit. To enable the targeted memory location to increment its addresses set the INCREMENT\_MEMORY\_ADDRESS. The DMA transfer will continue as long as the target memory address being accessed is less than the MEMORY\_END\_ADDRESS. If the DMA Controller detects that the memory location it is attempting to access on the Target is equal to the MEMORY\_END\_ADDRESS it will notify the DMA Master that the transaction is done. Otherwise the Data will be transferred in packets. The size of the packet is determined by the TRANSFER\_SIZE.

#### 7.11.2 OPERATION

The DMA Controller is designed to move data from one memory location to another.

#### 7.11.2.1 Establishing a Connection

A DMA Master will initiate a DMA Transaction by requesting access to a channel. The DMA arbiter, which evaluates each channel request using a basic round robin algorithm, will grant access to the DMA master. Once granted, the channel will hold the grant until it decides to release it, by notifying the DMA Controller that it is done.

If Firmware wants to prevent any other channels from being granted while it is active it can set the LOCK CHANNEL bit.

### 7.11.2.2 Initiating a Transfer

Once a connection is established the DMA Master will issue a DMA request to start a DMA transfer. If Firmware wants to have a transfer request serviced it must set the RUN bit to have its transfer requests serviced.

Firmware can initiate a transaction by setting the TRANSFER\_GO bit. The DMA transfer will remain active until either the Master issues a Terminate or the DMA Controller signals that the transfer is DONE. Firmware may terminate a transaction by setting the TRANSFER\_ABORT bit.

**Note:** Before initiating a DMA transaction via firmware the hardware flow control must be disabled via the DIS-ABLE HARDWARE FLOW CONTROL bit.

Data may be moved from the DMA Master to the targeted Memory address or from the targeted Memory Address to the DMA Master. The direction of the transfer is determined by the TRANSFER\_DIRECTION bit.

Once a transaction has been initiated firmware can use the STATUS\_DONE bit to determine when the transaction is completed. This status bit is routed to the interrupt interface. In the same register there are additional status bits that indicate if the transaction completed successfully or with errors. These bits are OR'd together with the STATUS\_DONE bit to generate the interrupt event. Each status be may be individually enabled/disabled from generating this event.

### 7.11.2.3 Reusing a DMA Channel

After a DMA Channel controller has completed, firmware **must** clear both the DMA Channel N Control Register and the DMA Channel N Interrupt Status Register. After both have been cleared to 0, the Channel Control Register can then be configured for the next transaction.

#### 7.11.2.4 CRC Generation

A CRC generator can be attached to a DMA channel in order to generate a CRC on the data as it is transfered from the source to the destination. The CRC used is the CRC-32 algorithm used in IEEE 802.3 and many other protocols, using the polynomial  $x^{32} + x^{26} + x^{23} + x^{22} + x^{16} + x^{12} + x^{11} + x^{10} + x^8 + x^7 + x^5 + x^4 + x^2 + x + 1$ . The CRC generation takes place in parallel with the data transfer; enabling CRC will not increase the time to complete a DMA transaction. The CRC generator has the optional ability to automatically transfer the generated CRC to the destination after the data transfer has completed.

CRC generation is subject to a number of restrictions:

- The CRC is only generated on channels that have the CRC hardware. See Table 7-10, "Channel Register Summary" for a definition of which channels have the ability to generate a CRC
- · The DMA transfer must be 32-bits
- If CRC is enabled, DMA interrupts are inhibited until the CRC is completed, including the optional post-transfer copy of it is enabled
- The CRC must be initialized by firmware. The value FFFFFFFh must be written to the Data Register in order to initialize the generator for the standard CRC-32-IEEE algorithm
- The CRC will be bit-order reversed and inverted as required by the CRC algorithm

#### 7.11.2.5 Block Fill Option

A Fill engine can be attached to a DMA channel in order to provide a fast mechanism to set a block of memory to a fixed value (for example, clearing a block of memory to zero). The block fill operation runs approximately twice as fast as a memory-to-memory copy.

In order to fill memory with a constant value, firmware must configure the channel in the following order:

- 1. Set the DMA Channel N Fill Data Register to the desired fill value
- 2. Set the DMA Channel N Fill Enable Register to '1b', enabling the Fill engine
- 3. Set the DMA Channel N Control Register to the following values:
  - RUN = 0
  - TRANSFER\_DIRECTION = 0 (memory destination)
  - INCREMENT MEMORY ADDRESS = 1 (increment memory address after each transfer)
  - INCREMENT DEVICE ADDRESS = 1
  - DISABLE HARDWARE FLOW CONTROL = 1 (no hardware flow control)
  - TRANSFER SIZE = 1, 2 or 4 (as required)
  - TRANSFER ABORT = 0
  - TRANSFER GO = 1 (this starts the transfer)

### 7.12 EC Registers

The DMA Controller consists of a Main Block and a number of Channels. Table 7-9, "Main Register Summary" lists the registers in the Main Block and Table 7-10, "Channel Register Summary" lists the registers in each channel. Addresses for each register are determined by adding the offset to the Base Address for the DMA Controller Block in the Block Overview and Base Address Table in Section 3.0, "Device Inventory".

Registers are listed separately for the Main Block of the DMA Controller and for a DMA Channel. Each Channel has the same set of registers. The absolute register address for registers in each channel are defined by adding the Base Address for the DMA Controller Block, the Offset for the Channel shown in Table 7-8, "DMA Channel Offsets" to the offsets listed in Table 7-9, "Main Register Summary" or Table 7-10, "Channel Register Summary".

TABLE 7-8: DMA CHANNEL OFFSETS

| Instance Name  | Channel Number | Offset |
|----------------|----------------|--------|
| DMA Controller | Main Block     | 000h   |
| DMA Controller | 0              | 040h   |
| DMA Controller | 1              | 080h   |
| DMA Controller | 2              | 0C0h   |
| DMA Controller | 3              | 100h   |
| DMA Controller | 4              | 140h   |
| DMA Controller | 5              | 180h   |
| DMA Controller | 6              | 1C0h   |
| DMA Controller | 7              | 200h   |
| DMA Controller | 8              | 240h   |
| DMA Controller | 9              | 280h   |

### TABLE 7-8: DMA CHANNEL OFFSETS (CONTINUED)

| Instance Name  | Channel Number | Offset |
|----------------|----------------|--------|
| DMA Controller | 10             | 2C0h   |
| DMA Controller | 11             | 300h   |

#### TABLE 7-9: MAIN REGISTER SUMMARY

| Offset | Register Name             |
|--------|---------------------------|
| 00h    | DMA Main Control Register |
| 04h    | DMA Data Packet Register  |

### 7.12.1 DMA MAIN CONTROL REGISTER

| Offset | 00h                                                                                                                                |      |         |                |
|--------|------------------------------------------------------------------------------------------------------------------------------------|------|---------|----------------|
| Bits   | Description                                                                                                                        | Туре | Default | Reset<br>Event |
| 7:2    | Reserved                                                                                                                           | RES  | -       | -              |
| 1      | SOFT_RESET Soft reset the entire module. This bit is self-clearing.                                                                | W    | 0b      | •              |
| 0      | ACTIVATE Enable the blocks operation.  1=Enable block. Each individual channel must be enabled separately. 0=Disable all channels. | R/WS | 0b      | RESET          |

### 7.12.2 DMA DATA PACKET REGISTER

| Offset | 04h                                                                                                                                                 |      |         |                |
|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------|------|---------|----------------|
| Bits   | Description                                                                                                                                         | Туре | Default | Reset<br>Event |
| 31:0   | DATA_PACKET  Debug register that has the data that is stored in the Data Packet.  This data is read data from the currently active transfer source. | R    | 0000h   | -              |

### **TABLE 7-10: CHANNEL REGISTER SUMMARY**

| Offset | Register Name<br>(Note 1)                   |
|--------|---------------------------------------------|
| 00h    | DMA Channel N Activate Register             |
| 04h    | DMA Channel N Memory Start Address Register |
| 08h    | DMA Channel N Memory End Address Register   |
| 0Ch    | DMA Channel N Device Address                |
| 10h    | DMA Channel N Control Register              |
| 14h    | DMA Channel N Interrupt Status Register     |

- **Note 1:** The letter 'N' following DMA Channel indicates the Channel Number. Each Channel implemented will have these registers to determine that channel's operation.
  - **2:** These registers are only present on DMA Channel 0. They are reserved on all other channels.
  - **3:** These registers are only present on DMA Channel 1. They are reserved on all other channels.

TABLE 7-10: CHANNEL REGISTER SUMMARY (CONTINUED)

| Offset          | Register Name<br>(Note 1)               |
|-----------------|-----------------------------------------|
| 18h             | DMA Channel N Interrupt Enable Register |
| 1Ch             | TEST                                    |
| 20h<br>(Note 2) | DMA Channel N CRC Enable Register       |
| 24h<br>(Note 2) | DMA Channel N CRC Data Register         |
| 28h<br>(Note 2) | DMA Channel N CRC Post Status Register  |
| 2Ch<br>(Note 2) | TEST                                    |
| 20h<br>(Note 3) | DMA Channel N Fill Enable Register      |
| 24h<br>(Note 3) | DMA Channel N Fill Data Register        |
| 28h<br>(Note 3) | DMA Channel N Fill Status Register      |
| 2Ch<br>(Note 3) | TEST                                    |

- **Note 1:** The letter 'N' following DMA Channel indicates the Channel Number. Each Channel implemented will have these registers to determine that channel's operation.
  - **2:** These registers are only present on DMA Channel 0. They are reserved on all other channels.
  - **3:** These registers are only present on DMA Channel 1. They are reserved on all other channels.

### 7.12.3 DMA CHANNEL N ACTIVATE REGISTER

| Offset | 00h                                                                                                                       |      |         |                |
|--------|---------------------------------------------------------------------------------------------------------------------------|------|---------|----------------|
| Bits   | Description                                                                                                               | Туре | Default | Reset<br>Event |
| 7:1    | Reserved                                                                                                                  | RES  | -       | -              |
| 0      | CHANNEL_ACTIVATE                                                                                                          | R/W  | 0h      | RESET          |
|        | Enable this channel for operation. The DMA Main Control:Activate must also be enabled for this channel to be operational. |      |         |                |

### 7.12.4 DMA CHANNEL N MEMORY START ADDRESS REGISTER

| Offset | 04h                                                                                                                                                                                                                   |      |         |                |
|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|---------|----------------|
| Bits   | Description                                                                                                                                                                                                           | Туре | Default | Reset<br>Event |
| 31:0   | MEMORY_START_ADDRESS                                                                                                                                                                                                  | R/W  | 0000h   | RESET          |
|        | This is the starting address for the Memory device.                                                                                                                                                                   |      |         |                |
|        | This field is updated by Hardware after every packet transfer by the size of the transfer, as defined by DMA Channel Control:Channel Transfer Size while the DMA Channel Control:Increment Memory Address is Enabled. |      |         |                |
|        | The Memory device is defined as the device that is the slave device in the transfer. With Hardware Flow Control, the Memory device is the device that is not connected to the Hardware Flow Controlling device.       |      |         |                |

### 7.12.5 DMA CHANNEL N MEMORY END ADDRESS REGISTER

| Offset | 08h                                                    |                                                                                                                                                                                                                                                                                                                                                                                              |      |         |                |
|--------|--------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|---------|----------------|
| Bits   |                                                        | Description                                                                                                                                                                                                                                                                                                                                                                                  | Туре | Default | Reset<br>Event |
| 31:0   | This is the<br>This will d<br>Control:In<br>Start Addr | END_ADDRESS ending address for the Memory device.  efine the limit of the transfer, so long as DMA Channel crement Memory Address is Enabled. When the Memory ess is equal to this value, the DMA will terminate the transg the status DMA Channel Interrupt:Status Done.  If the TRANSFER_SIZE field in the DMA Channel N Control Register is set to 2 (for 2-byte transfers, this address) | R/W  | 0000h   | RESET          |
|        |                                                        | must be evenly divisible by 2 or the transfer will not terminate properly. If the TRANSFER_SIZE field is set to 4 (for 4-byte transfers, this address must be evenly divisible by 4 or the transfer will not terminate properly.                                                                                                                                                             |      |         |                |

### 7.12.6 DMA CHANNEL N DEVICE ADDRESS

| Offset | 0Ch                                                                                                                                                                                                                |      |         |                |
|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|---------|----------------|
| Bits   | Description                                                                                                                                                                                                        | Туре | Default | Reset<br>Event |
| 31:0   | DEVICE_ADDRESS                                                                                                                                                                                                     | R/W  | 0000h   | RESET          |
|        | This is the Master Device address.                                                                                                                                                                                 |      |         |                |
|        | This is used as the address that will access the Device on the DMA. The Device is defined as the Master of the DMA transfer; as in the device that is controlling the Hardware Flow Control.                       |      |         |                |
|        | This field is updated by Hardware after every Data Packet transfer by the size of the transfer, as defined by DMA Channel Control:Transfer Size while the DMA Channel Control:Increment Device Address is Enabled. |      |         |                |

# **CEC1712**

### 7.12.7 DMA CHANNEL N CONTROL REGISTER

| Offset | 10h                                                                                                                                                                                                                                                                              |      |         |                |
|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|---------|----------------|
| Bits   | Description                                                                                                                                                                                                                                                                      | Туре | Default | Reset<br>Event |
| 31:26  | Reserved                                                                                                                                                                                                                                                                         | RES  | -       | -              |
| 25     | TRANSFER_ABORT                                                                                                                                                                                                                                                                   | R/W  | 0h      | RESET          |
|        | This is used to abort the current transfer on this DMA Channel. The aborted transfer will be forced to terminate immediately.                                                                                                                                                    |      |         |                |
| 24     | TRANSFER_GO                                                                                                                                                                                                                                                                      | R/W  | 0h      | RESET          |
|        | This is used for the <b>Firmware Flow Control</b> DMA transfer.                                                                                                                                                                                                                  |      |         |                |
|        | This is used to start a transfer under the <b>Firmware Flow Control</b> . Do not use this in conjunction with the <b>Hardware Flow Control</b> ; DISABLE_HARDWARE_FLOW_CONTROL must be set in order for this field to function correctly.                                        |      |         |                |
| 23     | Reserved                                                                                                                                                                                                                                                                         | RES  | -       | -              |
| 22:20  | TRANSFER_SIZE                                                                                                                                                                                                                                                                    | R/W  | 0h      | RESET          |
|        | This is the transfer size in Bytes of each Data Packet transfer.                                                                                                                                                                                                                 |      |         |                |
|        | The transfer size must be a legal transfer size. Valid sizes are 1, 2 and 4 Bytes.                                                                                                                                                                                               |      |         |                |
| 19     |                                                                                                                                                                                                                                                                                  | R/W  | 0h      | RESET          |
|        | Setting this bit to '1'b will Disable <b>Hardware Flow Control</b> . When disabled, any DMA Master device attempting to communicate to the DMA over the DMA Flow Control Interface will be ignored.                                                                              |      |         |                |
|        | This should be set before using the DMA channel in <b>Firmware Flow Control</b> mode.                                                                                                                                                                                            |      |         |                |
| 18     | LOCK_CHANNEL                                                                                                                                                                                                                                                                     | R/W  | 0h      | RESET          |
|        | This is used to lock the arbitration of the Channel Arbiter on this channel once this channel is granted.  Once this is locked, it will remain on the arbiter until it has completed it transfer (either the Transfer Aborted, Transfer Done or Transfer Terminated conditions). |      |         |                |
|        | <b>Note:</b> This setting may starve other channels if the locked channel takes an excessive period of time to complete.                                                                                                                                                         |      |         |                |
| 17     |                                                                                                                                                                                                                                                                                  | R/W  | 0h      | RESET          |
|        | If this bit is '1'b, the DEVICE_ADDRESS will be incremented by TRANSFER_SIZE after every Data Packet transfer                                                                                                                                                                    |      |         |                |
| 16     | INCREMENT_MEMORY_ADDRESS                                                                                                                                                                                                                                                         | R/W  | 0h      | RESET          |
|        | If this bit is '1'b, the MEMORY_START_ADDRESS will be incremented by TRANSFER_SIZE after every Data Packet transfer                                                                                                                                                              |      |         |                |
|        | Note: If this is not set, the DMA will never terminate the transfer on its own. It will have to be terminated through the Hardware Flow Control or through a DMA Channel Control:Transfer Abort.                                                                                 |      |         |                |

| Offset | 10h                                                                                                                                                                                                                                                    |      |         |                |
|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|---------|----------------|
| Bits   | Description                                                                                                                                                                                                                                            | Туре | Default | Reset<br>Event |
| 15:9   | HARDWARE_FLOW_CONTROL_DEVICE This is the device that is connected to this channel as its Hardware Flow Control master.                                                                                                                                 | R/W  | 0h      | RESET          |
|        | The Flow Control Interface is a bus with each master concatenated onto it. This selects which bus index of the concatenated Flow Control Interface bus is targeted towards this channel.                                                               |      |         |                |
| 8      | TRANSFER_DIRECTION This determines the direction of the DMA Transfer.  1=Data Packet Read from MEMORY_START_ADDRESS followed                                                                                                                           | R/W  | 0h      | RESET          |
|        | by Data Packet Write to DEVICE_ADDRESS  0=Data Packet Read from DEVICE_ADDRESS followed by Data Packet Write to MEMORY_START_ADDRESS                                                                                                                   |      |         |                |
| 7:6    | Reserved                                                                                                                                                                                                                                               | RES  | -       | -              |
| 5      | BUSY This is a status signal.  1=The DMA Channel is busy (FSM is not IDLE) 0=The DMA Channel is not busy (FSM is IDLE)                                                                                                                                 | R    | 0h      | RESET          |
| 4:3    | TEST                                                                                                                                                                                                                                                   | R    | 0h      | RESET          |
| 2      | DONE This is a status signal. It is only valid while RUN is Enabled. This is the inverse of the DMA Channel Control:Busy field, except this is qualified with the DMA Channel Control:Run field.  1=Channel is done 0=Channel is not done or it is OFF | R    | Oh      | RESET          |
| 1      | REQUEST This is a status field.  1=There is a transfer request from the Master Device 0=There is no transfer request from the Master Device                                                                                                            | R    | 0h      | RESET          |
| 0      | RUN This is a control field. It only applies to <b>Hardware Flow Control</b> mode.  1=This channel is enabled and will service transfer requests 0=This channel is disabled. All transfer requests are ignored                                         | R/W  | 0h      | RESET          |

### 7.12.8 DMA CHANNEL N INTERRUPT STATUS REGISTER

| Offset | 14h                                                                                                                                                                                                                                                                                                                                                                                                                                               |      |         |                |
|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|---------|----------------|
| Bits   | Description                                                                                                                                                                                                                                                                                                                                                                                                                                       | Туре | Default | Reset<br>Event |
| 7:3    | Reserved                                                                                                                                                                                                                                                                                                                                                                                                                                          | RES  | -       | -              |
| 2      | STATUS_DONE This is an interrupt source register. This flags when the DMA Channel has completed a transfer successfully on its side. A completed transfer is defined as when the DMA Channel reaches its limit; Memory Start Address equals Memory End Address. A completion due to a Hardware Flow Control Terminate will not flag this interrupt.  1=MEMORY_START_ADDRESS equals MEMORY_END_ADDRESS 0=MEMORY_START_ADDRESS does not equal MEMO- | R/WC | 0h      | RESET          |
|        | RY_END_ADDRESS                                                                                                                                                                                                                                                                                                                                                                                                                                    |      |         |                |
| 1      | STATUS_ENABLE_FLOW_CONTROL This is an interrupt source register. This flags when the DMA Channel has encountered a <b>Hardware Flow Control Request</b> after the DMA Channel has completed the transfer. This means the Master Device is attempting to overflow the DMA.  1=Hardware Flow Control is requesting after the transfer has completed 0=No Hardware Flow Control event                                                                | R/WC | 0h      | RESET          |
| 0      | STATUS_BUS_ERROR This is an interrupt source register. This flags when there is an Error detected over the internal 32-bit Bus.  1=Error detected.                                                                                                                                                                                                                                                                                                | R/WC | 0h      | RESET          |

### 7.12.9 DMA CHANNEL N INTERRUPT ENABLE REGISTER

| Offset | 18h                                                                                                                                  |      |         |                |
|--------|--------------------------------------------------------------------------------------------------------------------------------------|------|---------|----------------|
| Bits   | Description                                                                                                                          | Туре | Default | Reset<br>Event |
| 7:3    | Reserved                                                                                                                             | RES  | -       | -              |
| 2      | STATUS_ENABLE_DONE This is an interrupt enable for STATUS_DONE.  1=Enable Interrupt 0=Disable Interrupt                              | R/W  | 0h      | RESET          |
| 1      | STATUS_ENABLE_FLOW_CONTROL_ERROR This is an interrupt enable for STATUS_ENABLE_FLOW_CONTROL.  1=Enable Interrupt 0=Disable Interrupt | R/W  | 0h      | RESET          |

| Offset | 18h                                                                                                               |      |         |                |
|--------|-------------------------------------------------------------------------------------------------------------------|------|---------|----------------|
| Bits   | Description                                                                                                       | Туре | Default | Reset<br>Event |
| 0      | STATUS_ENABLE_BUS_ERROR This is an interrupt enable for STATUS_BUS_ERROR.  1=Enable Interrupt 0=Disable Interrupt | R/W  | 0h      | RESET          |

# 7.12.10 DMA CHANNEL N CRC ENABLE REGISTER

| Offset | 20h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      |         |                |
|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|---------|----------------|
| Bits   | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Type | Default | Reset<br>Event |
| 31:2   | Reserved                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | RES  | -       | -              |
| 1      | CRC_POST_TRANSFER_ENABLE  The bit enables the transfer of the calculated CRC-32 after the completion of the DMA transaction. If the DMA transaction is aborted by either firmware or an internal bus error, the transfer will not occur. If the target of the DMA transfer is a device and the device signaled the termination of the DMA transaction, the CRC post transfer will not occur.  1=Enable the transfer of CRC-32 for DMA Channel N after the DMA transaction completes  0=Disable the automatic transfer of the CRC | R/W  | 0h      | RESET          |
| 0      | CRC_MODE_ENABLE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | R/W  | 0h      | RESET          |
|        | 1=Enable the calculation of CRC-32 for DMA Channel N<br>0=Disable the calculation of CRC-32 for DMA Channel N                                                                                                                                                                                                                                                                                                                                                                                                                    |      |         |                |

### 7.12.11 DMA CHANNEL N CRC DATA REGISTER

| Offset | 24h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |      |         |                |
|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|---------|----------------|
| Bits   | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Туре | Default | Reset<br>Event |
| 31:0   | CRC Writes to this register initialize the CRC generator. Reads from this register return the output of the CRC that is calculated from the data transfered by DMA Channel N. The output of the CRC generator is bit-reversed and inverted on reads, as required by the CRC-32-IEEE definition.  A CRC can be accumulated across multiple DMA transactions on Channel N. If it is necessary to save the intermediate CRC value, the result of the read of this register must be bit-reversed and inverted before being written back to this register. | R/W  | 0h      | RESET          |

### 7.12.12 DMA CHANNEL N CRC POST STATUS REGISTER

| Offset | 28h                                                                                                                                                                                                                                                                 |      |         |                |
|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|---------|----------------|
| Bits   | Description                                                                                                                                                                                                                                                         | Type | Default | Reset<br>Event |
| 31:4   | Reserved                                                                                                                                                                                                                                                            | RES  | -       | -              |
| 3      | CRC_DATA_READY This bit is set to '1b' when the DMA controller is processing the post-transfer of the CRC data. This bit is cleared to '0b' when the post-transfer completes.                                                                                       | R    | 0h      | RESET          |
| 2      | CRC_DATA_DONE This bit is set to '1b' when the DMA controller has completed the post-transfer of the CRC data. This bit is cleared to '0b' when the a new DMA transfer starts.                                                                                      | R    | 0h      | RESET          |
| 1      | CRC_RUNNING This bit is set to '1b' when the DMA controller starts the post-transfer transmission of the CRC. It is only set when the post-transfer is enabled by the CRC_POST_TRANSFER_ENABLE field. This bit is cleared to '0b' when the post-transfer completes. | R    | 0h      | RESET          |
| 0      | CRC_DONE  This bit is set to '1b' when the CRC calculation has completed from either normal or forced termination. It is cleared to '0b' when the DMA controller starts a new transfer on the channel.                                                              | R    | 0h      | RESET          |

### 7.12.13 DMA CHANNEL N FILL ENABLE REGISTER

| Offset | 20h                                                                                       |      |         |                |
|--------|-------------------------------------------------------------------------------------------|------|---------|----------------|
| Bits   | Description                                                                               | Type | Default | Reset<br>Event |
| 31:1   | Reserved                                                                                  | RES  | -       | -              |
| 0      | FILL_MODE_ENABLE                                                                          | R/W  | 0h      | RESET          |
|        | 1=Enable the Fill Engine for DMA Channel N<br>0=Disable the Fill Engine for DMA Channel N |      |         |                |

### 7.12.14 DMA CHANNEL N FILL DATA REGISTER

| Offset | 24h                                                |      |         |                |
|--------|----------------------------------------------------|------|---------|----------------|
| Bits   | Description                                        | Type | Default | Reset<br>Event |
| 31:0   | DATA This is the data pattern used to fill memory. | R/W  | 0h      | RESET          |

### 7.12.15 DMA CHANNEL N FILL STATUS REGISTER

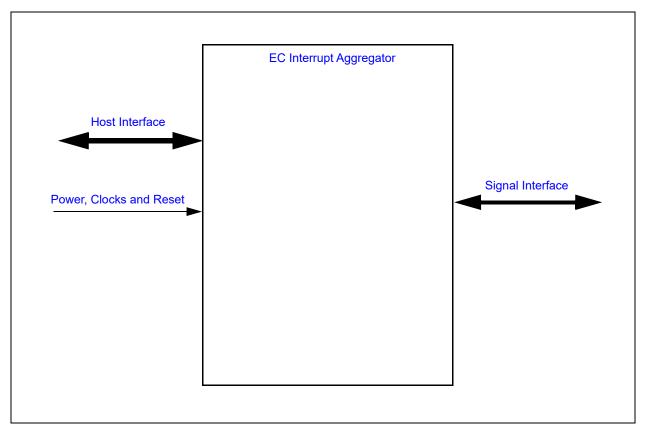
| Offset | 28h                                                                                                                                                                                                    |      |         |                |
|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|---------|----------------|
| Bits   | Description                                                                                                                                                                                            | Type | Default | Reset<br>Event |
| 31:2   | Reserved                                                                                                                                                                                               | RES  | -       | -              |
| 1      | FILL_RUNNING  This bit is '1b' when the Fill operation starts and is cleared to '0b' when the Fill operation completes.                                                                                | R    | 0h      | RESET          |
| 0      | FILL_DONE  This bit is set to '1b' when the Fill operation has completed from either normal or forced termination. It is cleared to '0b' when the DMA controller starts a new transfer on the channel. | R    | 0h      | RESET          |

### 8.0 EC INTERRUPT AGGREGATOR

#### 8.1 Introduction

The EC Interrupt Aggregator works in conjunction with the processor's interrupt interface to handle hardware interrupts and exceptions.

Exceptions are synchronous to instructions, are not maskable, and have higher priority than interrupts. All three exceptions - reset, memory error, and instruction error - are hardwired directly to the processor. Interrupts are typically asynchronous and are maskable.


Interrupts classified as wake events can be recognized without a running clock, e.g., while the CEC1712 is in sleep state.

This chapter focuses on the EC Interrupt Aggregator. Please refer to embedded controller's documentation for more information on interrupt and exception handling.

#### 8.2 Interface

This block is designed to be accessed internally via a registered host interface. The following diagram illustrates the various interfaces to the block.

FIGURE 8-1: EC INTERRUPT AGGREGATOR INTERFACE DIAGRAM



### 8.3 Signal Description

#### 8.3.1 SIGNAL INTERFACE

There are no external signals for this block.

#### 8.4 Host Interface

The registers defined for the EC Interrupt Aggregator are only accessible by the various hosts as indicated in Section 3.2, "Block Overview and Base Addresses".

#### 8.5 Power, Clocks and Reset

#### 8.5.1 BLOCK POWER DOMAIN

#### TABLE 8-1: BLOCK POWER

| Power Well Source | Effect on Block                                            |
|-------------------|------------------------------------------------------------|
| VTR_CORE          | The EC Interrupt Aggregator block and registers operate on |
|                   | this single power well.                                    |

#### 8.5.2 BLOCK CLOCKS

#### TABLE 8-2: CLOCK INPUTS

| Name  | e Description                                             |  |
|-------|-----------------------------------------------------------|--|
| 48MHz | This clock signal drives selected logic (e.g., counters). |  |

#### 8.5.3 BLOCK RESET

#### TABLE 8-3: BLOCK RESETS

| Reset Name | Reset Description                                                                              |
|------------|------------------------------------------------------------------------------------------------|
| RESET_SYS  | This signal is used to indicate when the VTR_CORE logic and registers in this block are reset. |

### 8.6 Interrupts

This block aggregates all the interrupts targeted for the embedded controller into the Source Registers defined in Section 8.9, "EC Registers". The unmasked bits of each source register are then OR'd together and routed to the embedded controller's interrupt interface. The name of each Source Register identifies the IRQ number of the interrupt port on the embedded controller.

#### 8.7 Low Power Modes

This block always automatically adjusts to operate in the lowest power mode by gating its clock when not required.

#### 8.8 Description

The interrupt generation logic is made of groups of signals, each of which consist of a Status register, a Enable Set register, and Enable Clear register and a Result register.

The Status and Enable are latched registers. There is one set of Enable register bits; both the Enable Set and Enable Clear registers return the same result when read. The Enable Set interface is used to set individual bits in the Enable register, and the Enable Clear is used to clear individual bits. The Result register is a bit by bit AND function of the Source and Enable registers. All the bits of the Result register are OR'ed together and AND'ed with the corresponding bit in the Block Select register to form the interrupt signal that is routed to the ARM interrupt controller.

The Result register bits may also be enabled to the NVIC block via the NVIC\_EN bit in the Interrupt Control Register register. See Chapter 29.0, "EC Subsystem Registers"

Section 8.8.1 shows a representation of the interrupt structure.

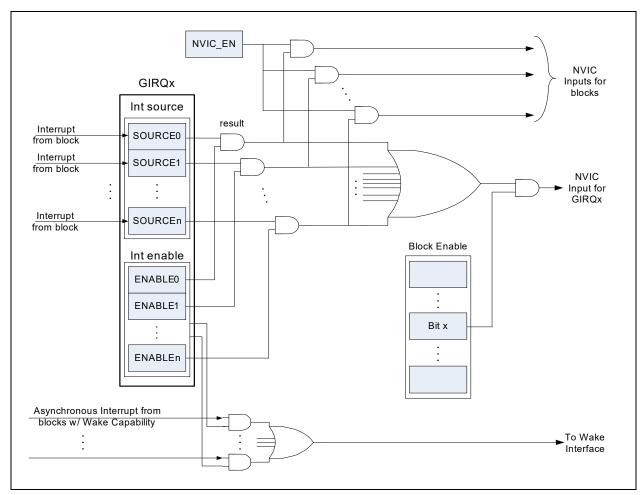



FIGURE 8-2: INTERRUPT STRUCTURE

#### 8.8.1 AGGREGATED INTERRUPTS

All interrupts are routed to the ARM processor through the ARM Nested Vectored Interrupt Controller (NVIC). As shown in Figure 8-2, "Interrupt Structure", all interrupt sources are aggregated into the GIRQx Source registers. In many cases, the Result bit for an individual interrupt source is tied directly to the NVIC. These interrupts are shown in the "Direct NVIC" column in the Interrupt Bit Assignments table. In addition, all GIRQx can also generate an interrupt to the NVIC when any of the enabled interrupts in its group is asserted. The NVIC vectors for the aggregated GIRQ interrupts are shown tin the "Agg NVIC" column.

Firmware should not enable the group GIRQ NVIC interrupt at the same time individual direct interrupts for members of the group are enabled. If both are enabled, the processor will receive two interrupts for an event, one from the GIRQ and one from the direct interrupt.

**Note:** The four Soft Interrupts that are defined by the RTOS Timer do not have individual NVIC vectors. If the use of the SWI interrupts is required, then all interrupts in the GIRQ must disable the individual NVIC vectors.

**Note:** These four Soft Interrupts are only available in aggregate mode

#### 8.8.2 WAKE GENERATION

Wake-capable interrupts are listed in Table 3-3, "GIRQ\_mapping" with a designation of 'Yes' in the Wake Event column. All interrupts, except GIRQ22, generate an EC Interrupt event. They are routed to source bits that are synchronized to the 32 MHz Ring Oscillator. If enabled, the Interrupt Result is fed into the Priority Encoder/Decision Logic, which generates the interrupt vector to the NVIC Interrupt Interface.

Some Interrupts, which are labeled Wake-Capable, are also routed as Wake Events to the Chip's Wake Logic. These are asynchronous events that are used to resume the 32 MHz Ring Oscillator operation from a sleep state and wake the processor.

#### 8.8.2.1 Wake Capable Interrupts

All GPIO inputs are wake-capable. In order for a GPIO input to wake the CEC1712 from a sleep state, the Interrupt Detection field of the GPIO Pin Control Register must be set to Rising Edge Triggered, Falling Edge Triggered, or Either Edge Triggered. If the Interrupt Detection field is set to any other value, a GPIO input will not trigger a wake interrupt.

Some of the Wake Capable Interrupts are triggered by activity on pins that are shared with a GPIO. These interrupts will only trigger a wake if the Interrupt Detection field of the corresponding GPIO Pin Control Register is set to Rising Edge Triggered, Falling Edge Triggered, or Either Edge Triggered.

#### 8.8.2.2 Wake-Only Events

Some devices which respond to an external master require the 48MHz clock domain to operate but do not necessarily require and immediate processing by the EC. Wake-only events provide the means to start the 48MHz clock domain without triggering an EC interrupt service routine. This events are grouped into a single GIRQ, GIRQ22. Events that are enabled in that GIRQ will start the clock domain when the event occurs, but will not invoke an EC interrupt. The SLEEP\_ENABLE flags all remain asserted. If the activity for the event does not in turn trigger another EC interrupt, the CLOCK\_REQUIRED for the block will re-assert and the configured sleep state will be re-entered.

#### 8.8.3 INTERRUPT SUMMARY

Interrupt bit assignments, including wake capabilities and NVIC vector locations, are shown in the Interrupt Aggregator Bit Assignments Table in Section 3.0, "Device Inventory". The table lists all possible interrupt sources; the register bits for any interrupt source, such as a GPIO, that is not implemented in a particular part are reserved.

#### 8.8.4 DISABLING INTERRUPTS

The Block Enable Clear Register and Block Enable Set Register should not be used for disabling and enabling interrupts for software operations i.e., critical sections. The ARM enable disable mechanisms should be used.

# 8.9 EC Registers

Registers for this block are shown in the following summary table. Addresses for each register are determined by adding the offset to the Base Address for of the EC Interrupt Aggregator Block in the Block Overview and Base Address Table in Section 3.0, "Device Inventory".

TABLE 8-4: REGISTER SUMMARY

| Offset | Register Name               |
|--------|-----------------------------|
| 00h    | GIRQ8 Source Register       |
| 04h    | GIRQ8 Enable Set Register   |
| 08h    | GIRQ8 Result Register       |
| 0Ch    | GIRQ8 Enable Clear Register |
| 10h    | Reserved                    |
| 14h    | GIRQ9 Source Register       |
| 18h    | GIRQ9 Enable Set Register   |
| 1Ch    | GIRQ9 Result Register       |
| 20h    | GIRQ9 Enable Clear Register |
| 24h    | Reserved                    |

# **CEC1712**

TABLE 8-4: REGISTER SUMMARY (CONTINUED)

| TABLE 8-4: | REGISTER SUMMARY (CONTINUED) |
|------------|------------------------------|
| Offset     | Register Name                |
| 28h        | GIRQ10 Source Register       |
| 2Ch        | GIRQ10 Enable Set Register   |
| 30h        | GIRQ10 Result Register       |
| 34h        | GIRQ10 Enable Clear Register |
| 38h        | Reserved                     |
| 3Ch        | GIRQ11 Source Register       |
| 40h        | GIRQ11 Enable Set Register   |
| 44h        | GIRQ11 Result Register       |
| 48h        | GIRQ11 Enable Clear Register |
| 4Ch        | Reserved                     |
| 50h        | GIRQ12 Source Register       |
| 54h        | GIRQ12 Enable Set Register   |
| 58h        | GIRQ12 Result Register       |
| 5Ch        | GIRQ12 Enable Clear Register |
| 60h        | Reserved                     |
| 64h        | GIRQ13 Source Register       |
| 68h        | GIRQ13 Enable Set Register   |
| 6Ch        | GIRQ13 Result Register       |
| 70h        | GIRQ13 Enable Clear Register |
| 74h        | Reserved                     |
| 78h        | GIRQ14 Source Register       |
| 7Ch        | GIRQ14 Enable Set Register   |
| 80h        | GIRQ14 Result Register       |
| 84h        | GIRQ14 Enable Clear Register |
| 88h        | Reserved                     |
| 8Ch        | GIRQ15 Source Register       |
| 90h        | GIRQ15 Enable Set Register   |
| 94h        | GIRQ15 Result Register       |
| 98h        | GIRQ15 Enable Clear Register |
| 9Ch        | Reserved                     |
| A0h        | GIRQ16 Source Register       |
| A4h        | GIRQ16 Enable Set Register   |
| A8h        | GIRQ16 Result Register       |
| ACh        | GIRQ16 Enable Clear Register |
| B0h        | Reserved                     |
| B4h        | GIRQ17 Source Register       |
| B8h        | GIRQ17 Enable Set Register   |
| BCh        | GIRQ17 Result Register       |
| C0h        | GIRQ17 Enable Clear Register |
| C4h        | Reserved                     |
| C8h        | GIRQ18 Source Register       |
| CCh        | GIRQ18 Enable Set Register   |
| D0h        | GIRQ18 Result Register       |
| D4h        | GIRQ18 Enable Clear Register |
| -          | ·                            |

TABLE 8-4: REGISTER SUMMARY (CONTINUED)

| TABLE 8-4: | REGISTER SUMMARY (CONTINUED) |
|------------|------------------------------|
| Offset     | Register Name                |
| D8h        | Reserved                     |
| DCh        | GIRQ19 Source Register       |
| E0h        | GIRQ19 Enable Set Register   |
| E4h        | GIRQ19 Result Register       |
| E8h        | GIRQ19 Enable Clear Register |
| ECh        | Reserved                     |
| F0h        | GIRQ20 Source Register       |
| F4h        | GIRQ20 Enable Set Register   |
| F8h        | GIRQ20 Result Register       |
| FCh        | GIRQ20 Enable Clear Register |
| 100h       | Reserved                     |
| 104h       | GIRQ21 Source Register       |
| 108h       | GIRQ21 Enable Set Register   |
| 10Ch       | GIRQ21 Result Register       |
| 110h       | GIRQ21 Enable Clear Register |
| 114h       | Reserved                     |
| 118h       | GIRQ22 Source Register       |
| 11Ch       | GIRQ22 Enable Set Register   |
| 120h       | GIRQ22 Result Register       |
| 124h       | GIRQ22 Enable Clear Register |
| 128h       | Reserved                     |
| 12Ch       | GIRQ23 Source Register       |
| 130h       | GIRQ23 Enable Set Register   |
| 134h       | GIRQ23 Result Register       |
| 138h       | GIRQ23 Enable Clear Register |
| 13Ch       | Reserved                     |
| 140h       | GIRQ24 Source Register       |
| 144h       | GIRQ24 Enable Set Register   |
| 148h       | GIRQ24 Result Register       |
| 14Ch       | GIRQ24 Enable Clear Register |
| 150h       | Reserved                     |
| 154h       | GIRQ25 Source Register       |
| 158h       | GIRQ25 Enable Set Register   |
| 15Ch       | GIRQ25 Result Register       |
| 160h       | GIRQ25 Enable Clear Register |
| 164h       | Reserved                     |
| 168h       | GIRQ26 Source Register       |
| 16Ch       | GIRQ26 Enable Set Register   |
| 170h       | GIRQ26 Result Register       |
| 174h       | GIRQ26 Enable Clear Register |
| 200h       | Block Enable Set Register    |
| 204h       | Block Enable Clear Register  |
| 208h       | Block IRQ Vector Register    |
|            |                              |

All of the GIRQx Source, Enable Set, Enable Clear and Result registers have the same format. The following tables define the generic format for each of these registers. The bit definitions are defined in the sections that follow.

# **CEC1712**

The behavior of the enable bit controlled by the GIRQx Enable Set and GIRQx Enable Clear Registers, the GIRQx Source bit, and the GIRQx Result bit is illustrated in Section 8.8.1, "Aggregated Interrupts".

#### 8.9.1 GIRQ SOURCE REGISTERS

All of the GIRQx Source registers have the same format. The following table defines the generic format for each of these registers. The bit definitions are defined in the Interrupt Aggregator Bit Assignments Table in Section 3.0, "Device Inventory". Unassigned bits are Reserved and return 0.

**Note:** If a GPIO listed in the tables does not appear in the pin list of a particular device, then the bits for that GPIO in the GIRQx Source, GIRQx Enable Clear, GIRQx Enable Set and GIRQx Result are reserved.

| Offset | See Section 3.0, "Device Inventory"                                                                                                |      |         |                |
|--------|------------------------------------------------------------------------------------------------------------------------------------|------|---------|----------------|
| Bits   | Description                                                                                                                        | Type | Default | Reset<br>Event |
| 31     | Reserved                                                                                                                           | RES  | -       | -              |
| 30:0   | GIRQX_SOURCE  The GIRQx Source bits are R/WC sticky status bits indicating the state of interrupt before the interrupt enable bit. | R/WC | 0h      | RESET<br>_SYS  |

#### 8.9.2 GIRQ ENABLE SET REGISTERS

All of the GIRQx Enable Set registers have the same format. The following table defines the generic format for each of these registers. Unassigned bits are Reserved and return 0.

| Offset | See Section 3.0, "Device Inventory"                                                                                                                                                                                                                                                                                                                                                                      |      |         |                |
|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|---------|----------------|
| Bits   | Description                                                                                                                                                                                                                                                                                                                                                                                              | Type | Default | Reset<br>Event |
| 31     | Reserved                                                                                                                                                                                                                                                                                                                                                                                                 | RES  | -       | -              |
| 30:0   | GIRQX_ENABLE_SET  Each GIRQx bit can be individually enabled to assert an interrupt event.  Reads always return the current value of the internal GIRQX_ENABLE bit. The state of the GIRQX_ENABLE bit is determined by the corresponding GIRQX_ENABLE_SET bit and the GIRQX_ENABLE_CLEAR bit. (0=disabled, 1-enabled)  1=The corresponding interrupt in the GIRQx Source Register is enabled 0=No effect | R/WS | Oh      | RESET<br>_SYS  |

# 8.9.3 GIRQ ENABLE CLEAR REGISTERS

All of the GIRQx Enable Clear registers have the same format. The following table defines the generic format for each of these registers. Unassigned bits are Reserved and return 0.

| Offset | See Section 3.0, "Device Inventory"                                                                                                                                                                                                                                                                                                                                                                         |      |         |                |
|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|---------|----------------|
| Bits   | Description                                                                                                                                                                                                                                                                                                                                                                                                 | Type | Default | Reset<br>Event |
| 31     | Reserved                                                                                                                                                                                                                                                                                                                                                                                                    | RES  | -       | -              |
| 30:0   | GIRQX_ENABLE_CLEAR  Each GIRQx bit can be individually enabled to assert an interrupt event.  Reads always return the current value of the internal GIRQX_ENABLE bit. The state of the GIRQX_ENABLE bit is determined by the corresponding GIRQX_ENABLE_SET bit and the GIRQX_ENABLE_CLEAR bit. (0=disabled, 1-enabled)  1=The corresponding interrupt in the GIRQx Source Register is disabled 0=No effect | R/WC | 0h      | RESET _SYS     |

#### 8.9.4 GIRQ RESULT REGISTERS

| Offset | See Section 3.0, "Device Inventory"                                                                                                                                                                            |      |         |                |
|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|---------|----------------|
| Bits   | Description                                                                                                                                                                                                    | Туре | Default | Reset<br>Event |
| 31     | Reserved                                                                                                                                                                                                       | RES  | 1h      | -              |
| 30:0   | GIRQX_RESULT The GIRQX_RESULT bits are Read-Only status bits indicating the state of an interrupt. The RESULT is asserted '1'b when both the GIRQX_SOURCE bit and the corresponding GIRQX_ENABLE bit are '1'b. | R    | 0h      | RESET<br>_SYS  |

# 8.9.5 BLOCK ENABLE SET REGISTER

| Offset | 200h        |      |         |                |
|--------|-------------|------|---------|----------------|
| Bits   | Description | Type | Default | Reset<br>Event |
| 31:27  | Reserved    | RES  | -       | -              |

# **CEC1712**

| Offset | 200h                                                                                                  |      |         |                |
|--------|-------------------------------------------------------------------------------------------------------|------|---------|----------------|
| Bits   | Description                                                                                           | Туре | Default | Reset<br>Event |
| 26:8   | IRQ_VECTOR_ENABLE_SET  Each bit in this field enables the group GIRQ interrupt assertion to the NVIC. | R/WS | 0h      | RESET _SYS     |
|        | 1=Interrupts in the GIRQx Source Register may be enabled 0=No effect                                  |      |         |                |
| 7:0    | Reserved                                                                                              | RES  | -       | -              |

# 8.9.6 BLOCK ENABLE CLEAR REGISTER

| Offset | 204h                                                                                                                                                                         |      |         |                |
|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|---------|----------------|
| Bits   | Description                                                                                                                                                                  | Type | Default | Reset<br>Event |
| 31:27  | Reserved                                                                                                                                                                     | RES  | -       | -              |
| 26:8   | IRQ_VECTOR_ENABLE_CLEAR  Each bit in this field disables the group GIRQ interrupt assertion to the NVIC.  1=Interrupts in the GIRQx Source Register are disabled 0=No effect | R/WC | 0h      | RESET<br>_SYS  |
| 7:0    | Reserved                                                                                                                                                                     | RES  | -       | -              |

# 8.9.7 BLOCK IRQ VECTOR REGISTER

| Offset | 208h                                                                                                                                                                                                                                                                   |      |         |                |
|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|---------|----------------|
| Bits   | Description                                                                                                                                                                                                                                                            | Type | Default | Reset<br>Event |
| 31:27  | Reserved                                                                                                                                                                                                                                                               | RES  | 0h      | -              |
| 26:8   | IRQ_VECTOR  Each bit in this field reports the status of the group GIRQ interrupt assertion to the NVIC. If the GIRQx interrupt is disabled as a group, by the Block Enable Clear Register, then the corresponding bit will be '0'b and no interrupt will be asserted. | R    | 0h      | RESET _SYS     |
| 7:0    | Reserved                                                                                                                                                                                                                                                               | RES  | 0h      | -              |

#### 9.0 CHIP CONFIGURATION

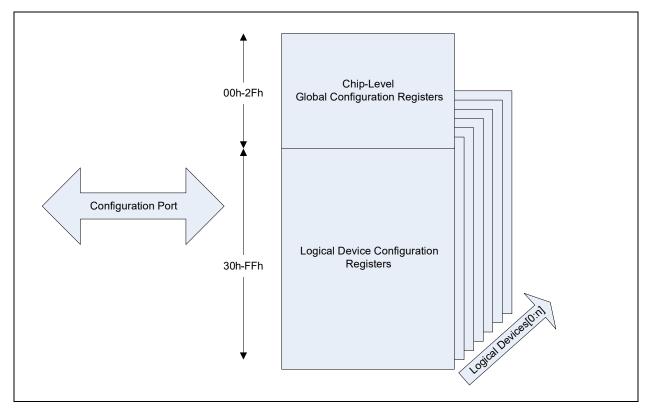
#### 9.1 Introduction

This chapter defines the mechanism to configure the device. Each logical device or block in the design has their own set of configuration registers. The Global Configuration Registers are use for chip-level configuration. The chip's Device ID and Revision are located in the Global Configuration space and may be used to uniquely identify this chip.

# 9.2 Terminology

This section documents terms used locally in this chapter. Common terminology that is used in the chip specification is captured in the Chip-Level Terminology section.

**TABLE 9-1: TERMINOLOGY** 


| Term                                   | Definition                                                                                                                                                                    |
|----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Global Configuration Registers         | Registers used to configure the chip that are always accessible via the Configuration Port                                                                                    |
| Logical Device Configuration Registers | Registers used to configure a logical device in the chip. These registers are only accessible via the Configuration Port when enabled via the Global Configuration registers. |

# 9.3 Interface

This block is designed to be accessed via the Host accessible Configuration Port.

# 9.4 Power, Clocks and Reset

FIGURE 9-1: BLOCK DIAGRAM OF CONFIGURATION PORT



**Note:** Each logical device has a bank of Configuration registers that are accessible at offsets 30h to FFh via the Configuration Port. The Logical Device number programmed in offset 07h determines which bank of configuration registers is currently accessible.

This section defines the Power, Clock, and Reset input parameters to this block.

#### 9.4.1 POWER DOMAINS

TABLE 9-2: POWER SOURCES

| Name     | Description                                                                         |
|----------|-------------------------------------------------------------------------------------|
| VTR_CORE | The logic and registers implemented in this block reside on this single power well. |

#### 9.4.2 CLOCK INPUTS

This block does not require any special clock inputs.

#### 9.4.3 RESETS

TABLE 9-3: RESET SIGNALS

| Name       | Description                                                                                                            |
|------------|------------------------------------------------------------------------------------------------------------------------|
| RESET_SYS  | Power on Reset to the entire device. This signal resets all the register and logic in this block to its default state. |
| RESET_HOST | A reset that occurs when VCC is turned off or when the system host resets the Host Interface.                          |
| RESET_eSPI | For systems with eSPI, a general reset signal for the eSPI block.                                                      |

#### 9.5 Interrupts

This block does not generate any interrupts.

#### 9.6 Low Power Modes

This block always automatically adjusts to operate in the lowest power mode.

#### 9.7 Description

The Chip Configuration Registers are divided into two groups: Global Configuration Registers and Logical Device Configuration registers.

#### 9.7.1 CONFIGURATION PORT

The eSPI Host can access the Chip's Configuration Registers through the Configuration Port when CONFIG MODE is enabled. The device defaults to CONFIG MODE being disabled.

Note: The data read from the Configuration Port Data register is undefined when CONFIG MODE is not enabled.

The Configuration Port is composed of an INDEX and DATA Register. The INDEX register is used as an address pointer to an 8-bit configuration register and the DATA register is used to read or write the data value from the indexed configuration register. Once CONFIG MODE is enabled, reading the Configuration Port Data register will return the data value that is in the indexed Configuration Register.

If no value was written to the INDEX register, reading the Data Register in the Configuration Port will return the value in Configuration Address location 00h (default).

**TABLE 9-4: CONFIGURATION PORT** 

| Default I/O<br>Address | Type         | Register Name | Relative Address                      | Default<br>Value | Notes  |
|------------------------|--------------|---------------|---------------------------------------|------------------|--------|
| 002Eh                  | Read / Write | INDEX         | Configuration Port's Base Address + 0 | 00h              | Note 1 |
| 002Fh                  | Read / Write | DATA          | Configuration Port's Base Address + 1 | 00h              |        |

**Note 1:** The default Base I/O Address of the Configuration Port can be relocated by programming the BAR register for Logical Device Ch (eSPI, I/O Configuration Port). The Relative Address shows the general case for determining the I/O address for each register.

### 9.7.2 ENABLE CONFIG MODE

The INDEX and DATA registers are effective only when the chip is in CONFIG MODE. CONFIG MODE is enabled when the Config Entry Key is successfully written to the I/O address of the INDEX register of the CONFIG PORT while the CONFIG MODE is disabled (see following section).

Config Entry Key = < 55h>

#### 9.7.3 DISABLE CONFIG MODE

CONFIG MODE defaults to disabled on a RESET\_SYS, RESET\_HOST, and, for systems using eSPI, when RESET\_HOST is asserted. CONFIG MODE is also disabled when the following Config Exit Key is successfully written to the I/O address of the INDEX PORT of the CONFIG PORT while CONFIG MODE is enabled.

Config Exit Key = < AAh>

#### 9.7.4 CONFIGURATION SEQUENCE EXAMPLE

To program the configuration registers, the following sequence must be followed:

- 1. Enable Configuration State
- 2. Program the Configuration Registers
- 3. Disable Configuration State.

The following is an example of a configuration program in Intel 8086 assembly language.

; -----

```
; ENABLE CONFIGURATION STATE
    DX,CONFIG_PORT_BASE_ADDRESS
MOV
     AX,055H; Config Entry Key
OUT DX,AL
; CONFIGURE BASE ADDRESS,
; LOGICAL DEVICE 8
;-----
     DX,CONFIG_PORT_BASE_ADDRESS
VOM
    AL,07H
MOV
     DX, AL; Point to LD# Config Reg
OUT
MOV
     DX, CONFIG_PORT_BASE_ADDRESS+1
MOV AL, 08H
OUT DX,AL; Point to Logical Device 8
;
MOV
    DX,CONFIG_PORT_BASE_ADDRESS
MOV
    AL,34H
OUT
     DX,AL ; Point to BASE ADDRESS REGISTER
MOV
     DX,CONFIG_PORT_BASE_ADDRESS+1
VOM
      AL,02H
OUT
     DX,AL ; Update BASE ADDRESS REGISTER
;-----
; DISABLE CONFIGURATION STATE
;-----!
    DX,CONFIG_PORT_BASE_ADDRESS
    AX,0AAH; Config Exit Key
OUT DX, AL.
```

#### 9.7.5 GLOBAL CONFIGURATION

There are 48 8-bit Global Configuration Registers (at offsets 00h through 2Fh), plus up to 208 8-bit registers associated with each Logical Device. The Logical Device is selected with the Logical Device Number Register (Global Configuration Register 07h).

Sequence to Access Logical Device Configuration Register:

- a) Write the number of the Logical Device being accessed in the Logical Device Number Configuration Register by writing 07h into the INDEX PORT and the Logical Device Number into the DATA PORT.
- b) Write the address of the desired logical device configuration register to the INDEX PORT and then write or read the value of the configuration register through the DATA PORT.

The following sections define the Global Configuration registers and the Logical Configuration registers.

#### 9.7.6 GLOBAL CONTROL/CONFIGURATION REGISTERS

As with all Configuration Registers, the INDEX PORT is used to select a Global Configuration Register in the chip. The DATA PORT is then used to access the selected register. The INDEX and DATA PORTs are defined in the eSPI Interface description.

# 9.8 Configuration Registers

Host access to Global Configuration Registers is through the Configuration Port (the INDEX PORT and the DATA PORT) using the Logical Device Number 3Fh and the Index shown in the "Offset" column of the following table. The EC can access Configuration Registers directly. The EC address for each register is formed by adding the Base Address for Global Configuration block shown in the Block Overview and Base Address Table in Section 3.0, "Device Inventory" to the offset shown in the "Offset" column.

All Global Configuration registers are accessible to the Host through the Configuration Port for all Logical Devices. at offsets 00h through 2Fh.

TABLE 9-5: CHIP-LEVEL (GLOBAL) CONTROL/CONFIGURATION REGISTERS

| Register                        | Host Offset | Description                                                                                                         |  |  |
|---------------------------------|-------------|---------------------------------------------------------------------------------------------------------------------|--|--|
| Chip (Global) Control Registers |             |                                                                                                                     |  |  |
| Reserved                        | 00h - 01h   | Reserved - Writes are ignored, reads return 0.                                                                      |  |  |
| TEST                            | 02h         | TEST. This register location is reserved for Microchip use. Modifying this location may cause unwanted results.     |  |  |
| Reserved                        | 03h - 06h   | Reserved - Writes are ignored, reads return 0.                                                                      |  |  |
| Reserved                        | 08h - 18h   | Reserved - Writes are ignored, reads return 0.                                                                      |  |  |
| Device Revision                 | 1Ch         | A read-only register which provides device revision information.                                                    |  |  |
| Device Sub ID                   | 1Dh         | Read-Only register which provides the device sub-identification.                                                    |  |  |
| Device ID[7:0]                  | 1Eh         | Read-Only register which provides Device ID LSB.                                                                    |  |  |
| Device ID[15:8]                 | 1Fh         | Read-Only register which provides Device ID MSB.                                                                    |  |  |
| Legacy Device ID                | 20h         | A read-only register which provides Legacy device identification. The value of this register is FEh                 |  |  |
| TEST                            | 22h - 23h   | TEST. This register locations are reserved for Microchip use. Modifying these locations may cause unwanted results. |  |  |
| Reserved                        | 24h         | Reserved – writes are ignored, reads return "0".                                                                    |  |  |
| TEST                            | 25h - 2Fh   | TEST. This register locations are reserved for Microchip use. Modifying these locations may cause unwanted results. |  |  |

# 10.0 **UART**

# 10.1 Introduction

The 16550 UART (Universal Asynchronous Receiver/Transmitter) is a full-function Serial Port that supports the standard RS-232 Interface.

# 10.2 References

• EIA Standard RS-232-C specification

#### 10.3 Interface

This block is designed to be accessed externally via the pin interface and internally via a registered host interface.

FIGURE 10-1: I/O DIAGRAM OF BLOCK



# 10.4 Signal Description

**TABLE 10-1: SIGNAL DESCRIPTION TABLE** 

| Name | Direction | Description                                                                                                                                                                                                                                                                                                                                                                             |
|------|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| DTR# | Output    | Active low Data Terminal ready output for the Serial Port.                                                                                                                                                                                                                                                                                                                              |
|      |           | Handshake output signal notifies modem that the UART is ready to transmit data. This signal can be programmed by writing to bit 1 of the Modem Control Register (MCR).                                                                                                                                                                                                                  |
|      |           | Note: Defaults to tri-state on V3_DUAL power on.                                                                                                                                                                                                                                                                                                                                        |
| DCD# | Input     | Active low Data Carrier Detect input for the serial port.                                                                                                                                                                                                                                                                                                                               |
|      |           | Handshake signal which notifies the UART that carrier signal is detected by the modem. The CPU can monitor the status of DCD# signal by reading bit 7 of Modem Status Register (MSR). A DCD# signal state change from low to high after the last MSR read will set MSR bit 3 to a 1. If bit 3 of Interrupt Enable Register is set, the interrupt is generated when DCD # changes state. |

TABLE 10-1: SIGNAL DESCRIPTION TABLE (CONTINUED)

| Name | Direction | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|------|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| DSR# | Input     | Active low Data Set Ready input for the serial port. Handshake signal which notifies the UART that the modem is ready to establish the communication link. The CPU can monitor the status of DSR# signal by reading bit 5 of Modem Status Register (MSR). A DSR# signal state change from low to high after the last MSR read will set MSR bit 1 to a 1. If bit 3 of Interrupt Enable Register is set, the interrupt is generated when DSR# changes state.                                  |
| RI#  | Input     | Active low Ring Indicator input for the serial port. Handshake signal which notifies the UART that the telephone ring signal is detected by the modem. The CPU can monitor the status of RI# signal by reading bit 6 of Modem Status Register (MSR). A RI# signal state change from low to high after the last MSR read will set MSR bit 2 to a 1. If bit 3 of Interrupt Enable Register is set, the interrupt is generated when RI# changes state.                                         |
| RTS# | Output    | Active low Request to Send output for the Serial Port. Handshake output signal notifies modem that the UART is ready to transmit data. This signal can be programmed by writing to bit 1 of the Modem Control Register (MCR). The hardware reset will reset the RTS# signal to inactive mode (high). RTS# is forced inactive during loop mode operation. Defaults to tri-state on V3_DUAL power on.                                                                                         |
| CTS# | Input     | Active low Clear to Send input for the serial port. Handshake signal which notifies the UART that the modem is ready to receive data. The CPU can monitor the status of CTS# signal by reading bit 4 of Modem Status Register (MSR). A CTS# signal state change from low to high after the last MSR read will set MSR bit 0 to a 1. If bit 3 of the Interrupt Enable Register is set, the interrupt is generated when CTS# changes state. The CTS# signal has no effect on the transmitter. |
| TXD  | Output    | Transmit serial data output.                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| RXD  | Input     | Receiver serial data input.                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |

#### 10.5 Host Interface

The registers defined for UART is accessed by the various hosts as indicated in Section 3.2, "Block Overview and Base Addresses".

# 10.6 Power, Clocks and Reset

This section defines the Power, Clock, and Reset parameters of the block.

# 10.6.1 POWER DOMAINS

#### TABLE 10-2: POWER SOURCES

| Name     | Description                                                             |
|----------|-------------------------------------------------------------------------|
| VTR_CORE | This Power Well is used to power the registers and logic in this block. |

# 10.6.2 CLOCKS

#### **TABLE 10-3: CLOCK INPUTS**

| Name     | Description                                                                                                                                                                                                                                              |
|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| UART_CLK | An external clock that may be used as an alternative to the internally-generated 1.8432MHz and 48MHz baud clocks.                                                                                                                                        |
|          | Selection between internal baud clocks and an external baud clock is configured by the CLK_SRC bit in the Configuration Select Register.                                                                                                                 |
| 48MHz    | This is the main clock domain.                                                                                                                                                                                                                           |
|          | Because the clock input must be within ± 2% in order to generate standard baud rates, the 48MHz clock must be generated by a reference clock with better than 1% accuracy and locked to its frequency before the UART will work with the standard rates. |

#### TABLE 10-4: BAUD CLOCKS

| Name      | Description                                                                                                                                                                                                |
|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1.8432MHz | The UART requires a $1.8432~\mathrm{MHz} \pm 2\%$ clock input for baud rate generation of standard baud rates up to $115,200~\mathrm{baud}$ . It is derived from the system $48\mathrm{MHz}$ clock domain. |
| 48MHz     | It may be used as an alternative to the 1.8432MHz clock, generating non-standard baud rates up to 1,500,000 baud.                                                                                          |

#### 10.6.3 RESETS

#### TABLE 10-5: RESET SIGNALS

| Name       | Description                                                                                                                                                                                         |
|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| RESET_SYS  | This reset is asserted when VTR_CORE is applied.                                                                                                                                                    |
| RESET_HOST | This is an alternate reset condition, typically asserted when the main power rail is asserted.                                                                                                      |
| RESET      | This reset is determined by the POWER bit signal. When the power bit signal is 1, this signal is equal to RESET_VCC, if present. When the power bit signal is 0, this signal is equal to RESET_SYS. |

# 10.7 Interrupts

This section defines the Interrupt Sources generated from this block.

### **TABLE 10-6: SYSTEM INTERRUPTS**

| Source | Description                                                                                                       |  |
|--------|-------------------------------------------------------------------------------------------------------------------|--|
| UART   | The UART interrupt event output indicates if an interrupt is pending. See Table 10-12, "Interrupt Control Table". |  |

#### TABLE 10-7: EC INTERRUPTS

| Source | Description                                                               |  |
|--------|---------------------------------------------------------------------------|--|
| UART   | The UART interrupt event output indicates if an interrupt is pending. See |  |
|        | Table 10-12, "Interrupt Control Table".                                   |  |

#### 10.8 Low Power Modes

The UART may be put into a low power state by the chip's Power, Clocks, and Reset (PCR) circuitry.

### 10.9 Description

The UART is compatible with the 16450, the 16450 ACE registers and the 16C550A. The UART performs serial-to-parallel conversions on received characters and parallel-to-serial conversions on transmit characters. Two sets of baud rates are provided. When the 1.8432 MHz source clock is selected, standard baud rates from 50 to 115.2K are available. When the source clock is 48MHz, baud rates up to 1,500K are available. The character options are programmable for 1 start; 1, 1.5 or 2 stop bits; even, odd, sticky or no parity; and prioritized interrupts. The UART contains a programmable baud rate generator that is capable of dividing the input clock signal by 1 to 32767. The UART is also capable of supporting the MIDI data rate. Refer to the Configuration Registers for information on disabling, powering down and changing the base address of the UART. The UART interrupt is enabled by programming OUT2 of the UART to logic "1." Because OUT2 is logic "0," it disables the UART's interrupt. The UART is accessible by both the Host and the EC.

#### 10.9.1 PROGRAMMABLE BAUD RATE

The Serial Port contains a programmable Baud Rate Generator that is capable of dividing the internal clock source by any divisor from 1 to 32767. Unless an external clock source is configured, the clock source is either the 1.8432MHz clock source or the 48MHz clock source. The output frequency of the Baud Rate Generator is 16x the Baud rate. Two eight bit latches store the divisor in 16 bit binary format. These Divisor Latches must be loaded during initialization in order to ensure desired operation of the Baud Rate Generator. Upon loading either of the Divisor Latches, a 16 bit Baud counter is immediately loaded. This prevents long counts on initial load. If a 0 is loaded into the BRG registers, the output divides the clock by the number 3. If a 1 is loaded, the output is the inverse of the input oscillator. If a two is loaded, the output is a divide by 2 signal with a 50% duty cycle. If a 3 or greater is loaded, the output is low for 2 bits and high for the remainder of the count.

The following tables show possible baud rates.

TABLE 10-8: UART BAUD RATES USING CLOCK SOURCE 1.8432MHz

| Desired Baud Rate | BAUD_CLOCK_SEL | Divisor Used to Generate<br>16X Clock |
|-------------------|----------------|---------------------------------------|
| 50                | 0              | 2304                                  |
| 75                | 0              | 1536                                  |
| 110               | 0              | 1047                                  |
| 134.5             | 0              | 857                                   |
| 150               | 0              | 768                                   |
| 300               | 0              | 384                                   |
| 600               | 0              | 192                                   |
| 1200              | 0              | 96                                    |
| 1800              | 0              | 64                                    |
| 2000              | 0              | 58                                    |
| 2400              | 0              | 48                                    |
| 3600              | 0              | 32                                    |
| 4800              | 0              | 24                                    |
| 7200              | 0              | 16                                    |
| 9600              | 0              | 12                                    |
| 19200             | 0              | 6                                     |
| 38400             | 0              | 3                                     |
| 57600             | 0              | 2                                     |
| 115200            | 0              | 1                                     |

TABLE 10-9: UART BAUD RATES USING CLOCK SOURCE 48MHz

| Desired Baud Rate | BAUD_CLOCK_SEL | Divisor Used to Generate<br>16X Clock |
|-------------------|----------------|---------------------------------------|
| 125000            | 1              | 24                                    |
| 136400            | 1              | 22                                    |
| 150000            | 1              | 20                                    |
| 166700            | 1              | 18                                    |
| 187500            | 1              | 16                                    |
| 214300            | 1              | 14                                    |
| 250000            | 1              | 12                                    |
| 300000            | 1              | 10                                    |
| 375000            | 1              | 8                                     |
| 500000            | 1              | 6                                     |
| 750000            | 1              | 4                                     |
| 1500000           | 1              | 2                                     |
| 3000000           | 1              | 1                                     |

# 10.10 Runtime Registers

The registers listed in the Runtime Register Summary table are for a single instance of the UART. Host access for each register listed in this table is defined as an offset in the Host address space to the Block's Base Address, as defined by the instance's Base Address Register.

The EC address for each register is formed by adding the Base Address for each instance of the UART shown in the Block Overview and Base Address Table in Section 3.0, "Device Inventory" to the offset shown in the "Offset" column.

**TABLE 10-10: RUNTIME REGISTER SUMMARY** 

| DLAB<br>Note 1    | Offset               | Register Name                                 |  |
|-------------------|----------------------|-----------------------------------------------|--|
| 0                 | 0h                   | Receive Buffer Register                       |  |
| 0                 | 0h                   | Transmit Buffer Register                      |  |
| 1                 | 0h                   | Programmable Baud Rate Generator LSB Register |  |
| 1                 | 1h                   | Programmable Baud Rate Generator MSB Register |  |
| 0                 | 1h                   | Interrupt Enable Register                     |  |
| Х                 | 02h                  | FIFO Control Register                         |  |
| х                 | 02h                  | Interrupt Identification Register             |  |
| Х                 | 03h                  | Line Control Register                         |  |
| Х                 | 04h                  | Modem Control Register                        |  |
| Х                 | 05h                  | Line Status Register                          |  |
| х                 | 06h                  | Modem Status Register                         |  |
| х                 | 07h                  | Scratchpad Register                           |  |
| Note 1: DLAB is b | it 7 of the Line Cor | ntrol Register.                               |  |

# 10.10.1 RECEIVE BUFFER REGISTER

| Offset | 0h (DLAB=0)                                                                                                                                                                                                                                                                                                                                                                                   |      |         |                |
|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|---------|----------------|
| Bits   | Description                                                                                                                                                                                                                                                                                                                                                                                   | Type | Default | Reset<br>Event |
| 7:0    | RECEIVED_DATA This register holds the received incoming data byte. Bit 0 is the least significant bit, which is transmitted and received first. Received data is double buffered; this uses an additional shift register to receive the serial data stream and convert it to a parallel 8 bit word which is transferred to the Receive Buffer register. The shift register is not accessible. | R    | 0h      | RESET          |

# 10.10.2 TRANSMIT BUFFER REGISTER

| Offset | 0h (DLAB=0)                                                                                                                                                                                                                                                                                                                             |      |         |                |
|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|---------|----------------|
| Bits   | Description                                                                                                                                                                                                                                                                                                                             | Type | Default | Reset<br>Event |
| 7:0    | TRANSMIT_DATA This register contains the data byte to be transmitted. The transmit buffer is double buffered, utilizing an additional shift register (not accessible) to convert the 8 bit data word to a serial format. This shift register is loaded from the Transmit Buffer when the transmission of the previous byte is complete. | W    | 0h      | RESET          |

# 10.10.3 PROGRAMMABLE BAUD RATE GENERATOR LSB REGISTER

| Offset | 00h (DLAB=1)                                                        |      |         |                |
|--------|---------------------------------------------------------------------|------|---------|----------------|
| Bits   | Description                                                         | Type | Default | Reset<br>Event |
| 7:0    | BAUD_RATE_DIVISOR_LSB See Section 10.9.1, "Programmable Baud Rate". | R/W  | 0h      | RESET          |

#### 10.10.4 PROGRAMMABLE BAUD RATE GENERATOR MSB REGISTER

| Offset | 01h (DLAB=1)                                                                                                                              |      |         |                |
|--------|-------------------------------------------------------------------------------------------------------------------------------------------|------|---------|----------------|
| Bits   | Description                                                                                                                               | Type | Default | Reset<br>Event |
| 7      | BAUD_CLK_SEL                                                                                                                              | R/W  | 0h      | RESET          |
|        | If CLK_SRC is '0':  • 0=The baud clock is derived from the 1.8432MHz.  • 1=IThe baud clock is derived from the 48MHz.  If CLK_SRC is '1': |      |         |                |
|        | This bit has no effect                                                                                                                    |      |         |                |
| 6:0    | BAUD_RATE_DIVISOR_MSB See Section 10.9.1, "Programmable Baud Rate".                                                                       | R/W  | 0h      | RESET          |

#### 10.10.5 INTERRUPT ENABLE REGISTER

The lower four bits of this register control the enables of the five interrupt sources of the Serial Port interrupt. It is possible to totally disable the interrupt system by resetting bits 0 through 3 of this register. Similarly, setting the appropriate bits of this register to a high, selected interrupts can be enabled. Disabling the interrupt system inhibits the Interrupt Identification Register and disables any Serial Port interrupt out of the CEC1712. All other system functions operate in their normal manner, including the Line Status and MODEM Status Registers. The contents of the Interrupt Enable Register are described below.

| Offset | 01h (DLAB=0)                                                                                                                                                                                                                   |      |         |                |
|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|---------|----------------|
| Bits   | Description                                                                                                                                                                                                                    | Туре | Default | Reset<br>Event |
| 7:4    | Reserved                                                                                                                                                                                                                       | RES  | -       | -              |
| 3      | EMSI This bit enables the MODEM Status Interrupt when set to logic "1". This is caused when one of the Modem Status Register bits changes state.                                                                               | R/W  | 0h      | RESET          |
| 2      | ELSI This bit enables the Received Line Status Interrupt when set to logic "1". The error sources causing the interrupt are Overrun, Parity, Framing and Break. The Line Status Register must be read to determine the source. | R/W  | 0h      | RESET          |
| 1      | ETHREI This bit enables the Transmitter Holding Register Empty Interrupt when set to logic "1".                                                                                                                                | R/W  | 0h      | RESET          |
| 0      | ERDAI This bit enables the Received Data Available Interrupt (and timeout interrupts in the FIFO mode) when set to logic "1".                                                                                                  | R/W  | 0h      | RESET          |

#### 10.10.6 FIFO CONTROL REGISTER

This is a write only register at the same location as the Interrupt Identification Register.

**Note:** DMA is not supported.

| Offset | 02h                                                                                                                                                                                                                                                                                                                                                                                                                                   |      |         |                |
|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|---------|----------------|
| Bits   | Description                                                                                                                                                                                                                                                                                                                                                                                                                           | Туре | Default | Reset<br>Event |
| 7:6    | RECV_FIFO_TRIGGER_LEVEL These bits are used to set the trigger level for the RCVR FIFO interrupt.                                                                                                                                                                                                                                                                                                                                     | W    | 0h      | RESET          |
| 5:4    | Reserved                                                                                                                                                                                                                                                                                                                                                                                                                              | RES  | -       | -              |
| 3      | DMA_MODE_SELECT Writing to this bit has no effect on the operation of the UART. The RXRDY and TXRDY pins are not available on this chip.                                                                                                                                                                                                                                                                                              | W    | 0h      | RESET          |
| 2      | CLEAR_XMIT_FIFO Setting this bit to a logic "1" clears all bytes in the XMIT FIFO and resets its counter logic to "0". The shift register is not cleared. This bit is self-clearing.                                                                                                                                                                                                                                                  | W    | Oh      | RESET          |
| 1      | CLEAR_RECv_FIFO Setting this bit to a logic "1" clears all bytes in the RCVR FIFO and resets its counter logic to "0". The shift register is not cleared. This bit is self-clearing.                                                                                                                                                                                                                                                  | W    | Oh      | RESET          |
| 0      | EXRF Enable XMIT and RECV FIFO. Setting this bit to a logic "1" enables both the XMIT and RCVR FIFOs. Clearing this bit to a logic "0" disables both the XMIT and RCVR FIFOs and clears all bytes from both FIFOs. When changing from FIFO Mode to non-FIFO (16450) mode, data is automatically cleared from the FIFOs. This bit must be a 1 when other bits in this register are written to or they will not be properly programmed. | W    | Oh      | RESET          |

#### TABLE 10-11: RECV FIFO TRIGGER LEVELS

| Bit 7 | Bit 6 | RECV FIFO<br>Trigger Level (BYTES) |
|-------|-------|------------------------------------|
| 0     | 0     | 1                                  |
|       | 1     | 4                                  |
| 1     | 0     | 8                                  |
|       | 1     | 14                                 |

#### 10.10.7 INTERRUPT IDENTIFICATION REGISTER

By accessing this register, the host CPU can determine the highest priority interrupt and its source. Four levels of priority interrupt exist. They are in descending order of priority:

- 1. Receiver Line Status (highest priority)
- 2. Received Data Ready

# **CEC1712**

- 3. Transmitter Holding Register Empty
- 4. MODEM Status (lowest priority)

Information indicating that a prioritized interrupt is pending and the source of that interrupt is stored in the Interrupt Identification Register (refer to Table 10-12). When the CPU accesses the IIR, the Serial Port freezes all interrupts and indicates the highest priority pending interrupt to the CPU. During this CPU access, even if the Serial Port records new interrupts, the current indication does not change until access is completed. The contents of the IIR are described below.

| Offset | 02h                                                                                                                                                                                                                                                                                                                                     |      |         |                |
|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|---------|----------------|
| Bits   | Description                                                                                                                                                                                                                                                                                                                             | Type | Default | Reset<br>Event |
| 7:6    | FIFO_EN These two bits are set when the FIFO CONTROL Register bit 0 equals 1.                                                                                                                                                                                                                                                           | R    | 0h      | RESET          |
| 5:4    | Reserved                                                                                                                                                                                                                                                                                                                                | RES  | -       | -              |
| 3:1    | INTID  These bits identify the highest priority interrupt pending as indicated by Table 10-12, "Interrupt Control Table". In non-FIFO mode, Bit[3] is a logic "0". In FIFO mode Bit[3] is set along with Bit[2] when a timeout interrupt is pending.                                                                                    | R    | 0h      | RESET          |
| 0      | IPEND  This bit can be used in either a hardwired prioritized or polled environment to indicate whether an interrupt is pending. When bit 0 is a logic '0' an interrupt is pending and the contents of the IIR may be used as a pointer to the appropriate internal service routine. When bit 0 is a logic '1' no interrupt is pending. | R    | 1h      | RESET          |

# **TABLE 10-12: INTERRUPT CONTROL TABLE**

| FIFO<br>Mode<br>Only |       | pt Identii<br>Register |       |                   | Interrupt SET a                         | and RESET Function                                                                                                                              | s                                                                                                           |
|----------------------|-------|------------------------|-------|-------------------|-----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|
| Bit 3                | Bit 2 | Bit 1                  | Bit 0 | Priority<br>Level | Interrupt Type                          | Interrupt Source                                                                                                                                | Interrupt Reset<br>Control                                                                                  |
| 0                    | 0     | 0                      | 1     | -                 | None                                    | None                                                                                                                                            | -                                                                                                           |
|                      | 1     | 1                      | 0     | Highest           | Receiver Line Status                    | Overrun Error, Par-<br>ity Error, Framing<br>Error or Break<br>Interrupt                                                                        | Reading the Line<br>Status Register                                                                         |
|                      |       | 0                      |       | Second            | Received Data<br>Available              | Receiver Data<br>Available                                                                                                                      | Read Receiver Buf-<br>fer or the FIFO<br>drops below the<br>trigger level.                                  |
| 1                    |       |                        |       |                   | Character Timeout Indication            | No Characters Have Been Removed From or Input to the RCVR FIFO during the last 4 Char times and there is at least 1 char in it during this time | Reading the<br>Receiver Buffer<br>Register                                                                  |
| 0                    | 0     | 1                      |       | Third             | Transmitter Hold-<br>ing Register Empty | Transmitter Hold-<br>ing Register Empty                                                                                                         | Reading the IIR<br>Register (if Source<br>of Interrupt) or Writ-<br>ing the Transmitter<br>Holding Register |
|                      | 0     | 0                      |       | Fourth            | MODEM Status                            | Clear to Send or<br>Data Set Ready or<br>Ring Indicator or<br>Data Carrier Detect                                                               | Reading the<br>MODEM Status<br>Register                                                                     |

# 10.10.8 LINE CONTROL REGISTER

| Offset | 03h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      |         |                |
|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|---------|----------------|
| Bits   | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Туре | Default | Reset<br>Event |
| 7      | DLAB  Divisor Latch Access Bit (DLAB). It must be set high (logic "1") to access the Divisor Latches of the Baud Rate Generator during read or write operations. It must be set low (logic "0") to access the Receiver Buffer Register, the Transmitter Holding Register, or the Interrupt Enable Register.                                                                                                                                                                                                                            | R/W  | 0h      | RESET          |
| 6      | BREAK_CONTROL  Set Break Control bit. When bit 6 is a logic "1", the transmit data output (TXD) is forced to the Spacing or logic "0" state and remains there (until reset by a low level bit 6) regardless of other transmitter activity. This feature enables the Serial Port to alert a terminal in a communications system.                                                                                                                                                                                                        | R/W  | Oh      | RESE           |
| 5      | STICK_PARITY Stick Parity bit. When parity is enabled it is used in conjunction with bit 4 to select Mark or Space Parity. When LCR bits 3, 4 and 5 are 1 the Parity bit is transmitted and checked as a 0 (Space Parity). If bits 3 and 5 are 1 and bit 4 is a 0, then the Parity bit is transmitted and checked as 1 (Mark Parity). If bit 5 is 0 Stick Parity is disabled. Bit 3 is a logic "1" and bit 5 is a logic "1", the parity bit is transmitted and then detected by the receiver in the opposite state indicated by bit 4. | R/W  | Oh      | RESE           |
| 4      | PARITY_SELECT Even Parity Select bit. When bit 3 is a logic "1" and bit 4 is a logic "0", an odd number of logic "1"'s is transmitted or checked in the data word bits and the parity bit. When bit 3 is a logic "1" and bit 4 is a logic "1" an even number of logic "1"s is transmitted and checked.                                                                                                                                                                                                                                 | R/W  | Oh      | RESE           |
| 3      | ENABLE_PARITY Parity Enable bit. When bit 3 is a logic "1", a parity bit is generated (transmit data) or checked (receive data) between the last data word bit and the first stop bit of the serial data. (The parity bit is used to generate an even or odd number of 1s when the data word bits and the parity bit are summed).                                                                                                                                                                                                      |      | 0h      | RESE           |
| 2      | STOP_BITS This bit specifies the number of stop bits in each transmitted or received serial character. Table 10-13 summarizes the information. The receiver will ignore all stop bits beyond the first, regardless of the number used in transmitting.                                                                                                                                                                                                                                                                                 | R/W  | 0h      | RESE           |
| 1:0    | WORD_LENGTH These two bits specify the number of bits in each transmitted or received serial character. The encoding of bits 0 and 1 is as follows:                                                                                                                                                                                                                                                                                                                                                                                    | R/W  | 0h      | RESE           |

**TABLE 10-13: STOP BITS** 

| Bit 2 | Word Length | Number of Stop Bits |
|-------|-------------|---------------------|
| 0     |             | 1                   |
| 1     | 5 bits      | 1.5                 |
|       | 6 bits      | 2                   |
|       | 7 bits      |                     |
|       | 8 bits      |                     |

# **TABLE 10-14: SERIAL CHARACTER**

| Bit 1 | Bit 0 | Word Length |
|-------|-------|-------------|
| 0     | 0     | 5 Bits      |
| 0     | 1     | 6 Bits      |
| 1     | 0     | 7 Bits      |
| 1     | 1     | 8 Bits      |

The Start, Stop and Parity bits are not included in the word length.

# 10.10.9 MODEM CONTROL REGISTER

| Offset | 04h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      |         |                |
|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|---------|----------------|
| Bits   | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Туре | Default | Reset<br>Event |
| 7:5    | Reserved                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | RES  | -       | -              |
| 4      | <ul> <li>LOOPBACK</li> <li>This bit provides the loopback feature for diagnostic testing of the Serial Port. When bit 4 is set to logic "1", the following occur:</li> <li>1. The TXD is set to the Marking State (logic "1").</li> <li>2. The receiver Serial Input (RXD) is disconnected.</li> <li>3. The output of the Transmitter Shift Register is "looped back" into the Receiver Shift Register input.</li> <li>4. All MODEM Control inputs (CTS#, DSR#, RI# and DCD#) are disconnected.</li> <li>5. The four MODEM Control outputs (DTR#, RTS#, OUT1 and OUT2) are internally connected to the four MODEM Control inputs (DSR#, CTS#, RI#, DCD#).</li> <li>6. The Modem Control output pins are forced inactive high.</li> <li>7. Data that is transmitted is immediately received.</li> <li>This feature allows the processor to verify the transmit and receive data paths of the Serial Port. In the diagnostic mode, the receiver and the transmitter interrupts are fully operational. The MODEM Control Interrupts are also operational but the interrupts' sources are now the lower four bits of the MODEM Control Register instead of the MODEM Control inputs. The interrupts are still controlled by the Interrupt Enable Register.</li> </ul> | R/W  | Oh      | RESET          |
| 3      | OUT2 Output 2 (OUT2). This bit is used to enable an UART interrupt. When OUT2 is a logic "0", the serial port interrupt output is forced to a high impedance state - disabled. When OUT2 is a logic "1", the serial port interrupt outputs are enabled.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | R/W  | 0h      | RESET          |
| 2      | OUT1 This bit controls the Output 1 (OUT1) bit. This bit does not have an output pin and can only be read or written by the CPU.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | R/W  | 0h      | RESET          |
| 1      | RTS This bit controls the Request To Send (RTS#) output. When bit 1 is set to a logic "1", the RTS# output is forced to a logic "0". When bit 1 is set to a logic "0", the RTS# output is forced to a logic "1".                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | R/W  | Oh      | RESET          |
| 0      | DTR This bit controls the Data Terminal Ready (DTR#) output. When bit 0 is set to a logic "1", the DTR# output is forced to a logic "0". When bit 0 is a logic "0", the DTR# output is forced to a logic "1".                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | R/W  | Oh      | RESET          |

# 10.10.10 LINE STATUS REGISTER

| Offset | 05h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      |         |                |
|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|---------|----------------|
| Bits   | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Туре | Default | Reset<br>Event |
| 7      | FIFO_ERROR  This bit is permanently set to logic "0" in the 450 mode. In the FIFO mode, this bit is set to a logic "1" when there is at least one parity error, framing error or break indication in the FIFO. This bit is cleared when the LSR is read if there are no subsequent errors in the FIFO.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | R    | 0h      | RESET          |
| 6      | TRANSMIT_ERROR Transmitter Empty. Bit 6 is set to a logic "1" whenever the Transmitter Holding Register (THR) and Transmitter Shift Register (TSR) are both empty. It is reset to logic "0" whenever either the THR or TSR contains a data character. Bit 6 is a read only bit. In the FIFO mode this bit is set whenever the THR and TSR are both empty,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | R    | 0h      | RESET          |
| 5      | TRANSMIT_EMPTY Transmitter Holding Register Empty Bit 5 indicates that the Serial Port is ready to accept a new character for transmission. In addition, this bit causes the Serial Port to issue an interrupt when the Transmitter Holding Register interrupt enable is set high. The THRE bit is set to a logic "1" when a character is transferred from the Transmitter Holding Register into the Transmitter Shift Register. The bit is reset to logic "0" whenever the CPU loads the Transmitter Holding Register. In the FIFO mode this bit is set when the XMIT FIFO is empty, it is cleared when at least 1 byte is written to the XMIT FIFO. Bit 5 is a read only bit.                                                                                                                                                                                                                                   | R    | 0h      | RESET          |
| 4      | BREAK_INTERRUPT Break Interrupt. Bit 4 is set to a logic "1" whenever the received data input is held in the Spacing state (logic "0") for longer than a full word transmission time (that is, the total time of the start bit + data bits + parity bits + stop bits). The BI is reset after the CPU reads the contents of the Line Status Register. In the FIFO mode this error is associated with the particular character in the FIFO it applies to. This error is indicated when the associated character is at the top of the FIFO. When break occurs only one zero character is loaded into the FIFO. Restarting after a break is received, requires the serial data (RXD) to be logic "1" for at least 1/2 bit time.  Bits 1 through 4 are the error conditions that produce a Receiver Line Status Interrupt BIT 3 whenever any of the corresponding conditions are detected and the interrupt is enabled | R    | Oh      | RESET          |

# **CEC1712**

| Offset | 05h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      |         |                |
|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|---------|----------------|
| Bits   | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Туре | Default | Reset<br>Event |
| 3      | FRAME_ERROR Framing Error. Bit 3 indicates that the received character did not have a valid stop bit. Bit 3 is set to a logic "1" whenever the stop bit following the last data bit or parity bit is detected as a zero bit (Spacing level). This bit is reset to a logic "0" whenever the Line Status Register is read. In the FIFO mode this error is associated with the particular character in the FIFO it applies to. This error is indicated when the associated character is at the top of the FIFO. The Serial Port will try to resynchronize after a framing error. To do this, it assumes that the framing error was due to the next start bit, so it samples this 'start' bit twice and then takes in the 'data'. | R    | Oh      | RESET          |
| 2      | PARITY ERROR Parity Error. Bit 2 indicates that the received data character does not have the correct even or odd parity, as selected by the even parity select bit. This bit is set to a logic "1" upon detection of a parity error and is reset to a logic "0" whenever the Line Status Register is read. In the FIFO mode this error is associated with the particular character in the FIFO it applies to. This error is indicated when the associated character is at the top of the FIFO.                                                                                                                                                                                                                               | R    | 0h      | RESET          |
| 1      | OVERRUN_ERROR  Overrun Error. Bit 1 indicates that data in the Receiver Buffer Register was not read before the next character was transferred into the register, thereby destroying the previous character. In FIFO mode, an overrun error will occur only when the FIFO is full and the next character has been completely received in the shift register, the character in the shift register is overwritten but not transferred to the FIFO. This bit is set to a logic "1" immediately upon detection of an overrun condition, and reset whenever the Line Status Register is read.                                                                                                                                      | R    | 0h      | RESET          |
| 0      | DATA_READY  Data Ready. It is set to a logic '1' whenever a complete incoming character has been received and transferred into the Receiver Buffer Register or the FIFO. Bit 0 is reset to a logic '0' by reading all of the data in the Receive Buffer Register or the FIFO.                                                                                                                                                                                                                                                                                                                                                                                                                                                 | R    | Oh      | RESET          |

# 10.10.11 MODEM STATUS REGISTER

| Offset | 06h                                                                                                                                                                                                        |      |         |                |
|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|---------|----------------|
| Bits   | Description                                                                                                                                                                                                | Туре | Default | Reset<br>Event |
| 7      | DCD This bit is the complement of the Data Carrier Detect (DCD#) input. If bit 4 of the MCR is set to logic '1', this bit is equivalent to OUT2 in the MCR.                                                | R    | 0h      | RESET          |
| 6      | RI This bit is the complement of the Ring Indicator (RI#) input. If bit 4 of the MCR is set to logic '1', this bit is equivalent to OUT1 in the MCR.                                                       |      | 0h      | RESET          |
| 5      | 5 DSR This bit is the complement of the Data Set Ready (DSR#) input. If bit 4 of the MCR is set to logic '1', this bit is equivalent to DTR# in the MCR.                                                   |      | 0h      | RESET          |
| 4      | CTS This bit is the complement of the Clear To Send (CTS#) input. If bit 4 of the MCR is set to logic '1', this bit is equivalent to RTS# in the MCR.                                                      | R    | 0h      | RESET          |
| 3      | DDCD  Delta Data Carrier Detect (DDCD). Bit 3 indicates that the DCD# input to the chip has changed state.  NOTE: Whenever bit 0, 1, 2, or 3 is set to a logic '1', a MODEM Status Interrupt is generated. |      | 0h      | RESET          |
| 2      | TERI Trailing Edge of Ring Indicator (TERI). Bit 2 indicates that the RI# input has changed from logic '0' to logic '1'.                                                                                   |      | 0h      | RESET          |
| 1      | DDSR Delta Data Set Ready (DDSR). Bit 1 indicates that the DSR# input has changed state since the last time the MSR was read.                                                                              | R    | 0h      | RESET          |
| 0      | DCTS Delta Clear To Send (DCTS). Bit 0 indicates that the CTS# input to the chip has changed state since the last time the MSR was read.                                                                   | R    | 0h      | RESET          |

#### 10.10.12 SCRATCHPAD REGISTER

| Offset | 07h                                                                                                                                                                                      |      |         |                |
|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|---------|----------------|
| Bits   | Description                                                                                                                                                                              | Type | Default | Reset<br>Event |
| 7:0    | SCRATCH This 8 bit read/write register has no effect on the operation of the Serial Port. It is intended as a scratchpad register to be used by the programmer to hold data temporarily. | R/W  | 0h      | RESET          |

# 10.11 Configuration Registers

Configuration Registers for an instance of the UART are listed in the following table. Host access to Configuration Registers is through the Configuration Port using the Logical Device Number of each instance of the UART and the Index shown in the "Host Index" column of the table. The EC can access Configuration Registers directly. The EC address for each register is formed by adding the Base Address for each instance of the UART shown in the Block Overview and Base Address Table in Section 3.0, "Device Inventory" to the offset shown in the "EC Offset" column.

**TABLE 10-15: CONFIGURATION REGISTER SUMMARY** 

| EC Offset | Host Index | Register Name                 |
|-----------|------------|-------------------------------|
| 330h      | 30h        | Activate Register             |
| 3F0h      | F0h        | Configuration Select Register |

#### 10.11.1 ACTIVATE REGISTER

| Offset | 30h                                                                                                                                                       |      |         |                |
|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|------|---------|----------------|
| Bits   | Description                                                                                                                                               | Type | Default | Reset<br>Event |
| 7:1    | Reserved                                                                                                                                                  | RES  | -       | -              |
| 0      | ACTIVATE When this bit is 1, the UART logical device is powered and functional. When this bit is 0, the UART logical device is powered down and inactive. | R/W  | 0b      | RESET          |

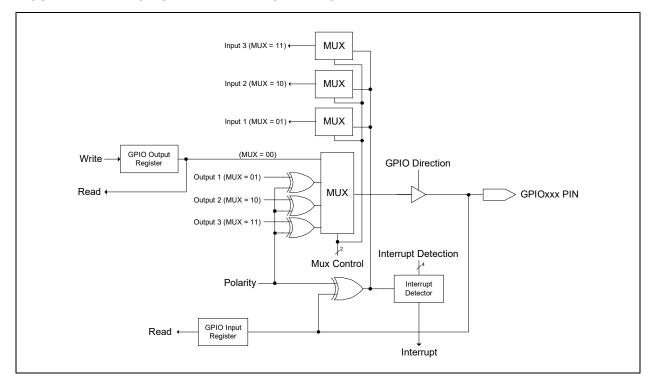
# 10.11.2 CONFIGURATION SELECT REGISTER

| Offset | F0h                                                                                                                                        |      |         |                |
|--------|--------------------------------------------------------------------------------------------------------------------------------------------|------|---------|----------------|
| Bits   | Description                                                                                                                                | Type | Default | Reset<br>Event |
| 7:3    | Reserved                                                                                                                                   | RES  | -       | -              |
| 2      | POLARITY                                                                                                                                   | R/W  | 0b      | RESET          |
|        | 1=The UART_TX and UART_RX pins functions are inverted 0=The UART_TX and UART_RX pins functions are not inverted                            |      |         |                |
| 1      | POWER                                                                                                                                      | R/W  | 1b      | RESET          |
|        | 1=The RESET reset signal is derived from RESET_HOST 0=The RESET reset signal is derived from RESET_SYS                                     |      |         |                |
| 0      | CLK_SRC                                                                                                                                    | R/W  | 0b      | RESET          |
|        | 1=The UART Baud Clock is derived from an external clock source 0=The UART Baud Clock is derived from one of the two internal clock sources |      |         |                |

#### 11.0 GPIO INTERFACE

# 11.1 General Description

The CEC1712 GPIO Interface provides general purpose input monitoring and output control, as well as managing many aspects of pin functionality; including, multi-function Pin Multiplexing Control, GPIO Direction control, PU/PD (PU\_PD) resistors, asynchronous wakeup and synchronous Interrupt Detection (int\_det), GPIO Direction, and Polarity control, as well as control of pin drive strength and slew rate.


Features of the GPIO Interface include:

- · Inputs:
  - Asynchronous rising and falling edge wakeup detection
  - Interrupt High or Low Level
- · On Output:
  - Push Pull or Open Drain output
- · Pull up or pull down resistor control
- · Interrupt and wake capability available for all GPIOs
- · Programmable pin drive strength and slew rate limiting
- · Group- or individual control of GPIO data.
- · Multiplexing of all multi-function pins are controlled by the GPIO interface

# 11.2 Block Diagram

The GPIO Interface Block Diagram shown in Figure 11-1 illustrates the functionality of a single CEC1712 GPIO Interface pin. The source for the Pin Multiplexing Control, Interrupt Detection (int\_det), GPIO Direction, and Polarity controls in Figure 11-1 is a Pin Control Register that is associated with each pin (see Section 11.6.1.1, "Pin Control Register," on page 145).

#### FIGURE 11-1: GPIO INTERFACE BLOCK DIAGRAM



#### 11.3 Power, Clocks and Reset

This section defines the Power, Clock, and Reset parameters of the block.

#### 11.3.1 POWER DOMAINS

| Name     | Description                                                    |
|----------|----------------------------------------------------------------|
| VTR_CORE | The registers and logic in this block are powered by VTR_CORE. |

#### 11.3.2 CLOCK INPUTS

| Name  | Description                                          |
|-------|------------------------------------------------------|
| 48MHz | The 48MHz is used for synchronizing the GPIO inputs. |

#### 11.3.3 RESETS

| Name      | Description                                                                                    |
|-----------|------------------------------------------------------------------------------------------------|
| RESET_SYS | This reset is asserted when VTR_CORE is applied.                                               |
| RESET_VCC | This is an alternate reset condition, typically asserted when the main power rail is asserted. |

#### 11.4 Interrupts

This section defines the Interrupt Sources generated from this block.

| Source     | Description                                                                                                                                                                                                                                                                                                                                                               |  |
|------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| GPIO_Event | Each pin in the GPIO Interface has the ability to generate an interrupt event. This event may be used as a wake event.  The GPIO Interface can generate an interrupt source event on a high level, low level, rising edge and falling edge, as configured by the Interrupt Detection (int_det) bits in the Pin Control Register associated with the GPIO signal function. |  |
|            |                                                                                                                                                                                                                                                                                                                                                                           |  |
|            | <b>Note:</b> The minimum pulse width required to generate an interrupt/wakeup event is 5ns.                                                                                                                                                                                                                                                                               |  |

# 11.5 Description

The GPIO Interface refers to all the GPIOxxx pins implemented in the design. GPIO stands for General Purpose I/O.

The GPIO signals may be used by firmware to both monitor and control a pin in "bit-banged" mode. The GPIOs may be individually controlled via their Pin Control Register or group controlled via the Output and Input GPIO registers. The GPIO Output Control Select

The GPIO Pin control registers are used to select the alternate functions on GPIO pins (unless otherwise specified), to control the buffer direction, strength, and polarity, to control the internal pull-ups and pull-downs, for VCC emulation, and for selecting the event type that causes a GPIO interrupt.

The GPIO input is always live, even when an alternate function is selected. Firmware may read the GPIO input anytime to see the value on the pin. In addition, the GPIO interrupt is always functional, and may be used for either the GPIO itself or to support the alternate functions on the pin. See FIGURE 11-1: GPIO Interface Block Diagram on page 140.

#### 11.5.1 ACCESSING GPIOS

There are two ways to access GPIO output data. Bit [10] is used to determine which GPIO output data bit affects the GPIO output pin.

- · Grouped Output GPIO Data
  - Outputs to individual GPIO ports are grouped into 32-bit GPIO Output Registers.
- Individual GPIO output data
  - Alternatively, each GPIO output port is individually accessible via Bit [16] in the port's Pin Control Register. On reads, Bit [16] returns the programmed value, not the value on the pin.

There are two ways to access GPIO input data.

- · Input GPIO Data
  - Inputs from individual GPIO ports are grouped into 32-bit GPIO Input Registers and always reflect the current state of the GPIO input from the pad.
- · GPIO input from pad
  - Alternatively, each GPIO input port is individually accessible via Bit [24] in the port's Pin Control Register. Bit [24] always reflects the current state of GPIO input from the pad.

#### 11.5.2 GPIO INDEXING

Each GPIO signal function name consists of a 4-character prefix ("GPIO") followed by a 3-digit octal-encoded index number. In the CEC1712 GPIO indexing is done sequentially starting from 'GPIO000.'

#### 11.5.3 PIN CONTROL REGISTERS

Each GPIO has two Pin Control registers. The Pin Control Register, which is the primary register, is used to read the value of the input data and set the output either high or low. It is used to select the alternate function via the Mux Control bits, set the Polarity of the input, configure and enable the output buffer, configure the GPIO interrupt event source, enable internal pull-up/pull-down resistors, and to enable VCC Emulation via the Power Gating Signals (PGS) control bits. The Pin Control Register 2 is used to configure the output buffer drive strength and slew rate.

The following tables define the default settings for the two Pin Control registers for each GPIO in each product group.

#### 11.5.3.1 Pin Control Register Defaults

Please refer to Section 3.5, "GPIO Register Assignments" for the Pin Control Register default information.

#### 11.6 GPIO Registers

The registers listed in the Register Summary table are for a single instance of the CEC1712. The addresses of each register listed in this table are defined as a relative offset to the host "Base Address" defined in the Register Base Address Table.

TABLE 11-1: REGISTER BASE ADDRESS TABLE

| Instance Name | Instance<br>Number | Host | Address Space                 | Base Address            |
|---------------|--------------------|------|-------------------------------|-------------------------|
| GPIO          | 0                  | EC   | 32-bit internal address space | 4008_1000h<br>Note 11-1 |

- Note 11-1 The Base Address indicates where the first register can be accessed in a particular address space for a block instance.
- Note 11-2 The GPIO registers may be accessed by the eSPI Host via the EMI block via GPIO commands or by direct access if enabled by firmware. See the firmware documentation for a description of this access method.

**Note:** Registers and bits associated with GPIOs not implemented are Reserved. Please refer to Section 2.3, "Pin List" for GPIOs implemented in the chip.

TABLE 11-2: REGISTER SUMMARY

| IADEL II-Z. | REGIOTER GOMMAN                      |
|-------------|--------------------------------------|
| Offset      | Register Name                        |
| 000h - 01Ch | GPIO000-GPIO007 Pin Control Register |
| 020h - 03Ch | GPIO010-GPIO017 Pin Control Register |
| 040h - 05Ch | GPIO020-GPIO027 Pin Control Register |
| 060h - 078h | GPIO030-GPIO036 Pin Control Register |
| 080h - 09Ch | GPIO040-GPIO047 Pin Control Register |
| 0A0h - 0BCh | GPIO050-GPIO057 Pin Control Register |
| 0C0h - 0DCh | GPIO060-GPIO067 Pin Control Register |
| 0E0h - 0F8h | GPIO070-GPIO077 Pin Control Register |
| 100h - 11Ch | GPIO100-GPIO107 Pin Control Register |
| 128h - 13Ch | GPIO112-GPIO117 Pin Control Register |
| 140h - 15Ch | GPIO120-GPIO127 Pin Control Register |
| 160h - 16Ch | GPIO130-GPIO137 Pin Control Register |
| 180h - 19Ch | GPIO140-GPIO147 Pin Control Register |
| 1A0h - 1BCh | GPIO150-GPIO157 Pin Control Register |
| 1C0h - 1DCh | GPIO160-GPIO167 Pin Control Register |
| 1E0h - 1F4h | GPIO170-GPIO177 Pin Control Register |
| 200h - 21Ch | GPIO200-GPIO207 Pin Control Register |
| 220h - 23Ch | GPIO210-GPIO217 Pin Control Register |
| 240h - 25Ch | GPIO221-GPIO227 Pin Control Register |
| 260h - 27Ch | Reserved                             |
| 280h - 298h | GPIO240-GPIO247 Pin Control Register |
| 2ACh - 2BCh | GPIO253-GPIO257 Pin Control Register |
| 2C0h        | GPIO260 Pin Control Register         |
| 300h        | Input GPIO[000:036]                  |
| 304h        | Input GPIO[040:076]                  |
| 308h        | Input GPIO[100:127]                  |
| 30Ch        | Input GPIO[140:176]                  |
| 310h        | Input GPIO[200:236]                  |
| 314h        | Input GPIO[240:276]                  |
| 380h        | Output GPIO[000:036]                 |
| -           |                                      |

# **CEC1712**

TABLE 11-2: REGISTER SUMMARY (CONTINUED)

| Offset      | Register Name                          |
|-------------|----------------------------------------|
| 384h        | Output GPIO[040:076]                   |
| 388h        | Output GPIO[100:127]                   |
| 38Ch        | Output GPIO[140:176]                   |
| 390h        | Output GPIO[200:236]                   |
| 394h        | Output GPIO[240:276]                   |
| 500h - 51Ch | GPIO000-GPIO007 Pin Control Register 2 |
| 520h - 53Ch | GPIO010-GPIO017 Pin Control Register 2 |
| 540h - 55Ch | GPIO020-GPIO027 Pin Control Register 2 |
| 560h - 578h | GPIO030-GPIO036 Pin Control Register 2 |
| 580h - 59Ch | GPIO040-GPIO047 Pin Control Register 2 |
| 5A0h - 5BCh | GPIO050-GPIO057 Pin Control Register 2 |
| 5C0h - 5DCh | GPIO060-GPIO067 Pin Control Register 2 |
| 5E0h - 5F8h | GPIO070-GPIO076 Pin Control Register 2 |
| 600h - 61Ch | GPIO100-GPIO107 Pin Control Register 2 |
| 620h - 63Ch | GPIO110-GPIO117 Pin Control Register 2 |
| 640h - 65Ch | GPIO120-GPIO127 Pin Control Register 2 |
| 660h - 674h | GPIO130-GPIO135 Pin Control Register 2 |
| 680h - 69Ch | GPIO140-GPIO147 Pin Control Register 2 |
| 6A0h - 6BCh | GPIO150-GPIO157 Pin Control Register 2 |
| 6C0h - 6D8h | GPIO160-GPIO167 Pin Control Register 2 |
| 6E0h - 6F4h | GPIO170-GPIO175 Pin Control Register 2 |
| 700h - 71Ch | GPIO200-GPIO207 Pin Control Register 2 |
| 720h - 73Ch | GPIO210-GPIO217 Pin Control Register 2 |
| 740h - 75Ch | GPIO220-GPIO227 Pin Control Register 2 |
| 760h - 778h | Reserved                               |
| 780h - 79Ch | GPIO240-GPIO247 Pin Control Register 2 |
| 7A0h - 7BCh | GPIO250-GPIO257 Pin Control Register 2 |
| 7C0h        | GPIO260 Pin Control Register 2         |

#### 11.6.1 PIN CONTROL REGISTERS

Two Pin Control Registers are implemented for each GPIO. The Pin Control Register format is described in Section 11.6.1.1, "Pin Control Register," on page 145. The Pin Control Register 2 format is described in Section 11.6.1.2, "Pin Control Register 2," on page 148. Pin Control Register address offsets and defaults for each product are defined in Section 11.5.3.1, "Pin Control Register Defaults," on page 142.

# 11.6.1.1 Pin Control Register

| Offset | See Table 11-2, "Register Summary"                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                     |           |                |
|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|-----------|----------------|
| Bits   | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Туре                                                                                                | Default   | Reset<br>Event |
| 31:25  | RESERVED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | RES                                                                                                 | -         | -              |
| 24     | GPIO input from pad On reads, Bit [24] reflects the state of GPIO input from the pad regardless of setting of Bit [10].  Note: This bit is forced high when the selected power well is off                                                                                                                                                                                                                                                                                                          | R                                                                                                   | Note 11-1 | RESET_S<br>YS  |
|        | as selected by the Power Gating Signal bits. See bits[3:2].                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                     |           |                |
| 23:17  | RESERVED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | RES                                                                                                 | -         | -              |
| 16     | GPIO output data  If enabled by the GPIO Output Control Select bit, the GPIO output data bit determines the level on the GPIO pin when the pin is configured for the GPIO output function.  On writes:  If enabled via the GPIO Output Control Select 0: GPIO[x] out = '0' 1: GPIO[x] out = '1'  Note: If disabled via the GPIO Output Control Select then the GPIO[x] out pin is unaffected by writing this bit.  On reads:  Bit [16] returns the last programmed value, not the value on the pin. | R/W<br>(GPIO<br>Output<br>Control<br>Select =<br>0)<br>R<br>(GPIO<br>Output<br>Control<br>Select=1) | Note 11-1 | RESET_S<br>YS  |
| 15     | GPIO input disable This bit can be used to support undervoltage functionality. 1=disable input 0=do not disable input                                                                                                                                                                                                                                                                                                                                                                               | R/W                                                                                                 | Note 11-1 | RESET_S<br>YS  |
| 14     | RESERVED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | RES                                                                                                 | -         | -              |
| 13:12  | Mux Control The Mux Control field determines the active signal function for a pin.  00 = GPIO Function Selected 01 = Signal Function 1 Selected 10 = Signal Function 2 Selected 11 = Signal Function 3 Selected                                                                                                                                                                                                                                                                                     | R/W                                                                                                 | Note 11-1 | RESET_S<br>YS  |

| Offset | See Table 11-2, "Register Summary"                                                                                                                                                                                                                                                                                                                                                                                                                                                 |      |           |                |
|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|----------------|
| Bits   | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Туре | Default   | Reset<br>Event |
| 11     | Polarity 0 = Non-inverted 1 = Inverted  When the Polarity bit is set to '1' and the Mux Control bits are greater                                                                                                                                                                                                                                                                                                                                                                   | R/W  | Note 11-1 | RESET_S<br>YS  |
|        | than '00,' the selected signal function outputs are inverted and Interrupt Detection (int_det) sense defined in Table 11-3, "Edge Enable and Interrupt Detection Bits Definition" is inverted. When the Mux Control field selects the GPIO signal function (Mux = '00'), the Polarity bit does not effect the output. Regardless of the state of the Mux Control field and the Polarity bit, the state of the pin is always reported without inversion in the GPIO input register. |      |           |                |
| 10     | GPIO Output Control Select  Every GPIO has two mechanisms to set a GPIO data output: Output GPIO Bit located in the grouped GPIO Output Registers and the single GPIO output data bit located in bit 16 of this register.  This central bit determines the source of the CPIO output                                                                                                                                                                                               | R/W  | Note 11-1 | RESET_S<br>YS  |
|        | This control bit determines the source of the GPIO output.  0 = Pin Control Bit[16] GPIO output data bit enabled  When this bit is zero the single GPIO output data bit is enabled.  (GPIO output data is R/W capable and the Grouped Output GPIO is disabled (i.e., Read-Only).                                                                                                                                                                                                   |      |           |                |
|        | 1 = Grouped Output GPIO enable When this bit is one the GPIO output data write is disabled (i.e., Read-Only) and the Grouped Output GPIO is enabled (i.e., R/W).  Note: See description in Section 11.5.1, "Accessing GPIOs".                                                                                                                                                                                                                                                      |      |           |                |
| 9      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | R/W  | Note 11-1 | RESET_S<br>YS  |
|        | The GPIO Direction bit controls the buffer direction only when the Mux Control field is '00' selecting the pin signal function to be GPIO. When the Mux Control field is greater than '00' (i.e., a non-GPIO signal function is selected) the GPIO Direction bit has no affect and the selected signal function logic directly controls the pin direction.                                                                                                                         |      |           |                |
| 8      | Output Buffer Type 0 = Push-Pull 1 = Open Drain                                                                                                                                                                                                                                                                                                                                                                                                                                    | R/W  | Note 11-1 | RESET_S<br>YS  |
|        | Note: Unless explicitly stated otherwise, pins with (I/O/OD) or (O/OD) in their buffer type column in the tables in are compliant with the following Programmable OD/PP Multiplexing Design Rule: Each compliant pin has a programmable open drain/push-pull buffer controlled by the Output Buffer Type bit in the associated Pin Control Register. The state of this bit controls the mode of the interface buffer for all selected functions, including the GPIO function.      |      |           |                |

| Offset | See Table 11-2, "Register Summary"                                                                                                                                                                                                                                                                                                |      |           |                |
|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|----------------|
| Bits   | Description                                                                                                                                                                                                                                                                                                                       | Туре | Default   | Reset<br>Event |
| 7      | Edge Enable (edge_en) 0 = Edge detection disabled 1 = Edge detection enabled                                                                                                                                                                                                                                                      | R/W  | Note 11-1 | RESET_S<br>YS  |
|        | <b>Note:</b> See Table 11-3, "Edge Enable and Interrupt Detection Bits Definition".                                                                                                                                                                                                                                               |      |           |                |
| 6:4    | Interrupt Detection (int_det) The interrupt detection bits determine the event that generates a GPIO_Event.                                                                                                                                                                                                                       | R/W  | Note 11-1 | RESET_S<br>YS  |
|        | <b>Note:</b> See Table 11-3, "Edge Enable and Interrupt Detection Bits Definition".                                                                                                                                                                                                                                               |      |           |                |
|        | Note: Since the GPIO input is always available, even when the GPIO is not selected as the alternate function, the GPIO interrupts may be used for detecting pin activity on alternate functions. The only exception to this is the analog functions (e.g., ADC inputs)                                                            |      |           |                |
| 3:2    | Power Gating Signals (PGS) The Power Gating Signals provide the chip Power Emulation options. The pin will be tristated when the selected power well is off (i.e., gated) as indicated.                                                                                                                                           | R/W  | Note 11-1 | RESET_S<br>YS  |
|        | The Emulated Power Well column defined in Pin Multiplexing indicates the emulation options supported for each signal. The Signal Power Well column defines the buffer power supply per function.                                                                                                                                  |      |           |                |
|        | <b>Note:</b> Note that all GPIOs support Power Gating unless otherwise noted.                                                                                                                                                                                                                                                     |      |           |                |
|        | 00 = VTR The output buffer is tristated when VTR_PWRGD = 0. 01 =                                                                                                                                                                                                                                                                  |      |           |                |
|        | 10 = Unpowered. The always unpowered setting on a GPIO will force the pin to tristate. The input and output are disabled, and the pad is in the lowest power state.  11 = Reserved                                                                                                                                                |      |           |                |
|        | <b>Note:</b> VBAT Powered Signals are always powered by the VBAT rail and power well emulation does not apply. For VBAT powered signals this field should be set to 00.                                                                                                                                                           |      |           |                |
| 1:0    | PU/PD (PU_PD) These bits are used to enable an internal pull-up or pull-down resistor device on the pin. 00 = None. Pin tristates when no active driver is present on the pin. 01 = Pull Up Enabled 10 = Pull Down Enabled 11 = Repeater mode. Pin is kept at previous voltage level when no active driver is present on the pin. | R/W  | Note 11-1 | RESET_S<br>YS  |

Note 11-1 See Section 3.5, "GPIO Register Assignments" for the default values and Table 11-2, "Register Summary" and Table 3.6, "Register Map" for register offset value for each GPIO Pin Control Register.

Note 11-2 Repeater mode is not available on over voltage protected pins.

TABLE 11-3: EDGE ENABLE AND INTERRUPT DETECTION BITS DEFINITION

| Edge<br>Enable | Inter | rupt Detection | Bits | Selected Function             |
|----------------|-------|----------------|------|-------------------------------|
| D7             | D6    | D5             | D4   |                               |
| 0              | 0     | 0              | 0    | Low Level Sensitive           |
| 0              | 0     | 0              | 1    | High Level Sensitive          |
| 0              | 0     | 1              | 0    | Reserved                      |
| 0              | 0     | 1              | 1    | Reserved                      |
| 0              | 1     | 0              | 0    | Interrupt events are disabled |
| 0              | 1     | 0              | 1    | Reserved                      |
| 0              | 1     | 1              | 0    | Reserved                      |
| 0              | 1     | 1              | 1    | Reserved                      |
| 1              | 1     | 0              | 1    | Rising Edge Triggered         |
| 1              | 1     | 1              | 0    | Falling Edge Triggered        |
| 1              | 1     | 1              | 1    | Either Edge Triggered         |

**Note:** Only edge triggered interrupts can wake up the main ring oscillator. The GPIO must be enabled for edge-triggered interrupts and the GPIO interrupt must be enabled in the interrupt aggregator in order to wake up the ring when the ring is shut down.

#### **APPLICATION NOTE:**

- 1. All GPIO interrupt detection configurations default to '0000', which is low level interrupt. Having interrupt detection enabled will un-gated the clock to the GPIO module whenever the interrupt is active, which increases power consumption. Interrupt detection should be disabled when not required to save power.
- Changing the configuration of the Interrupt edge and detection bits may generate an interrupt if it is enabled. The GPIO should be configured and associated status bits should be cleared before enabling the Interrupt.

#### 11.6.1.2 Pin Control Register 2

| Offset | See Note 11-1                                                                                                    |      |         |                |
|--------|------------------------------------------------------------------------------------------------------------------|------|---------|----------------|
| Bits   | Description                                                                                                      | Type | Default | Reset<br>Event |
| 31:6   | Reserved                                                                                                         | RES  | -       | -              |
| 5:4    | DRIVE_STRENGTH These bits are used to select the drive strength on the pin. 00 = 2mA 01 = 4mA 10 = 8mA 11 = 12mA | R/W  | 00      | RESET_S<br>YS  |

| Offset | See Note 11-1                                                                                             |      |         |                |
|--------|-----------------------------------------------------------------------------------------------------------|------|---------|----------------|
| Bits   | Description                                                                                               | Type | Default | Reset<br>Event |
| 3:1    | Reserved                                                                                                  | RES  | -       | -              |
| 0      | Slew Rate This bit is used to select the slew rate on the pin 1= fast (Should be set to 1 always) 0= slow | R/W  | 0h      | RESET_S<br>YS  |

#### 11.6.2 GPIO OUTPUT REGISTERS

If enabled by the GPIO Output Control Select bit, the grouped GPIO Output bits determine the level on the GPIO pin when the pin is configured for the GPIO output function.

#### On writes:

If enabled via the GPIO Output Control Select

0: GPIO[x] out = '0'

1: GPIO[x] out = '1'

If disabled via the GPIO Output Control Select then the GPIO[x] out pin is unaffected by writing the corresponding GPIO bit in the grouped Output GPIO[xxx:yyy] register.

#### On reads:

The GPIO output bit in the grouped Output GPIO[xxx:yyy] register returns the last programmed value, not the value on the pin.

# 11.6.2.1 Output GPIO[000:036]

| Offset | 380h                 |      |         |                |
|--------|----------------------|------|---------|----------------|
| Bits   | Description          | Type | Default | Reset<br>Event |
| 31     | RESERVED             | RES  | -       | -              |
| 30:24  | GPIO[036:030] Output | R/W  | 00h     | RESET_S<br>YS  |
| 23:16  | GPIO[027:020] Output | R/W  | 00h     | RESET_S<br>YS  |
| 15:8   | GPIO[017:010] Output | R/W  | 00h     | RESET_S<br>YS  |
| 7:0    | GPIO[007:000] Output | R/W  | 00h     | RESET_S<br>YS  |

# **CEC1712**

# 11.6.2.2 Output GPIO[040:076]

| Offset | 384h                 |      |         |                |
|--------|----------------------|------|---------|----------------|
| Bits   | Description          | Туре | Default | Reset<br>Event |
| 31:24  | RESERVED             | RES  | -       | -              |
| 30:24  | GPIO[076:070] Output | R/W  | 00h     | RESET_S<br>YS  |
| 23:16  | GPIO[067:060] Output | R/W  | 00h     | RESET_S<br>YS  |
| 15:8   | GPIO[057:050] Output | R/W  | 00h     | RESET_S<br>YS  |
| 7:0    | GPIO[047:040] Output | R/W  | 00h     | RESET_S<br>YS  |

# 11.6.2.3 Output GPIO[100:127]

| Offset | 388h                 |      |         |                |
|--------|----------------------|------|---------|----------------|
| Bits   | Description          | Type | Default | Reset<br>Event |
| 31     | RESERVED             | RES  | -       | -              |
| 30:24  | GPIO[136:130] Output | R/W  | 00h     | RESET_S<br>YS  |
| 23:16  | GPIO[127:120] Output | R/W  | 00h     | RESET_S<br>YS  |
| 15:8   | GPIO[117:110] Output | R/W  | 00h     | RESET_S<br>YS  |
| 7:0    | GPIO[107:100] Output | R/W  | 00h     | RESET_S<br>YS  |

# 11.6.2.4 Output GPIO[140:176]

| Offset | 38Ch                 |      |         |                |
|--------|----------------------|------|---------|----------------|
| Bits   | Description          | Type | Default | Reset<br>Event |
| 31     | RESERVED             | RES  | -       | -              |
| 30:24  | GPIO[176:170] Output | R/W  | 00h     | RESET_S<br>YS  |

| Offset | 38Ch                 |      |         |                |
|--------|----------------------|------|---------|----------------|
| Bits   | Description          | Туре | Default | Reset<br>Event |
| 23:16  | GPIO[167:160] Output | R/W  | 00h     | RESET_S<br>YS  |
| 15:8   | GPIO[157:150] Output | R/W  | 00h     | RESET_S<br>YS  |
| 7:0    | GPIO[147:140] Output | R/W  | 00h     | RESET_S<br>YS  |

# 11.6.2.5 Output GPIO[200:236]

| Offset | 390h                 |      |         |                |
|--------|----------------------|------|---------|----------------|
| Bits   | Description          | Туре | Default | Reset<br>Event |
| 31     | RESERVED             | RES  | -       | -              |
| 30:24  | GPIO[236:230] Output | R/W  | 00h     | RESET_S<br>YS  |
| 23:16  | GPIO[227:220] Output | R/W  | 00h     | RESET_S<br>YS  |
| 15:8   | GPIO[217:210] Output | R/W  | 00h     | RESET_S<br>YS  |
| 7:0    | GPIO[207:200] Output | R/W  | 00h     | RESET_S<br>YS  |

# 11.6.2.6 Output GPIO[240:276]

| Offset | 394h                 |      |         |                |
|--------|----------------------|------|---------|----------------|
| Bits   | Description          | Type | Default | Reset<br>Event |
| 31     | RESERVED             | RES  | -       | -              |
| 30:24  | GPIO[276:270] Output | R/W  | 00h     | RESET_S<br>YS  |
| 23:16  | GPIO[267:260] Output | R/W  | 00h     | RESET_S<br>YS  |

# **CEC1712**

| Offset | 394h                 |      |         |                |
|--------|----------------------|------|---------|----------------|
| Bits   | Description          | Туре | Default | Reset<br>Event |
| 15:8   | GPIO[257:250] Output | R/W  | 00h     | RESET_S<br>YS  |
| 7:0    | GPIO[247:240] Output | R/W  | 00h     | RESET_S<br>YS  |

#### 11.6.3 GPIO INPUT REGISTERS

The GPIO Input Registers can always be used to read the state of a pin, even when the pin is in an output mode and/or when a signal function other than the GPIO signal function is selected; i.e., the Pin Control Register Mux Control bits are not equal to '00.'

The MSbit of the Input GPIO registers have been implemented as a read/write scratch pad bit to support processor specific instructions.

**Note:** Bits associated with GPIOs that are not implemented are shown as Reserved.

### 11.6.3.1 Input GPIO[000:036]

| Offset | 300h                |      |         |                |
|--------|---------------------|------|---------|----------------|
| Bits   | Description         | Type | Default | Reset<br>Event |
| 31     | Scratchpad Bit      | R/W  | 0b      | RESET_S<br>YS  |
| 30:24  | GPIO[036:030] Input | R    | 00h     | RESET_S<br>YS  |
| 23:16  | GPIO[027:020] Input | R    | 00h     | RESET_S<br>YS  |
| 15:8   | GPIO[017:010] Input | R    | 00h     | RESET_S<br>YS  |
| 7:0    | GPIO[007:000] Input | R    | 00h     | RESET_S<br>YS  |

# 11.6.3.2 Input GPIO[040:076]

| Offset | 304h                |      |         |                |
|--------|---------------------|------|---------|----------------|
| Bits   | Description         | Туре | Default | Reset<br>Event |
| 31     | Scratchpad Bit      | R/W  | 0b      | RESET_S<br>YS  |
| 30:24  | GPIO[076:070] Input | R    | 00h     | RESET_S<br>YS  |
| 23:16  | GPIO[067:060] Input | R    | 00h     | RESET_S<br>YS  |
| 15:8   | GPIO[057:050] Input | R    | 00h     | RESET_S<br>YS  |
| 7:0    | GPIO[047:040] Input | R    | 00h     | RESET_S<br>YS  |

# 11.6.3.3 Input GPIO[100:127]

| Offset | 308h                |      |         |                |
|--------|---------------------|------|---------|----------------|
| Bits   | Description         | Type | Default | Reset<br>Event |
| 31     | Scratchpad Bit      | R/W  | 0b      | RESET_S<br>YS  |
| 30:24  | GPIO[136:130] Input | R    | 00h     | RESET_S<br>YS  |
| 23:16  | GPIO[127:120] Input | R    | 00h     | RESET_S<br>YS  |
| 15:8   | GPIO[117:110] Input | R    | 00h     | RESET_S<br>YS  |
| 7:0    | GPIO[107:100] Input | R    | 00h     | RESET_S<br>YS  |

# **CEC1712**

# 11.6.3.4 Input GPIO[140:176]

| Offset | 30Ch                |      |         |                |
|--------|---------------------|------|---------|----------------|
| Bits   | Description         | Туре | Default | Reset<br>Event |
| 31     | Scratchpad Bit      | R/W  | 0b      | RESET_S<br>YS  |
| 30:16  | GPIO[176:160] Input | R    | 00h     | RESET_S<br>YS  |
| 15:8   | GPIO[157:150] Input | R    | 00h     | RESET_S<br>YS  |
| 7:0    | GPIO[147:140] Input | R    | 00h     | RESET_S<br>YS  |

# 11.6.3.5 Input GPIO[200:236]

| Offset | 310h                |      |         |                |
|--------|---------------------|------|---------|----------------|
| Bits   | Description         | Туре | Default | Reset<br>Event |
| 31     | Scratchpad Bit      | R/W  | 0b      | RESET_S<br>YS  |
| 30:24  | GPIO[236:230] Input | R    | 00h     | RESET_S<br>YS  |
| 23:16  | GPIO[227:220] Input | R    | 00h     | RESET_S<br>YS  |
| 15:8   | GPIO[217:210] Input | R    | 00h     | RESET_S<br>YS  |
| 7:0    | GPIO[207:200] Input | R    | 00h     | RESET_S<br>YS  |

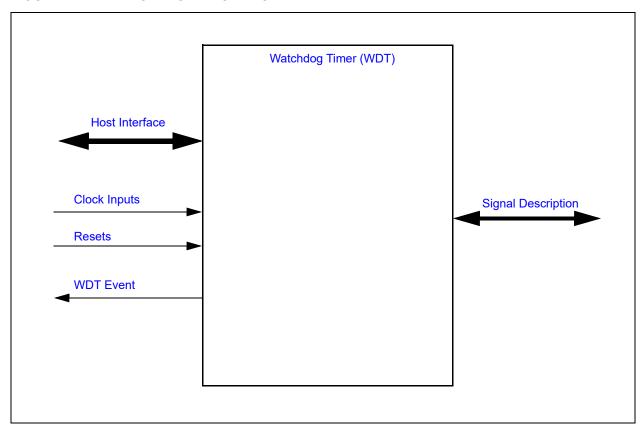
# 11.6.3.6 Input GPIO[240:276]

| Offset | 314h                |      |         |                |
|--------|---------------------|------|---------|----------------|
| Bits   | Description         | Туре | Default | Reset<br>Event |
| 31     | Scratchpad Bit      | R/W  | 0b      | RESET_S<br>YS  |
| 30:24  | GPIO[276:270] Input | R    | 00h     | RESET_S<br>YS  |

| Offset | 314h                |      |         |                |
|--------|---------------------|------|---------|----------------|
| Bits   | Description         | Type | Default | Reset<br>Event |
| 23:16  | GPIO[267:260] Input | R    | 00h     | RESET_S<br>YS  |
| 15:8   | GPIO[257:250] Input | R    | 00h     | RESET_S<br>YS  |
| 7:0    | GPIO[247:240] Input | R    | 00h     | RESET_S<br>YS  |

# 12.0 WATCHDOG TIMER (WDT)

#### 12.1 Introduction


The function of the Watchdog Timer is to provide a mechanism to detect if the internal embedded controller has failed. When enabled, the Watchdog Timer (WDT) circuit will generate a WDT Event if the user program fails to reload the WDT within a specified length of time known as the WDT Interval.

#### 12.2 Interface

This block is designed to be accessed internally via a registered host interface

#### 12.3 Host Interface

FIGURE 12-1: I/O DIAGRAM OF BLOCK



The registers defined for the Watchdog Timer (WDT) are accessible by the embedded controller as indicated in Section 12.7, "EC Registers". All registers accesses are synchronized to the host clock and complete immediately. Register reads/writes are not delayed by the 32KHz.

### 12.4 Signal Description

#### 12.4.1 SIGNAL INTERFACE

There are no external signals for this block.

### 12.5 Power, Clocks and Reset

This section defines the Power, Clock, and Reset parameters of the block.

#### 12.5.1 POWER DOMAINS

| Name     | Description                                                                         |
|----------|-------------------------------------------------------------------------------------|
| VTR_CORE | The logic and registers implemented in this block reside on this single power well. |

#### 12.5.2 CLOCK INPUTS

| Name | Description                                                                                              |
|------|----------------------------------------------------------------------------------------------------------|
|      | The 32KHz clock input is the clock source to the Watchdog Timer functional logic, including the counter. |

#### 12.5.3 RESETS

#### **TABLE 12-1: RESET INPUTS**

| Name           | Description                                                                                                                                         |
|----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|
| RESET_SYS      | Power on Reset to the block. This signal resets all the register and logic in this block to its default state following a POR or a WDT Event event. |
| RESET_SYS_nWDT | This reset signal is used on WDT registers/bits that need to be preserved through a WDT Event.                                                      |

#### **TABLE 12-2: RESET OUTPUTS**

| Source | Description                                                                                                                                                                                                                                                                                      |
|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|        | Pulse generated when WDT expires. This signal is used to either generate interrupt WDT_INT, if WDT Control Register bit 9 is set to 1b (WDT_INT_ENABLE), or reset the embedded controller and its subsystem, if WDT Control Register bit 9 is set to 0b. The event is cleared after a RESET_SYS. |

#### 12.6 Description

#### 12.6.1 WDT OPERATION

#### 12.6.1.1 WDT Activation Mechanism

The WDT is activated by the following sequence of operations during normal operation:

- 1. Load the WDT Load Register with the count value.
- 2. Set the WDT\_ENABLE bit in the WDT Control Register.

The WDT Activation Mechanism starts the WDT decrementing counter.

#### 12.6.1.2 WDT Deactivation Mechanism

The WDT is deactivated by the clearing the WDT\_ENABLE bit in the WDT Control Register. The WDT Deactivation Mechanism places the WDT in a low power state in which clock are gated and the counter stops decrementing.

#### 12.6.1.3 WDT Reload Mechanism

The WDT must be reloaded within periods that are shorter than the programmed watchdog interval; otherwise, the WDT will underflow and a WDT Event will be generated and the WDT bit in Power-Fail and Reset Status Register on page 292 will be set. It is the responsibility of the user program to continually execute code which reloads the watchdog timer, causing the counter to be reloaded.

There are three methods of reloading the WDT: a write to the WDT Load Register, a write to the WDT Kick Register, or WDT event.

#### 12.6.1.4 WDT Interval

The WDT Interval is the time it takes for the WDT to decrements from the WDT Load Register value to 0000h. The WDT Count Register value takes 33/32KHz seconds (ex. 33/32.768 KHz = 1.007ms) to decrement by 1 count.

#### 12.6.1.5 WDT STALL Operation

There are three STALL\_ENABLE control bits in the WDT Control Register. If enabled, and the STALL event is asserted, the WDT stops decrementing, and the WDT enters a low power state. When a WDT STALL event is de-asserted, the counter continues decrementing from the value it had when the STALL was asserted.

#### 12.7 EC Registers

Registers for this block are shown in the following summary table. Addresses for each register are determined by adding the offset to the Base Address for each instance of the Watchdog Timer (WDT) Block in the Block Overview and Base Address Table in Section 3.0, "Device Inventory".

TABLE 12-3: REGISTER SUMMARY

| Offset | Register Name           |
|--------|-------------------------|
| 00h    | WDT Load Register       |
| 04h    | WDT Control Register    |
| 08h    | WDT Kick Register       |
| 0Ch    | WDT Count Register      |
| 10h    | WDT Status Register     |
| 14h    | WDT Int Enable Register |

#### 12.7.1 WDT LOAD REGISTER

| Offset | 00h                                                              |      |         |                |
|--------|------------------------------------------------------------------|------|---------|----------------|
| Bits   | Description                                                      | Туре | Default | Reset<br>Event |
| 15:0   | WDT_LOAD Writing this field reloads the Watch Dog Timer counter. | R/W  | FFFFh   | RESET_<br>SYS  |

# 12.7.2 WDT CONTROL REGISTER

| Offset | 04h                                                                                                                                                                                                                                                                     |      |         |                |
|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|---------|----------------|
| Bits   | Description                                                                                                                                                                                                                                                             | Туре | Default | Reset<br>Event |
| 31:10  | Reserved                                                                                                                                                                                                                                                                | RES  | -       | -              |
| 9      | WDT_RESET If the WDT_RESET bit is set and the watch dog timer expires, the Watch dog module will generate interrupt and the WDT_RESET bit will be cleared. If this bit is not set, when the watch dog timer expires EC and its sub- system is reset.                    | R/W  | Ob      | RESET_<br>SYS  |
| 8:5    | Reserved                                                                                                                                                                                                                                                                | RES  | -       | -              |
| 4      | JTAG_STALL This bit enables the WDT Stall function if JTAG or SWD debug functions are active  1=The WDT is stalled while either JTAG or SWD is active 0=The WDT is not affected by the JTAG debug interface                                                             | R/W  | 0b      | RESET_<br>SYS  |
| 3      | WEEK TIMER STALL                                                                                                                                                                                                                                                        | R/W  | 0b      | RESET          |
|        | This bit enables the WDT Stall function if the Week Timer is active.  1=The WDT is stalled while the Week Timer is active 0=The WDT is not affected by the Week Timer                                                                                                   |      |         | SYS            |
| 2      | HIBERNATION_TIMER_STALL                                                                                                                                                                                                                                                 | R/W  | 0b      | RESET_         |
|        | This bit enables the WDT Stall function if the Hibernation Timer 0 or Hibernation Timer 1 is active.  1=The WDT is stalled while the Hibernation Timer 0 is active 0=The WDT is not affected by Hibernation Timer 0                                                     |      |         | SYS            |
| 1      | TEST                                                                                                                                                                                                                                                                    | R    | 0b      | RESET_<br>SYS  |
| 0      | WDT_ENABLE                                                                                                                                                                                                                                                              | R/W  | 0b      | RESET_         |
|        | In WDT Operation, the WDT is activated by the sequence of operations defined in Section 12.6.1.1, "WDT Activation Mechanism" and deactivated by the sequence of operations defined in Section 12.6.1.2, "WDT Deactivation Mechanism".  1=block enabled 0=block disabled |      |         | SYS            |

# 12.7.3 WDT KICK REGISTER

| Offset | 08h                                                                                                                                                                                                                                                                                                                                                                   |      |         |                |
|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|---------|----------------|
| Bits   | Description                                                                                                                                                                                                                                                                                                                                                           | Туре | Default | Reset<br>Event |
| 7:0    | KICK The WDT Kick Register is a strobe. Reads of this register return 0. Writes to this register cause the WDT to reload the WDT Load Register value and start decrementing when the WDT_ENABLE bit in the WDT Control Register is set to '1'. When the WDT_ENABLE bit in the WDT Control Register is cleared to '0', writes to the WDT Kick Register have no effect. | W    | n/a     | RESET_<br>SYS  |

### 12.7.4 WDT COUNT REGISTER

| Offset | 0Ch                                                              |      |         |                |
|--------|------------------------------------------------------------------|------|---------|----------------|
| Bits   | Description                                                      | Туре | Default | Reset<br>Event |
| 15:0   | WDT_COUNT This read-only register provide the current WDT count. | R    | FFFFh   | RESET_<br>SYS  |

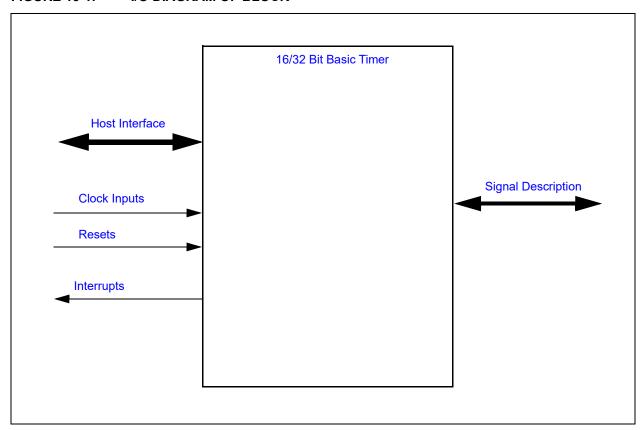
# 12.7.5 WDT STATUS REGISTER

| Offset | 10h                                                                             |       |         |                         |
|--------|---------------------------------------------------------------------------------|-------|---------|-------------------------|
| Bits   | Description                                                                     | Туре  | Default | Reset<br>Event          |
| 31:1   | Reserved                                                                        | RES   | -       | -                       |
| 0      | WDT_EVENT_IRQ This bit indicates the status of interrupt from Watch dog module. | R/W1C | 0h      | RESET_<br>SYS_n-<br>WDT |

# 12.7.6 WDT INT ENABLE REGISTER

| Offset | 14h                                                                                                                                   |      |         |                         |
|--------|---------------------------------------------------------------------------------------------------------------------------------------|------|---------|-------------------------|
| Bits   | Description                                                                                                                           | Туре | Default | Reset<br>Event          |
| 31:1   | Reserved                                                                                                                              | RES  | ı       | -                       |
| 0      | WDT_INT_ENABLE This is the interrupt enables bit for WDT_INT interrupt. 1b - WDT_INT Interrupt Enable 0b - WDT_INT Interrupt Disabled | R/W  | 0h      | RESET_<br>SYS_n-<br>WDT |

#### 13.0 16/32 BIT BASIC TIMER


#### 13.1 Introduction

This timer block offers a simple mechanism for firmware to maintain a time base. This timer may be instantiated as 16 bits or 32 bits. The name of the timer instance indicates the size of the timer.

### 13.2 Interface

This block is designed to be accessed internally via a registered host interface.

FIGURE 13-1: I/O DIAGRAM OF BLOCK



# 13.3 Signal Description

There are no external signals for this block.

#### 13.4 Host Interface

The Embedded Controller (EC) may access this block via the registers defined in Section 13.9, "EC-Only Registers," on page 164.

### 13.5 Power, Clocks and Reset

This section defines the Power, Clock, and Reset parameters of the block.

### 13.5.1 POWER DOMAINS

### TABLE 13-1: POWER SOURCES

| Name     | Description                                                                            |
|----------|----------------------------------------------------------------------------------------|
| VTR_CORE | The timer control logic and registers are all implemented on this single power domain. |

#### 13.5.2 CLOCK INPUTS

# TABLE 13-2: CLOCK INPUTS

| Name  | Description                                                                                                                      |
|-------|----------------------------------------------------------------------------------------------------------------------------------|
| 48MHz | This is the clock source to the timer logic. The Pre-scaler may be used to adjust the minimum resolution per bit of the counter. |

### 13.5.3 RESETS

### **TABLE 13-3: RESET SIGNALS**

| Name        | Description                                                                                                                                                                                                                       |
|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| RESET_SYS   | This reset signal, which is an input to this block, resets all the logic and registers to their initial default state.                                                                                                            |
| SOFT_RESET  | This reset signal, which is created by this block, resets all the logic and registers to their initial default state. This reset is generated by the block when the SOFT_RESET bit is set in the Timer Control Register register. |
| Timer_Reset | This reset signal, which is created by this block, is asserted when either the RESET_SYS or the SOFT_RESET signal is asserted. The RESET_SYS and SOFT_RESET signals are OR'd together to create this signal.                      |

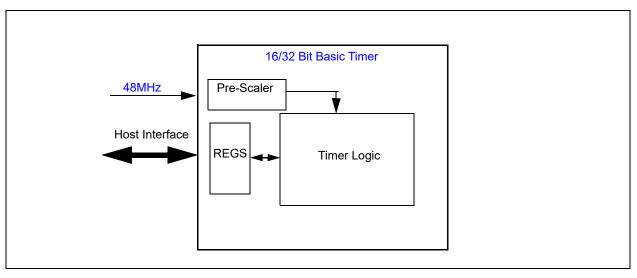
# 13.6 Interrupts

### **TABLE 13-4: EC INTERRUPTS**

| Source                                                                                                                                              | Description                                                                                                                                    |
|-----------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|
| TIMER_16_x                                                                                                                                          | This interrupt event fires when a 16-bit timer <i>x</i> reaches its limit. This event is sourced by the EVENT_INTERRUPT status bit if enabled. |
| TIMER_32_x  This interrupt event fires when a 32-bit timer x reaches its limit. This event is sourced by the EVENT_INTERRUPT status bit if enabled. |                                                                                                                                                |
| Note: x represents the instance number.                                                                                                             |                                                                                                                                                |

#### 13.7 Low Power Modes

The Basic Timer may be put into a low power state by the chip's Power, Clocks, and Reset (PCR) circuitry. This block is only be permitted to enter low power modes when the block is not active.


The sleep state of this timer is as follows:

- · Asleep while the block is not Enabled
- · Asleep while the block is not running (start inactive).
- · Asleep while the block is halted (even if running).

The block is active while start is active.

#### 13.8 Description

FIGURE 13-2: BLOCK DIAGRAM



This timer block offers a simple mechanism for firmware to maintain a time base in the design. The timer may be enabled to execute the following features:

- · Programmable resolution per LSB of the counter via the Pre-scale bits in the Timer Control Register
- · Programmable as either an up or down counter
- · One-shot or Continuous Modes
- · In one-shot mode the Auto Restart feature stops the counter when it reaches its limit and generates a level event.
- In Continuous Mode the Auto Restart feature restarts that counter from the programmed preload value and generates a pulse event.
- Counter may be reloaded, halted, or started via the Timer Control register
- Block may be reset by either a Power On Reset (POR) or via a Soft Reset.

# 13.9 EC-Only Registers

The registers listed in the EC-Only Register Summary table are for a single instance of the Basic Timer. The addresses of each register listed in this table are defined as a relative offset to the "Base Address" of that instance, defined in the Device Inventory chapter and will follow the instance naming as listed in **TABLE 13-5**: "CEC1712 Instance Naming Convention".

TABLE 13-5: CEC1712 INSTANCE NAMING CONVENTION

| Block Instance                          | Host |
|-----------------------------------------|------|
| 16-Bit Basic Timer x                    | EC   |
| 32-Bit Basic Timer x                    | EC   |
| Note: x represents the instance number. |      |

### **TABLE 13-6: RUNTIME REGISTER SUMMARY**

| Offset | Register Name             |  |
|--------|---------------------------|--|
| 00h    | Timer Count Register      |  |
| 04h    | Timer Preload Register    |  |
| 08h    | Timer Status Register     |  |
| 0Ch    | Timer Int Enable Register |  |
| 10h    | Timer Control Register    |  |

#### 13.9.1 TIMER COUNT REGISTER

| Offset | 00h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      |         |                       |
|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|---------|-----------------------|
| Bits   | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Туре | Default | Reset<br>Event        |
| 31:0   | COUNTER This is the value of the Timer counter. This is updated by Hardware but may be set by Firmware. If it is set while the Hardware Timer is operating, functionality can not be guaranteed. When read, it is buffered so single byte reads will be able to catch the full 4 byte register without it changing.  - For 16 bit Basic Timer, bits 0 to 15 are r/w counter bits.  Bits 31 down to 16 are reserved. Reads of bits 31 down to 16 return 0 and writes have no effect.  - For 32 bit Basic Timer, bits 0 to 31 are r/w counter bits. | R/W  | 0h      | Tim-<br>er_Re-<br>set |

### 13.9.2 TIMER PRELOAD REGISTER

| Offset | 04h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |      |         |                       |
|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|---------|-----------------------|
| Bits   | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Type | Default | Reset<br>Event        |
| 31:0   | PRE_LOAD This is the value of the Timer pre-load for the counter. This is used by H/W when the counter is to be restarted automatically; this will become the new value of the counter upon restart.  The size of the Pre-Load value is the same as the size of the counter.  - For 16 bit Basic Timer, bits 0 to 15 are r/w pre-load bits. Bits 31 down to 16 are reserved. Reads of bits 31 down to 16 return 0 and writes have no effect.  - For 32 bit Basic Timer, bits 0 to 31 are r/w pre-load bits. | R/W  | Oh      | Tim-<br>er_Re-<br>set |

### 13.9.3 TIMER STATUS REGISTER

| Offset | 08h                                                                                                                                                                                                                                                                                                                   |      |         |                       |
|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|---------|-----------------------|
| Bits   | Description                                                                                                                                                                                                                                                                                                           | Type | Default | Reset<br>Event        |
| 31:0   | Reserved                                                                                                                                                                                                                                                                                                              | RES  | -       | -                     |
| 0      | EVENT_INTERRUPT This is the interrupt status that fires when the timer reaches its limit. This may be level or a self clearing signal cycle pulse, based on the AUTO_RESTART bit in the Timer Control Register. If the timer is set to automatically restart, it will provide a pulse, otherwise a level is provided. | R/WC | 0h      | Tim-<br>er_Re-<br>set |

### 13.9.4 TIMER INT ENABLE REGISTER

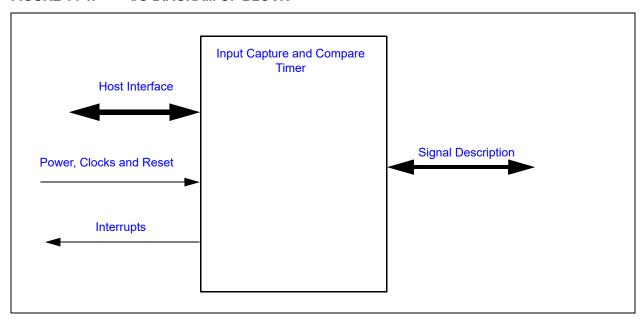
| Offset | 0Ch                                                                                                                 |      |         |                       |
|--------|---------------------------------------------------------------------------------------------------------------------|------|---------|-----------------------|
| Bits   | Description                                                                                                         | Туре | Default | Reset<br>Event        |
| 31:0   | Reserved                                                                                                            | RES  | -       | -                     |
| 0      | EVENT_INTERRUPT_ENABLE This is the interrupt enable for the status EVENT_INTERRUPT bit in the Timer Status Register | R/W  | 0h      | Tim-<br>er_Re-<br>set |

### 13.9.5 TIMER CONTROL REGISTER

| Offset | 10h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      |         |                 |
|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|---------|-----------------|
| Bits   | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Туре | Default | Reset<br>Event  |
| 31:16  | PRE_SCALE  This is used to divide down the system clock through clock enables to lower the power consumption of the block and allow slow timers. Updating this value during operation may result in erroneous clock enable pulses until the clock divider restarts.  The number of clocks per clock enable pulse is (Value + 1); a setting of 0 runs at the full clock speed, while a setting of 1 runs at half speed.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | R/W  | 0h      | Tim-<br>er_Rese |
| 15:8   | Reserved                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | RES  | -       | _               |
| 7      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | R/W  | Oh      | Tim-<br>er_Rese |
| 6      | , and the second | R/W  | Oh      | Tim-<br>er_Rese |
| 5      | START This bit triggers the timer counter. The counter will operate until it hits its terminating condition. This will clear this bit. It should be noted that when operating in restart mode, there is no terminating condition for the counter, so this bit will never clear. Clearing this bit will halt the timer counter.  Setting this bit will:  Reset the clock divider counter.  Enable the clock divider counter.  Start the timer counter.  Clear all interrupts.  Clearing this bit will:  Disable the clock divider counter.  Stop the timer counter.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | R/W  | 0h      | Tim-<br>er_Rese |
| 4      | SOFT_RESET This is a soft reset. This is self clearing 1 cycle after it is written.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | WO   | 0h      | Tim-<br>er_Rese |
| 3      | AUTO_RESTART This will select the action taken upon completing a count.  1=The counter will automatically restart the count, using the contents of the Timer Preload Register to load the Timer Count Register The interrupt will be set in edge mode  0=The counter will simply enter a done state and wait for further control inputs. The interrupt will be set in level mode.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | R/W  | Oh      | Tim-<br>er_Rese |

| Offset | 10h                                                                                                                                                                                                                                                                                               |      |         |                  |
|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|---------|------------------|
| Bits   | Description                                                                                                                                                                                                                                                                                       | Туре | Default | Reset<br>Event   |
| 2      | COUNT_UP This selects the counter direction.  When the counter in incrementing the counter will saturate and trigger the event when it reaches all F's. When the counter is decrementing the counter will saturate when it reaches 0h.  1=The counter will increment 0=The counter will decrement | R/W  | Oh      | Tim-<br>er_Reset |
| 1      | Reserved                                                                                                                                                                                                                                                                                          | RES  | -       | -                |
| 0      | ENABLE This enables the block for operation.  1=This block will function normally 0=This block will gate its clock and go into its lowest power state                                                                                                                                             | R/W  | 0h      | Tim-<br>er_Reset |

#### 14.0 INPUT CAPTURE AND COMPARE TIMER


#### 14.1 Introduction

The Input Capture and Compare Timers block contains a 32-bit timer running at the main system clock frequency. The timer is free-running and is associated with six 32-bit capture registers and two compare registers. Each capture register can record the value of the free-running timer based on a programmable edge of its associated input pin. An interrupt can be generated for each capture register each time it acquires a new timer value. The timer can also generate an interrupt when it automatically resets and can additionally generate two more interrupts when the timer matches the value in either of two 32-bit compare registers.

#### 14.2 Interface

This block is designed to be accessed externally via the pin interface and internally via a registered host interface.

FIGURE 14-1: I/O DIAGRAM OF BLOCK



### 14.3 Signal Description

**TABLE 14-1: SIGNAL DESCRIPTION** 

|       | Name                                                                                 | Direction | Description                                           |
|-------|--------------------------------------------------------------------------------------|-----------|-------------------------------------------------------|
|       | ICTx                                                                                 | INPUT     | External capture trigger signal for Capture Register. |
|       | СТОИТ0                                                                               | OUTPUT    | External compare match signal for Compare Register 0  |
|       | CTOUT1                                                                               | OUTPUT    | External compare match signal for Compare Register 1  |
| Note: | Any ICTx can be connected to any Capture register using the ICT MUX Select Register. |           |                                                       |

#### 14.4 Host Interface

The registers defined for 16-bit Timers are accessible by the various hosts as indicated in Section 3.2, "Block Overview and Base Addresses".

# 14.5 Power, Clocks and Reset

This section defines the Power, Clock, and Reset parameters of the block.

### 14.5.1 POWER DOMAINS

| Name     | Description                                                                       |
|----------|-----------------------------------------------------------------------------------|
| VTR_CORE | The logic and registers implemented in this block are powered by this power well. |

# 14.5.2 CLOCK INPUTS

| Name  | Description                              |
|-------|------------------------------------------|
| 48MHz | This is the clock source for this block. |

#### 14.5.3 RESETS

| Name      | Description                                                                          |
|-----------|--------------------------------------------------------------------------------------|
| RESET_SYS | This signal resets all the registers and logic in this block to their default state. |

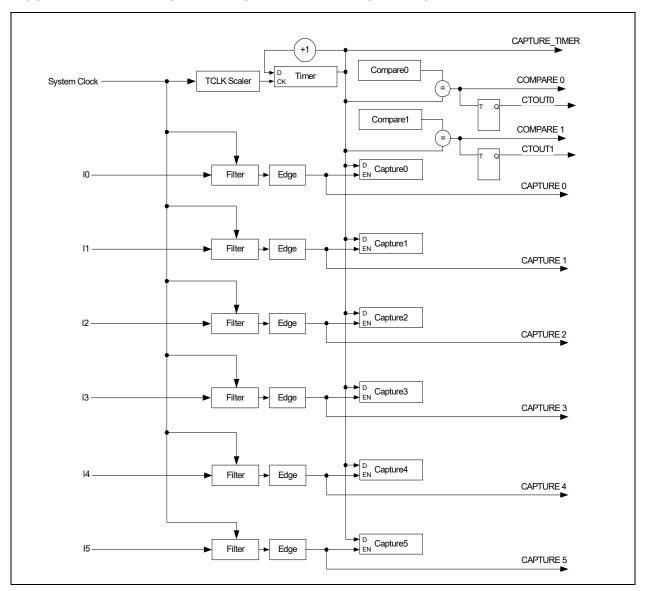
# 14.6 Interrupts

This section defines the Interrupt Sources generated from this block.

| Source        | Description                                                                                                        |
|---------------|--------------------------------------------------------------------------------------------------------------------|
| CAPTURE TIMER | This interrupt event fires when the 32-bit free running counter overflows from FFFF_FFFFh to 0000_0000h.           |
| CAPTURE 0     | This interrupt event fires when Capture Register 0 acquires a new value.                                           |
| CAPTURE 1     | This interrupt event fires when Capture Register 1 acquires a new value.                                           |
| CAPTURE 2     | This interrupt event fires when Capture Register 2 acquires a new value.                                           |
| CAPTURE 3     | This interrupt event fires when Capture Register 3 acquires a new value.                                           |
| CAPTURE 4     | This interrupt event fires when Capture Register 4 acquires a new value.                                           |
| CAPTURE 5     | This interrupt event fires when Capture Register 5 acquires a new value.                                           |
| COMPARE 0     | This interrupt event fires when the contents of Compare 0 Register match the contents of the Free Running Counter. |
| COMPARE 1     | This interrupt event fires when the contents of Compare 1 Register match the contents of the Free Running Counter. |

#### 14.7 Low Power Modes

The Capture and Compare Timer may be put into a low power state by the chip's Power, Clocks, and Reset (PCR) circuitry. This block is only be permitted to enter low power modes when the block is not active. The block is inactive if the ACTIVATE bit is de-asserted, and will also become inactive when the block's SLEEP\_EN signal is asserted.


When the block returns from sleep, if enabled, the Free Running Timer Register value will continue counting from where it was when the block entered the Sleep state.

### 14.8 Description

The Input Capture and Compare Timer block has ICT Channels inputs and these can be connected to any of the 6 Capture Compare timer

Note: The CCT0 to CCT5 blocks are expanded and shown in FIGURE 14-2: "Capture and Compare Timer Block Diagram"

FIGURE 14-2: CAPTURE AND COMPARE TIMER BLOCK DIAGRAM



#### 14.8.1 TIMER CLOCK

Any of the frequencies listed in Table 14-2 may be used as the time base for the Free Running Counter.

TABLE 14-2: TIMER CLOCK FREQUENCIES

| Timer Clock Select | Frequency Divide Select | Frequency Selected |
|--------------------|-------------------------|--------------------|
| 0000b              | Divide by 1             | 48MHz              |
| 0001b              | Divide by 2             | 24MHz              |
| 0010b              | Divide by 4             | 12MHz              |
| 0011b              | Divide by 8             | 6MHz               |
| 0100b              | Divide by 16            | 3MHz               |
| 0101b              | Divide by 32            | 1.5MHz             |
| 0110b              | Divide by 64            | 750KHz             |
| 0111b              | Divide by 128           | 375KHz             |
| 1xxxb              | Reserved                | Reserved           |

For the Timer Clock, the **Timer Clock Select** value is defined by the TCLK field in the Capture and Compare Timer Control Register

#### 14.8.2 FILTER CLOCK AND NOISE FILTER

The noise filter uses the Filter Clock (FCLK) to filter the signal on the Input Capture pins. An Input Capture pin must remain in the same state for three FCLK ticks before the internal state changes. The FILTER\_BYPASS bit for the Input Capture pin may be used to bypass the input filter. Each Capture Register can individually bypass the filter.

When the input filter is bypassed, the minimum period of FCLK must be at least 2X the duration of an input signal pulse in order for an edge event to be captured reliably. When the input filter is enabled, the minimum period of FCLK must be at least 4X the duration of an input signal pulse in order for an edge event to be captured reliably.

#### 14.9 Operation

#### 14.9.1 INPUT CAPTURE

The Input Capture block consists of a free-running 32-bit timer and 2 capture registers. Each of the capture registers is associated with an input pin as well as an interrupt source bit in the Interrupt Aggregator: The Capture registers store the current value of the Free Running timer whenever the associated input signal changes, according to the programmed edge detection. An interrupt is also generated to the EC. The Capture registers are read-only. The registers are updated every time an edge is detected. If software does not read the register before the next edge, the value is lost.

#### 14.9.2 COMPARE TIMER

There are two 32-bit Compare registers. Each of these registers can independently generate an interrupt to the EC when the 32-bit Free Running Timer matches the contents of the Compare register. The compare operation for each is enabled or disabled by a bit in the Capture and Compare Timer Control Register.

#### 14.9.2.1 Interrupt Generation

Whenever a Compare Timer is enabled and the Compare register matches the Free Running Timer, a COMPARE event is sent to the Interrupt Aggregator. The event will trigger an EC interrupt if enabled by the appropriate Interrupt Enable register in the Aggregator.

#### 14.9.2.2 Compare Output Generation

Each Compare Timer is associated with a toggle flip-flop. When the 32-bit Free Running Timer matches the contents of the Compare register the output off the flip-flop is complemented. Each of the toggle flip-flops can be independently set or cleared by using the COMPARE\_SET or COMPARE\_CLEAR fields, respectively, in the Capture and Compare Timer Control Register.

A Compare Timer should be disabled before setting or clearing the output, when updating the Compare register, or when updating the Free Running Timer, so spurious events are not generated by the matcher.

# 14.10 EC Registers

Registers for this block are shown in the following summary table. Addresses for each register are determined by adding the offset to the Base Address for each instance of the Input Capture and Compare Timer Block in the Block Overview and Base Address Table in Section 3.0, "Device Inventory".

Note: All registers in this block must be accessed as DWORDs.

#### **TABLE 14-3: REGISTER SUMMARY**

| Offset | Register Name                              |
|--------|--------------------------------------------|
| 00h    | Capture and Compare Timer Control Register |
| 04h    | Capture Control 0 Register                 |
| 08h    | Capture Control 1 Register                 |
| 0Ch    | Free Running Timer Register                |
| 10h    | Capture 0 Register                         |
| 14h    | Capture 1 Register                         |
| 18h    | Capture 2 Register                         |
| 1Ch    | Capture 3 Register                         |
| 20h    | Capture 4 Register                         |
| 24h    | Capture 5 Register                         |
| 28h    | Compare 0 Register                         |
| 2Ch    | Compare 1 Register                         |
| 30h    | ICT MUX Select Register                    |

#### 14.10.1 CAPTURE AND COMPARE TIMER CONTROL REGISTER

**Note:** It is not recommended to use Read-Modify-Write operations on this register. May inadvertently cause the COMPARE\_SET and COMPARE\_CLEAR bits to be written to '1' in error.

| Offset | 00h                                                                                                                                                                                                                                                                                     |      |         |                |
|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|---------|----------------|
| Bits   | Description                                                                                                                                                                                                                                                                             | Type | Default | Reset<br>Event |
| 31:26  | Reserved                                                                                                                                                                                                                                                                                | RES  | -       | -              |
| 25     | COMPARE_CLEAR0 When read, returns the current value off the Compare Timer Output 0 state.  If written with a '1b', the output state is cleared to '0'.  Writes have no effect if COMPARE_SET1 in this register is written with a '1b' at the same time.  Writes of '0b' have no effect. | R/WC | 0       | RESET<br>_SYS  |

| Offset | 00h                                                                                                                                                                                                                                                                                    |      |         |                |
|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|---------|----------------|
| Bits   | Description                                                                                                                                                                                                                                                                            | Туре | Default | Reset<br>Event |
| 24     | COMPARE_CLEAR1 When read, returns the current value off the Compare Timer Output 1 state.  If written with a '1b', the output state is cleared to '0'.  Writes have no effect if COMPARE_SET0 in this register is written with a '1b' at the same time. Writes of '0b' have no effect. | R/WC | 0       | RESET _SYS     |
| 23:18  | Reserved                                                                                                                                                                                                                                                                               | RES  | -       | -              |
| 17     | COMPARE_SET0  When read, returns the current value off the Compare Timer Output 0 state.  • If written with a '1b', the output state is set to '1'.  • Writes of '0b' have no effect                                                                                                   | R/WS | 0       | RESET _SYS     |
| 16     | COMPARE_SET1  When read, returns the current value off the Compare Timer Output 1 state.  If written with a '1b', the output state is set to '1'.  Writes of '0b' have no effect                                                                                                       | R/WS | 0       | RESET _SYS     |
| 15:10  | Reserved                                                                                                                                                                                                                                                                               | RES  | -       | -              |
| 9      | COMPARE_ENABLE1 Compare Enable for Compare 1 Register. When enabled, a match between the Compare 1 Register and the Free Running Timer Register will cause the TOUT1 output to toggle and will send a COMPARE event to the Interrupt Aggregator.  1=Enabled 0=Disabled                 | R/W  | 0b      | RESET _SYS     |
| 8      | COMPARE_ENABLE0 Compare Enable for Compare 0 Register. When enabled, a match between the Compare 0 Register and the Free Running Timer Register will cause the TOUT0 output to toggle and will send a COMPARE event to the Interrupt Aggregator.  1=Enabled 0=Disabled                 | R/W  | 0b      | RESET _SYS     |
| 7      | Reserved                                                                                                                                                                                                                                                                               | RES  | -       | -              |
| 6:4    | TCLK This 3-bit field sets the clock source for the Free-Running Counter. See Table 14-2, "Timer Clock Frequencies" for a list of available frequencies.                                                                                                                               | R/W  | 0b      | RESET<br>_SYS  |
| 3      | Reserved                                                                                                                                                                                                                                                                               | RES  | -       | -              |

# **CEC1712**

| Offset | 00h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |      |         |                |
|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|---------|----------------|
| Bits   | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Type | Default | Reset<br>Event |
| 2      | FREE_RESET Free Running Timer Reset. This bit stops the timer and resets the internal counter to 0000_0000h. This bit does not affect the FREE_ENABLE bit. This bit is self clearing after the timer is reset.  1=Timer reset 0=Normal timer operation                                                                                                                                                                                                                                                                                                     | R/W  | 0h      | RESET _SYS     |
| 1      | FREE_ENABLE Free-Running Timer Enable. This bit is used to start and stop the free running timer. This bit does not reset the timer count. The timer starts counting at 0000_0000h on reset and wraps around back to 0000_0000h after it reaches FFFF_FFFh.  The FREE_ENABLE bit is cleared after the RESET cycle is done. Firmware must poll the FREE_RESET bit to determine when it is safe to re-enable the timer.  1=Timer is enabled. The Free Running Timer Register is read-only. 0=Timer is disabled. The Free Running Timer Register is writable. | R/W  | 0h      | RESET _SYS     |
| 0      | ACTIVATE  1=The timer block is in a running state 0=The timer block is powered down and all clocks are gated                                                                                                                                                                                                                                                                                                                                                                                                                                               | R/W  | 0h      | RESET<br>_SYS  |

# 14.10.2 CAPTURE CONTROL 0 REGISTER

| Offset | 04h                                                                                                                                                                                          |      |         |                |
|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|---------|----------------|
| Bits   | Description                                                                                                                                                                                  | Type | Default | Reset<br>Event |
| 31:29  | FCLK_SEL3  This 3-bit field sets the clock source for the input filter for Capture Register 3. See Table 14-2, "Timer Clock Frequencies" for a list of available frequencies.                | R/W  | 0h      | RESET<br>_SYS  |
| 28:27  | Reserved                                                                                                                                                                                     | RES  | -       | -              |
| 26     | FILTER_BYP3 This bit enables bypassing the input noise filter for Capture Register 3, so that the input signal goes directly into the timer.  1=Input filter bypassed 0=Input filter enabled | R/W  | 0h      | RESET _SYS     |

| Offset | 04h                                                                                                                                                                                                                    |      |         |                |
|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|---------|----------------|
| Bits   | Description                                                                                                                                                                                                            | Туре | Default | Reset<br>Event |
| 25:24  | CAPTURE_EDGE3 This field selects the edge type that triggers the capture of the Free Running Counter into Capture Register 3.  3=Capture event disabled 2=Both rising and falling edges 1=Rising edges 0=Falling edges | R/W  | Oh      | RESET _SYS     |
| 23:21  | FCLK_SEL2 This 3-bit field sets the clock source for the input filter for Capture Register 2. See Table 14-2, "Timer Clock Frequencies" for a list of available frequencies.                                           | R/W  | 0h      | RESET<br>_SYS  |
| 20:19  | Reserved                                                                                                                                                                                                               | RES  | -       | -              |
| 18     | FILTER_BYP2 This bit enables bypassing the input noise filter for Capture Register 2, so that the input signal goes directly into the timer.  1=Input filter bypassed 0=Input filter enabled                           | R/W  | Oh      | RESET<br>_SYS  |
| 17:16  | CAPTURE_EDGE2 This field selects the edge type that triggers the capture of the Free Running Counter into Capture Register 2.  3=Capture event disabled 2=Both rising and falling edges 1=Rising edges 0=Falling edges | R/W  | Oh      | RESET<br>_SYS  |
| 15:13  | FCLK_SEL1 This 3-bit field sets the clock source for the input filter for Capture Register 1. See Table 14-2, "Timer Clock Frequencies" for a list of available frequencies.                                           | R/W  | 0b      | RESET<br>_SYS  |
| 12:11  | Reserved                                                                                                                                                                                                               | RES  | -       | -              |
| 10     | FILTER_BYP1 This bit enables bypassing the input noise filter for Capture Register 1, so that the input signal goes directly into the timer.  1=Input filter bypassed 0=Input filter enabled                           | R/W  | 0h      | RESET<br>_SYS  |
| 9:8    | CAPTURE_EDGE1 This field selects the edge type that triggers the capture of the Free Running Counter into Capture Register 1.  3=Capture event disabled 2=Both rising and falling edges 1=Rising edges 0=Falling edges | R/W  | Oh      | RESET_SYS      |

# **CEC1712**

| Offset | 04h                                                                                                                                                                                                                    |      |         |                |
|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|---------|----------------|
| Bits   | Description                                                                                                                                                                                                            | Type | Default | Reset<br>Event |
| 7:5    | FCLK_SEL0 This 3-bit field sets the clock source for the input filter for Capture Register 0. See Table 14-2, "Timer Clock Frequencies" for a list of available frequencies.                                           | R/W  | Oh      | RESET<br>_SYS  |
| 4:3    | Reserved                                                                                                                                                                                                               | RES  | -       | -              |
| 2      | FILTER_BYP0 This bit enables bypassing the input noise filter for Capture Register 0, so that the input signal goes directly into the timer.  1=Input filter bypassed 0=Input filter enabled                           | R/W  | Oh      | RESET<br>_SYS  |
| 1:0    | CAPTURE_EDGE0 This field selects the edge type that triggers the capture of the Free Running Counter into Capture Register 0.  3=Capture event disabled 2=Both rising and falling edges 1=Rising edges 0=Falling edges | R/W  | Oh      | RESET<br>_SYS  |

# 14.10.3 CAPTURE CONTROL 1 REGISTER

| Offset | 08h                                                                                                                                                                                          |      |         |                |
|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|---------|----------------|
| Bits   | Description                                                                                                                                                                                  | Type | Default | Reset<br>Event |
| 31:16  | Reserved                                                                                                                                                                                     | RES  | -       | -              |
| 15:13  | FCLK_SEL5 This 3-bit field sets the clock source for the input filter for Capture Register 5. See Table 14-2, "Timer Clock Frequencies" for a list of available frequencies.                 | R/W  | 0b      | RESET<br>_SYS  |
| 12:11  | Reserved                                                                                                                                                                                     | RES  | -       | -              |
| 10     | FILTER_BYP5 This bit enables bypassing the input noise filter for Capture Register 5, so that the input signal goes directly into the timer.  1=Input filter bypassed 0=Input filter enabled | R/W  | 0h      | RESET<br>_SYS  |

| Offset | 08h                                                                                                                                                                                                                    |      |         |                |
|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|---------|----------------|
| Bits   | Description                                                                                                                                                                                                            | Type | Default | Reset<br>Event |
| 9:8    | CAPTURE_EDGE5 This field selects the edge type that triggers the capture of the Free Running Counter into Capture Register 5.  3=Capture event disabled 2=Both rising and falling edges 1=Rising edges 0=Falling edges | R/W  | 0h      | RESET<br>_SYS  |
| 7:5    | FCLK_SEL4  This 3-bit field sets the clock source for the input filter for Capture Register 4. See Table 14-2, "Timer Clock Frequencies" for a list of available frequencies.                                          | R/W  | Oh      | RESET<br>_SYS  |
| 4:3    | Reserved                                                                                                                                                                                                               | RES  | -       | -              |
| 2      | FILTER_BYP4 This bit enables bypassing the input noise filter for Capture Register 4, so that the input signal goes directly into the timer.  1=Input filter bypassed 0=Input filter enabled                           | R/W  | 0h      | RESET<br>_SYS  |
| 1:0    | CAPTURE_EDGE4 This field selects the edge type that triggers the capture of the Free Running Counter into Capture Register 4.  3=Capture event disabled 2=Both rising and falling edges 1=Rising edges 0=Falling edges | R/W  | Oh      | RESET<br>_SYS  |

# 14.10.4 FREE RUNNING TIMER REGISTER

| Offset | 0Ch                                                                                                                                                                                                                                                                                                                                                                                  |      |         |                |
|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|---------|----------------|
| Bits   | Description                                                                                                                                                                                                                                                                                                                                                                          | Туре | Default | Reset<br>Event |
| 31:0   | FREE_RUNNING_TIMER This register contains the current value of the Free Running Timer. A Capture Timer interrupt is signaled to the Interrupt Aggregator when this register transitions from FFFF_FFFFh to 0000_0000h. When FREE_ENABLE in the Capture and Compare Timer Control Register is '1', this register is read-only. When FREE_ENABLE is '0', this register may be written. | R/W  | Oh      | RESET<br>_SYS  |

### 14.10.5 CAPTURE 0 REGISTER

| Offset | 10h                                                                                                      |      |         |                |
|--------|----------------------------------------------------------------------------------------------------------|------|---------|----------------|
| Bits   | Description                                                                                              | Type | Default | Reset<br>Event |
| 31:0   | CAPTURE_0 This register saves the value copied from the Free Running timer on a programmed edge of ICT0. | R    | 0h      | RESET<br>_SYS  |

# 14.10.6 CAPTURE 1 REGISTER

| Offset | 14h                                                                                                      |      |         |                |
|--------|----------------------------------------------------------------------------------------------------------|------|---------|----------------|
| Bits   | Description                                                                                              | Туре | Default | Reset<br>Event |
| 31:0   | CAPTURE_1 This register saves the value copied from the Free Running timer on a programmed edge of ICT1. | R    | 0h      | RESET<br>_SYS  |

### 14.10.7 CAPTURE 2 REGISTER

| Offset | 18h                                                                                                      |      |         |                |
|--------|----------------------------------------------------------------------------------------------------------|------|---------|----------------|
| Bits   | Description                                                                                              | Type | Default | Reset<br>Event |
| 31:0   | CAPTURE_2 This register saves the value copied from the Free Running timer on a programmed edge of ICT2. | R    | 0h      | RESET<br>_SYS  |

### 14.10.8 CAPTURE 3 REGISTER

| Offset | 1Ch                                                                                                      |      |         |                |
|--------|----------------------------------------------------------------------------------------------------------|------|---------|----------------|
| Bits   | Description                                                                                              | Туре | Default | Reset<br>Event |
| 31:0   | CAPTURE_3 This register saves the value copied from the Free Running timer on a programmed edge of ICT3. | R    | 0h      | RESET<br>_SYS  |

### 14.10.9 CAPTURE 4 REGISTER

| Offset | 20h                                                                                                      |      |         |                |
|--------|----------------------------------------------------------------------------------------------------------|------|---------|----------------|
| Bits   | Description                                                                                              | Туре | Default | Reset<br>Event |
| 31:0   | CAPTURE_4 This register saves the value copied from the Free Running timer on a programmed edge of ICT4. | R    | 0h      | RESET<br>_SYS  |

# 14.10.10 CAPTURE 5 REGISTER

| Offset | 24h                                                                                                      |      |         |                |
|--------|----------------------------------------------------------------------------------------------------------|------|---------|----------------|
| Bits   | Description                                                                                              | Туре | Default | Reset<br>Event |
| 31:0   | CAPTURE_5 This register saves the value copied from the Free Running timer on a programmed edge of ICT5. | R    | 0h      | RESET<br>_SYS  |

# 14.10.11 COMPARE 0 REGISTER

| Offset | 28h                                                                                                          |      |         |                |
|--------|--------------------------------------------------------------------------------------------------------------|------|---------|----------------|
| Bits   | Description                                                                                                  | Туре | Default | Reset<br>Event |
| 31:0   | COMPARE_0 A COMPARE 0 interrupt is generated when this register matches the value in the Free Running Timer. | R/W  | 0h      | RESET<br>_SYS  |

# 14.10.12 COMPARE 1 REGISTER

| Offset | 2Ch                                                                                                          |      |         |                |
|--------|--------------------------------------------------------------------------------------------------------------|------|---------|----------------|
| Bits   | Description                                                                                                  | Туре | Default | Reset<br>Event |
| 31:0   | COMPARE_1 A COMPARE 1 interrupt is generated when this register matches the value in the Free Running Timer. | R/W  | 0h      | RESET<br>_SYS  |

# **CEC1712**

# 14.10.13 ICT MUX SELECT REGISTER

This register selects the pin mapping to the capture register.

| Offset | 30h                                |      |         |                |
|--------|------------------------------------|------|---------|----------------|
| Bits   | Description                        | Туре | Default | Reset<br>Event |
| 31:24  | Reserved                           | RES  | -       | -              |
| 23:20  | Mux Select for Capture 5 register. | R/W  | 5h      | RESET<br>_SYS  |
| 19:16  | Mux Select for Capture 4 register. | R/W  | 4h      | RESET<br>_SYS  |
| 15:12  | Mux Select for Capture 3 register. | R/W  | 3h      | RESET<br>_SYS  |
| 11:8   | Mux Select for Capture 2 register. | R/W  | 2h      | RESET<br>_SYS  |
| 7:4    | Mux Select for Capture 1 register. | R/W  | 1h      | RESET<br>_SYS  |
| 3:0    | Mux Select for Capture 0 register. | R/W  | 0h      | RESET<br>_SYS  |

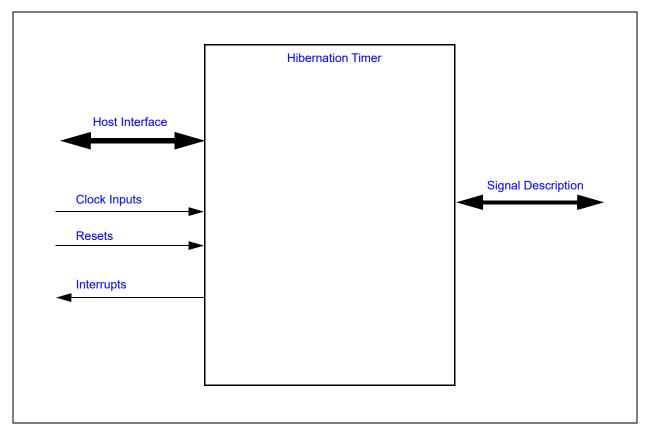
## 15.0 HIBERNATION TIMER

## 15.1 Introduction

The Hibernation Timer can generate a wake event to the Embedded Controller (EC) when it is in a hibernation mode. This block supports wake events up to 2 hours in duration. The timer is a 16-bit binary count-down timer that can be programmed in 30.5µs and 0.125 second increments for period ranges of 30.5µs to 2s or 0.125s to 136.5 minutes, respectively. Writing a non-zero value to this register starts the counter from that value. A wake-up interrupt is generated when the count reaches zero.

## 15.2 References

No references have been cited for this chapter


# 15.3 Terminology

No terms have been cited for this chapter.

## 15.4 Interface

This block is designed to be accessed internally via a registered host interface.

FIGURE 15-1: HIBERNATION TIMER INTERFACE DIAGRAM



## 15.5 Signal Description

There are no external signals for this block.

## 15.6 Host Interface

The registers defined for the Hibernation Timer are accessible by the various hosts as indicated in Section 3.2, "Block Overview and Base Addresses".

# 15.7 Power, Clocks and Reset

This section defines the Power, Clock, and Reset parameters of the block.

#### 15.7.1 POWER DOMAINS

#### TABLE 15-1: POWER SOURCES

| Name     | Description                                                                            |
|----------|----------------------------------------------------------------------------------------|
| VTR_CORE | The timer control logic and registers are all implemented on this single power domain. |

#### 15.7.2 CLOCK INPUTS

## **TABLE 15-2: CLOCK INPUTS**

| Name  | Description                                                                                                                                |
|-------|--------------------------------------------------------------------------------------------------------------------------------------------|
| 32KHz | This is the clock source to the timer logic. The Pre-scaler may be used to adjust the minimum resolution per bit of the counter.           |
|       | if the main oscillator is stopped then an external 32.768kHz clock source must be active for the Hibernation Timer to continue to operate. |

#### 15.7.3 RESETS

## TABLE 15-3: RESET SIGNALS

| Name      | Description                                                                                                            |
|-----------|------------------------------------------------------------------------------------------------------------------------|
| RESET_SYS | This reset signal, which is an input to this block, resets all the logic and registers to their initial default state. |

## 15.8 Interrupts

This section defines the interrupt Interface signals routed to the chip interrupt aggregator.

Each instance of the Hibernation Timer in the CEC1712 can be used to generate interrupts and wake-up events when the timer decrements to zero.

TABLE 15-4: INTERRUPT INTERFACE SIGNAL DESCRIPTION TABLE

| Name   | Direction | Description                                                                                                                            |
|--------|-----------|----------------------------------------------------------------------------------------------------------------------------------------|
| HTIMER | Output    | Signal indicating that the timer is enabled and decrements to 0. This signal is used to generate an Hibernation Timer interrupt event. |

# 15.9 Low Power Modes

The timer operates off of the 32KHz clock, and therefore will operate normally when the main oscillator is stopped.

The sleep enable inputs have no effect on the Hibernation Timer and the clock required outputs are only asserted during register read/write cycles for as long as necessary to propagate updates to the block core.

## 15.10 EC Registers

Registers for this block are shown in the following summary table. Addresses for each register are determined by adding the offset to the Base Address for each instance of the Hibernation Timer Block in the Block Overview and Base Address Table in Section 3.0, "Device Inventory".

TABLE 15-5: REGISTER SUMMARY

| Offset | Register Name           |
|--------|-------------------------|
| 00h    | HTimer Preload Register |
| 04h    | HTimer Control Register |
| 08h    | HTimer Count Register   |

# 15.10.1 HTIMER PRELOAD REGISTER

| Offset | 00h                                                                                                                                                                                                                                                                                                                                                                                                                                     |      |         |                |
|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|---------|----------------|
| Bits   | Description                                                                                                                                                                                                                                                                                                                                                                                                                             | Туре | Default | Reset<br>Event |
| 15:0   | HT_PRELOAD This register is used to set the Hibernation Timer Preload value. Writing this register to a non-zero value resets the down counter to start counting down from this programmed value. Writing this register to 0000h disables the hibernation counter. The resolution of this timer is determined by the CTRL bit in the HTimer Control Register. Writes to the HTimer Control Register are completed with an EC bus cycle. | R/W  | 000h    | RESET_<br>SYS  |

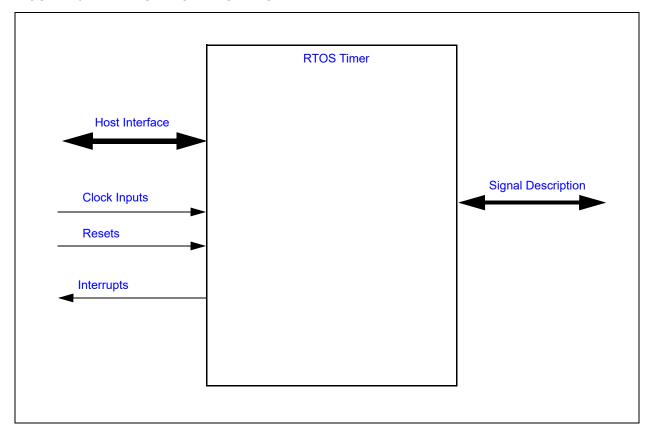
# 15.10.2 HTIMER CONTROL REGISTER

| Offset | 04h                                                                                                                                                                                                                      |      |         |                |
|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|---------|----------------|
| Bits   | Description                                                                                                                                                                                                              | Туре | Default | Reset<br>Event |
| 15:1   | Reserved                                                                                                                                                                                                                 | RES  | -       | -              |
|        | CTRL 1=The Hibernation Timer has a resolution of 0.125s per LSB, which yields a maximum time in excess of 2 hours. 0=The Hibernation Timer has a resolution of 30.5µs per LSB, which yields a maximum time of ~2seconds. | R    | 0000h   | RESET_<br>SYS  |

# 15.10.3 HTIMER COUNT REGISTER

| Offset | 08h                                               |      |         |                |
|--------|---------------------------------------------------|------|---------|----------------|
| Bits   | Description                                       | Туре | Default | Reset<br>Event |
| 15:0   | COUNT The current state of the Hibernation Timer. | R    | 0000h   | RESET_<br>SYS  |

## 16.0 RTOS TIMER


## 16.1 Introduction

The RTOS Timer is a low-power, 32-bit timer designed to operate on the 32kHz oscillator which is available during all chip sleep states. This allows firmware the option to sleep the processor and wake after a programmed amount of time. The timer may be used as a one-shot timer or a continuous timer. When the timer transitions to 0 it is capable of generating a wake-capable interrupt to the embedded controller. This timer may be halted during debug by hardware or via a software control bit.

## 16.2 Interface

This block is designed to be accessed internally via a registered host interface.

FIGURE 16-1: I/O DIAGRAM OF BLOCK



# 16.3 Signal Description

| Name | Description                                                                                                                                                              |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| HALT | RTOS Timer Halt signal. This signal is connected to the same signal that halts the embedded controller during debug (e.g., JTAG Debugger is active, break points, etc.). |

## 16.4 Host Interface

The Embedded Controller (EC) may access this block via the registers defined in Section 16.9, "EC Registers".

## 16.5 Power, Clocks and Reset

This section defines the Power, Clock, and Reset parameters of the block.

#### 16.5.1 POWER DOMAINS

| Name     | Description                                                                            |
|----------|----------------------------------------------------------------------------------------|
| VTR_CORE | The timer control logic and registers are all implemented on this single power domain. |

## 16.5.2 CLOCK INPUTS

| Name  | Description                                  |
|-------|----------------------------------------------|
| 32KHz | This is the clock source to the timer logic. |

## 16.5.3 RESETS

| Name      | Description                                                                                                            |
|-----------|------------------------------------------------------------------------------------------------------------------------|
| RESET_SYS | This reset signal, which is an input to this block, resets all the logic and registers to their initial default state. |

# 16.6 Interrupts

| Source     | Description                                                                                                          |
|------------|----------------------------------------------------------------------------------------------------------------------|
| RTOS_TIMER | RTOS Timer interrupt event. The interrupt is signaled when the timer counter transitions from 1 to 0 while counting. |

## 16.7 Low Power Modes

The Basic Timer may be put into a low power state by the chip's Power, Clocks, and Reset (PCR) circuitry. This block is only be permitted to enter low power modes when the block is not active.

# 16.8 Description

The RTOS Timer is a basic down counter that can operate either as a continuous timer or a one-shot timer. When it is started, the counter is loaded with a pre-load value and counts towards 0. When the counter counts down from 1 to 0, it will generate an interrupt. In one-shot mode (the AUTO\_RELOAD bit is '0'), the timer will then halt; in continuous mode (the AUTO\_RELOAD bit is '1'), the counter will automatically be restarted with the pre-load value.

The timer counter can be halted by firmware by setting the FIRMWARE\_TIMER\_HALT bit to '1'. In addition, if enabled, the timer counter can be halted by the external HALT signal.

# 16.9 EC Registers

Registers for this block are shown in the following summary table. Addresses for each register are determined by adding the offset to the Base Address for each instance of the RTOS Timer Block in the Block Overview and Base Address Table in Section 3.0, "Device Inventory".

**TABLE 16-1: REGISTER SUMMARY** 

| Offset | Register Name               |
|--------|-----------------------------|
| 00h    | RTOS Timer Count Register   |
| 04h    | RTOS Timer Preload Register |
| 08h    | RTOS Timer Control Register |
| 0Ch    | Soft Interrupt Register     |

# 16.9.1 RTOS TIMER COUNT REGISTER

| Offset | 00h                                                                                                                                                                                                                                                                                                              |      |         |                |
|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|---------|----------------|
| Bits   | Description                                                                                                                                                                                                                                                                                                      | Type | Default | Reset<br>Event |
| 31:0   | COUNTER This register contains the current value of the RTOS Timer counter.  This register should be read as a DWORD. There is no latching mechanism of the upper bytes implemented if the register is accessed as a byte or word. Reading the register with byte or word operations may give incorrect results. | R/W  | 0h      | RESET<br>_SYS  |

# 16.9.2 RTOS TIMER PRELOAD REGISTER

| Offset | 04h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      |         |                |
|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|---------|----------------|
| Bits   | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Type | Default | Reset<br>Event |
| 31:0   | PRE_LOAD The this register is loaded into the RTOS Timer counter either when the TIMER_START bit is written with a '1', or when the timer counter counts down to '0' and the AUTO_RELOAD bit is '1'.  This register must be programmed with a new count value before the TIMER_START bit is set to '1'. If this register is updated while the counter is operating, the new count value will only take effect if the counter transitions form 1 to 0 while the AUTO_RELOAD bit is set. | R/W  | 0h      | RESET<br>_SYS  |

# 16.9.3 RTOS TIMER CONTROL REGISTER

| Offset | 08h                                                                                                                                                                                                                         |      |         |                |
|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|---------|----------------|
| Bits   | Description                                                                                                                                                                                                                 | Туре | Default | Reset<br>Event |
| 31:5   | Reserved                                                                                                                                                                                                                    | RES  | -       | -              |
| 4      | FIRMWARE_TIMER_HALT                                                                                                                                                                                                         | R/W  | 0h      | RESET _SYS     |
|        | 1=The timer counter is halted. If the counter was running, clearing this bit will restart the counter from the value at which it halted 0=The timer counter, if enabled, will continue to run                               |      |         |                |
| 3      | EXT_HARDWARE_HALT_EN                                                                                                                                                                                                        | R/W  | 0h      | RESET<br>SYS   |
|        | 1=The timer counter is halted when the external HALT signal is asserted. Counting is always enabled if HALT is de-asserted. 0=The HALT signal does not affect the RTOS Timer                                                |      |         | _010           |
| 2      | TIMER_START  Writing a '1' to this bit will load the timer counter with the RTOS  Timer Preload Register and start counting. If the Preload Register is 0, counting will not start and this bit will be cleared to '0'.     | R/W  | Oh      | RESET<br>_SYS  |
|        | Writing a '0' to this bit will halt the counter and clear its contents to 0. The RTOS timer interrupt will not be generated.                                                                                                |      |         |                |
|        | This bit is automatically cleared if the AUTO_RELOAD bit is '0' and the timer counter transitions from 1 to 0.                                                                                                              |      |         |                |
| 1      | AUTO_RELOAD                                                                                                                                                                                                                 | R/W  | 0h      | RESET<br>SYS   |
|        | 1=The the RTOS Timer Preload Register is loaded into the timer counter and the counter is restarted when the counter transitions from 1 to 0 0=The timer counter halts when it transitions from 1 to 0 and will not restart |      |         | _010           |
| 0      | BLOCK_ENABLE                                                                                                                                                                                                                | R/W  | 0h      | RESET<br>_SYS  |
|        | 1=RTOS timer counter is enabled<br>0=RTOS timer disabled. All register bits are reset to their default<br>state                                                                                                             |      |         | _510           |

# **CEC1712**

# 16.9.4 SOFT INTERRUPT REGISTER

| Offset | 0Ch                                                                                                                                                |      |         |                |
|--------|----------------------------------------------------------------------------------------------------------------------------------------------------|------|---------|----------------|
| Bits   | Description                                                                                                                                        | Туре | Default | Reset<br>Event |
| 31:4   | Reserved                                                                                                                                           | RES  | -       | -              |
| 3      | SWI_3 Software Interrupt. A write of a '1' to this bit will generate an SWI interrupt to the EC. Writes of a '0' have no effect. Reads return '0'. | W    | Oh      | RESE<br>T_SYS  |
| 2      | SWI_2 Software Interrupt. A write of a '1' to this bit will generate an SWI interrupt to the EC. Writes of a '0' have no effect. Reads return '0'. | W    | 0h      | RESE<br>T_SYS  |
| 1      | SWI_1 Software Interrupt. A write of a '1' to this bit will generate an SWI interrupt to the EC. Writes of a '0' have no effect. Reads return '0'. | W    | 0h      | RESE<br>T_SYS  |
| 0      | SWI_0 Software Interrupt. A write of a '1' to this bit will generate an SWI interrupt to the EC. Writes of a '0' have no effect. Reads return '0'. | W    | Oh      | RESE<br>T_SYS  |

## 17.0 REAL TIME CLOCK

## 17.1 Introduction

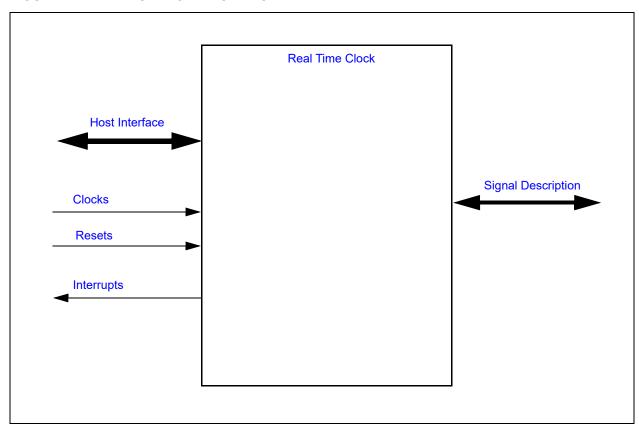
This block provides the capabilities of an industry-standard 146818B Real-Time Clock module, without CMOS RAM. Enhancements to this architecture include:

- · Industry standard Day of Month Alarm field, allowing for monthly alarms
- · Configurable, automatic Daylight Savings adjustment
- · Week Alarm for periodic interrupts and wakes based on Day of Week
- · System Wake capability on interrupts.

## 17.2 References

- 1. Motorola 146818B Data Sheet, available on-line
- 2. Intel Lynx Point PCH EDS specification

# 17.3 Terminology


Time and Date Registers:

This is the set of registers that are automatically counted by hardware every 1 second while the block is enabled to run and to update. These registers are: **Seconds**, **Minutes**, **Hours**, **Day of Week**, **Day of Month**, **Month**, and **Year**.

## 17.4 Interface

This block's connections are entirely internal to the chip.

FIGURE 17-1: I/O DIAGRAM OF BLOCK



# 17.5 Signal Description

There are no external signals.

# 17.6 Host Interface

The registers defined for the Real Time Clock are accessible by the various hosts as indicated in Section 3.2, "Block Overview and Base Addresses".

# 17.7 Power, Clocks and Resets

This section defines the Power, Clock, and Reset parameters of the block.

## 17.7.1 POWER DOMAINS

# **TABLE 17-1: POWER SOURCES**

| Name     | Description                                                                                                             |  |
|----------|-------------------------------------------------------------------------------------------------------------------------|--|
| VBAT     | This power well sources all of the internal registers and logic in this block.                                          |  |
| VTR_CORE | This power well sources only host register accesses. The block continues to operate internally while this rail is down. |  |

## 17.7.2 CLOCKS

## TABLE 17-2: CLOCKS

| Name  | Description                                                                  |
|-------|------------------------------------------------------------------------------|
| 32KHz | This clock input drives all internal logic, and will be present at all times |
|       | that the VBAT well is powered.                                               |

#### 17.7.3 RESETS

# **TABLE 17-3: RESET SIGNALS**

| Name       | Description                                                                                                                                                                                                                               |
|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| RESET_VBAT | This reset signal is used in the RESET_RTC signal to reset all of the registers and logic in this block. It directly resets the Soft Reset bit in the RTC Control Register.                                                               |
| RESET_RTC  | This reset signal resets all of the registers and logic in this block, except for the Soft Reset bit in the RTC Control Register. It is triggered by RESET_VBAT, but can also be triggered by a SOFT_RESET from the RTC Control Register. |
| RESET_SYS  | This reset signal is used to inhibit the bus communication logic, and isolates this block from VTR_CORE powered circuitry on-chip. Otherwise it has no effect on the internal state.                                                      |
| SOFT_RESET | This is the block reset and resets all the registers and logic in the block                                                                                                                                                               |

# 17.8 Interrupts

# TABLE 17-4: SYSTEM INTERRUPTS

| Source | Description                                                                                                 |
|--------|-------------------------------------------------------------------------------------------------------------|
| RTC    | This interrupt source for the SIRQ logic is generated when any of the following events occur:               |
|        | Update complete. This is triggered, at 1-second intervals, when the<br>Time register updates have completed |
|        | Alarm. This is triggered when the alarm value matches the current time (and date, if used)                  |
|        | Periodic. This is triggered at the chosen programmable rate                                                 |

**TABLE 17-5: EC INTERRUPTS** 

| Source    | Description                                                                                                 |
|-----------|-------------------------------------------------------------------------------------------------------------|
| RTC       | This interrupt is signaled to the Interrupt Aggregator when any of the following events occur:              |
|           | Update complete. This is triggered, at 1-second intervals, when the<br>Time register updates have completed |
|           | Alarm. This is triggered when the alarm value matches the current time (and date, if used)                  |
|           | Periodic. This is triggered at the chosen programmable rate                                                 |
| RTC ALARM | This wake interrupt is signaled to the Interrupt Aggregator when an Alarm event occurs.                     |

# 17.9 Low Power Modes

The RTC has no low-power modes. It runs continuously while the VBAT well is powered.

# 17.10 Description

This block provides the capabilities of an industry-standard 146818B Real-Time Clock module, excluding the CMOS RAM and the SQW output. See the following registers, which represent enhancements to this architecture. These enhancements are listed below.

See the Date Alarm field of Register D for a Day of Month qualifier for alarms.

See the Week Alarm Register for a Day of Week qualifier for alarms.

See the registers Daylight Savings Forward Register and Daylight Savings Backward Register for setting up hands-off Daylight Savings adjustments.

See the RTC Control Register for enhanced control over the block's operations.

## 17.11 Runtime Registers

The registers listed in the Runtime Register Summary table are for a single instance of the Real Time Clock. Host access for each register listed in this table is defined as an offset in the Host address space to the Block's Base Address, as defined by the instance's Base Address Register.

The EC address for each register is formed by adding the Base Address for each instance of the Real Time Clock shown in the Block Overview and Base Address Table in Section 3.0, "Device Inventory" to the offset shown in the "Offset" column.

**TABLE 17-6: RUNTIME REGISTER SUMMARY** 

| Offset | Register Name          |
|--------|------------------------|
| 00h    | Seconds Register       |
| 01h    | Seconds Alarm Register |
| 02h    | Minutes Register       |
| 03h    | Minutes Alarm Register |
| 04h    | Hours Register         |
| 05h    | Hours Alarm Register   |
| 06h    | Day of Week Register   |
| 07h    | Day of Month Register  |
| 08h    | Month Register         |
| 09h    | Year Register          |
| 0Ah    | Register A             |
| 0Bh    | Register B             |

TABLE 17-6: RUNTIME REGISTER SUMMARY (CONTINUED)

| Offset | Register Name                      |
|--------|------------------------------------|
| 0Ch    | Register C                         |
| 0Dh    | Register D                         |
| 0Eh    | Reserved                           |
| 0Fh    | Reserved                           |
| 10h    | RTC Control Register               |
| 14h    | Week Alarm Register                |
| 18h    | Daylight Savings Forward Register  |
| 1Ch    | Daylight Savings Backward Register |
| 20h    | TEST                               |

**Note:** This extended register set occupies offsets that have historically been used as CMOS RAM. Code ported to use this block should be examined to ensure that it does not assume that RAM exists in this block.

## 17.11.1 SECONDS REGISTER

| Offset | 00h                                                                                                                                                                                                                                                           |      |         |                |
|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|---------|----------------|
| Bits   | Description                                                                                                                                                                                                                                                   | Туре | Default | Reset<br>Event |
| 7:0    | SECONDS Displays the number of seconds past the current minute, in the range 059. Presentation may be selected as binary or BCD, depending on the DM bit in Register B. Values written must also use the format defined by the current setting of the DM bit. | R/W  | 00h     | RESET _RTC     |

## 17.11.2 SECONDS ALARM REGISTER

| Offset | 01h                                                                                                                                                                                                                                                                                                       |      |         |                |
|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|---------|----------------|
| Bits   | Description                                                                                                                                                                                                                                                                                               | Туре | Default | Reset<br>Event |
| 7:0    | SECONDS_ALARM Holds a match value, compared against the Seconds Register to trigger the Alarm event. Values written to this register must use the format defined by the current setting of the DM bit in Register B. A value of 11xxxxxxb written to this register makes it don't-care (always matching). | R/W  | 00h     | RESET<br>_RTC  |

# 17.11.3 MINUTES REGISTER

| Offset | 02h                                                                                                                                                                                                                                                         |      |         |                |
|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|---------|----------------|
| Bits   | Description                                                                                                                                                                                                                                                 | Туре | Default | Reset<br>Event |
| 7:0    | MINUTES Displays the number of minutes past the current hour, in the range 059. Presentation may be selected as binary or BCD, depending on the DM bit in Register B. Values written must also use the format defined by the current setting of the DM bit. | R/W  | 00h     | RESET_<br>RTC  |

# 17.11.4 MINUTES ALARM REGISTER

| Offset | 03h                                                                                                                                                                                                                                                                                                        |      |         |                |
|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|---------|----------------|
| Bits   | Description                                                                                                                                                                                                                                                                                                | Туре | Default | Reset<br>Event |
| 7:0    | MINUTES_ALARM Holds a match value, compared against the Minutes Register to trigger the Alarm event. Values written to this register must use the format defined by the current setting of the DM bit in Register B. A value of 11xxxxxxxb written to this register makes it don't-care (always matching). | R/W  | 00h     | RESET<br>_RTC  |

# 17.11.5 HOURS REGISTER

| Offset | 04h                                                                                                                                                                                                                                                                                                                         |      |         |                |
|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|---------|----------------|
| Bits   | Description                                                                                                                                                                                                                                                                                                                 | Туре | Default | Reset<br>Event |
| 7      | HOURS_AM_PM In 12-hour mode (see bit "24/12" in register B), this bit indicates AM or PM.  1=PM 0=AM                                                                                                                                                                                                                        | R/W  | 0b      | RESET<br>_RTC  |
| 6:0    | HOURS Displays the number of the hour, in the range 112 for 12-hour mode (see bit "24/12" in register B), or in the range 023 for 24-hour mode. Presentation may be selected as binary or BCD, depending on the DM bit in Register B. Values written must also use the format defined by the current setting of the DM bit. | R/W  | 00h     | RESET<br>_RTC  |

# 17.11.6 HOURS ALARM REGISTER

| Offset | 05h                                                                                                                                                                                                                                                                                                                      |      |         |                |
|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|---------|----------------|
| Bits   | Description                                                                                                                                                                                                                                                                                                              | Туре | Default | Reset<br>Event |
| 7:0    | HOURS_ALARM Holds a match value, compared against the Hours Register to trigger the Alarm event. Values written to this register must use the format defined by the current settings of the DM bit and the 24/12 bit in Register B. A value of 11xxxxxxb written to this register makes it don't-care (always matching). | R/W  | 00h     | RESET<br>_RTC  |

# 17.11.7 DAY OF WEEK REGISTER

| Offset | 06h                                                                                                                                                                                                     |      |         |                |
|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|---------|----------------|
| Bits   | Description                                                                                                                                                                                             | Туре | Default | Reset<br>Event |
| 7:0    | DAY_OF_WEEK                                                                                                                                                                                             | R/W  | 00h     | RESET          |
|        | Displays the day of the week, in the range 1 (Sunday) through 7 (Saturday). Numbers in this range are identical in both binary and BCD notation, so this register's format is unaffected by the DM bit. |      |         | _RTC           |

# 17.11.8 DAY OF MONTH REGISTER

| Offset | 07h                                                                                                                                                                                                                                               |      |         |                |
|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|---------|----------------|
| Bits   | Description                                                                                                                                                                                                                                       | Туре | Default | Reset<br>Event |
| 7:0    | DAY_OF_MONTH Displays the day of the current month, in the range 131. Presentation may be selected as binary or BCD, depending on the DM bit in Register B. Values written must also use the format defined by the current setting of the DM bit. | R/W  | 00h     | RESET<br>_RTC  |

# 17.11.9 MONTH REGISTER

| Offset | 08h                                                                                                                                                                                                                     |      |         |                |
|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|---------|----------------|
| Bits   | Description                                                                                                                                                                                                             | Туре | Default | Reset<br>Event |
| 7:0    | MONTH Displays the month, in the range 112. Presentation may be selected as binary or BCD, depending on the DM bit in Register B. Values written must also use the format defined by the current setting of the DM bit. | R/W  | 00h     | RESET<br>_RTC  |

# 17.11.10 YEAR REGISTER

| Offset | 09h                                                                                                                                                                                                                                                                                    |      |         |                |
|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|---------|----------------|
| Bits   | Description                                                                                                                                                                                                                                                                            | Туре | Default | Reset<br>Event |
| 7:0    | YEAR                                                                                                                                                                                                                                                                                   | R/W  | 00h     | RESET          |
|        | Displays the number of the year in the current century, in the range 0 (year 2000) through 99 (year 2099). Presentation may be selected as binary or BCD, depending on the DM bit in Register B. Values written must also use the format defined by the current setting of the DM bit. |      |         | _RTC           |

# 17.11.11 REGISTER A

| Offset | 0Ah                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      |         |                |
|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|---------|----------------|
| Bits   | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Туре | Default | Reset<br>Event |
| 7      | UPDATE_IN_PROGRESS '0' indicates that the Time and Date registers are stable and will not be altered by hardware soon. '1' indicates that a hardware update of the Time and Date registers may be in progress, and those registers should not be accessed by the host program. This bit is set to '1' at a point 488us (16 cycles of the 32K clock) before the update occurs, and is cleared immediately after the update. See also the Update-Ended Interrupt, which provides more useful status.      | R    | Ob      | RESET<br>_RTC  |
| 6:4    | DIVISION_CHAIN_SELECT This field provides general control for the Time and Date register updating logic.  11xb=Halt counting. The next time that 010b is written, updates will begin 500ms later.  010b=Required setting for normal operation. It is also necessary to set the Block Enable bit in the RTC Control Register to '1' for counting to begin  000b=Reserved. This field should be initialized to another value before Enabling the block in the RTC Control Register  Other values Reserved | R/W  | 000Ь    | RESET<br>_RTC  |
| 3:0    | RATE_SELECT This field selects the rate of the Periodic Interrupt source. See Table 17-7                                                                                                                                                                                                                                                                                                                                                                                                                | R/W  | 0h      | RESET _RTC     |

TABLE 17-7: REGISTER A FIELD RS: PERIODIC INTERRUPT SETTINGS

| RS (hex) | Interrupt Period |
|----------|------------------|
| 0        | Never Triggered  |
| 1        | 3.90625 ms       |
| 2        | 7.8125 ms        |
| 3        | 122.070 us       |
| 4        | 244.141 us       |
| 5        | 488.281 us       |
| 6        | 976.5625 us      |
| 7        | 1.953125 ms      |
| 8        | 3.90625 ms       |
| 9        | 7.8125 ms        |
| Α        | 15.625 ms        |
| В        | 31.25 ms         |
| С        | 62.5 ms          |
| D        | 125 ms           |
| E        | 250 ms           |
| F        | 500 ms           |

# **CEC1712**

## 17.11.12 REGISTER B

| Offset | 0Bh                                                                                                                                                                                                                                                                                                                        |     |         | _              |
|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|---------|----------------|
| Bits   | its Description                                                                                                                                                                                                                                                                                                            |     | Default | Reset<br>Event |
| 7      | 7 UPDATE_CYCLE_INHIBIT In its default state '0', this bit allows hardware updates to the Time and Date registers, which occur at 1-second intervals. A '1' written to this field inhibits updates, allowing these registers to be cleanly written to different values. Writing '0' to this bit allows updates to continue. |     | 0b      | RESET<br>_RTC  |
| 6      | PERIODIC_INTERRUPT_ENABLE  1=Alows the Periodic Interrupt events to be propagated as interrupts 0=Periodic events are not propagates as interrupts                                                                                                                                                                         | R/W | 0b      | RESET<br>_RTC  |
| 5      | ALARM_INTERRUPT_ENABLE  1=Alows the Alarm Interrupt events to be propagated as interrupts 0=Alarm events are not propagates as interrupts                                                                                                                                                                                  | R/W | 0b      | RESET<br>_RTC  |
| 4      | 4 UPDATE_ENDED_INTERRUPT_ENABLE  1=Alows the Update Ended Interrupt events to be propagated as interrupts 0=Update Ended events are not propagates as interrupts                                                                                                                                                           |     | 0b      | RESET<br>_RTC  |
| 3      | Reserved                                                                                                                                                                                                                                                                                                                   | RES | -       | -              |
| 2      | DATA_MODE  1=Binary Mode for Dates and Times  0=BCD Mode for Dates and Times                                                                                                                                                                                                                                               | R/W | 0b      | RESET<br>_RTC  |
| 1      |                                                                                                                                                                                                                                                                                                                            |     | 0b      | RESET _RTC     |
| 0      | DAYLIGHT_SAVINGS_ENABLE  1=Enables automatic hardware updating of the hour, using the registers Daylight Savings Forward and Daylight Savings Backward to select the yearly date and hour for each update  0=Automatic Daylight Savings updates disabled                                                                   | R/W | 0b      | RESET<br>_RTC  |

Note: The DATA\_MODE and HOUR\_FORMAT\_24\_12 bits affect only how values are presented as they are being read and how they are interpreted as they are being written. They do not affect the internal contents or interpretations of registers that have already been written, nor do they affect how those registers are represented or counted internally. This mode bits may be set and cleared dynamically, for whatever I/O data representation is desired by the host program.

# 17.11.13 REGISTER C

| Offset | 0Ch                                                                                                                                                                                                                                                                                           |      |         |                |
|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|---------|----------------|
| Bits   | Description                                                                                                                                                                                                                                                                                   | Туре | Default | Reset<br>Event |
| 7      | INTERRUPT_REQUEST_FLAG  1=Any of bits[6:4] below is active after masking by their respective Enable bits in Register B.                                                                                                                                                                       | RC   | 0b      | RESET<br>_RTC  |
|        | 0=No bits in this register are active  This bit is automatically cleared by every Read access to this register.                                                                                                                                                                               |      |         |                |
| 6      | PERIODIC_INTERRUPT_FLAG                                                                                                                                                                                                                                                                       | RC   | 0b      | RESET<br>_RTC  |
|        | 1=A Periodic Interrupt event has occurred since the last time this register was read. This bit displays status regardless of the Periodic Interrupt Enable bit in Register B 0=A Periodic Interrupt event has not occurred                                                                    |      |         |                |
|        | This bit is automatically cleared by every Read access to this register.                                                                                                                                                                                                                      |      |         |                |
| 5      | ALARM_FLAG                                                                                                                                                                                                                                                                                    | RC   | 0b      | RESET _RTC     |
|        | 1=An Alarm event has occurred since the last time this register was read. This bit displays status regardless of the Alarm Interrupt Enable bit in Register B.  0=An Alarm event has not occurred                                                                                             |      |         |                |
|        | This bit is automatically cleared by every Read access to this register.                                                                                                                                                                                                                      |      |         |                |
| 4      | UPDATE_ENDED_INTERRUPT_FLAG                                                                                                                                                                                                                                                                   | RC   | 0b      | RESET<br>_RTC  |
|        | 1=A Time and Date update has completed since the last time this register was read. This bit displays status regardless of the Update-Ended Interrupt Enable bit in Register B. Presentation of this status indicates that the Time and Date registers will be valid and stable for over 999ms |      |         |                |
|        | 0=A Time and Data update has not completed since the last time this register was read                                                                                                                                                                                                         |      |         |                |
|        | This bit is automatically cleared by every Read access to this register.                                                                                                                                                                                                                      |      |         |                |
| 3:0    | Reserved                                                                                                                                                                                                                                                                                      | RES  | -       | -              |

# 17.11.14 REGISTER D

| Offset | 0Dh                                                                                                                                                                                                                                                     |      |         |                |
|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|---------|----------------|
| Bits   | Description                                                                                                                                                                                                                                             | Туре | Default | Reset<br>Event |
| 7:6    | Reserved                                                                                                                                                                                                                                                | RES  | -       | -              |
| 5:0    | DATE_ALARM This field, if set to a non-zero value, will inhibit the Alarm interrupt unless this field matches the contents of the Month register also. If this field contains 00h (default), it represents a don't-care, allowing more frequent alarms. | R/W  | 00h     | RESET<br>_RTC  |

# 17.11.15 RTC CONTROL REGISTER

| Offset | 10h                                                                                                                                                                                                             |      |         |                |
|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|---------|----------------|
| Bits   | Description                                                                                                                                                                                                     | Туре | Default | Reset<br>Event |
| 7:4    | Reserved                                                                                                                                                                                                        | RES  | -       | -              |
| 3      | ALARM_ENABLE                                                                                                                                                                                                    | R/W  | 0b      | RESET<br>_RTC  |
|        | 1=Enables the Alarm features<br>0=Disables the Alarm features                                                                                                                                                   |      |         |                |
| 2      | VCI_ENABLE                                                                                                                                                                                                      | R/W  | 0b      | RESET _RTC     |
|        | 1= RTC Alarm event is routed to chip level VCI Circuitry 0= RTC alarm event is inhibited from affecting the VCI circuitry                                                                                       |      |         |                |
| 1      | SOFT_RESET A '1' written to this bit position will trigger the RESET_RTC reset, resetting the block and all registers except this one and the Test Register. This bit is self-clearing at the end of the reset. | R/W  | 0b      | RESET _VBAT    |
| 0      | BLOCK_ENABLE This bit must be '1' in order for the block to function internally. Registers may be initialized first, before setting this bit to '1' to start operation.                                         | R/W  | 0b      | RESET _RTC     |

# 17.11.16 WEEK ALARM REGISTER

| Offset | 14h                                                                                                                                                                                                                                                                                                                                                                            |      |         |                |
|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|---------|----------------|
| Bits   | Description                                                                                                                                                                                                                                                                                                                                                                    | Туре | Default | Reset<br>Event |
| 7:0    | ALARM_DAY_OF_WEEK This register, if written to a value in the range 17, will inhibit the Alarm interrupt unless this field matches the contents of the Day of Week Register also. If this field is written to any value 11xxxxxxb (like the default FFh), it represents a don't-care, allowing more frequent alarms, and will read back as FFh until another value is written. | R/W  | FFh     | RESET<br>_RTC  |

# 17.11.17 DAYLIGHT SAVINGS FORWARD REGISTER

| Offset | 18h                                                                                                                                                                                                           |      |         |                |
|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|---------|----------------|
| Bits   | Description                                                                                                                                                                                                   | Туре | Default | Reset<br>Event |
| 31     | DST_FORWARD_AM_PM This bit selects AM vs. PM, to match bit[7] of the Hours Register if 12-Hour mode is selected in Register B at the time of writing.                                                         | R/W  | 0b      | RESET<br>_RTC  |
| 30:24  | DST_FORWARD_HOUR This field holds the matching value for bits[6:0] of the Hours register. The written value will be interpreted according to the 24/12 Hour mode and DM mode settings at the time of writing. | R/W  | 00h     | RESET<br>_RTC  |
| 23:19  | Reserved                                                                                                                                                                                                      | RES  | -       | -              |

| Offset | 18h                                                                                                                                                                                                                                                  |      |         |                |
|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|---------|----------------|
| Bits   | Description                                                                                                                                                                                                                                          | Туре | Default | Reset<br>Event |
| 18:16  | DST_FORWARD_WEEK This value matches an internally-maintained week number within the current month. Valid values for this field are:  5=Last week of month 4 =Fourth week of month 3=Third week of month 2=Second week of month 1=First week of month | R/W  | 0h      | RESET _RTC     |
| 15:11  | Reserved                                                                                                                                                                                                                                             | RES  | -       | -              |
| 10:8   | DST_FORWARD_DAY_OF_WEEK This field matches the Day of Week Register bits[2:0].                                                                                                                                                                       | R/W  | 0h      | RESET _RTC     |
| 7:0    | DST_FORWARD_MONTH This field matches the Month Register.                                                                                                                                                                                             | R/W  | 00h     | RESET<br>_RTC  |

This is a 32-bit register, accessible also as individual bytes. When writing as individual bytes, ensure that the DSE bit (in Register B) is off first, or that the block is disabled or stopped (SET bit), to prevent a time update while this register may have incompletely-updated contents.

When enabled by the DSE bit in Register B, this register defines an hour and day of the year at which the Hours register will be automatically incremented by 1 additional hour.

There are no don't-care fields recognized. All fields must be already initialized to valid settings whenever the DSE bit is '1'.

Fields other than Week and Day of Week use the current setting of the DM bit (binary vs. BCD) to interpret the information as it is written to them. Their values, as held internally, are not changed by later changes to the DM bit, without subsequently writing to this register as well.

**Note:** An Alarm that is set inside the hour after the time specified in this register will not be triggered, because that one-hour period is skipped. This period includes the exact time (0 minutes: 0 seconds) given by this register, through the 59 minutes: 59 seconds point afterward.

## 17.11.18 DAYLIGHT SAVINGS BACKWARD REGISTER

| Offset | 1Ch                                                                                                                                                                                                            |      |         |                |
|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|---------|----------------|
| Bits   | Description                                                                                                                                                                                                    | Туре | Default | Reset<br>Event |
| 31     | DST_BACKWARD_AM_PM This bit selects AM vs. PM, to match bit[7] of the Hours register if 12-Hour mode is selected in Register B at the time of writing.                                                         | R/W  | 0b      | RESET<br>_RTC  |
| 30:24  | DST_BACKWARD_HOUR This field holds the matching value for bits[6:0] of the Hours register. The written value will be interpreted according to the 24/12 Hour mode and DM mode settings at the time of writing. | R/W  | 00h     | RESET<br>_RTC  |
| 23:19  | Reserved                                                                                                                                                                                                       | RES  | -       | -              |

# **CEC1712**

| Offset | 1Ch                                                                                                                                                                                                                                                   |      |         |                |
|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|---------|----------------|
| Bits   | Description                                                                                                                                                                                                                                           | Туре | Default | Reset<br>Event |
| 18:16  | DST_BACKWARD_WEEK This value matches an internally-maintained week number within the current month. Valid values for this field are:  5=Last week of month 4 =Fourth week of month 3=Third week of month 2=Second week of month 1=First week of month | R/W  | 0h      | RESET<br>_RTC  |
| 15:11  | Reserved                                                                                                                                                                                                                                              | RES  | -       | -              |
| 10:8   | DST_BACKWARD_DAY_OF_WEEK This field matches the Day of Week Register bits[2:0].                                                                                                                                                                       | R/W  | 0h      | RESET<br>_RTC  |
| 7:0    | DST_BACKWARD_MONTH This field matches the Month Register.                                                                                                                                                                                             | R/W  | 00h     | RESET _RTC     |

This is a 32-bit register, accessible also as individual bytes. When writing as individual bytes, ensure that the DSE bit (in Register B) is off first, or that the block is disabled or stopped (SET bit), to prevent a time update while this register may have incompletely-updated contents.

When enabled by the DSE bit in Register B, this register defines an hour and day of the year at which the Hours register increment will be inhibited from occurring. After triggering, this feature is automatically disabled for long enough to ensure that it will not retrigger the second time this Hours value appears, and then this feature is re-enabled automatically.

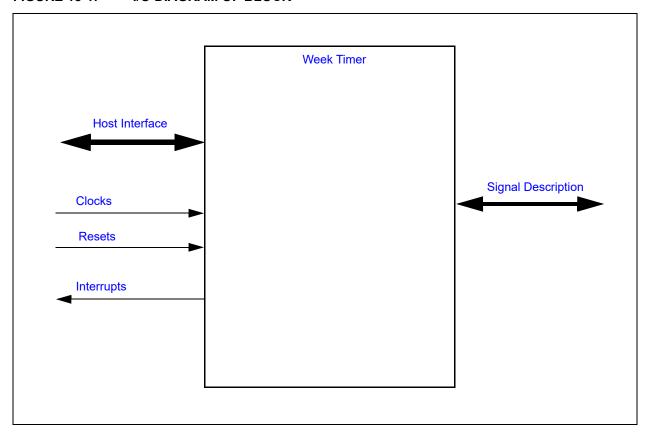
There are no don't-care fields recognized. All fields must be already initialized to valid settings whenever the DSE bit is '1'.

Fields other than Week and Day of Week use the current setting of the DM bit (binary vs. BCD) to interpret the information as it is written to them. Their values, as held internally, are not changed by later changes to the DM bit, without subsequently writing to this register as well.

**Note:** An Alarm that is set inside the hour before the time specified in this register will be triggered twice, because that one-hour period is repeated. This period will include the exact time (0 minutes: 0 seconds) given by this register, through the 59 minutes: 59 seconds point afterward.

## 18.0 WEEK TIMER

## 18.1 Introduction


The Week Alarm Interface provides two timekeeping functions: a Week Timer and a Sub-Week Timer. Both the Week Timer and the Sub-Week Timer assert the Power-Up Event Output which automatically powers-up the system from the G3 state. Features include:

- EC interrupts based on matching a counter value
- · Repeating interrupts at 1 second and sub-1 second intervals
- · System Wake capability on interrupts, including Wake from Heavy Sleep

## 18.2 Interface

This block's connections are entirely internal to the chip.

FIGURE 18-1: I/O DIAGRAM OF BLOCK



# 18.3 Signal Description

TABLE 18-1: SIGNAL DESCRIPTION TABLE

| Name              | Direction | Description                                  |
|-------------------|-----------|----------------------------------------------|
| BGPO              | OUTPUT    | Battery-powered general purpose outputs      |
| SYSPWR_PRES INPUT |           | Input signal used to gate the POWER_UP_EVENT |

Note 1: Please refer to TABLE 1-1: for the number of BGPO's and SYSPWR\_PRES availability in the package.

# 18.4 Host Interface

The registers defined for the Week Timer are accessible only by the EC.

# 18.5 Power, Clocks and Resets

This section defines the Power, Clock, and Reset parameters of the block.

# 18.5.1 POWER DOMAINS

## TABLE 18-3: POWER SOURCES

| Name     | Description                                                                                                             |
|----------|-------------------------------------------------------------------------------------------------------------------------|
| VBAT     | This power well sources all of the internal registers and logic in this block.                                          |
| VTR_CORE | This power well sources only host register accesses. The block continues to operate internally while this rail is down. |

# 18.5.2 CLOCKS

# TABLE 18-4: CLOCKS

| Name  | Description                                                                                                       |
|-------|-------------------------------------------------------------------------------------------------------------------|
| 48MHz | Clock used for host register access                                                                               |
| 32KHz | This 32KHz clock input drives all internal logic, and will be present at all times that the VBAT well is powered. |

# 18.5.3 RESETS

## **TABLE 18-5: RESET SIGNALS**

| Name       | Description                                                                                                                                                                      |
|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| RESET_VBAT | This reset signal is used reset all of the registers and logic in this block.                                                                                                    |
| RESET_SYS  | This reset signal is used to inhibit the Host register access and isolates this block from VTR_CORE powered circuitry on-chip. Otherwise it has no effect on the internal state. |

## 18.6 Interrupts

**TABLE 18-6: EC INTERRUPTS** 

| Source             | Description                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| WEEK_ALARM_INT     | This interrupt is signaled to the Interrupt Aggregator when the Week Alarm Counter Register is greater than or equal to the Week Timer Compare Register. The interrupt signal is always generated by the Week Timer if the block is enabled; the interrupt is enabled or disabled in the Interrupt Aggregator.                                                                                                                              |
| SUB_WEEK_ALARM_INT | This interrupt is signaled to the Interrupt Aggregator when the Sub-Week Alarm Counter Register decrements from '1' to '0'. The interrupt signal is always generated by the Week Timer if the block is enabled; the interrupt is enabled or disabled in the Interrupt Aggregator.                                                                                                                                                           |
| ONE_SECOND         | This interrupt is signaled to the Interrupt Aggregator at an isochronous rate of once per second. The interrupt signal is always generated by the Week Timer if the block is enabled; the interrupt is enabled or disabled in the Interrupt Aggregator.                                                                                                                                                                                     |
| SUB_SECOND         | This interrupt is signaled to the Interrupt Aggregator at an isochronous rate programmable between 0.5Hz and 32.768KHz. The rate interrupts are signaled is determined by the SPISR field in the Sub-Second Programmable Interrupt Select Register. See Table 18-9, "SPISR Encoding". The interrupt signal is always generated by the Week Timer if the block is enabled; the interrupt is enabled or disabled in the Interrupt Aggregator. |

#### 18.7 Low Power Modes

The Week Alarm has no low-power modes. It runs continuously while the VBAT well is powered.

## 18.8 Power-Up Events

The Week Timer POWER\_UP\_EVENT can be used to power up the system after a timed interval.

The POWER\_UP\_EVENT can be asserted under the following two conditions:

- 1. The Week Alarm Counter Register is greater than or equal to the Week Timer Compare Register
- 2. The Sub-Week Alarm Counter Register decrements from '1' to '0'

The assertion of the POWER\_UP\_EVENT is inhibited if the POWERUP\_EN field in the Control Register is '0'

Once a POWER\_UP\_EVENT is asserted the POWERUP\_EN bit must be cleared to reset the output. Clearing POWERUP\_EN is necessary to avoid unintended power-up cycles.

## 18.9 Description

The Week Alarm block provides battery-powered timekeeping functions, derived from a low-power 32KHz clock, that operate even when the device's main power is off. The block contains a set of counters that can be used to generate one-shot and periodic interrupts to the EC for periods ranging from about 30 microseconds to over 8 years. The Week Alarm can be used in conjunction with the VBAT-Powered Control Interface to power up a sleeping system after a configurable period.

In addition to basic timekeeping, the Week Alarm block can be used to control the battery-powered general purpose BGPO outputs.

## 18.9.1 INTERNAL COUNTERS

The Week Timer includes 3 counters:

#### 18.9.1.1 28-bit Week Alarm Counter

This counter is 28 bits wide. The clock for this counter is the overflow of the Clock Divider, and as long as the Week Timer is enabled, it is incremented at a 1 Hz rate.

Both an interrupt and a power-up event can be generated when the contents of this counter matches the contents of the Week Timer Compare Register.

## 18.9.1.2 9-bit Sub-Week Alarm Counter

This counter is 9 bits wide. It is decremented by 1 at each tick of its selected clock. It can be configured either as a one-shot or repeating event generator.

Both an interrupt and a power-up event can be generated when this counter decrements from 1 to 0.

The Sub-Week Alarm Counter can be configured with a number of different clock sources for its time base, derived from either the Week Alarm Counter or the Clock Divider, by setting the SUBWEEK\_TICK field of the Sub-Week Control Register.

TABLE 18-7: SUB-WEEK ALARM COUNTER CLOCK

| SUBWEEK_<br>TICK | Source                | SPISR            | Frequency  | Minimum<br>Duration | Maximum<br>Duration |
|------------------|-----------------------|------------------|------------|---------------------|---------------------|
| 0                |                       | Counter Disabled |            |                     |                     |
|                  |                       | 0                |            | Counter Disabled    |                     |
|                  |                       | 1                | 2 Hz       | 500 ms              | 255.5 sec           |
|                  |                       | 2                | 4 Hz       | 250 ms              | 127.8 sec           |
|                  |                       | 3                | 8 Hz       | 125 ms              | 63.9 sec            |
|                  |                       | 4                | 16 Hz      | 62.5                | 31.9 sec            |
|                  |                       | 5                | 32 Hz      | 31.25 ms            | 16.0 sec            |
|                  |                       | 6                | 64 Hz      | 15.6 ms             | 8 sec               |
| 4                | Sub-Second            | 7                | 128 Hz     | 7.8 ms              | 4 sec               |
| 1                | Sub-Second            | 8                | 256 Hz     | 3.9 ms              | 2 sec               |
|                  |                       | 9                | 512 Hz     | 1.95 ms             | 1 sec               |
|                  |                       | 10               | 1024 Hz    | 977 μS              | 499 ms              |
|                  |                       | 11               | 2048 Hz    | 488 μS              | 249.5 ms            |
|                  |                       | 12               | 4096 Hz    | 244 μS              | 124.8 ms            |
|                  |                       | 13               | 8192 Hz    | 122 μS              | 62.4 ms             |
|                  |                       | 14               | 16.384 KHz | 61.1 µS             | 31.2 ms             |
|                  |                       | 15               | 32.768 KHz | 30.5 μS             | 15.6 ms             |
| 2                | Second                | n/a              | 1 Hz       | 1 sec               | 511 sec             |
| 3                |                       |                  | Reserved   |                     |                     |
| 4                | Week Counter<br>bit 3 | n/a              | 125 Hz     | 8 sec               | 68.1 min            |
| 5                | Week Counter<br>bit 5 | n/a              | 31.25 Hz   | 32 sec              | 272.5 min           |
| 6                | Week Counter<br>bit 7 | n/a              | 7.8125 Hz  | 128 sec             | 18.17 hour          |
| 7                | Week Counter<br>bit 9 | n/a              | 1.95 Hz    | 512 sec             | 72.68 hour          |

**Note 1:** The Week Alarm Counter **must not** be modified by firmware if Sub-Week Alarm Counter is using the Week Alarm Counter as its clock source (i.e., the SUBWEEK\_TICK field is set to any of the values 4, 5, 6 or 7). The Sub-Week Alarm Counter must be disabled before changing the Week Alarm Counter. For example, the following sequence may be used:

1.Write 0h to the Sub-Week Alarm Counter Register (disabling the Sub-Week Counter)

2. Write the Week Alarm Counter Register

3. Write a new value to the Sub-Week Alarm Counter Register, restarting the Sub-Week Counter

## 18.9.1.3 15-bit Clock Divider

This counter is 15 bits wide. The clock for this counter is 32KHz, and as long as the Week Timer is enabled, it is incremented at 32.768KHz rate. The Clock Divider automatically The Clock Divider generates a clock out of 1 Hz when the counter wraps from 7FFFh to 0h.

By selecting one of the 15 bits of the counter, using the Sub-Second Programmable Interrupt Select Register, the Clock Divider can be used either to generate a time base for the Sub-Week Alarm Counter or as an isochronous interrupt to the EC, the SUB\_SECOND interrupt. See Table 18-9, "SPISR Encoding" for a list of available frequencies.

#### 18.9.2 TIMER VALID STATUS

If power on reset occurs on the VBAT power rail while the main device power is off, the counters in the Week Alarm are invalid. If firmware detects a POR on the VBAT power rail after a system boot, by checking the status bits in the Power, Clocks and Resets registers, the Week Alarm block must be reinitialized.

## 18.9.3 APPLICATION NOTE: REGISTER TIMING

Register writes in the Week Alarm complete within two cycles of the 32KHz clock. The write completes even if the main system clock is stopped before the two cycles of the 32K clock complete. Register reads complete in one cycle of the internal bus clock.

All Week Alarm interrupts that are asserted within the same cycle of the 32KHz clock are synchronously asserted to the EC.

#### 18.9.4 APPLICATION NOTE: USE OF THE WEEK TIMER AS A 43-BIT COUNTER

The Week Timer cannot be directly used as a 42-bit counter that is incremented directly by the 32.768KHz clock domain. The upper 28 bits (28-bit Week Alarm Counter) are incremented at a 1Hz rate and the lower 16 bits (15-bit Clock Divider) are incremented at a 32.768KHz rate, but the increments are not performed in parallel. In particular, the upper 28 bits are incremented when the lower 15 bits increment from 0 to 1, so as long as the Clock Divider Register is 0 the two registers together, treated as a single value, have a smaller value then before the lower register rolled over from 7FFFh to 0h

The following code can be used to treat the two registers as a single large counter. This example extracts a 32-bit value from the middle of the 43-bit counter:

```
dword TIME_STAMP(void)
{
    AHB_dword wct_value;
    AHB_dword cd_value1;
    AHB_dword cd_value2;
    dword irqEnableSave;

    //Disable interrupts
    irqEnableSave = IRQ_ENABLE;
    IRQ_ENABLE = 0;

    //Read 15-bit clk divider reading register, save result in A cd_value1 = WTIMER->CLOCK_DIVIDER;
    //Read 28 bit up-counter timer register, save result in B wct_value = WTIMER->WEEK_COUNTER_TIMER;
    //Read 15-bit clk divider reading register, save result in C cd_value2 = WTIMER->CLOCK_DIVIDER;

if (0 == cd_value2)
```

```
{
    wct_value = wct_value + 1;
}
else if ( (cd_value2 < cd_value1) || (0 == cd_value1))
{
    wct_value = WTIMER->WEEK_COUNTER_TIMER;
}

//Enable interrupts
IRQ_ENABLE = irqEnableSave;

return (WTIMER_BASE + ((wct_value << 10) | (cd_value2>>5)));
}
```

# 18.10 Battery-Powered General Purpose Outputs

The Week Timer contains the control logic for Battery-Powered General Purposes Outputs (BGPOs). These are outputonly pins whose state can be controlled by firmware and preserved when the device is operating on VBAT power alone.

# 18.11 EC Registers

Registers for this block are shown in the following summary table. Addresses for each register are determined by adding the offset to the Base Address for each instance of the Week Timer Block in the Block Overview and Base Address Table in Section 3.0, "Device Inventory".

**TABLE 18-8: REGISTER SUMMARY** 

| Offset | Register Name                                     |
|--------|---------------------------------------------------|
| 00h    | Control Register                                  |
| 04h    | Week Alarm Counter Register                       |
| 08h    | Week Timer Compare Register                       |
| 0Ch    | Clock Divider Register                            |
| 10h    | Sub-Second Programmable Interrupt Select Register |
| 14h    | Sub-Week Control Register                         |
| 18h    | Sub-Week Alarm Counter Register                   |

# 18.11.1 CONTROL REGISTER

| Offset | 00h                                                                                                                                                                                                                                                                                                                                                                                                                                                 |      |         |                |
|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|---------|----------------|
| Bits   | Description                                                                                                                                                                                                                                                                                                                                                                                                                                         | Туре | Default | Reset<br>Event |
| 31:7   | Reserved                                                                                                                                                                                                                                                                                                                                                                                                                                            | RES  | -       | -              |
| 6      | POWERUP_EN This bit controls the state of the Power-Up Event Output and enables Week POWER-UP Event decoding in the VBAT-Powered Control Interface. See Section 18.8, "Power-Up Events" for a functional description of the POWER-UP_EN bit.  1=Power-Up Event Output Enabled 0=Power-Up Event Output Disabled and Reset                                                                                                                            | R/W  | 00h     | RESET _VBAT    |
| 5:1    | Reserved                                                                                                                                                                                                                                                                                                                                                                                                                                            | RES  | -       | -              |
| 0      | WT_ENABLE The WT_ENABLE bit is used to start and stop the Week Alarm Counter Register and the Clock Divider Register.  The value in the Counter Register is held when the WT_ENABLE bit is not asserted ('0') and the count is resumed from the last value when the bit is asserted ('1').  The 15-Bit Clock Divider is reset to 00h and the Week Alarm Interface is in its lowest power consumption state when the WT_EN-ABLE bit is not asserted. | R/W  | 1h      | RESET<br>_VBAT |

# 18.11.2 WEEK ALARM COUNTER REGISTER

| Offset | 04h                                                                                                                                                                                                                                                                          |      |         |                |
|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|---------|----------------|
| Bits   | Description                                                                                                                                                                                                                                                                  | Type | Default | Reset<br>Event |
| 31:28  | Reserved                                                                                                                                                                                                                                                                     | RES  | -       | -              |
| 27:0   | WEEK_COUNTER  While the WT_ENABLE bit is '1', this register is incremented at a 1 Hz rate. Writes of this register may require one second to take effect. Reads return the current state of the register. Reads and writes complete independently of the state of WT_ENABLE. | R/W  | 00h     | RESET<br>_VBAT |

# 18.11.3 WEEK TIMER COMPARE REGISTER

| Offset | 08h                                                                                                                                                                                                                                                 |      |         |                |
|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|---------|----------------|
| Bits   | Description                                                                                                                                                                                                                                         | Туре | Default | Reset<br>Event |
| 31:28  | Reserved                                                                                                                                                                                                                                            | RES  | -       | -              |
| 27:0   | WEEK_COMPARE A Week Alarm Interrupt and a Week Alarm Power-Up Event are asserted when the Week Alarm Counter Register is greater than or equal to the contents of this register. Reads and writes complete independently of the state of WT_ENABLE. | R/W  | FFFFFFh | RESET<br>_VBAT |

# 18.11.4 CLOCK DIVIDER REGISTER

| Offset | 0Ch                                                                                                    |      |         |                |
|--------|--------------------------------------------------------------------------------------------------------|------|---------|----------------|
| Bits   | Description                                                                                            | Type | Default | Reset<br>Event |
| 31:15  | Reserved                                                                                               | RES  | -       | -              |
| 14:0   | CLOCK_DIVIDER  Reads of this register return the current state of the Week Timer 15-bit clock divider. | R    | -       | RESET<br>_VBAT |

# 18.11.5 SUB-SECOND PROGRAMMABLE INTERRUPT SELECT REGISTER

| Offset | 10h                                                                                                                                                                                                 |      |         |                |
|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|---------|----------------|
| Bits   | Description                                                                                                                                                                                         | Type | Default | Reset<br>Event |
| 31:4   | Reserved                                                                                                                                                                                            | RES  | -       | -              |
| 3:0    | SPISR  This field determines the rate at which Sub-Second interrupt events are generated. Table 18-9, "SPISR Encoding" shows the relation between the SPISR encoding and Sub-Second interrupt rate. | R/W  | 00h     | RESET<br>_VBAT |

# TABLE 18-9: SPISR ENCODING

| SPISR Value | Sub-Second Interrupt Rate, Hz | Interrupt Period |  |
|-------------|-------------------------------|------------------|--|
| 0           | Interrupts disabled           |                  |  |
| 1           | 2                             | 500 ms           |  |
| 2           | 4                             | 250 ms           |  |
| 3           | 8                             | 125 ms           |  |

TABLE 18-9: SPISR ENCODING (CONTINUED)

| SPISR Value | Sub-Second Interrupt Rate, Hz | Interrupt Period |
|-------------|-------------------------------|------------------|
| 4           | 16                            | 62.5 ms          |
| 5           | 32                            | 31.25 ms         |
| 6           | 64                            | 15.63 ms         |
| 7           | 128                           | 7.813 ms         |
| 8           | 256                           | 3.906 ms         |
| 9           | 512                           | 1.953 ms         |
| 10          | 1024                          | 977 μS           |
| 11          | 2048                          | 488 μS           |
| 12          | 4096                          | 244 μS           |
| 13          | 8192                          | 122 μS           |
| 14          | 16384                         | 61 μS            |
| 15          | 32768                         | 30.5 μS          |

# 18.11.6 SUB-WEEK CONTROL REGISTER

| Offset | 14h                                                                                                                                                                                                                                                                                                                                                                    |      |         |                |
|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|---------|----------------|
| Bits   | Description                                                                                                                                                                                                                                                                                                                                                            | Type | Default | Reset<br>Event |
| 31:10  | Reserved                                                                                                                                                                                                                                                                                                                                                               | RES  | -       | -              |
| 9:7    | SUBWEEK_TICK This field selects the clock source for the Sub-Week Counter. See Table 18-7, "Sub-Week Alarm Counter Clock" for the description of the options for this field. See also Note 1.                                                                                                                                                                          | R/W  | 0       | RESET<br>_VBAT |
| 6      | AUTO_RELOAD  1= No reload occurs when the Sub-Week Counter expires  0= Reloads the SUBWEEK_COUNTER_LOAD field into the Sub-Week Counter when the counter expires.                                                                                                                                                                                                      | R/W  | 0       | RESET<br>_VBAT |
| 5      | SYSPWR_PRES_ENABLE This bit controls whether the SYSPWR_PRES input pin has an effect on the POWER_UP_EVENT signal from this block.  1=The POWER_UP_EVENT will only be asserted if the SYS-PWR_PRES input is high. If the SYSPWR_PRES input is low, the POWER_UP_EVENT will not be asserted  0=The SYSPWR_PRES input is ignored. It has no effect on the POWER_UP_EVENT | R/W  | 0       | RESET _VBAT    |
| 4      | SYSPWR_PRES_STATUS This bit provides the current state of the SYSPWR_PRES input pin.                                                                                                                                                                                                                                                                                   | R    | -       | RESET<br>_VBAT |
| 5      | TEST Must always be written with 0.                                                                                                                                                                                                                                                                                                                                    | R/W  | 0       | -              |
| 4:2    | Reserved                                                                                                                                                                                                                                                                                                                                                               | RES  | -       | -              |

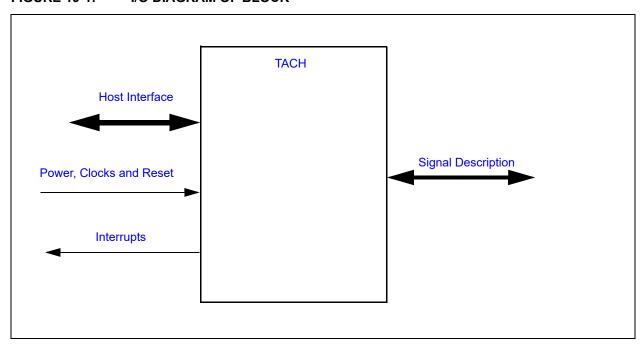
# **CEC1712**

| Offset | 14h                                                                                                                                                                                                                                                                                                                                             |      |         |                |
|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|---------|----------------|
| Bits   | Description                                                                                                                                                                                                                                                                                                                                     | Type | Default | Reset<br>Event |
| 1      | WEEK_TIMER_POWERUP_EVENT_STATUS This bit is set to '1' when the Week Alarm Counter Register is greater than or equal the contents of the Week Timer Compare Register and the POWERUP_EN is '1'.  Writes of '1' clear this bit. Writes of '0' have no effect.  Note: This bit does not have to be cleared to remove a Week Timer Power-Up Event. | R/WC | 0       | RESET<br>_VBAT |
| 0      | SUBWEEK_TIMER_POWERUP_EVENT_STATUS  This bit is set to '1' when the Sub-Week Alarm Counter Register decrements from '1' to '0' and the POWERUP_EN is '1'.  Writes of '1' clear this bit. Writes of '0' have no effect.  Note: This bit MUST be cleared to remove a Sub-Week Timer Power-Up Event.                                               | R/WC | 0       | RESET<br>_VBAT |

# 18.11.7 SUB-WEEK ALARM COUNTER REGISTER

| Offset | 18h                                                                                                                                                                                                                                                                                                        |      |         |                |
|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|---------|----------------|
| Bits   | Description                                                                                                                                                                                                                                                                                                | Type | Default | Reset<br>Event |
| 31:25  | Reserved                                                                                                                                                                                                                                                                                                   | RES  | -       | -              |
| 24:16  | SUBWEEK_COUNTER_STATUS  Reads of this register return the current state of the 9-bit Sub-Week  Alarm counter.                                                                                                                                                                                              | R    | 00h     | RESET<br>_VBAT |
| 15:9   | Reserved                                                                                                                                                                                                                                                                                                   | RES  | -       | -              |
| 8:0    | SUBWEEK_COUNTER_LOAD Writes with a non-zero value to this field reload the 9-bit Sub-Week Alarm counter. Writes of 0 disable the counter.  If the Sub-Week Alarm counter decrements to 0 and the AUTO_RE-LOAD bit is set, the value in this field is automatically loaded into the Sub-Week Alarm counter. | R/W  | 00h     | RESET<br>_VBAT |

## 19.0 TACH


## 19.1 Introduction

This block monitors TACH output signals (or locked rotor signals) from various types of fans, and determines their speed.

# 19.2 Interface

This block is designed to be accessed externally via the pin interface and internally via a registered host interface.

FIGURE 19-1: I/O DIAGRAM OF BLOCK



# 19.3 Signal Description

**TABLE 19-1: SIGNAL DESCRIPTION** 

|                  | Name | Direction | Description                       |
|------------------|------|-----------|-----------------------------------|
| TACH INPUT Input |      | Input     | Tachometer signal from TACHx Pin. |

## 19.4 Host Interface

The registers defined for the TACH are accessible by the various hosts as indicated in Section 3.2, "Block Overview and Base Addresses".

## 19.5 Power, Clocks and Reset

This section defines the Power, Clock, and Reset parameters of the block.

## 19.5.1 POWER DOMAINS

| Name     | Description                                                                       |
|----------|-----------------------------------------------------------------------------------|
| VTR_CORE | The logic and registers implemented in this block are powered by this power well. |

## 19.5.2 CLOCK INPUTS

| Name   | e Description                                                                                                                                                             |  |
|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 100KHz | This is the clock input to the tachometer monitor logic. In Mode 1, the TACH is measured in the number of these clocks. This clock is derived from the main clock domain. |  |

#### 19.5.3 RESETS

| Name      | Description                                                                          |
|-----------|--------------------------------------------------------------------------------------|
| RESET_SYS | This signal resets all the registers and logic in this block to their default state. |

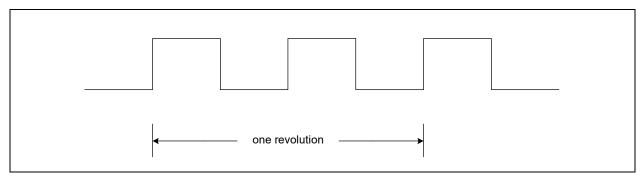
# 19.6 Interrupts

This section defines the Interrupt Sources generated from this block.

## **TABLE 19-2: EC INTERRUPTS**

| Source | Description                                                                                                           |  |
|--------|-----------------------------------------------------------------------------------------------------------------------|--|
| TACH   | This internal signal is generated from the OR'd result of the status events, as defined in the TACHx Status Register. |  |

## 19.7 Low Power Modes


The TACH may be put into a low power state by the chip's Power, Clocks, and Reset (PCR) circuitry.

# 19.8 Description

The TACH block monitors Tach output signals or locked rotor signals generated by various types of fans. These signals can be used to determine the speed of the attached fan. This block is designed to monitor fans at fan speeds from 100 RPMs to 30,000 RPMs.

Typically, these are DC brushless fans that generate (with each revolution) a 50% duty cycle, two-period square wave, as shown in Figure 19-2 below.

## FIGURE 19-2: FAN GENERATED 50%DUTY CYCLE WAVEFORM



In typical systems, the fans are powered by the main power supply. Firmware may disable this block when it detects that the main power rail has been turned off by either clearing the <enable> TACH\_ENABLE bit or putting the block to sleep via the supported Low Power Mode interface (see Low Power Modes).

#### 19.8.1 MODES OF OPERATION

The Tachometer block supports two modes of operation. The mode of operation is selected via the TACH\_READING\_-MODE\_SELECT bit.

#### 19.8.1.1 Free Running Counter

In Mode 0, the Tachometer block uses the TACH input as the clock source for the internal TACH pulse counter (see TACHX\_COUNTER). The counter is incremented when it detects a rising edge on the TACH input. In this mode, the firmware may periodically poll the TACHX\_COUNTER field to determine the average speed over a period of time. The firmware must store the previous reading and the current reading to compute the number of pulses detected over a period of time. In this mode, the counter continuously increments until it reaches FFFFh. It then wraps back to 0000h and continues counting. The firmware must ensure that the sample rate is greater than the time it takes for the counter to wrap back to the starting point.

Note: Tach interrupts should be disabled in Mode 0.

## 19.8.1.2 Mode 1 -- Number of Clock Pulses per Revolution

In Mode 1, the Tachometer block uses its 100KHz clock input to measure the programmable number of TACH pulses. In this mode, the internal TACH pulse counter (TACHX\_COUNTER) returns the value in number of 100KHz pulses per programmed number of TACH\_EDGES. For fans that generate two square waves per revolution, these bits should be configured to five edges.

When the number of edges is detected, the counter is latched and the COUNT\_READY\_STATUS bit is asserted. If the COUNT\_READY\_INT\_EN bit is set a TACH interrupt event will be generated.

## 19.8.2 OUT-OF-LIMIT EVENTS

The TACH Block has a pair of limit registers that may be configured to generate an event if the Tach indicates that the fan is operating too slow or too fast. If the <TACH reading> exceeds one of the programmed limits, the TACHx High Limit Register and the TACHx Low Limit Register, the bit TACH\_OUT\_OF\_LIMIT\_STATUS will be set. If the TACH OUT OF LIMIT\_STATUS bit is set, the Tachometer block will generate an interrupt event.

## 19.9 EC Registers

Registers for this block are shown in the following summary table. Addresses for each register are determined by adding the offset to the Base Address for each instance of the TACH Block in the Block Overview and Base Address Table in Section 3.0, "Device Inventory".

**TABLE 19-3: REGISTER SUMMARY** 

| Offset | Register Name             |
|--------|---------------------------|
| 00h    | TACHx Control Register    |
| 04h    | TACHx Status Register     |
| 08h    | TACHx High Limit Register |
| 0Ch    | TACHx Low Limit Register  |

# 19.9.1 TACHX CONTROL REGISTER

| Offset | 00h                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      |         |                |
|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|---------|----------------|
| Bits   | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Туре | Default | Reset<br>Event |
| 31:16  | TACHX_COUNTER This 16-bit field contains the latched value of the internal Tach pulse counter, which may be configured by the Tach Reading Mode Select field to operate as a free-running counter or to be gated by the Tach input signal.                                                                                                                                                                                                                                      | R    | 00h     | RESET          |
|        | If the counter is free-running (Mode 0), the internal Tach counter increments (if enabled) on transitions of the raw Tach input signal and is latched into this field every time it is incremented. The act of reading this field will not reset the counter, which rolls over to 0000h after FFFFh. The firmware will compute the delta between the current count reading and the previous count reading, to determine the number of pulses detected over a programmed period. |      |         |                |
|        | If the counter is gated by the Tach input and clocked by 100KHz (Mode 1), the internal counter will be latched into the reading register when the programmed number of edges is detected or when the counter reaches FFFFh. The internal counter is reset to zero after it is copied into this register.                                                                                                                                                                        |      |         |                |
|        | Note: In Mode 1, a counter value of FFFFh means that the Tach did not detect the programmed number of edges in 655ms. A stuck fan can be detected by setting the TACHx High Limit Register to a number less than FFFFh. If the internal counter then reaches FFFFh, the reading register will be set to FFFFh and an out-of-limit interrupt can be sent to the EC.                                                                                                              |      |         |                |
| 15     | TACH_INPUT_INT_EN                                                                                                                                                                                                                                                                                                                                                                                                                                                               | R/W  | 0b      | RESET<br>SYS   |
|        | 1=Enable Tach Input toggle interrupt from Tach block<br>0=Disable Tach Input toggle interrupt from Tach block                                                                                                                                                                                                                                                                                                                                                                   |      |         |                |
| 14     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | R/W  | 0b      | RESET          |
|        | 1=Enable Count Ready interrupt from Tach block<br>0=Disable Count Ready interrupt from Tach block                                                                                                                                                                                                                                                                                                                                                                               |      |         | SYS            |
| 13     | Reserved                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | RES  | -       | -              |
| 12:11  | TACH_EDGES A Tach signal is a square wave with a 50% duty cycle. Typically, two Tach periods represents one revolution of the fan. A Tach period consists of three Tach edges.                                                                                                                                                                                                                                                                                                  | R/W  | 00b     | RESET<br>SYS   |
|        | This programmed value represents the number of Tach edges that will be used to determine the interval for which the number of 100KHz pulses will be counted                                                                                                                                                                                                                                                                                                                     |      |         |                |
|        | 11b=9 Tach edges (4 Tach periods)<br>10b=5 Tach edges (2 Tach periods)<br>01b=3 Tach edges (1 Tach period)<br>00b=2 Tach edges (1/2 Tach period)                                                                                                                                                                                                                                                                                                                                |      |         |                |

| Offset | 00h                                                                                                                                                                                                                                                                                                                                                                    |      |         |              |
|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|---------|--------------|
| Bits   | Description                                                                                                                                                                                                                                                                                                                                                            | Туре | Default | Reset        |
| 10     | TACH_READING_MODE_SELECT                                                                                                                                                                                                                                                                                                                                               | R/W  | 0b      | RESET<br>SYS |
|        | 1=Counter is incremented on the rising edge of the 100KHz input. The counter is latched into the TACHX_COUNTER field and reset when the programmed number of edges is detected.  0=Counter is incremented when Tach Input transitions from low-to-high state (default)                                                                                                 |      |         |              |
| 9      | Reserved                                                                                                                                                                                                                                                                                                                                                               | RES  | -       | -            |
| 8      | FILTER_ENABLE                                                                                                                                                                                                                                                                                                                                                          | R/W  | 0b      | RESET        |
|        | This filter is used to remove high frequency glitches from Tach Input. When this filter is enabled, Tach input pulses less than two 100KHz periods wide get filtered.                                                                                                                                                                                                  |      |         | SYS          |
|        | 1=Filter enabled<br>0=Filter disabled (default)                                                                                                                                                                                                                                                                                                                        |      |         |              |
|        | It is recommended that the Tach input filter always be enabled.                                                                                                                                                                                                                                                                                                        |      |         |              |
| 7:2    | Reserved                                                                                                                                                                                                                                                                                                                                                               | RES  | -       | -            |
| 1      | TACH_ENABLE                                                                                                                                                                                                                                                                                                                                                            | R/W  | 0b      | RESE         |
|        | This bit gates the clocks into the block. When clocks are gated, the TACHx pin is tristated. When re-enabled, the internal counters will continue from the last known state and stale status events may still be pending. Firmware should discard any status or reading values until the reading value has been updated at least one time after the enable bit is set. |      |         | SYS          |
|        | 1=TACH Monitoring enabled, clocks enabled.<br>0=TACH ldle, clocks gated                                                                                                                                                                                                                                                                                                |      |         |              |
| 0      | TACH_OUT_OF_LIMIT_ENABLE                                                                                                                                                                                                                                                                                                                                               | R/W  | 0b      | RESE         |
|        | This bit is used to enable the TACH_OUT_OF_LIMIT_STATUS bit in the TACHx Status Register to generate an interrupt event.                                                                                                                                                                                                                                               |      |         | SYS          |
|        | 1=Enable interrupt output from Tach block<br>0=Disable interrupt output from Tach block (default)                                                                                                                                                                                                                                                                      |      |         |              |

# **CEC1712**

# 19.9.2 TACHX STATUS REGISTER

| Offset | 04h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      |         |                |
|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|---------|----------------|
| Bits   | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Туре | Default | Reset<br>Event |
| 31:4   | Reserved                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | RES  | -       | -              |
| 3      | COUNT_READY_STATUS This status bit is asserted when the Tach input changes state and when the counter value is latched. This bit remains cleared to '0' when the TACH_READING_MODE_SELECT bit in the TACHx Control Register is '0'.  When the TACH_READING_MODE_SELECT bit in the TACHx Control Register is set to '1', this bit is set to '1' when the counter value is latched by the hardware. It is cleared when written with a '1'. If COUNT_READY_INT_EN in the TACHx Control Register is set to 1, this status bit will assert the Tach Interrupt signal. | R/WC | 0b      | RESET_<br>SYS  |
|        | 1=Reading ready<br>0=Reading not ready                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      |         |                |
| 2      | TOGGLE_STATUS This bit is set when Tach Input changes state. It is cleared when written with a '1b'. If TACH_INPUT_INT_EN in the TACHx Control Register is set to '1b', this status bit will assert the Tach Interrupt signal.  1=Tach Input changed state (this bit is set on a low-to-high or high-to-                                                                                                                                                                                                                                                         | R/WC | 0b      | RESET_<br>SYS  |
|        | low transition)<br>0=Tach stable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |      |         |                |
| 1      | TACH_PIN_STATUS This bit reflects the state of Tach Input. This bit is a read only bit that may be polled by the embedded controller.                                                                                                                                                                                                                                                                                                                                                                                                                            | R    | 0b      | RESET_<br>SYS  |
|        | 1=Tach Input is high<br>0=Tach Input is low                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |      |         |                |
| 0      | TACH_OUT_OF_LIMIT_STATUS This bit is set when the Tach Count value is greater than the high limit or less than the low limit. It is cleared when written with a '1b'. To disable this status event set the limits to their extreme values. If TACH_OUT_OF_LIMIT_ENABLE in the TACHx Control Register is set to 1', this status bit will assert the Tach Interrupt signal.                                                                                                                                                                                        | R/WC | Ob      | RESET_<br>SYS  |
|        | 1=Tach is outside of limits<br>0=Tach is within limits                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      |         |                |

## Note:

- Some fans offer a Locked Rotor output pin that generates a level event if a locked rotor is detected. This bit may
  be used in combination with the Tach pin status bit to detect a locked rotor signal event from a fan.
- Tach Input may come up as active for Locked Rotor events. This would not cause an interrupt event because the pin would not toggle. Firmware must read the status events as part of the initialization process, if polling is not implemented.

# 19.9.3 TACHX HIGH LIMIT REGISTER

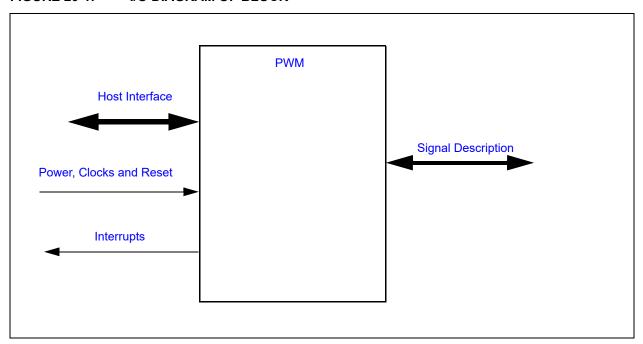
| Offset | 08h                                                                                                                                                                                                                                                                                                                                                                                                 |      |         |                |
|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|---------|----------------|
| Bits   | Description                                                                                                                                                                                                                                                                                                                                                                                         | Туре | Default | Reset<br>Event |
| 31:16  | Reserved                                                                                                                                                                                                                                                                                                                                                                                            | RES  | -       | -              |
| 15:0   | TACH_HIGH_LIMIT This value is compared with the value in the TACHX_COUNTER field. If the value in the counter is greater than the value programmed in this register, the TACH_OUT_OF_LIMIT_STATUS bit will be set. The TACH_OUT_OF_LIMIT_STATUS status event may be enabled to generate an interrupt to the embedded controller via the TACH_OUT_OF_LIMIT_ENABLE bit in the TACHx Control Register. | R/W  | FFFFh   | RESET_<br>SYS  |

# 19.9.4 TACHX LOW LIMIT REGISTER

| Offset | 0Ch                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |      |         |                |
|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|---------|----------------|
| Bits   | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Туре | Default | Reset<br>Event |
| 31:16  | Reserved                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | RES  | -       | -              |
| 15:0   | TACHX_LOW_LIMIT  This value is compared with the value in the TACHX_COUNTER field of the TACHX Control Register. If the value in the counter is less than the value programmed in this register, the TACH_OUT_OF_LIM-IT_STATUS bit will be set. The TACH_OUT_OF_LIMIT_STATUS status event may be enabled to generate an interrupt to the embedded controller via the TACH_OUT_OF_LIMIT_ENABLE bit in the TACHX Control Register  To disable the TACH_OUT_OF_LIMIT_STATUS low event, program 0000h into this register. | R/W  | 0000h   | RESET_<br>SYS  |

#### 20.0 PWM

# 20.1 Introduction


This block generates a PWM output that can be used to control 4-wire fans, blinking LEDs, and other similar devices. Each PWM can generate an arbitrary duty cycle output at frequencies from less than 0.1 Hz to 24 MHz.

The PWMx Counter ON Time registers and PWMx Counter OFF Time registers determine the operation of the PWM\_OUTPUT signals. See Section 20.9.1, "PWMx Counter ON Time Register" and Section 20.9.2, "PWMx Counter OFF Time Register" for a description of the PWM\_OUTPUT signals.

#### 20.2 Interface

This block is designed to be accessed externally via the pin interface and internally via a registered host interface.

FIGURE 20-1: I/O DIAGRAM OF BLOCK



# 20.3 Signal Description

TABLE 20-1: SIGNAL DESCRIPTION

| Name | Direction | Description                               |
|------|-----------|-------------------------------------------|
| PWMx | OUTPUT    | Pulse Width Modulated signal to PWMx pin. |

#### 20.4 Host Interface

The registers defined for the PWM Interface are accessible by the various hosts as indicated in Section 3.2, "Block Overview and Base Addresses".

# 20.5 Power, Clocks and Reset

This section defines the Power, Clock, and Reset parameters of the block.

#### 20.5.1 POWER DOMAINS

| Name     | Description                                                                       |
|----------|-----------------------------------------------------------------------------------|
| VTR_CORE | The logic and registers implemented in this block are powered by this power well. |

#### 20.5.2 CLOCK INPUTS

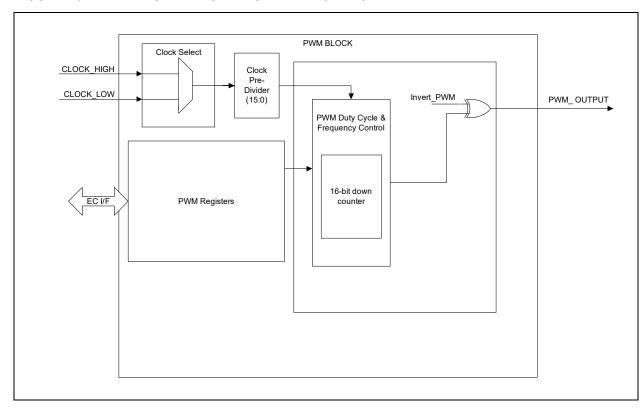
| Name   | Description                                                                          |
|--------|--------------------------------------------------------------------------------------|
| 48MHz  | Clock input for generating high PWM frequencies, such as 15 kHz to 30 kHz.           |
| 100KHz | This is the clock input for generating low PWM frequencies, such as 10 Hz to 100 Hz. |

#### 20.5.3 RESETS

| Name      | Description                                                                          |
|-----------|--------------------------------------------------------------------------------------|
| RESET_SYS | This signal resets all the registers and logic in this block to their default state. |

# 20.6 Interrupts

The PWM block does not generate any interrupt events.


#### 20.7 Low Power Modes

The PWM may be put into a low power state by the chip's Power, Clocks, and Reset (PCR) circuitry. When the PWM is in the sleep state, the internal counters reset to 0 and the internal state of the PWM and the PWM\_OUTPUT signal set to the OFF state.

#### 20.8 Description

The PWM\_OUTPUT signal is used to generate a duty cycle of specified frequency. This block can be programmed so that the PWM signal toggles the PWM\_OUTPUT, holds it high, or holds it low. When the PWM is configured to toggle, the PWM\_OUTPUT alternates from high to low at the rate specified in the PWMx Counter ON Time Register and PWMx Counter OFF Time Register.

The following diagram illustrates how the clock inputs and registers are routed to the PWM Duty Cycle & Frequency Control logic to generate the PWM output.



#### FIGURE 20-2: BLOCK DIAGRAM OF PWM CONTROLLER

**Note:** In Figure 20-2, the 48MHz clock is represented as CLOCK\_HIGH and the 100KHz clock is represented as CLOCK\_LOW.

The PWM clock source to the PWM Down Counter, used to generate a duty cycle and frequency on the PWM, is determined through the Clock select[1] and Clock Pre-Divider[6:3] bits in the PWMx Configuration Register register.

The PWMx Counter ON/OFF Time registers determine both the frequency and duty cycle of the signal generated on PWM\_OUTPUT as described below.

The PWM frequency is determined by the selected clock source and the total on and off time programmed in the PWMx Counter ON Time Register and PWMx Counter OFF Time Register registers. The frequency is the time it takes (at that clock rate) to count down to 0 from the total on and off time.

The PWM duty cycle is determined by the relative values programmed in the PWMx Counter ON Time Register and PWMx Counter OFF Time Register registers.

The PWM Frequency Equation and PWM Duty Cycle Equation are shown below.

#### **EQUATION 20-1: PWM FREQUENCY EQUATION**

$$PWM \ Frequency = \frac{1}{(PreDivisor+1)} \times \frac{(ClockSourceFrequency)}{((PWMCounterOnTime+1) + (PWMCounterOffTime+1))}$$

In this equation, the ClockSourceFrequency variable is the frequency of the clock source selected by the Clock Select bit in the PWMx Configuration Register, and PreDivisor is a field in the PWMx Configuration Register. The PWMCounterOnTime, PWMCounterOnTime, PWMCounterOnTime are registers that are defined in Section 20.9, "EC Registers".

#### **EQUATION 20-2: PWM DUTY CYCLE EQUATION**

$$PWM Duty Cycle = \frac{(PWMCounterOnTime + 1)}{((PWMCounterOnTime + 1) + (PWMCounterOffTime + 1))}$$

The PWMx Counter ON Time Register and PWMx Counter OFF Time Register registers should be accessed as 16-bit values.

#### 20.8.1 PWM REGISTER UPDATES

The PWMx Counter ON Time Register and PWMx Counter OFF Time Register may be updated at any time. Values written into the two registers are kept in holding registers. The holding registers are transferred into the two user-visible registers when all four bytes have been written with new values and the internal counter completes the OFF time count. If the PWM is in the Full On state then the two user-visible registers are updated from the holding registers as soon as all four bytes have been written. Once the two registers have been updated the holding registers are marked empty, and all four bytes must again be written before the holding registers will be reloaded into the On Time Register and the Off Time Register. Reads of both registers return the current contents of the registers that are used to load the counter and not the holding registers.

# 20.9 EC Registers

Registers for this block are shown in the following summary table. Addresses for each register are determined by adding the offset to the Base Address for each instance of the PWM Block in the Block Overview and Base Address Table in Section 3.0, "Device Inventory".

**TABLE 20-2: REGISTER SUMMARY** 

| Offset | Register Name                  |
|--------|--------------------------------|
| 00h    | PWMx Counter ON Time Register  |
| 04h    | PWMx Counter OFF Time Register |
| 08h    | PWMx Configuration Register    |

#### 20.9.1 PWMX COUNTER ON TIME REGISTER

| Offset | 00h                                                                                                                                                                                                                                                                                                                                                  |      |         |                |
|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|---------|----------------|
| Bits   | Description                                                                                                                                                                                                                                                                                                                                          | Туре | Default | Reset<br>Event |
| 31:16  | Reserved                                                                                                                                                                                                                                                                                                                                             | RES  | -       | -              |
| 15:0   | PWMX_COUNTER_ON_TIME This field determine both the frequency and duty cycle of the PWM signal. Setting this field to a value of <i>n</i> will cause the On time of the PWM to be <i>n</i> +1 cycles of the PWM Clock Source.  When this field is set to zero and the PWMX_COUNTER_OFFTIME is not set to zero, the PWM_OUTPUT is held low (Full Off). | R/W  | 0000h   | RESET_<br>SYS  |

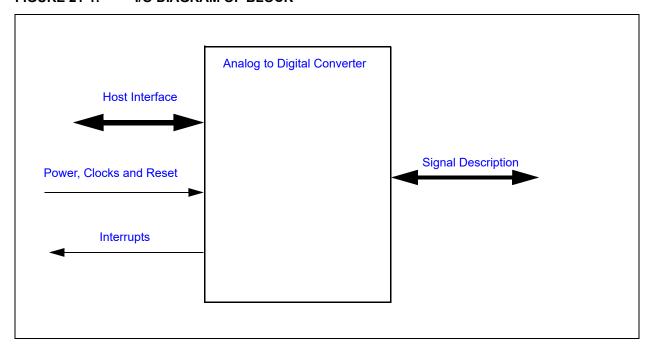
# 20.9.2 PWMX COUNTER OFF TIME REGISTER

| Offset | 04h                                                                                                                                                                                                                                                                                                    |      |         |                |
|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|---------|----------------|
| Bits   | Description                                                                                                                                                                                                                                                                                            | Туре | Default | Reset<br>Event |
| 31:16  | Reserved                                                                                                                                                                                                                                                                                               | RES  | -       | -              |
| 15:0   | PWMX_COUNTER_OFF_TIME This field determine both the frequency and duty cycle of the PWM signal. Setting this field to a value of <i>n</i> will cause the Off time of the PWM to be <i>n</i> +1 cycles of the PWM Clock Source.  When this field is set to zero, the PWM_OUTPUT is held high (Full On). | R/W  | FFFFh   | RESET_<br>SYS  |

# 20.9.3 PWMX CONFIGURATION REGISTER

| Offset | 08h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |      |         |                |
|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|---------|----------------|
| Bits   | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Туре | Default | Reset<br>Event |
| 31:7   | Reserved                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | RES  | -       | -              |
| 6:3    | CLOCK_PRE_DIVIDER The Clock source for the 16-bit down counter (see PWMx Counter ON Time Register and PWMx Counter OFF Time Register) is determined by bit D1 of this register. The Clock source is then divided by the value of Pre-Divider+1 and the resulting signal determines the rate at which the down counter will be decremented. For example, a Pre-Divider value of 1 divides the input clock by 2 and a value of 2 divides the input clock by 3. A Pre-Divider of 0 will disable the Pre-Divider option. | R/W  | 0000b   | RESET_<br>SYS  |
| 2      | INVERT  1=PWM_OUTPUT ON State is active low  0=PWM_OUTPUT ON State is active high                                                                                                                                                                                                                                                                                                                                                                                                                                    | R/W  | 0b      | RESET_<br>SYS  |
| 1      | CLOCK_SELECT This bit determines the clock source used by the PWM duty cycle and frequency control logic.  1=CLOCK_LOW 0=CLOCK_HIGH                                                                                                                                                                                                                                                                                                                                                                                  | R/W  | Ob      | RESET_<br>SYS  |
| 0      | PWM_ENABLE When the PWM_ENABLE is set to 0 the internal counters are reset and the internal state machine is set to the OFF state. In addition, the PWM_OUTPUT signal is set to the inactive state as determined by the Invert bit. The PWMx Counter ON Time Register and PWMx Counter OFF Time Register are not affected by the PWM_ENABLE bit and may be read and written while the PWM enable bit is 0.  1=Enabled (default) 0=Disabled (gates clocks to save power)                                              | R/W  | 0b      | RESET_<br>SYS  |

# 21.0 ANALOG TO DIGITAL CONVERTER


# 21.1 Introduction

This block is designed to convert external analog voltage readings into digital values. It consists of a single successive-approximation Analog-Digital Converter that can be shared among multiple inputs.

# 21.2 Interface

This block is designed to be accessed externally via the pin interface and internally via a registered host interface.

FIGURE 21-1: I/O DIAGRAM OF BLOCK



# 21.3 Signal Description

The Signal Description Table lists the signals that are typically routed to the pin interface.

**TABLE 21-1: SIGNAL DESCRIPTION** 

| Name      | Direction | Description                                                                                                                                                                                              |  |
|-----------|-----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| ADC [7:0] | Input     | ADC Analog Voltage Input from pins.                                                                                                                                                                      |  |
|           |           | <b>Note:</b> The ADC IP supports up to 12 channels. The number of channels implemented is package dependent. Refer to the Pin Chapter for the number of channels implemented in a package.               |  |
| VREF_ADC  | Input     | ADC Reference Voltage input. ADC Reference Voltage. This pin must either be connected to a very accurate 3.3V reference or connected to the same VTR_ANALOG power supply that is powering the ADC logic. |  |
| VREF2_ADC | Input     | ADC Reference Voltage input. ADC Reference Voltage can have sources.                                                                                                                                     |  |
|           |           | Internal Reference voltage sourced internal to the chip. This voltage will also be available on a GPIO pin for Thermistor reference voltage                                                              |  |
|           |           | External Reference voltage fed through GPIO pin                                                                                                                                                          |  |

# 21.4 Host Interface

The registers defined for the ADC are accessible by the various hosts as indicated in Section 3.2, "Block Overview and Base Addresses".

# 21.5 Power, Clocks and Reset

This section defines the Power, Clock, and Reset parameters of the block.

#### 21.5.1 POWER DOMAINS

# TABLE 21-2: POWER SOURCES

| Name       | Description                                                            |
|------------|------------------------------------------------------------------------|
| VTR_CORE   | This power well supplies power for the registers tn this block.        |
| VTR_ANALOG | This power well supplies power for the analog circuitry in this block. |

#### 21.5.2 CLOCK INPUTS

#### **TABLE 21-3: CLOCK INPUTS**

| Name  | Description                                                                                                                                                                                                  |
|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 48MHz | This clock signal is the master clock input to the ADC. This clock is internally divided to generate the ADC sampling clock. At 24MHz, the ADC does one channel conversion in 499.6nS for 12 bit resolution. |

# 21.5.3 RESETS

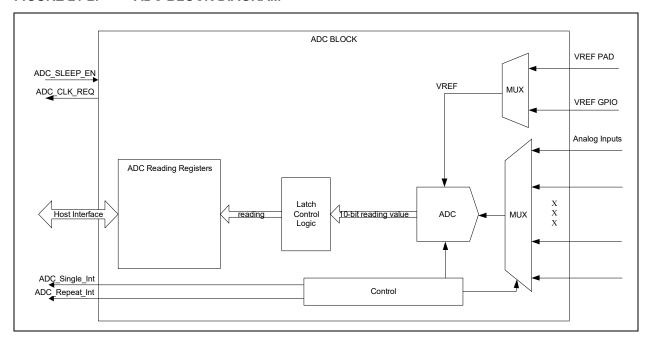
#### **TABLE 21-4: RESET SIGNALS**

| Name       | Description                                                                                                  |  |  |  |
|------------|--------------------------------------------------------------------------------------------------------------|--|--|--|
| RESET_SYS  | This reset signal resets all of the registers and logic in this block.                                       |  |  |  |
| SOFT_RESET | This is the Soft reset to the block and resets the Hardware in this block and does not affect the registers. |  |  |  |

# 21.6 Interrupts

#### TABLE 21-5: EC INTERRUPTS

| Source         | Description                                                                  |
|----------------|------------------------------------------------------------------------------|
| ADC_Single_Int | Interrupt signal from ADC controller to EC for Single-Sample ADC conversion. |
| ADC_Repeat_Int | Interrupt signal from ADC controller to EC for Repeated ADC conversion.      |


# 21.7 Low Power Modes

The ADC may be put into a low power state by the chip's Power, Clocks, and Reset (PCR) circuitry.

The ADC is designed to conserve power when it is either sleeping or disabled. It is disabled via the ACTIVATE Bit and sleeps when the ADC\_SLEEP\_EN signal is asserted. The sleeping state only controls clocking in the ADC and does not power down the analog circuitry. For lowest power consumption, the ADC ACTIVATE bit must be set to '0.'

# 21.8 Description

FIGURE 21-2: ADC BLOCK DIAGRAM



The CEC1712 features a twelve channel successive approximation Analog to Digital Converter. The ADC architecture features excellent linearity and converts analog signals to 12 bit words. Conversion takes 499.6 nanoseconds per 12-bit word. The twelve channels are implemented with a single high speed ADC fed by a twelve input analog multiplexer. The multiplexer cycles through the twelve voltage channels, starting with the lowest-numbered channel and proceeding to the highest-number channel, selecting only those channels that are programmed to be active.

The input range on the voltage channels spans from 0V to the voltage reference. With an voltage reference of 3.3V, this provides resolutions of 3.2mV. The range can easily be extended with the aid of resistor dividers. The accuracy of any voltage reading depends on the accuracy and stability of the voltage reference input.

**Note:** The ADC pins are 3.3V tolerant.

Note: Transitions on ADC GPIOs are not permitted when Analog to Digital Converter readings are being taken.

**Note:** If GPIO and VREF2\_ADC pins are shared and used as a GPIO noise can be injected into the ADC. Hence

care should be taken in system design to make sure GPIOs doesn't switch when ADC is active.

The ADC conversion cycle starts either when the START\_SINGLE bit in the ADC to set to 1 or when the ADC Repeat Timer counts down to 0. When the START\_SINGLE is set to 1 the conversion cycle converts channels enabled by configuration bits in the ADC Single Register. When the Repeat Timer counts down to 0 the conversion cycle converts channels enabled by configuration bits in the ADC Repeat Register. When both the START\_SINGLE bit and the Repeat Timer request conversions the START\_SINGLE conversion is completed first.

Conversions always start with the lowest-numbered enabled channel and proceed to the highest-numbered enabled channel.

If software repeatedly sets Start\_Single to 1 at a rate faster than the Repeat Timer count down interval, the conversion cycle defined by the ADC Repeat Register will not be executed.

# **CEC1712**

#### 21.8.1 REPEAT MODE

- Repeat Mode will start a conversion cycle of all ADC channels enabled by bits RPT\_EN in the ADC Repeat Register. The conversion cycle will begin after a delay determined by WARM\_UP\_DELAY in SAR ADC Control Register and START\_DELAY in the ADC Delay Register. Every channel that is enabled will be is converted in 500nS for 12 bit mode and 416.6nS for 10bit mode, for 24MHz internal reference clock. The conversion time formula is Resolution \* Sampling clock time period.
- After all channels enabled by RPT\_EN are complete, REPEAT\_DONE\_STATUS will be set to 1. The firmware will
  have to clear the REPEAT\_DONE\_STATUS bit.
- As long as START\_REPEAT is 1 the ADC will repeatedly begin conversion cycles with a period defined by REPEAT\_DELAY.
- If the delay period expires and a conversion cycle is already in progress because START\_SINGLE was written
  with a 1, the cycle in progress will complete, followed immediately by a conversion cycle using RPT\_EN to control
  the channel conversions.

#### 21.8.2 SINGLE MODE

- The Single Mode conversion cycle will begin after WARM\_UP\_DELAY time. After all channels enabled by SIN-GLE\_EN are complete, SINGLE\_DONE\_STATUS will be set to 1. The firmware will have to clear the SINGLE\_DONE\_STATUS bit.
- If START\_SINGLE is written with a 1, while a conversion cycle is in progress because START\_REPEAT is set, the
  current repeat conversion cycle will complete, followed immediately by a conversion cycle using SINGLE\_EN to
  control the channel conversions.

#### 21.8.3 APPLICATION NOTES

Please refer to white paper on "Accurate Temperature measurement using Thermistor" for details on how to use ADC for better than 1 degree C temperature measurement accuracy. Refer to FIGURE 21-3: ADC Reference Voltage Connection on page 227 for details of ADC reference voltage usage.

Note 1: ADC inputs require at least a 0.1 uF capacitor to filter glitches.

2: Use 1% Tolerance resistors with the ADC inputs

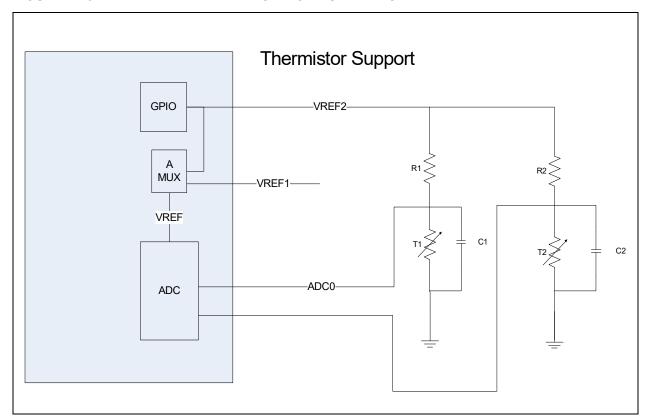



FIGURE 21-3: ADC REFERENCE VOLTAGE CONNECTION

# 21.9 EC Registers

Registers for this block are shown in the following summary table. Addresses for each register are determined by adding the offset to the Base Address for each instance of the Analog to Digital Converter Block in the Block Overview and Base Address Table in Section 3.0, "Device Inventory".

**TABLE 21-6: REGISTER SUMMARY** 

| Offset | Register Name                   |
|--------|---------------------------------|
| 00h    | ADC Control Register            |
| 04h    | ADC Delay Register              |
| 08h    | ADC Status Register             |
| 0Ch    | ADC Single Register             |
| 10h    | ADC Repeat Register             |
| 14h    | ADC Channel Reading Registers 0 |
| 18h    | ADC Channel Reading Registers 1 |
| 1Ch    | ADC Channel Reading Registers 2 |
| 20h    | ADC Channel Reading Registers 3 |
| 24h    | ADC Channel Reading Registers 4 |
| 28h    | ADC Channel Reading Registers 5 |
| 2Ch    | ADC Channel Reading Registers 6 |
| 30h    | ADC Channel Reading Registers 7 |
| 7Ch    | ADC Configuration Register      |

TABLE 21-6: REGISTER SUMMARY (CONTINUED)

| Offset | Register Name                                                                                                       |
|--------|---------------------------------------------------------------------------------------------------------------------|
| 80h    | It is recommended to operate at ADC sampling clock = 24MHz; Do not set the ADC sampling clock to be less than 3MHz. |
| 84h    | VREF Control Register                                                                                               |
| 88h    | SAR ADC Control Register                                                                                            |

# 21.9.1 ADC CONTROL REGISTER

The ADC Control Register is used to control the behavior of the Analog to Digital Converter.

| Offset | 00h                                                                                                                                                                                                                                |                                                                                                                                                |      |         |                |
|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|------|---------|----------------|
| Bits   | Des                                                                                                                                                                                                                                | scription                                                                                                                                      | Туре | Default | Reset<br>Event |
| 31:8   | Reserved                                                                                                                                                                                                                           |                                                                                                                                                | RES  | -       | -              |
| 7      | no effect. This bit can be used to generat  1= ADC single-sample convers when conversion completes conversion cycle  0= ADC single-sample conversi whenever the software writ  Note: Only firmware is ab                           | sion is completed. This bit is set to 1 s for all enabled channels in the single on is not complete. This bit is cleared ses a 1b to this bit. | R/WC | 0h      | RESET_<br>SYS  |
|        | to these bits, even v                                                                                                                                                                                                              | E_STATUS status bits by writing a 1 when multiple repeat_done or singles before firmware services the interearing bit.                         |      |         |                |
| 6      | no effect.  This bit can be used to generat  1= ADC repeat-sample convers when all enabled channels plete  0= ADC repeat-sample convers whenever the software writ  Note: Only firmware is ab and REPEAT_DON to these bits, even v | sion is completed. This bit is set to 1 in a repeating conversion cycle comion is not complete. This bit is cleared                            | R/WC | Oh      | RESET_<br>SYS  |
|        | Note: This bit is not self c                                                                                                                                                                                                       | earing bit.                                                                                                                                    |      |         |                |
| 5      | Reserved                                                                                                                                                                                                                           |                                                                                                                                                | RES  | -       | _              |

| Offset | 00h                                                                                                                                                                                                                                                                                                                                          |      |         |                |
|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|---------|----------------|
| Bits   | Description                                                                                                                                                                                                                                                                                                                                  | Туре | Default | Reset<br>Event |
| 4      | SOFT_RESET                                                                                                                                                                                                                                                                                                                                   | R/W  | 0h      | RESET          |
|        | 1=writing one causes a reset of the ADC block hardware (not the registers) 0=writing zero takes the ADC block out of reset                                                                                                                                                                                                                   |      |         | SYS            |
| 3      | POWER_SAVER_DIS                                                                                                                                                                                                                                                                                                                              | R/W  | 0h      | RESET<br>SYS   |
|        | 1=Power saving feature is disabled                                                                                                                                                                                                                                                                                                           |      |         |                |
|        | Note: 0=Power saving feature is enabled. The Analog to Digital Converter controller powers down the ADC between conversion sequences.                                                                                                                                                                                                        |      |         |                |
| 2      | START_REPEAT                                                                                                                                                                                                                                                                                                                                 | R/W  | 0h      | RESET<br>SYS   |
|        | 1=The ADC Repeat Mode is enabled. This setting will start a conversion cycle of all ADC channels enabled by bits RPT_EN in the ADC Repeat Register.  0=The ADC Repeat Mode is disabled. Note: This setting will not terminate any conversion cycle in process, but will clear the Repeat Timer and inhibit any further periodic conversions. |      |         |                |
| 1      | START_SINGLE                                                                                                                                                                                                                                                                                                                                 | R/W  | 0h      | RESET<br>SYS   |
|        | 1=The ADC Single Mode is enabled. This setting starts a single conversion cycle of all ADC channels enabled by bits SINGLE_EN in the ADC Single Register.  0=The ADC Single Mode is disabled.                                                                                                                                                |      |         | 515            |
|        | This bit is self-clearing                                                                                                                                                                                                                                                                                                                    |      |         |                |
| 0      | ACTIVATE                                                                                                                                                                                                                                                                                                                                     | R/W  | 0h      | RESET<br>SYS   |
|        | 1=ADC block is enabled for operation. START_SINGLE or START_REPEAT can begin data conversions by the ADC. Note: A reset pulse is sent to the ADC core when this bit changes from 0 to 1.                                                                                                                                                     |      |         |                |
|        | 0=The ADC is disabled and placed in its lowest power state. Note: Any conversion cycle in process will complete before the block is shut down, so that the reading registers will contain valid data but no new conversion cycles will begin.                                                                                                |      |         |                |

# 21.9.2 ADC DELAY REGISTER

The ADC Delay register determines the delay from setting START\_REPEAT in the ADC Control Register and the start of a conversion cycle. This register also controls the interval between conversion cycles in repeat mode.

| Offset | 04h                                                                                                                                                                                                                                                                                                                                                                                                    |      |         |                |
|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|---------|----------------|
| Bits   | Description                                                                                                                                                                                                                                                                                                                                                                                            | Туре | Default | Reset<br>Event |
| 31:16  | REPEAT_DELAY This field determines the interval between conversion cycles when START_REPEAT is 1. The delay is in units of 40µs. A value of 0 means no delay between conversion cycles, and a value of 0xFFFF means a delay of 2.6 seconds.  This field has no effect when START_SINGLE is written with a 1.                                                                                           | R/W  | 0000h   | RESET_<br>SYS  |
|        | Note 1: The REPEAT_DELAY is the delay before the start of each successive repeat cycle (not the first cycle. START_DELAY will be used for the first cycle) when the ADC is in low power state and the only after this delay the enable to the actual ADC block is asserted. The delay is also relative to the source being monitored. for eg. for a 10K impedance the recommended REPEAT_DELAY is 0x10 |      |         |                |
|        | 2: If the ADC sampling clock is 24MHz, the default<br>REPEAT_DELAY of 0 will work, for lower sampling rate<br>the value will change                                                                                                                                                                                                                                                                    |      |         |                |
| 15:0   | START_DELAY This field determines the starting delay before a conversion cycle is begun when START_REPEAT is written with a 1. The delay is in units of 40µs. A value of 0 means no delay before the start of a conversion cycle, and a value of 0xFFFF means a delay of 2.6 seconds.                                                                                                                  | R/W  | 0000h   | RESET_<br>SYS  |
|        | This field has no effect when START_SINGLE is written with a 1.  Note: The START_DELAY is the delay before the start of new repeat cycle when the ADC is disabled and only after this delay the enable to the actual ADC core is asserted.                                                                                                                                                             |      |         |                |

# 21.9.3 ADC STATUS REGISTER

The ADC Status Register indicates whether the ADC has completed a conversion cycle.

| Offset | 08h                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      |         |                |
|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|---------|----------------|
| Bits   | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Туре | Default | Reset<br>Event |
| 31:16  | Reserved                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | RES  | -       | -              |
| 15:0   | ADC_CH_STATUS  All bits are cleared by being written with a '1'.  1=conversion of the corresponding ADC channel is complete 0=conversion of the corresponding ADC channel is not complete  For enabled single cycles, the SINGLE_DONE_STATUS bit in the ADC Control Register is also set after all enabled channel conversion are done; for enabled repeat cycles, the REPEAT_DONE_STATUS in the ADC Control Register is also set after all enabled channel conversion are done. | R/WC | 00h     | RESET_<br>SYS  |

#### 21.9.4 ADC SINGLE REGISTER

The ADC Single Register is used to control which ADC channel is captured during a Single-Sample conversion cycle initiated by the START\_SINGLE bit in the ADC Control Register.

Note: Do not change the bits in this register in the middle of a conversion cycle to insure proper operation.

| Offset | 0Ch                                                                                                                                                                                   |      |         |                |
|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|---------|----------------|
| Bits   | Description                                                                                                                                                                           | Туре | Default | Reset<br>Event |
| 31:16  | Reserved                                                                                                                                                                              | RES  | -       | -              |
| 15:0   | SINGLE_EN                                                                                                                                                                             | R/W  | 0h      | RESET_         |
|        | Each bit in this field enables the corresponding ADC channel when a single cycle of conversions is started when the START_SINGLE bit in the ADC Control Register is written with a 1. |      |         | SYS            |
|        | 1=single cycle conversions for this channel are enabled                                                                                                                               |      |         |                |
|        | 0=single cycle conversions for this channel are disabled                                                                                                                              |      |         |                |

#### 21.9.5 ADC REPEAT REGISTER

The ADC Repeat Register is used to control which ADC channels are captured during a repeat conversion cycle initiated by the START REPEAT bit in the ADC Control Register.

| Offset | 10h                                                                                                                                                                           |      |         |                |
|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|---------|----------------|
| Bits   | Description                                                                                                                                                                   | Туре | Default | Reset<br>Event |
| 31:16  | Reserved                                                                                                                                                                      | RES  | -       | -              |
| 15:0   | RPT_EN                                                                                                                                                                        | R/W  | 00h     | RESET_         |
|        | Each bit in this field enables the corresponding ADC channel for each pass of the Repeated ADC Conversion that is controlled by bit START_REPEAT in the ADC Control Register. |      |         | SYS            |
|        | 1=repeat conversions for this channel are enabled 0=repeat conversions for this channel are disabled                                                                          |      |         |                |

# 21.9.6 ADC CHANNEL READING REGISTERS

All 8 ADC channels return their results into a 32-bit reading register. In each case the low 10/12 bits of the reading register return the result of the Analog to Digital conversion and the upper 22/20 bits return 0. Table 21-6, "Register Summary" shows the addresses of all the reading registers.

**Note:** The ADC Channel Reading Registers access require single 16, or 32 bit reads; i.e., two 8 bit reads will not provide data coherency.

# 21.9.7 ADC CONFIGURATION REGISTER

| Offset | 7Ch                                                                                                                                                 |      |         |                |
|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------|------|---------|----------------|
| Bits   | Description                                                                                                                                         | Type | Default | Reset<br>Event |
| 31:16  | TEST                                                                                                                                                | R    | -       | -              |
| 15:8   | ADC_CLK_HIGH_TIME  High Time Count ADC Clock:  Programmable from 1 to 255. 0 is not used.  Note: The High Time Count must be programmed to be equal | R/W  | 01h     | RESET<br>_SYS  |
|        | to the Low Time Count (must be programmed to 50% duty cycle).                                                                                       |      |         |                |
| 7:0    | ADC_CLK_LOW_TIME Low Time Count ADC Clock: Programmable from 1 to 255. 0 is not used.                                                               | R/W  | 01h     | RESET<br>_SYS  |
|        | The High Time Count must be programmed to be equal to the Low Time Count (must be programmed to 50% duty cycle).                                    |      |         |                |

**Note:** It is recommended to operate at ADC sampling clock = 24MHz; Do not set the ADC sampling clock to be less than 3MHz.

# 21.9.8 VREF CHANNEL REGISTER

| Offset | 80h                                                                                             |      |         |                |
|--------|-------------------------------------------------------------------------------------------------|------|---------|----------------|
| Bits   | Description                                                                                     | Туре | Default | Reset<br>Event |
| 31:24  | Reserved                                                                                        | RES  | -       | -              |
| 23:22  | VREF Select for Channel 11 00 = VREF Pad 01 = VREF GPIO 10 = Reserved 11 = Reserved             | R/W  | Oh      | RESET_<br>SYS  |
| 21:20  | VREF Select for Channel 10<br>00 = VREF Pad<br>01 = VREF GPIO<br>10 = Reserved<br>11 = Reserved | R/W  | Oh      | RESET_<br>SYS  |
| 19:18  | VREF Select for Channel 9 00 = VREF Pad 01 = VREF GPIO 10 = Reserved 11 = Reserved              | R/W  | Oh      | RESET_<br>SYS  |
| 17:16  | VREF Select for Channel 8  00 = VREF Pad  01 = VREF GPIO  10 = Reserved  11 = Reserved          | R/W  | Oh      | RESET_<br>SYS  |

| Offset | 80h                                                                                            |      |         |                |
|--------|------------------------------------------------------------------------------------------------|------|---------|----------------|
| Bits   | Description                                                                                    | Туре | Default | Reset<br>Event |
| 15:14  | VREF Select for Channel 7 00 = VREF Pad 01 = VREF GPIO 10 = Reserved 11 = Reserved             | R/W  | 0h      | RESET          |
| 13:12  | VREF Select for Channel 6 00 = VREF Pad 01 = VREF GPIO 10 = Reserved 11 = Reserved             | R/W  | 0h      | RESET          |
| 11:10  | VREF Select for Channel 5 00 = VREF Pad 01 = VREF GPIO 10 = Reserved 11 = Reserved             | R/W  | 0h      | RESET          |
| 9:8    | VREF Select for Channel 4  00 = VREF Pad  01 = VREF GPIO  10 = Reserved  11 = Reserved         | R/W  | 0h      | RESET<br>SYS   |
| 7:6    | VREF Select for Channel 3 00 = VREF Pad 01 = VREF GPIO 10 = Reserved 11 = Reserved             | R/W  | 0h      | RESET<br>SYS   |
| 5:4    | VREF Select for Channel 2 00 = VREF Pad 01 = VREF GPIO 10 = Reserved 11 = Reserved             | R/W  | 0h      | RESET<br>SYS   |
| 3:2    | VREF Select for Channel 1 00 = VREF Pad 01 = VREF GPIO 10 = Reserved 11 = Reserved             | R/W  | 0h      | RESET<br>SYS   |
| 1:0    | VREF Select for Channel 0<br>00 = VREF Pad<br>01 = VREF GPIO<br>10 = Reserved<br>11 = Reserved | R/W  | 0h      | RESET<br>SYS   |

# **CEC1712**

# 21.9.9 VREF CONTROL REGISTER

| Offset | 84h                                                                                              |      |         |                |
|--------|--------------------------------------------------------------------------------------------------|------|---------|----------------|
| Bits   | Description                                                                                      | Туре | Default | Reset<br>Event |
| 31:30  | VREF Select Status These bits show the VREF selected at this time of reading the register.       | R    | 0h      | RESET_<br>SYS  |
| 29     | VREF_PAD_CTL This is the VREF Pad Control 0 = Leave unused pad floating 1 = Drive unused pad low | R/W  | 0h      | RESET_<br>SYS  |
| 28:16  | VREF Switch Delay This is the time delay required to switch VREF selects                         | R/W  | 0h      | RESET_<br>SYS  |
| 15:0   | VREF Charge Delay This is the time delay required to charge the external VREF capacitor          | R/W  | 0h      | RESET_<br>SYS  |

# 21.9.10 SAR ADC CONTROL REGISTER

| Offset | 88h                                                                                                   |       |         |                |
|--------|-------------------------------------------------------------------------------------------------------|-------|---------|----------------|
| Bits   | Description                                                                                           | Туре  | Default | Reset<br>Event |
| 31:17  | Reserved                                                                                              | RES   | -       | -              |
| 16:7   | WARM_UP_DELAY                                                                                         | R/W   | 202h    | RESET_         |
|        | This is the warm up time delay required for ADC. The delay is in terms of number of ADC clock cycles. |       |         | SYS            |
| 6-4    | Reserved                                                                                              | RES   | -       | -              |
| 3      | SHIFT_DATA                                                                                            | R/W   | 0h      | RESET_         |
|        | Right justify ADC output data                                                                         |       |         | SYS            |
|        | 0 = ADC_DOUT is not shifted and lower bits are 0                                                      |       |         |                |
| 0.4    | 1 = ADC_DOUT is shifted right following resolution selection                                          | D/14/ | 01      | DECET          |
| 2:1    | SEL_RES                                                                                               | R/W   | 3h      | RESET_<br>SYS  |
|        | These bits define the SAR ADC resolution  00b = Reserved                                              |       |         | 313            |
|        | 01b = Reserved                                                                                        |       |         |                |
|        | 10b = 10 bit resolution                                                                               |       |         |                |
|        | 11b = 12 bit resolution                                                                               |       |         |                |
| 0      | SELDIFF                                                                                               | R/W   | 0h      | RESET_         |
|        | This bit define the single ended / differential mode of ADC operation                                 |       |         | SYS            |
|        | 0 = ADC is enabled for single ended input operation                                                   |       |         |                |
|        | 1 = ADC is enabled for differential mode input operation                                              |       |         |                |

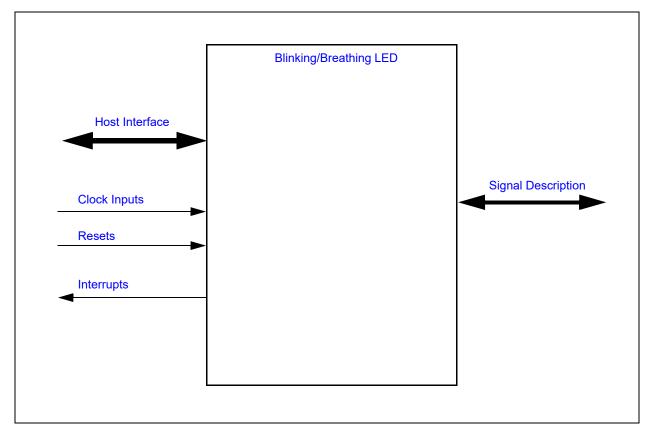
# 22.0 BLINKING/BREATHING LED

# 22.1 Introduction

LEDs are used in computer applications to communicate internal state information to a user through a minimal interface. Typical applications will cause an LED to blink at different rates to convey different state information. For example, an LED could be full on, full off, blinking at a rate of once a second, or blinking at a rate of once every four seconds, in order to communicate four different states.

As an alternative to blinking, an LED can "breathe", that is, oscillate between a bright state and a dim state in a continuous, or apparently continuous manner. The rate of breathing, or the level of brightness at the extremes of the oscillation period, can be used to convey state information to the user that may be more informative, or at least more novel, than traditional blinking.

The blinking/breathing hardware is implemented using a PWM. The PWM can be driven either by the Main system clock or by a 32.768 KHz clock input. When driven by the Main system clock, the PWM can be used as a standard 8-bit PWM in order to control a fan. When used to drive blinking or breathing LEDs, the 32.768 KHz clock source is used.


#### Features:

- · Each PWM independently configurable
- Each PWM configurable for LED blinking and breathing output
- · Highly configurable breathing rate from 60ms to 1min
- · Non-linear brightness curves approximated with 8 piece wise-linear segments
- · All LED PWMs can be synchronized
- · Each PWM configurable for 8-bit PWM support
- · Multiple clock rates
- Configurable Watchdog Timer

# 22.2 Interface

This block is designed to drive a pin on the pin interface and to be accessed internally via a registered host interface.

FIGURE 22-1: I/O DIAGRAM OF BLOCK



# 22.3 Signal Description

| Name | Direction | Description                                                                                                                                                                                                                                                                                                                                                                               |
|------|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| LEDx | Output    | PWM LED Output <sup>a</sup>                                                                                                                                                                                                                                                                                                                                                               |
|      |           | By default, the LEDx pin is configured to be active high: when the LED is configured to be fully on, the pin is driving high. When the LED is configured to be fully off, the pin is low. If firmware requires the Blinking/Breathing PWM to be active low, the Polarity bit in the GPIO Pin Control Register associated with the LED can be set to 1, which inverts the output polarity. |

a.Refer to the Table 1-1, "CEC1712 Feature list" table to know the number of LED pins available in the chip.

#### 22.4 Host Interface

The blinking/breathing PWM block is accessed by the various hosts as indicated in Section 3.2, "Block Overview and Base Addresses".

# 22.5 Power, Clocks and Reset

This section defines the Power, Clock, and Reset parameters of the block.

#### 22.5.1 POWER DOMAINS

| Name     | Description                                                              |
|----------|--------------------------------------------------------------------------|
| VTR_CORE | Main power. The source of main power for the device is system dependent. |

# 22.5.2 CLOCK INPUTS

| Name  | Description       |
|-------|-------------------|
| 32KHz | 32.768 KHz clock  |
| 48MHz | Main system clock |

#### 22.5.3 RESETS

| Name      | Description                                                          |
|-----------|----------------------------------------------------------------------|
| RESET_SYS | This reset signal resets all the logic and register in this block.   |
| RESET     | This reset signal, resets the PWM registers to their default values. |

# 22.6 Interrupts

Each PWM can generate an interrupt. The interrupt is asserted for one Main system clock period whenever the PWM WDT times out. The PWM WDT is described in Section 22.8.3.1, "PWM WDT".

| Source  | Description           |
|---------|-----------------------|
| PWM_WDT | PWM watchdog time out |

# 22.7 Low Power Mode

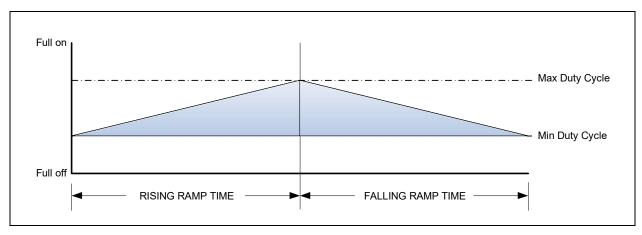
The Blinking/Breathing LED may be put into a low power mode by the chip-level power, clocks, and reset (PCR) circuitry. The low power mode is only applicable when the Blinking/Breathing PWM is operating in the General Purpose PWM mode. When the low speed clock mode is selected, the blinking/breathing function continues to operate, even when the 48MHz is stopped. Low power mode behavior is summarized in the following table:

TABLE 22-1: LOW POWER MODE BEHAVIOR

| CLOCK_S<br>OURCE | CONTROL | Mode                | Low Power<br>Mode | Description                                                                        |
|------------------|---------|---------------------|-------------------|------------------------------------------------------------------------------------|
| Х                | '00'b   | PWM 'OFF'           | Yes               | 32.768 KHz clock is                                                                |
| Х                | '01'b   | Breathing           | Yes               | required.                                                                          |
| 1                | '10'b   | General Purpose PWM | No                | Main system clock is required, even when a sleep command to the block is asserted. |
| 0                | '10'b   | Blinking            | Yes               | 32.768 KHz clock is                                                                |
| Х                | '11'b   | PWM 'ON'            | Yes               | required.                                                                          |

**Note:** In order for the CEC1712 to enter its. Heavy Sleep state, the SLEEP\_ENABLE input for all Blinking/Breathing PWM instances must be asserted, even if the PWMs are configured to use the low speed clock.

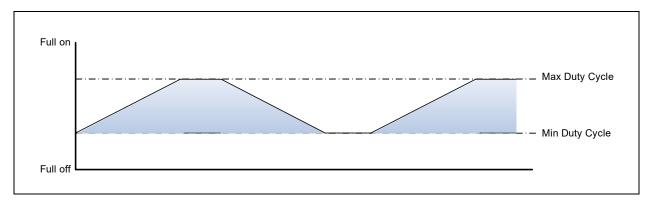
# 22.8 Description


#### 22.8.1 BREATHING

If an LED blinks rapidly enough, the eye will interpret the light as reduced brightness, rather than a blinking pattern. Therefore, if the blinking period is short enough, modifying the duty cycle will set the apparent brightness, rather than a blinking rate. At a blinking rate of 128Hz or greater, almost all people will perceive a continuous light source rather than an intermittent pattern.

Because making an LED appear to breathe is an aesthetic effect, the breathing mechanism must be adjustable or customers may find the breathing effect unattractive. There are several variables that can affect breathing appearance, as described below.

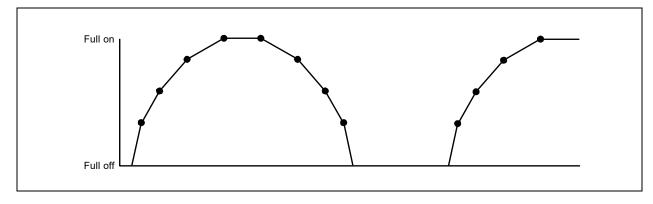
The following figure illustrates some of the variables in breathing:






The breathing range of and LED can range between full on and full off, or in a range that falls within the full-on/full-off range, as shown in this figure. The ramp time can be different in different applications. For example, if the ramp time was 1 second, the LED would appear to breathe quickly. A time of 2 seconds would make the LED appear to breathe more leisurely.

The breathing pattern can be clipped, as shown in the following figure, so that the breathing effect appears to pause at its maximum and minimum brightnesses:


FIGURE 22-3: CLIPPING EXAMPLE



The clipping periods at the two extremes can be adjusted independently, so that for example an LED can appear to breathe (with a short delay at maximum brightness) followed by a longer "resting" period (with a long delay at minimum brightness).

The brightness can also be changed in a non-linear fashion, as shown in the following figure:

FIGURE 22-4: EXAMPLE OF A SEGMENTED CURVE



In this figure, the rise and fall curves are implemented in 4 linear segments and are the rise and fall periods are symmetric.

The breathing mode uses the 32.768 KHz clock for its time base.

#### 22.8.2 BLINKING

When configured for blinking, a subset of the hardware used in breathing is used to implement the blinking function. The PWM (an 8-bit accumulator plus an 8-bit duty cycle register) drives the LED directly. The Duty Cycle register is programmed directly by the user, and not modified further. The PWM accumulator is configured as a simple 8-bit up counter. The counter uses the 32.768 KHz clock, and is pre-scaled by the Delay counter, to slow the PWM down from the 128Hz provided by directly running the PWM on the 32.768 KHz clock.

With the pre-scaler, the blink rate of the LED could be as fast as 128Hz (which, because it is blinking faster than the eye can distinguish, would appear as a continuous level) to 0.03125Hz (that is, with a period of 7.8ms to 32 seconds). Any duty cycle from 0% (0h) to 100% (FFh) can be configured, with an 8-bit precision. An LED with a duty cycle value of 0h will be fully off, while an LED with a duty cycle value of FFh will be fully on.

In Blinking mode the PWM counter is always in 8-bit mode.

Table 22-2, "LED Blink Configuration Examples" shows some example blinking configurations:

**TABLE 22-2: LED BLINK CONFIGURATION EXAMPLES** 

| Prescale | Duty Cycle | Blink<br>Frequency | Blink                 |
|----------|------------|--------------------|-----------------------|
| 000h     | 00h        | 128Hz              | full off              |
| 000h     | FFh        | 128Hz              | full on               |
| 001h     | 40h        | 64Hz               | 3.9ms on, 11.5ms off  |
| 003h     | 80h        | 32Hz               | 15.5ms on, 15.5ms off |
| 07Fh     | 20h        | 1Hz                | 125ms on, 0.875s off  |
| 0BFh     | 16h        | 0.66Hz             | 125ms on, 1.375s off  |
| 0FFh     | 10h        | 0.5Hz              | 125ms on, 1.875s off  |
| 180h     | 0Bh        | 0.33Hz             | 129ms on, 2.875s off  |
| 1FFh     | 40h        | 0.25Hz             | 1s on, 3s off         |

The Blinking and General Purpose PWM modes share the hardware used in the breathing mode. The Prescale value is derived from the LD field of the LED\_DELAY register and the Duty Cycle is derived from the MIN field of the LED\_LIM-ITS register.

TABLE 22-3: BLINKING MODE CALCULATIONS

| Parameter | Unit    | Equation                              |
|-----------|---------|---------------------------------------|
| Frequency | Hz      | (32KHz frequency) /(PRESCALE + 1)/256 |
| 'H' Width | Seconds | (1/Frequency) x (DutyCycle/256)       |
| 'L' Width | Seconds | (1/Frequency) x ((1-DutyCycle)/256)   |

#### 22.8.3 GENERAL PURPOSE PWM

When used in the Blinking configuration with the 48MHz, the LED module can be used as a general-purpose program-mable Pulse-Width Modulator with an 8-bit programmable pulse width. It can be used for fan speed control, sound volume, etc. With the 48MHz source, the PWM frequency can be configured in the range shown in Table 22-4.

TABLE 22-4: PWM CONFIGURATION EXAMPLES

| Prescale PWM Frequency |            |  |  |
|------------------------|------------|--|--|
| 000h                   | 187.5 KHz  |  |  |
| 001h                   | 94 KHz     |  |  |
| 003h                   | 47 KHz     |  |  |
| 006h                   | 26.8 KHz   |  |  |
| 00Bh                   | 15.625 KHz |  |  |
| 07Fh                   | 1.46 KHz   |  |  |
| 1FFh                   | 366 Hz     |  |  |
| FFFh                   | 46 Hz      |  |  |

TABLE 22-5: GENERAL PURPOSE PWM MODE CALCULATIONS

| Parameter | Unit    | Equation                                 |
|-----------|---------|------------------------------------------|
| Frequency | Hz      | (48MHz frequency) / (PRESCALE + 1) / 256 |
| 'H' Width | Seconds | (1/Frequency) x (DutyCycle/256)          |
| 'L' Width | Seconds | (1/Frequency) x (256 - DutyCycle)        |

#### 22.8.3.1 PWM WDT

When the PWM is configured as a general-purpose PWM (in the Blinking configuration with the Main system clock), the PWM includes a Watch Dog Timer (WDT). The WDT consists of an internal 8-bit counter and an 8-bit reload value (the field WDTLD in LED Configuration Register). The internal counter is loaded with the reset value of WDTLD (14h, or 4 seconds) on system RESET\_SYS and loaded with the contents of WDTLD whenever either the LED Configuration Register register is written or the MIN byte in the LED Limits Register register is written (the MIN byte controls the duty cycle of the PWM).

Whenever the internal counter is non-zero, it is decremented by 1 for every tick of the 5 Hz clock. If the counter decrements from 1 to 0, a WDT Terminal Count causes an interrupt to be generated and reset sets the CONTROL bit in the LED Configuration Register to 3h, which forces the PWM to be full on. No other PWM registers or fields are affected.

If the 5 Hz clock halts, the watchdog timer stops decrementing but retains its value, provided the device continues to be powered. When the 5 Hz clock restarts, the watchdog counter will continue decrementing where it left off.

Setting the WDTLD bits to 0 disables the PWM WDT. Other sample values for WDTLD are:

01h = 200 ms

02h = 400 ms

03h = 600 ms

04h = 800 ms

. . .

14h = 4seconds

FFh = 51 seconds

#### 22.9 Implementation

In addition to the registers described in Section 22.10, "EC Registers", the PWM is implemented using a number of components that are interconnected differently when configured for breathing operation and when configured for blinking/PWM operation.

#### 22.9.1 BREATHING CONFIGURATION

The **PSIZE** parameter can configure the PWM to one of three modes: 8-bit, 7-bit and 6-bit. The **PERIOD CTR** counts ticks of its input clock. In 8-bit mode, it counts from 0 to 255 (that is, 256 steps), then repeats continuously. In this mode, a full cycle takes 7.8ms (128Hz). In 7-bit mode it counts from 0 to 127 (128 steps), and a full cycle takes 3.9ms (256Hz). In 6-bit mode it counts from 0 to 63 (64 steps) and a full cycle takes 1.95ms (512Hz).

The output of the LED circuit is asserted whenever the **PERIOD CTR** is less than the contents of the **DUTY CYCLE** register. The appearance of breathing is created by modifying the contents of the **DUTY CYCLE** register in a continuous manner. When the LED control is off the internal counters and registers are all reset to 0 (i.e. after a write setting the **RESET** bit in the LED Configuration Register Register.) Once enabled, the **DUTY CYCLE** register is increased by an amount determined by the LED\_STEP register and at a rate determined by the **DELAY** counter. Once the duty cycle reaches its maximum value (determined by the field MAX), the duty cycle is held constant for a period determined by the field HD. Once the hold time is complete, the **DUTY CYCLE** register is decreased, again by an amount determined by the LED\_STEP register and at a rate determined by the **DELAY** counter. When the duty cycle then falls at or below the minimum value (determined by the field MIN), the duty cycle is held constant for a period determined by the field HD. Once the hold time is complete, the cycle repeats, with the duty cycle oscillating between MIN and MAX.

The rising and falling ramp times as shown in Figure 22-2, "Breathing LED Example" can be either symmetric or asymmetric depending on the setting of the SYMMETRY bit in the LED Configuration Register Register. In Symmetric mode the rising and falling ramp rates have mirror symmetry; both rising and falling ramp rates use the same (all) 8 segments fields in each of the following registers (see Table 22-6): the LED Update Stepsize Register register and the LED Update Interval Register register. In Asymmetric mode the rising ramp rate uses 4 of the 8 segments fields and the falling ramp rate uses the remaining 4 of the 8 segments fields (see Table 22-6).

The parameters MIN, MAX, HD, LD and the 8 fields in LED\_STEP and LED\_INT determine the brightness range of the LED and the rate at which its brightness changes. See the descriptions of the fields in Section 22.10, "EC Registers", as well as the examples in Section 22.9.3, "Breathing Examples" for information on how to set these fields.

TABLE 22-6: SYMMETRIC BREATHING MODE REGISTER USAGE

| Rising/ Falling<br>Ramp Times<br>in Figure 22-3,<br>"Clipping Example" | Duty Cycle        | Segment Index        | Symmetric Mode Register Fields Utilize |             |  |  |
|------------------------------------------------------------------------|-------------------|----------------------|----------------------------------------|-------------|--|--|
| X                                                                      | 000xxxxxb         | 000b                 | STEP[0]/INT[0]                         | Bits[3:0]   |  |  |
| X                                                                      | 001xxxxxb         | 001b                 | STEP[1]/INT[1]                         | Bits[7:4]   |  |  |
| X                                                                      | 010xxxxxb         | 010b                 | STEP[2]/INT[2]                         | Bits[11:8]  |  |  |
| X                                                                      | 011xxxxxb         | 011b                 | STEP[3]/INT[3]                         | Bits[15:12] |  |  |
| X                                                                      | 100xxxxxb         | 100b                 | STEP[4]/INT[4]                         | Bits[19:16] |  |  |
| Х                                                                      | 101xxxxxb         | 101b                 | STEP[5]/INT[5]                         | Bits[23:20] |  |  |
| X                                                                      | 110xxxxxb         | 110b                 | STEP[6]/INT[6]                         | Bits[27:24] |  |  |
| Х                                                                      | 111xxxxxb         | 111b                 | STEP[7]/INT[7]                         | Bits[31:28] |  |  |
| Note: In Symmetric                                                     | Mode the Segment_ | Index[2:0] = Duty Cy | /cle Bits[7:5]                         |             |  |  |

TABLE 22-7: ASYMMETRIC BREATHING MODE REGISTER USAGE

| Rising/ Falling<br>Ramp Times<br>in Figure 22-3,<br>"Clipping Example" | Duty Cycle | Segment Index | Asymmetric Mode Register Fields Utilized |             |  |
|------------------------------------------------------------------------|------------|---------------|------------------------------------------|-------------|--|
| Rising                                                                 | 00xxxxxxb  | 000b          | STEP[0]/INT[0]                           | Bits[3:0]   |  |
| Rising                                                                 | 01xxxxxxb  | 001b          | STEP[1]/INT[1]                           | Bits[7:4]   |  |
| Rising                                                                 | 10xxxxxxb  | 010b          | STEP[2]/INT[2]                           | Bits[11:8]  |  |
| Rising                                                                 | 11xxxxxxb  | 011b          | STEP[3]/INT[3]                           | Bits[15:12] |  |
| falling                                                                | 00xxxxxxb  | 100b          | STEP[4]/INT[4]                           | Bits[19:16] |  |
| falling                                                                | 01xxxxxxb  | 101b          | STEP[5]/INT[5]                           | Bits[23:20] |  |
| falling                                                                | 10xxxxxxb  | 110b          | STEP[6]/INT[6]                           | Bits[27:24] |  |
| falling                                                                | 11xxxxxxb  | 111b          | STEP[7]/INT[7]                           | Bits[31:28] |  |

**Note:** In Asymmetric Mode the Segment\_Index[2:0] is the bit concatenation of following: Segment\_Index[2] = (FALLING RAMP TIME in Figure 22-3, "Clipping Example") and Segment\_Index[1:0] = Duty Cycle Bits[7:6].

#### 22.9.2 BLINKING CONFIGURATION

The Delay counter and the PWM counter are the same as in the breathing configuration, except in this configuration they are connected differently. The Delay counter is clocked on either the 32.768 KHz clock or the Main system clock, rather than the output of the PWM. The PWM counter is clocked by the zero output of the Delay counter, which functions as a prescalar for the input clocks to the PWM. The Delay counter is reloaded from the LD field of the LED\_DELAY register. When the LD field is 0 the input clock is passed directly to the PWM counter without prescaling. In Blinking/PWM mode the PWM counter is always 8-bit, and the PSIZE parameter has no effect.

The frequency of the PWM pulse waveform is determined by the formula:

$$f_{PWM} = \frac{f_{clock}}{(256 \times (LD+1))}$$

where  $f_{PWM}$  is the frequency of the PWM,  $f_{clock}$  is the frequency of the input clock (32.768 KHz clock or Main system clock) and LD is the contents of the LD field.

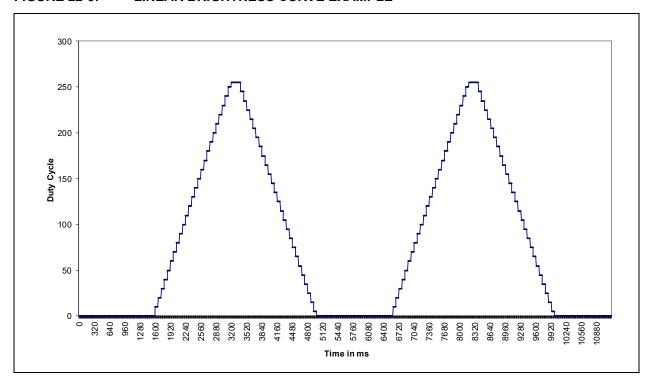
Note: At a duty cycle value of 00h (in the MIN register), the LED output is fully off. At a duty cycle value of 255h, the LED output is fully on. Alternatively, In order to force the LED to be fully on, firmware can set the CONTROL field of the Configuration register to 3 (always on).

The other registers in the block do not affect the PWM or the LED output in Blinking/PWM mode.

# 22.9.3 BREATHING EXAMPLES

#### 22.9.3.1 Linear LED brightness change

In this example, the brightness of the LED increases and diminishes in a linear fashion. The entire cycle takes 5 seconds. The rise time and fall time are 1.6 seconds, with a hold time at maximum brightness of 200ms and a hold time at minimum brightness of 1.6 seconds. The LED brightness varies between full off and full on. The PWM size is set to 8-bit, so the time unit for adjusting the PWM is approximately 8ms. The registers are configured as follows:


TABLE 22-8: LINEAR EXAMPLE CONFIGURATION

| Field | Value            |
|-------|------------------|
| PSIZE | 8-bit            |
| MAX   | 255              |
| MIN   | 0                |
| HD    | 25 ticks (200ms) |
| LD    | 200 ticks (1.6s) |

TABLE 22-8: LINEAR EXAMPLE CONFIGURATION (CONTINUED)

| Field                            | Value |      |      |      |      |      |      |      |
|----------------------------------|-------|------|------|------|------|------|------|------|
| Duty cycle most significant bits | 000b  | 001b | 010b | 011b | 100b | 101b | 110b | 1110 |
| LED_INT                          | 8     | 8    | 8    | 8    | 8    | 8    | 8    | 8    |
| LED_STEP                         | 10    | 10   | 10   | 10   | 10   | 10   | 10   | 10   |

FIGURE 22-5: LINEAR BRIGHTNESS CURVE EXAMPLE



# 22.9.3.2 Non-linear LED brightness change

In this example, the brightness of the LED increases and diminishes in a non-linear fashion. The brightness forms a curve that is approximated by four piece wise-linear line segments. The entire cycle takes about 2.8 seconds. The rise time and fall time are about 1 second, with a hold time at maximum brightness of 320ms and a hold time at minimum brightness of 400ms. The LED brightness varies between full off and full on. The PWM size is set to 7-bit, so the time unit for adjusting the PWM is approximately 4ms. The registers are configured as follows:

TABLE 22-9: NON-LINEAR EXAMPLE CONFIGURATION

| Field                            |             | Value       |      |      |      |      |      |      |  |
|----------------------------------|-------------|-------------|------|------|------|------|------|------|--|
| PSIZE                            | 7-bit       |             |      |      |      |      |      |      |  |
| MAX                              | 255 (effect | tively 127) |      |      |      |      |      |      |  |
| MIN                              | 0           |             |      |      |      |      |      |      |  |
| HD                               | 80 ticks (3 | 20ms)       |      |      |      |      |      |      |  |
| LD                               | 100 ticks ( | 400ms)      |      |      |      |      |      |      |  |
| Duty cycle most significant bits | 000b        | 001b        | 010b | 011b | 100b | 101b | 110b | 1110 |  |
| LED_INT                          | 2           | 3           | 6    | 6    | 9    | 9    | 16   | 16   |  |
| LED_STEP                         | 4           | 4           | 4    | 4    | 4    | 4    | 4    | 4    |  |

The resulting curve is shown in the following figure:

FIGURE 22-6: NON-LINEAR BRIGHTNESS CURVE EXAMPLE

# 22.10 EC Registers

Registers for this block are shown in the following summary table. Addresses for each register are determined by adding the offset to the Base Address for each instance of the Blinking/Breathing LED Block in the Block Overview and Base Address Table in Section 3.0, "Device Inventory".

| Offset | Register Name                |
|--------|------------------------------|
| 00h    | LED Configuration Register   |
| 04h    | LED Limits Register          |
| 08h    | LED Delay Register           |
| 0Ch    | LED Update Stepsize Register |
| 10h    | LED Update Interval Register |
| 14h    | LED Output Delay             |

In the following register definitions, a "PWM period" is defined by time the PWM counter goes from 000h to its maximum value (FFh in 8-bit mode, FEh in 7-bit mode and FCh in 6-bit mode, as defined by the PSCALE field in register LED CFG). The end of a PWM period occurs when the PWM counter wraps from its maximum value to 0.

The registers in this block can be written 32-bits, 16-bits or 8-bits at a time. Writes to LED Configuration Register take effect immediately. Writes to LED Limits Register are held in a holding register and only take effect only at the end of a PWM period. The update takes place at the end of every period, even if only one byte of the register was updated. This means that in blink/PWM mode, software can change the duty cycle with a single 8-bit write to the MIN field in the LED\_LIMIT register. Writes to LED Delay Register, LED Update Stepsize Register and LED Update Interval Register also go initially into a holding register. The holding registers are copied to the operating registers at the end of a PWM period only if the Enable Update bit in the LED Configuration Register is set to 1. If LED\_CFG is 0, data in the holding registers is retained but not copied to the operating registers when the PWM period expires. To change an LED breath-

ing configuration, software should write these three registers with the desired values and then set LED\_CFG to 1. This mechanism ensures that all parameters affecting LED breathing will be updated consistently, even if the registers are only written 8 bits at a time.

# 22.10.1 LED CONFIGURATION REGISTER

| Offset | 00h                                                                                                                                                                                                                                                                                                                                                                   |      |         |                |
|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|---------|----------------|
| Bits   | Description                                                                                                                                                                                                                                                                                                                                                           | Туре | Default | Reset<br>Event |
| 31:16  | Reserved                                                                                                                                                                                                                                                                                                                                                              | RES  | -       | -              |
| 16     | SYMMETRY  1=The rising and falling ramp times are in Asymmetric mode.  Table 22-7, "Asymmetric Breathing Mode Register Usage" shows                                                                                                                                                                                                                                   | R/W  | 0b      | RESET_<br>SYS  |
|        | the application of the Stepsize and Interval registers to the four segments of rising duty cycles and the four segments of falling duty cycles.  0=The rising and falling ramp times (as shown in Figure 22-2, "Breath-                                                                                                                                               |      |         |                |
|        | ing LED Example") are in Symmetric mode. Table 22-6, "Symmetric Breathing Mode Register Usage" shows the application of the Stepsize and Interval registers to the 8 segments of both rising and falling duty cycles.                                                                                                                                                 |      |         |                |
| 15:8   | WDT_RELOAD The PWM Watchdog Timer counter reload value. On system reset, it defaults to 14h, which corresponds to a 4 second Watchdog timeout value.                                                                                                                                                                                                                  | R/W  | 14h     | RESET_<br>SYS  |
| 7      | RESET Writes of 1' to this bit resets the PWM registers to their default values. This bit is self clearing. Writes of '0' to this bit have no effect.                                                                                                                                                                                                                 | W    | 0b      | RESET_<br>SYS  |
| 6      | ENABLE_UPDATE This bit is set to 1 when written with a '1'. Writes of '0' have no effect. Hardware clears this bit to 0 when the breathing configuration registers are updated at the end of a PWM period. The current state of the bit is readable any time.                                                                                                         | R/WS | 0b      | RESET_<br>SYS  |
|        | This bit is used to enable consistent configuration of LED_DELAY, LED_STEP and LED_INT. As long as this bit is 0, data written to those three registers is retained in a holding register. When this bit is 1, data in the holding register are copied to the operating registers at the end of a PWM period. When the copy completes, hardware clears this bit to 0. |      |         |                |
| 5:4    | PWM_SIZE This bit controls the behavior of PWM:                                                                                                                                                                                                                                                                                                                       | R/W  | 0b      | RESET_<br>SYS  |
|        | 3=Reserved<br>2=PWM is configured as a 6-bit PWM<br>1=PWM is configured as a 7-bit PWM<br>0=PWM is configured as an 8-bit PWM                                                                                                                                                                                                                                         |      |         |                |

| Offset | 00h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      |         |                |
|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|---------|----------------|
| Bits   | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Туре | Default | Reset<br>Event |
| 3      | SYNCHRONIZE  When this bit is '1', all counters for all LEDs are reset to their initial values. When this bit is '0' in the LED Configuration Register for all LEDs, then all counters for LEDs that are configured to blink or breathe will increment or decrement, as required.  To synchronize blinking or breathing, the SYNCHRONIZE bit should be set for at least one LED, the control registers for each LED should be set to their required values, then the SYNCHRONIZE bits should all be cleared. If the all LEDs are set for the same blink period, they will all be synchronized. | R/W  | 0b      | RESET_<br>SYS  |
| 2      | CLOCK_SOURCE This bit controls the base clock for the PWM. It is only valid when CNTRL is set to blink (2).  1=Clock source is the Main system clock 0=Clock source is the 32.768 KHz clock                                                                                                                                                                                                                                                                                                                                                                                                    | R/W  | 0b      | RESET_<br>SYS  |
| 1:0    | CONTROL This bit controls the behavior of PWM:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | R/W  | 00b     | RESET_<br>SYS  |
|        | 3=PWM is always on 2=LED blinking (standard PWM) 1=LED breathing configuration 0=PWM is always off. All internal registers and counters are reset to 0. Clocks are gated                                                                                                                                                                                                                                                                                                                                                                                                                       |      | 11b     | WDTTC          |

# 22.10.2 LED LIMITS REGISTER

This register may be written at any time. Values written into the register are held in an holding register, which is transferred into the actual register at the end of a PWM period. The two byte fields may be written independently. Reads of this register return the current contents and not the value of the holding register.

| Offset | 04h                                                                                                                                                                                                                                                                                                                                        |      |         |                |
|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|---------|----------------|
| Bits   | Description                                                                                                                                                                                                                                                                                                                                | Туре | Default | Reset<br>Event |
| 31:16  | Reserved                                                                                                                                                                                                                                                                                                                                   | RES  | -       | -              |
| 15:8   | MAXIMUM In breathing mode, when the current duty cycle is greater than or equal to this value the breathing apparatus holds the current duty cycle for the period specified by the field HD in register LED_DELAY, then starts decrementing the current duty cycle                                                                         | R/W  | 0h      | RESET_<br>SYS  |
| 7:0    | MINIMUM In breathing mode, when the current duty cycle is less than or equal to this value the breathing apparatus holds the current duty cycle for the period specified by the field LD in register LED_DELAY, then starts incrementing the current duty cycle In blinking mode, this field defines the duty cycle of the blink function. | R/W  | Oh      | RESET_<br>SYS  |

#### 22.10.3 LED DELAY REGISTER

This register may be written at any time. Values written into the register are held in an holding register, which is transferred into the actual register at the end of a PWM period if the Enable Update bit in the LED Configuration register is set to 1. Reads of this register return the current contents and not the value of the holding register.

| Offset | 08h                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      |         |                |
|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|---------|----------------|
| Bits   | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Туре | Default | Reset<br>Event |
| 31:24  | Reserved                                                                                                                                                                                                                                                                                                                                                                                                                                                               | RES  | -       | -              |
| 23:12  | HIGH_DELAY In breathing mode, the number of PWM periods to wait before updating the current duty cycle when the current duty cycle is greater than or equal to the value MAX in register LED_LIMIT.  4095=The current duty cycle is decremented after 4096 PWM periods  1=The delay counter is bypassed and the current duty cycle is decremented after two PWM period  0=The delay counter is bypassed and the current duty cycle is decremented after one PWM period | R/W  | 000h    | RESET_<br>SYS  |
| 11:0   | LOW_DELAY The number of PWM periods to wait before updating the current duty cycle when the current duty cycle is greater than or equal to the value MIN in register LED_LIMIT.  4095=The current duty cycle is incremented after 4096 PWM periods 0=The delay counter is bypassed and the current duty cycle is incremented after one PWM period In blinking mode, this field defines the prescalar for the PWM clock                                                 | R/W  | 000h    | RESET_<br>SYS  |

#### 22.10.4 LED UPDATE STEPSIZE REGISTER

This register has eight segment fields which provide the amount the current duty cycle is adjusted at the end of every PWM period. Segment field selection is decoded based on the segment index. The segment index equation utilized depends on the SYMMETRY bit in the LED Configuration Register Register)

- In Symmetric Mode the Segment\_Index[2:0] = Duty Cycle Bits[7:5]
- In Asymmetric Mode the Segment\_Index[2:0] is the bit concatenation of following: Segment\_Index[2] = (FALLING RAMP TIME in Figure 22-3, "Clipping Example") and Segment Index[1:0] = Duty Cycle Bits[7:6].

This register may be written at any time. Values written into the register are held in an holding register, which is transferred into the actual register at the end of a PWM period if the Enable Update bit in the LED Configuration register is set to 1. Reads of this register return the current contents and not the value of the holding register.

In 8-bit mode, each 4-bit STEPSIZE field represents 16 possible duty cycle modifications, from 1 to 16 as the duty cycle is modified between 0 and 255:

15: Modify the duty cycle by 16

...

1: Modify the duty cycle by 2

0=Modify the duty cycle by 1

In 7-bit mode, the least significant bit of the 4-bit field is ignored, so each field represents 8 possible duty cycle modifications, from 1 to 8, as the duty cycle is modified between 0 and 127:

14, 15: Modify the duty cycle by 8

. . .

# **CEC1712**

- 2, 3: Modify the duty cycle by 2
- 0, 1: Modify the duty cycle by 1

In 6-bit mode, the two least significant bits of the 4-bit field is ignored, so each field represents 4 possible duty cycle modifications, from 1 to 4 as the duty cycle is modified between 0 and 63:

- 12, 13, 14, 15: Modify the duty cycle by 4
- 8, 9, 10, 11: Modify the duty cycle by 3
- 4, 5, 6, 7: Modify the duty cycle by 2
- 0, 1, 2, 3: Modify the duty cycle by 1

| Offset | 0Ch                                                                                                              |      |         |                |
|--------|------------------------------------------------------------------------------------------------------------------|------|---------|----------------|
| Bits   | Description                                                                                                      | Туре | Default | Reset<br>Event |
| 31:28  | UPDATE_STEP7                                                                                                     | R/W  | 0h      | RESET_         |
|        | Amount the current duty cycle is adjusted at the end of every PWM period when the segment index is equal to 111. |      |         | SYS            |
| 27:24  | UPDATE_STEP6                                                                                                     | R/W  | 0h      | RESET_         |
|        | Amount the current duty cycle is adjusted at the end of every PWM period when the segment index is equal to 110. |      |         | SYS            |
| 23:20  | UPDATE_STEP5                                                                                                     | R/W  | 0h      | RESET_         |
|        | Amount the current duty cycle is adjusted at the end of every PWM period when the segment index is equal to 101  |      |         | SYS            |
| 19:16  | UPDATE_STEP4                                                                                                     | R/W  | 0h      | RESET_         |
|        | Amount the current duty cycle is adjusted at the end of every PWM period when the segment index is equal to 100. |      |         | SYS            |
| 15:12  | UPDATE_STEP3                                                                                                     | R/W  | 0h      | RESET_         |
|        | Amount the current duty cycle is adjusted at the end of every PWM period when the segment index is equal to 011. |      |         | SYS            |
| 11:8   | UPDATE_STEP2                                                                                                     | R/W  | 0h      | RESET_         |
|        | Amount the current duty cycle is adjusted at the end of every PWM period when the segment index is equal to 010. |      |         | SYS            |
| 7:4    | UPDATE_STEP1                                                                                                     | R/W  | 0h      | RESET_         |
|        | Amount the current duty cycle is adjusted at the end of every PWM period when the segment index is equal to 001. |      |         | SYS            |
| 3:0    | UPDATE_STEP0                                                                                                     | R/W  | 0h      | RESET_         |
|        | Amount the current duty cycle is adjusted at the end of every PWM period when the segment index is equal to 000. |      |         | SYS            |

#### 22.10.5 LED UPDATE INTERVAL REGISTER

This register has eight segment fields which provide the number of PWM periods between updates to current duty cycle. Segment field selection is decoded based on the segment index. The segment index equation utilized depends on the SYMMETRY bit in the LED Configuration Register Register)

- In Symmetric Mode the Segment\_Index[2:0] = Duty Cycle Bits[7:5]
- In Asymmetric Mode the Segment\_Index[2:0] is the bit concatenation of following: Segment\_Index[2] = (FALLING RAMP TIME in Figure 22-3, "Clipping Example") and Segment Index[1:0] = Duty Cycle Bits[7:6].

This register may be written at any time. Values written into the register are held in an holding register, which is transferred into the actual register at the end of a PWM period if the Enable Update bit in the LED Configuration register is set to 1. Reads of this register return the current contents and not the value of the holding register.

| Offset | 10h                                                                                                                        |      |         |                |
|--------|----------------------------------------------------------------------------------------------------------------------------|------|---------|----------------|
| Bits   | Description                                                                                                                | Туре | Default | Reset<br>Event |
| 31:28  | UPDATE_INTERVAL7 The number of PWM periods between updates to current duty cycle when the segment index is equal to 111b.  | R/W  | 0h      | RESET          |
|        | 15=Wait 16 PWM periods                                                                                                     |      |         |                |
|        | 0=Wait 1 PWM period                                                                                                        |      |         |                |
| 27:24  | UPDATE_INTERVAL6                                                                                                           | R/W  | 0h      | RESET          |
|        | The number of PWM periods between updates to current duty cycle when the segment index is equal to 110b.                   |      |         | SYS            |
|        | 15=Wait 16 PWM periods<br>                                                                                                 |      |         |                |
|        | 0=Wait 1 PWM period                                                                                                        |      |         |                |
| 23:20  | UPDATE_INTERVAL5 The number of PWM periods between updates to current duty cycle when the segment index is equal to 101b.  | R/W  | 0h      | RESET<br>SYS   |
|        | 15=Wait 16 PWM periods                                                                                                     |      |         |                |
|        | 0=Wait 1 PWM period                                                                                                        |      |         |                |
| 19:16  | UPDATE_INTERVAL4  The number of PWM periods between updates to current duty cycle when the segment index is equal to 100b. | R/W  | 0h      | RESET SYS      |
|        | 15=Wait 16 PWM periods                                                                                                     |      |         |                |
|        | 0=Wait 1 PWM period                                                                                                        |      |         |                |
| 15:12  | UPDATE_INTERVAL3                                                                                                           | R/W  | 0h      | RESE           |
|        | The number of PWM periods between updates to current duty cycle when the segment index is equal to 011b.                   |      |         | SYS            |
|        | 15=Wait 16 PWM periods                                                                                                     |      |         |                |
|        | 0=Wait 1 PWM period                                                                                                        |      |         |                |
| 11:8   | =                                                                                                                          | R/W  | 0h      | RESE           |
|        | The number of PWM periods between updates to current duty cycle when the segment index is equal to 010b.                   |      |         | SYS            |
|        | 15=Wait 16 PWM periods                                                                                                     |      |         |                |
|        | 0=Wait 1 PWM period                                                                                                        |      |         |                |

# **CEC1712**

| Offset | 10h                                                                                                                                                                   |      |         |                |
|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|---------|----------------|
| Bits   | Description                                                                                                                                                           | Туре | Default | Reset<br>Event |
| 7:4    | UPDATE_INTERVAL1 The number of PWM periods between updates to current duty cycle when the segment index is equal to 001b.  15=Wait 16 PWM periods 0=Wait 1 PWM period | R/W  | 0h      | RESET_<br>SYS  |
| 3:0    | UPDATE_INTERVAL0 The number of PWM periods between updates to current duty cycle when the segment index is equal to 000b.  15=Wait 16 PWM periods 0=Wait 1 PWM period | R/W  | 0h      | RESET_<br>SYS  |

# 22.10.6 LED OUTPUT DELAY

This register permits the transitions for multiple blinking/breathing LED outputs to be skewed, so as not to present too great a current load. The register defines a count for the number of clocks the circuitry waits before turning on the output, either on initial enable, after a resume from Sleep, or when multiple outputs are synchronized through the Sync control in the LED CONFIGURATION (LED\_CFG) register.

When more than one LED outputs are used simultaneously, the LED OUTPUT DELAY fields of each should be configured with different values so that the outputs are skewed. When used with the 32KHz clock domain as a clock source, the differences can be as small as 1.

| Offset | 14h                                                                                                                                                                    |      |         |                |
|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|---------|----------------|
| Bits   | Description                                                                                                                                                            | Туре | Default | Reset<br>Event |
| 31:8   | Reserved                                                                                                                                                               | RES  | -       | -              |
| 7:0    | OUTPUT_DELAY                                                                                                                                                           | R/W  | 000h    | RESET_         |
|        | The delay, in counts of the clock defined in Clock Source (CLKSRC), in which output transitions are delayed. When this field is 0, there is no added transition delay. |      |         | SYS            |
|        | When the LED is programmed to be Always On or Always Off, the Output Delay field has no effect.                                                                        |      |         |                |

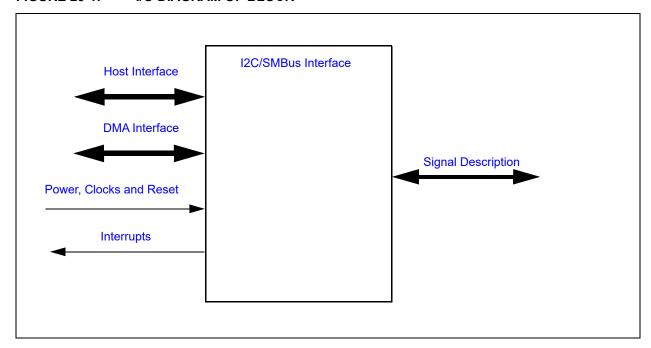
# 23.0 I2C/SMBUS INTERFACE

#### 23.1 Introduction

This section describes the Power Domain, Resets, Clocks, Interrupts, Registers and the Physical Interface of the I2C/SMBus interface. In I2C mode, this block supports Promiscuous mode when configured as I2C slave. For a General Description, Features, Block Diagram, Functional Description, Registers Interface and other core-specific details, see Ref [1] (note: in this chapter, *italicized text* typically refers to SMB-I2C Controller core interface elements as described in Ref [1]).

#### 23.2 References

 I2C\_SMB Controller Core with Network Layer Support (SMB2) - 16MHz I2C Baud Clock", Revision 3.6, Core-Level Architecture Specification, Microchip


# 23.3 Terminology

There is no terminology defined for this chapter.

#### 23.4 Interface

This block is designed to be accessed externally via the pin interface and internally via a registered host interface. In addition, this block is equipped with:

FIGURE 23-1: I/O DIAGRAM OF BLOCK



# 23.5 Signal Description

see the Pin Configuration section for a description of the SMB-I2C pin configuration.

#### 23.6 Host Interface

The registers defined for the I2C/SMBus Interface are accessible by the various hosts as indicated in Section 3.2, "Block Overview and Base Addresses".

# 23.7 DMA Interface

This block is designed to communicate with the Internal DMA Controller. This feature is defined in the SMB-I2C Controller Core Interface specification (See Ref [1]).

**Note:** For a description of the Internal DMA Controller implemented in this design see Section 7.0, "Internal DMA Controller".

# 23.8 Power, Clocks and Reset

This section defines the Power, Clock, and Reset parameters of the block.

#### 23.8.1 POWER DOMAINS

| Name     | Description                                                                               |
|----------|-------------------------------------------------------------------------------------------|
| VTR_CORE | This power well sources all of the registers and logic in this block, except where noted. |

# 23.8.2 CLOCK INPUTS

| Name  | Description                                                                                                                                        |
|-------|----------------------------------------------------------------------------------------------------------------------------------------------------|
| 16MHz | This is the clock signal drives the SMB-I2C Controller core. The core also uses this clock to generate the SMB-I2C_CLK on the pin interface. It is |
|       | derived from the main system clock                                                                                                                 |

#### 23.8.3 RESETS

| Name      | Description                                                                             |
|-----------|-----------------------------------------------------------------------------------------|
| RESET_SYS | This reset signal resets all of the registers and logic in the SMB-I2C Controller core. |

# 23.9 Interrupts

| Source       | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SMB-I2C      | I <sup>2</sup> C Activity Interrupt Event                                                                                                                                                                                                                                                                                                                                                                                                                           |
| SMB-I2C_WAKE | This interrupt event is triggered when an SMB/I2C Master initiates a transaction by issuing a START bit (a high-to-low transition on the SDA line while the SCL line is high) on the bus currently connected to the SMB-I2C Controller. The EC interrupt handler for this event only needs to clear the interrupt SOURCE bit and return; if the transaction results in an action that requires EC processing, that action will trigger the SMB-I2C interrupt event. |

# 23.10 Low Power Modes

The SMB-I2C Controller may be put into a low power state by the chip's Power, Clocks, and Reset (PCR) circuitry.

#### 23.11 Description

#### 23.11.1 SMB-I2C CONTROLLER CORE

The SMB-I2C Controller behavior is defined in the SMB-I2C Controller Core Interface specification (See Ref [1]).

#### 23.11.2 PHYSICAL INTERFACE

The Physical Interface for the SMB-I2C Controller core is configurable for up to 10 ports. Each I2C\_WAKE Controller can be connected to any of the ports defined in Table 23-1, "SMB-I2C Port Selection". The PORT SEL [3:0] bit field in each controller independently sets the port for the controller. The default for each field is Fh, Reserved, which means that the SMB-I2C Controller is not connected to a port.

An I<sup>2</sup>C port should be connected to a single controller. An attempt to configure the *PORT SEL [3:0]* bits in one controller to a value already assigned to another controller may result in unexpected results.

The port signal-function names and pin numbers are defined in Pin Configuration section. The  $I^2C$  port selection is made using the *PORT SEL [3:0]* bits in the *Configuration Register* as described in Ref [1].. In the Pin section, the SDA (Data) pins are listed asi2Cxx\_SDA and the SCL (Clock) pins are listed as  $I^2Cxx_SCL$ , where xx represents the port number 00 through 15. The CPU-voltage-level port SB\_TSI is also listed in the pin section with the SD-TSI\_DAT and SD-TSI\_CLK.

For  $I^2C$  port signal functions that are alternate functions of GPIO pins, the buffer type for these pins must be configured as open-drain outputs when the port is selected as an  $I^2C$  port.

For more information regarding the SMB-I2C Controller core see Section 2.2, "Physical Interface" in Ref[1].

TABLE 23-1: SMB-I2C PORT SELECTION

| PORT_SEL[3:0]      |                            |        |   | Dont     |
|--------------------|----------------------------|--------|---|----------|
| 3                  | 2                          | 1      | 0 | Port     |
| 0                  | 0                          | 0      | 0 | I2C00    |
| 0                  | 0                          | 0      | 1 | I2C01    |
| 0                  | 0                          | 1      | 0 | I2C02    |
| 0                  | 0                          | 1      | 1 | I2C03    |
| 0                  | 1                          | 0      | 0 | I2C04    |
| 0                  | 1                          | 0      | 1 | I2C05    |
| 0                  | 1                          | 1      | 0 | I2C06    |
| 0                  | 1                          | 1      | 1 | I2C07    |
| 1                  | 0                          | 0      | 0 | I2C08    |
| 1                  | 0                          | 0      | 1 | I2C09    |
| 1                  | 0                          | 1      | 0 | I2C10    |
| 1                  | 0                          | 1      | 1 | I2C11    |
| 1                  | 1                          | 0      | 0 | I2C12    |
| 1                  | 1                          | 0      | 1 | I2C13    |
| 1                  | 1                          | 1      | 0 | I2C14    |
| 1                  | 1                          | 1      | 1 | I2C15    |
| Note: Refer to Sec | ction 2.4.11for the pin ma | apping |   | <u> </u> |

# **CEC1712**

# 23.12 EC Registers

Registers for this block are shown in the following summary table. Addresses for each register are determined by adding the offset to the Base Address for each instance of the SMB-I2C Controller Block in the Block Overview and Base Address Table in Section 3.0, "Device Inventory".

Registers for the SMB-I2C Controllers are listed in Reference[ 1].

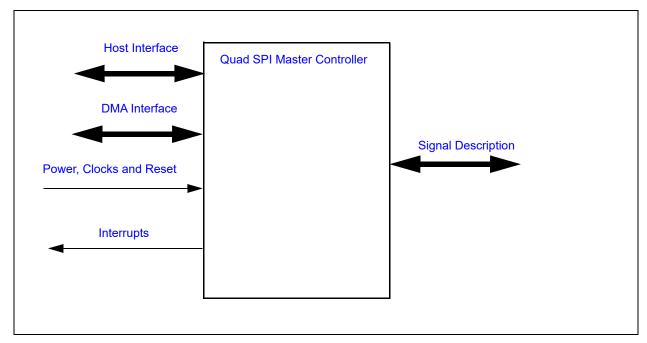
# 24.0 QUAD SPI MASTER CONTROLLER

#### 24.1 Overview

The Quad SPI Master Controller may be used to communicate with various peripheral devices that use a Serial Peripheral Interface, such as EEPROMS, DACs and ADCs. The controller can be configured to support advanced SPI Flash devices with multi-phase access protocols. Data can be transfered in Half Duplex, Single Data Rate, Dual Data Rate and Quad Data Rate modes. In all modes and all SPI clock speeds, the controller supports back-to-back reads and writes without clock stretching if internal bandwidth permits.

#### 24.2 References

No references have been cited for this feature.


#### 24.3 Terminology

No terminology for this block.

#### 24.4 Interface

This block is designed to be accessed externally via the pin interface and internally via a registered host interface.

FIGURE 24-1: I/O DIAGRAM OF BLOCK



### 24.5 Signal Description

**TABLE 24-1: EXTERNAL SIGNAL DESCRIPTION** 

| Name    | Direction    | Description                                                                                               |
|---------|--------------|-----------------------------------------------------------------------------------------------------------|
| SPI_CLK | Output       | SPI Clock output used to drive the SPCLK pin.                                                             |
| SPI_CS# | Output       | SPI chip select.                                                                                          |
| SPI_IO0 | Input/Output | SPI Data pin 0. Also used as SPI_MOSI, Master-Out/Slave-In when the interface is used in Single wire mode |
| SPI_IO1 | Input/Output | SPI Data pin 1. Also used as SPI_MISO, Master-In/Slave-Out when the interface is used in Single wire mode |

#### TABLE 24-1: EXTERNAL SIGNAL DESCRIPTION (CONTINUED)

| Name    | Direction    | Description                                                                                       |
|---------|--------------|---------------------------------------------------------------------------------------------------|
| SPI_IO2 | Input/Output | SPI Data pin 2 when the SPI interface is used in Quad Mode. Also can be used by firmware as WP.   |
| SPI_IO3 | Input/Output | SPI Data pin 3 when the SPI interface is used in Quad Mode. Also can be used by firmware as HOLD. |

#### 24.6 Host Interface

The registers defined for the General Purpose Serial Peripheral Interface are accessible by the various hosts as indicated in Section 3.2, "Block Overview and Base Addresses".

#### 24.7 DMA Interface

This block is designed to communicate with the Internal DMA Controller.

**Note:** For a description of the Internal DMA Controller implemented in this design see Section 7.0, "Internal DMA Controller".

## 24.8 Power, Clocks and Reset

This section defines the Power, Clock, and Reset parameters of the block.

#### 24.8.1 POWER

| Name     | Description                                                                       |  |
|----------|-----------------------------------------------------------------------------------|--|
| VTR_CORE | The logic and registers implemented in this block are powered by this power well. |  |

#### 24.8.2 CLOCKS

| Name  | Description                                         |
|-------|-----------------------------------------------------|
| 48MHz | This is a clock source for the SPI clock generator. |

#### 24.8.3 RESETS

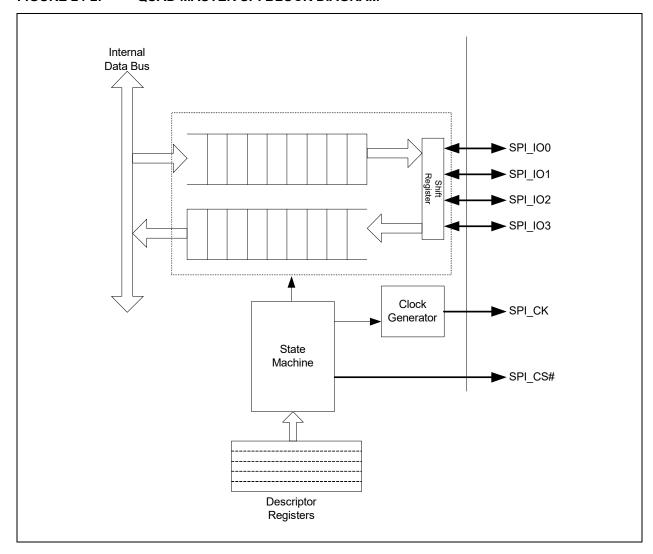
| Name      | Description                                                                                               |
|-----------|-----------------------------------------------------------------------------------------------------------|
| RESET_SYS | This signal resets all the registers and logic in this block to their default state.QMSPI Status Register |
| RESET     | This reset is generated if either the RESET_SYS is asserted or the SOFT_RESET is asserted.                |

#### 24.9 Interrupts

This section defines the Interrupt Sources generated from this block.

| Source    | Description                                                                                                                                        |  |
|-----------|----------------------------------------------------------------------------------------------------------------------------------------------------|--|
| QMSPI_INT | Interrupt generated by the Quad SPI Master Controller. Events that may cause the interrupt to be asserted are stored in the QMSPI Status Register. |  |

#### 24.10 Low Power Modes


The Quad SPI Master Controller is always in its lowest power state unless a transaction is in process. A transaction is in process between the time the START bit is written with a '1' and the TRANSFER\_DONE bit is set by hardware to '1'.

If the QMSPI SLEEP\_ENABLE input is asserted, writes to the START bit are ignored and the Quad SPI Master Controller will remain in its lowest power state.

## 24.11 Description

- · Support for multiple SPI pin configurations
  - Single wire half duplex
  - Two wire full duplex
  - Two wire double data rate
  - Four wire quad data rate
- · Separate FIFO buffers for Receive and Transmit
  - 8 byte FIFO depth in each FIFO
  - Each FIFO can be 1 byte, 2 bytes or 4 bytes wide
- · Support for all four SPI clock formats
- · Programmable SPI Clock generator, with clock polarity and phase controls
- · Separate DMA support for Receive and Transmit data transfers
- · Configurable interrupts, for errors, individual bytes, or entire transactions
- Descriptor Mode, in which a set of sixteen descriptor registers can configure the controller to autonomously perform multi-phase SPI data transfers
- Capable of wire speed transfers in all SPI modes and all configurable SPI clock rates (internal bus contention may cause clock stretching)

FIGURE 24-2: QUAD MASTER SPI BLOCK DIAGRAM



#### 24.11.1 SPI CONFIGURATIONS MODES

- · Half Duplex. All SPI data transfers take place on a single wire, SPI\_IO0
- Full Duplex. This is the legacy SPI configuration, where all SPI data is transferred one bit at a time and data from the SPI Master to the SPI Slave takes place on SPI\_MOSI (SPI\_IO0) and at the same time data from the SPI Slave to the SPI Master takes place on SPI\_MISO (SPI\_IO1)
- Dual Data Rate. Data transfers between the SPI Master and the SPI Slave take place two bits at a time, using SPI IO0 and SPI IO1
- Quad Data Rate. Data transfers between the SPI Master and the SPI Slave take place four bits at a time, using all four SPI data wires, SPI IO0, SPI IO1, SPI IO2 and SPI IO3

#### 24.11.2 SPI CONTROLLER MODES

- · Manual. In this mode, firmware control all SPI data transfers byte at a time
- DMA. Firmware configures the SPI Master controller for characteristics like data width but the transfer of data between the FIFO buffers in the SPI controller and memory is controlled by the DMA controller. DMA transfers can take place from the Slave to the Master, from the Master to the Slave, or in both directions simultaneously
- Descriptor. Descriptor Mode extends the SPI Controller so that firmware can configure a multi-phase SPI transfer, in which each phase may have a different SPI bus width, a different direction, and a different length. For example, firmware can configure the controller so that a read from an advanced SPI Flash, which consists of a command phase, an address phase, a dummy cycle phase and the read phase, can take place as a single operation, with a single interrupt to firmware when the entire transfer is completed

#### 24.11.3 SPI CLOCK

The SPI output clock is derived from the 48MHz, divided by a value programmed in the CLOCK\_DIVIDE field of the QMSPI Mode Register. Sample frequencies are shown in the following table:

| .,           |                     |  |  |  |
|--------------|---------------------|--|--|--|
| CLOCK_DIVIDE | SPI Clock Frequency |  |  |  |
| 0            | 187.5 KHz           |  |  |  |
| 1            | 48 MHz              |  |  |  |
| 2            | 24 MHz              |  |  |  |
| 3            | 16 MHz              |  |  |  |
| 6            | 8 MHz               |  |  |  |
| 48           | 1 MHz               |  |  |  |
| 128          | 375 KHz             |  |  |  |
| 255          | 188.25 KHz          |  |  |  |

TABLE 24-2: EXAMPLE SPI FREQUENCIES

#### 24.11.4 ERROR CONDITIONS

The Quad SPI Master Controller can detect some illegal configurations. When these errors are detected, an error is signaled via the PROGRAMMING\_ERROR status bit. This bit is asserted when any of the following errors are detected:

- Both Receive and the Transmit transfers are enabled when the SPI Master Controller is configured for Dual Data Rate or Quad Data Rate
- · Both Pull-up and Pull-down resistors are enabled on either the Receive data pins or the Transmit data pins
- The transfer length is programmed in bit mode, but the total number of bits is not a multiple of 2 (when the controller is configured for Dual Data Rate) or 4 (when the controller is configured for Quad Data Rate)
- · Both the STOP bit and the START bits in the QMSPI Execute Register are set to '1' simultaneously

# 24.12 EC Registers

Registers for this block are shown in the following summary table. Addresses for each register are determined by adding the offset to the Base Address for each instance of the Quad SPI Master Controller Block in the Block Overview and Base Address Table in Section 3.0, "Device Inventory".

**TABLE 24-3: REGISTER SUMMARY** 

| Offset | Register Name                        |
|--------|--------------------------------------|
| 0h     | QMSPI Mode Register                  |
| 4h     | QMSPI Control Register               |
| 8h     | QMSPI Execute Register               |
| Ch     | QMSPI Interface Control Register     |
| 10h    | QMSPI Status Register                |
| 14h    | QMSPI Buffer Count Status Register   |
| 18h    | QMSPI Interrupt Enable Register      |
| 1Ch    | QMSPI Buffer Count Trigger Register  |
| 20h    | QMSPI Transmit Buffer Register       |
| 24h    | QMSPI Receive Buffer Register        |
| 28h    | QMSPI Chip Select Timing Register    |
| 30h    | QMSPI Description Buffer 0 Register  |
| 34h    | QMSPI Description Buffer 1 Register  |
| 38h    | QMSPI Description Buffer 2 Register  |
| 3Ch    | QMSPI Description Buffer 3 Register  |
| 40h    | QMSPI Description Buffer 4 Register  |
| 44h    | QMSPI Description Buffer 5 Register  |
| 48h    | QMSPI Description Buffer 6 Register  |
| 4Ch    | QMSPI Description Buffer 7 Register  |
| 50h    | QMSPI Description Buffer 8 Register  |
| 54h    | QMSPI Description Buffer 9 Register  |
| 58h    | QMSPI Description Buffer 10 Register |
| 5Ch    | QMSPI Description Buffer 11 Register |
| 60h    | QMSPI Description Buffer 12 Register |
| 64h    | QMSPI Description Buffer 13 Register |
| 68h    | QMSPI Description Buffer 14 Register |
| 6Ch    | QMSPI Description Buffer 15 Register |
| B0     | Test                                 |

## 24.12.1 QMSPI MODE REGISTER

| Offset | 00h                                                                                                                                                                                                                                                              |      |         |                |
|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|---------|----------------|
| Bits   | Description                                                                                                                                                                                                                                                      | Туре | Default | Reset<br>Event |
| 31:24  | Reserved                                                                                                                                                                                                                                                         | RES  | -       | -              |
| 24:16  | CLOCK_DIVIDE  The SPI clock divide in number of system clocks. A value of 1 divides the master clock by 1, a value of 255 divides the master clock by 255. A value of 0 divides the master clock by 256. See Table 24-2, "Example SPI Frequencies" for examples. | R/W  | 0h      | RESET          |
| 15:14  | Reserved                                                                                                                                                                                                                                                         | RES  | -       | -              |

|       | 00h                                                                                                                 |      |         |                |
|-------|---------------------------------------------------------------------------------------------------------------------|------|---------|----------------|
| Bits  | Description                                                                                                         | Туре | Default | Reset<br>Event |
| 13:12 | CHIP_SELECT                                                                                                         | R/W  | 0h      | RESE           |
|       | Selects which Chip Select line is active. The non-active CS line is                                                 |      |         |                |
|       | driven high.                                                                                                        |      |         |                |
|       | 00=Chip Select 0                                                                                                    |      |         |                |
|       | 01=Chip Select 1                                                                                                    |      |         |                |
| 44    | 1x=unused.                                                                                                          | DEC  |         |                |
|       | Reserved                                                                                                            | RES  | -       | -              |
| 10    | CHPA_MISO                                                                                                           | R/W  | 0h      | RESE           |
|       | If CPOL=1:                                                                                                          |      |         |                |
|       | 1=Data are captured on the rising edge of the SPI clock                                                             |      |         |                |
|       | 0=Data are captured on the falling edge of the SPI clock                                                            |      |         |                |
|       | It about a                                                                                                          |      |         |                |
|       | If CPOL=0: 1=Data are captured on the falling edge of the SPI clock                                                 |      |         |                |
|       | 0=Data are captured on the rising edge of the SPI clock                                                             |      |         |                |
|       |                                                                                                                     |      |         |                |
|       | Application Notes:                                                                                                  |      |         |                |
|       | Common SPI Modes require the CURA MISO and CURA MOSI                                                                |      |         |                |
|       | Common SPI Modes require the CHPA_MISO and CHPA_MOSI programmed to the same value. E.g.,                            |      |         |                |
|       | - Mode 0: CPOL=0; CHPA_MISO=0; CHPA_MOSI=0                                                                          |      |         |                |
|       | - Mode 3: CPOL=1; CHPA_MISO=1; CHPA_MOSI=1                                                                          |      |         |                |
|       |                                                                                                                     |      |         |                |
|       | Alternative SPI Mode configurations                                                                                 |      |         |                |
|       | When configured for quad mode, applications operating at                                                            |      |         |                |
|       | 48MHz may find it difficult to meet the minimum setup timing                                                        |      |         |                |
|       | using the default Mode 0. It is recommended to configure the Master to sample and change data on the same edge when |      |         |                |
|       | operating at 48MHz as shown in these examples. E.g.                                                                 |      |         |                |
|       | - Mode 0: CPOL=0; CHPA_MISO=1; CHPA_MOSI=0                                                                          |      |         |                |
|       | - Mode 3: CPOL=1; CHPA MISO=0; CHPA MOSI=1                                                                          |      |         |                |
| 9     |                                                                                                                     | R/W  | 0h      | RESE           |
|       | _                                                                                                                   |      |         |                |
|       | If CPOL=1:                                                                                                          |      |         |                |
|       | 1=Data changes on the falling edge of the SPI clock                                                                 |      |         |                |
|       | 0=Data changes on the rising edge of the SPI clock                                                                  |      |         |                |
| 8     | If CPOL=0:                                                                                                          |      |         |                |
|       | 1=Data changes on the rising edge of the SPI clock                                                                  |      |         |                |
|       | 0=Data changes on the falling edge of the SPI clock                                                                 |      |         |                |
|       |                                                                                                                     | R/W  | 0h      | RESE           |
|       | Polarity of the SPI clock line when there are no transactions in pro-                                               |      |         |                |
|       | cess.                                                                                                               |      |         |                |
|       | 1=SPI Clock starts High                                                                                             |      |         |                |
|       | 0=SPI Clock starts Low                                                                                              |      |         |                |
|       |                                                                                                                     |      |         | +              |

| Offset | 00h                                                                                                                                                                                                                                                          |      |         |                |
|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|---------|----------------|
| Bits   | Description                                                                                                                                                                                                                                                  | Туре | Default | Reset<br>Event |
| 2      | SAF DMA Mode                                                                                                                                                                                                                                                 | R/W  | 0h      | RESET          |
|        | This mode enables the H/W to allow a DMA to access the part with accesses that are not a multiple of 4 bytes.  0 = Standard DMA functionality  1 = SAF DMA Mode: Non-standard DMA functionality with arbitrary (unaligned) sizes and FIFO underflow allowed. |      |         |                |
| 1      | SOFT_RESET                                                                                                                                                                                                                                                   | W    | 0h      | RESET_         |
|        | Writing this bit with a '1' will reset the Quad SPI block. It is self-clearing.                                                                                                                                                                              |      |         | SYS            |
| 0      | ACTIVATE                                                                                                                                                                                                                                                     | R/W  | 0h      | RESET          |
|        | 1=Enabled. The block is fully operational 0=Disabled. Clocks are gated to conserve power and the output signals are set to their inactive state                                                                                                              |      |         |                |

# **CEC1712**

## 24.12.2 QMSPI CONTROL REGISTER

| Offset | 04h                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      |         |                |
|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|---------|----------------|
| Bits   | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Туре | Default | Reset<br>Event |
| 31:17  | TRANSFER_LENGTH The length of the SPI transfer. The count is in bytes or bits, depending on the value of TRANSFER_UNITS. A value of '0' means an infinite length transfer.                                                                                                                                                                                                                                                                                             | R/W  | 0h      | RESET          |
| 16     | DESCRIPTION_BUFFER_ENABLE This enables the Description Buffers to be used.  1=Description Buffers in use. The first buffer is defined in DESCRIPTION_BUFFER_POINTER 0=Description Buffers disabled                                                                                                                                                                                                                                                                     | R/W  | Oh      | RESET          |
| 15:12  | DESCRIPTION_BUFFER_POINTER  This field selects the first buffer used if Description Buffers are enabled.                                                                                                                                                                                                                                                                                                                                                               | R/W  | 0h      | RESET          |
| 11:10  | TRANSFER_UNITS  3=TRANSFER_LENGTH defined in units of 16-byte segments 2=TRANSFER_LENGTH defined in units of 4-byte segments 1=TRANSFER_LENGTH defined in units of bytes 0=TRANSFER_LENGTH defined in units of bits                                                                                                                                                                                                                                                    | R/W  | 0h      | RESET          |
| 9      | CLOSE_TRANSFER_ENABLE This selects what action is taken at the end of a transfer. When the transaction closes, the Chip Select de-asserts, the SPI interface returns to IDLE and the DMA transfer terminates. When Description Buffers are in use this bit must be set only on the Last Buffer.  1=The transaction is terminated 0=The transaction is not terminated                                                                                                   | R/W  | Oh      | RESET          |
| 8:7    | RX_DMA_ENABLE This bit enables DMA support for Receive Transfer. If enabled, DMA will be requested to empty the FIFO until either the interface reaches TRANSFER_LENGTH or the DMA sends a termination request. The size defined here must match DMA programmed access size.  1=DMA is enabled.and set to 1 Byte 2=DMA is enabled and set to 2 Bytes 3=DMA is enabled and set to 4 Bytes 0=DMA is disabled. All data in the Receive Buffer must be emptied by firmware | R/W  | Oh      | RESET          |
| 6      | RX_TRANSFER_ENABLE This bit enables the receive function of the SPI interface.  1=Receive is enabled. Data received from the SPI Slave is stored in the Receive Buffer 0=Receive is disabled                                                                                                                                                                                                                                                                           | R/W  | 0h      | RESET          |

| Offset | 04h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |      |         |                |
|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|---------|----------------|
| Bits   | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Туре | Default | Reset<br>Event |
| 5:4    | TX_DMA_ENABLE This bit enables DMA support for Transmit Transfer. If enabled, DMA will be requested to fill the FIFO until either the interface reaches TRANSFER_LENGTH or the DMA sends a termination request. The size defined here must match DMA programmed access size.  1=DMA is enabled.and set to 1 Byte 2=DMA is enabled and set to 2 Bytes 3=DMA is enabled and set to 4 Bytes 0=DMA is disabled. All data in the Transmit Buffer must be emptied by firmware                                                                                                     | R/W  | 0h      | RESET          |
| 3:2    | TX_TRANSFER_ENABLE This field bit selects the transmit function of the SPI interface.  3=Transmit Enabled in 1 Mode. The MOSI or IO Bus will send out only 1's. The Transmit Buffer will not be used 2=Transmit Enabled in 0 Mode. The MOSI or IO Bus will send out only 0's. The Transmit Buffer will not be used.  1=Transmit Enabled. Data will be fetched from the Transmit Buffer and sent out on the MOSI or IO Bus.  0=Transmit is Disabled. Not data is sent. This will cause the MOSI be to be undriven, or the IO bus to be undriven if Receive is also disabled. | R/W  | 0h      | RESET          |
| 1:0    | INTERFACE_MODE This field sets the transmission mode. If this field is set for Dual Mode or Quad Mode then either TX_TRANSFER_ENABLE or RX_TRANSFER_ENABLE must be 0.  3=Reserved 2=Quad Mode 1=Dual Mode 0=Single/Duplex Mode                                                                                                                                                                                                                                                                                                                                              | R/W  | Oh      | RESET          |

# 24.12.3 QMSPI EXECUTE REGISTER

| Offset | 08h                                                                                                                                                                                                                                                  |      |         |                |
|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|---------|----------------|
| Bits   | Description                                                                                                                                                                                                                                          | Туре | Default | Reset<br>Event |
| 31:3   | Reserved                                                                                                                                                                                                                                             | RES  | -       | -              |
| 2      | CLEAR_DATA_BUFFER Writing a '1' to this bit will clear out the Transmit and Receive FIFOs. Any data stored in the FIFOs is discarded and all count fields are reset. Writing a '0' to this bit has no effect. This bit is self-clearing.             | W    | 0h      | RESET          |
| 1      | STOP Writing a '1' to this bit will stop any transfer in progress at the next byte boundary. Writing a '0' to this bit has no effect. This bit is self-clearing.  This bit must not be set to '1' if the field START in this register is set to '1'. | W    | Oh      | RESET          |

# **CEC1712**

| Offset | 08h                                                                                                                                                                                                                 |      |         |                |
|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|---------|----------------|
| Bits   | Description                                                                                                                                                                                                         | Туре | Default | Reset<br>Event |
| 0      | START Writing a '1' to this bit will start the SPI transfer. Writing a '0' to this bit has no effect. This bit is self-clearing.  This bit must not be set to '1' if the field STOP in this register is set to '1'. | W    | 0h      | RESET          |

# 24.12.4 QMSPI INTERFACE CONTROL REGISTER

| Offset | 0Ch                                                                                                                            |          |         |                |
|--------|--------------------------------------------------------------------------------------------------------------------------------|----------|---------|----------------|
| Bits   | Description                                                                                                                    | Туре     | Default | Reset<br>Event |
| 31:8   | Reserved                                                                                                                       | RES      | -       | -              |
| 7      | PULLUP_ON_NOT_DRIVEN                                                                                                           | R/W      | 0h      | RESET          |
|        | 1=Enable pull-up resistors on Transmit pins while the pins are not driven                                                      |          |         |                |
|        | 0=No pull-up resistors enabled ion Transmit pins                                                                               |          |         |                |
| 6      | PULLDOWN_ON_NOT_DRIVEN                                                                                                         | R/W      | 0h      | RESET          |
|        | 1=Enable pull-down resistors on Transmit pins while the pins are not driven 0=No pull-down resistors enabled ion Transmit pins |          |         |                |
| 5      | ·                                                                                                                              | R/W      | 0h      | RESET          |
| 3      | POLLUP_ON_NOT_SELECTED                                                                                                         | FK/VV    | OH      | RESET          |
|        | 1=Enable pull-up resistors on Receive pins while the SPI Chip Select signal is not asserted                                    |          |         |                |
|        | 0=No pull-up resistors enabled on Receive pins                                                                                 | D 044    |         | DECET          |
| 4      | PULLDOWN_ON_NOT_SELECTED                                                                                                       | R/W      | 0h      | RESET          |
|        | 1=Enable pull-down resistors on Receive pins while the SPI Chip                                                                |          |         |                |
|        | Select signal is not asserted                                                                                                  |          |         |                |
|        | 0=No pull-down resistors enabled on Receive pins                                                                               |          |         |                |
| 3      | HOLD_OUT_ENABLE                                                                                                                | R/W      | 0h      | RESET          |
|        |                                                                                                                                |          |         |                |
|        | 1=HOLD SPI Output Port is driven 0=HOLD SPI Output Port is not driven                                                          |          |         |                |
| 2      | HOLD OUT VALUE                                                                                                                 | R/W      | 0h      | RESET          |
|        | This bit sets the value on the HOLD SPI Output Port if it is driven.                                                           | 1 1/ V V | OH      | IXLOCI         |
|        | This bit sets the value of the FIGEB of Fourpatt Sith it is driven.                                                            |          |         |                |
|        | 1=HOLD is driven to 1                                                                                                          |          |         |                |
|        | 0=HOLD is driven to 0                                                                                                          |          |         |                |
| 1      | WRITE_PROTECT_OUT_ENABLE                                                                                                       | R/W      | 0h      | RESET          |
|        | 1=WRITE PROTECT SPI Output Port is driven                                                                                      |          |         |                |
|        | 0=WRITE PROTECT SPI Output Port is not driven                                                                                  |          |         |                |

| Offset | 0Ch                                                                                                                                                                  |      |         |                |
|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|---------|----------------|
| Bits   | Description                                                                                                                                                          | Туре | Default | Reset<br>Event |
| 0      | WRITE_PROTECT_OUT_VALUE This bit sets the value on the WRITE PROTECT SPI Output Port if it is driven.  1=WRITE PROTECT is driven to 1 0=WRITE PROTECT is driven to 0 | R/W  | 0h      | RESET          |

## 24.12.5 QMSPI STATUS REGISTER

| Offset | 10h                                                                                                                                                                                                                                                                                    |      |         |                |
|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|---------|----------------|
| Bits   | Description                                                                                                                                                                                                                                                                            | Туре | Default | Reset<br>Event |
| 31:28  | Reserved                                                                                                                                                                                                                                                                               | RES  | -       | -              |
| 27:24  | CURRENT_DESCRIPTION_BUFFER This field shows the Description Buffer currently active. This field has no meaning if Description Buffers are not enabled.                                                                                                                                 | R    | 0h      | RESET          |
| 23:17  | Reserved                                                                                                                                                                                                                                                                               | RES  | -       | -              |
| 16     | TRANSFER_ACTIVE  1=A transfer is currently executing 0=No transfer currently in progress                                                                                                                                                                                               | R    | 0h      | RESET          |
| 15     | RECEIVE_BUFFER_STALL  1=The SPI interface had been stalled due to a flow issue (an attempt by the interface to write to a full Receive Buffer)  0=No stalls occurred                                                                                                                   | R/WC | Oh      | RESET          |
| 14     | RECEIVE_BUFFER_REQUEST This status is asserted if the Receive Buffer reaches a high water mark established by the RECEIVE_BUFFER_TRIGGER field.  1=RECEIVE_BUFFER_COUNT is greater than or equal to RECEIVE_BUFFER_TRIGGER  0=RECEIVE_BUFFER_COUNT is less than RECEIVE_BUFFER_TRIGGER | R/WC | Oh      | RESET          |
| 13     | RECEIVE_BUFFER_EMPTY  1=The Receive Buffer is empty 0=The Receive Buffer is not empty                                                                                                                                                                                                  | R    | 1h      | RESET          |
| 12     | RECEIVE_BUFFER_FULL  1=The Receive Buffer is full 0=The Receive Buffer is not full                                                                                                                                                                                                     | R    | Oh      | RESET          |
| 11     | TRANSMIT_BUFFER_STALL  1=The SPI interface had been stalled due to a flow issue (an attempt by the interface to read from an empty Transmit Buffer)  0=No stalls occurred                                                                                                              | R/WC | Oh      | RESET          |

# **CEC1712**

| Offset | 10h                                                                                                                                                                                                                                                                                                       |      |         |                |
|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|---------|----------------|
| Bits   | Description                                                                                                                                                                                                                                                                                               | Туре | Default | Reset<br>Event |
| 10     | TRANSMIT_BUFFER_REQUEST This status is asserted if the Transmit Buffer reaches a high water mark established by the TRANSMIT_BUFFER_TRIGGER field.                                                                                                                                                        | R/WC | Oh      | RESET          |
|        | 1=TRANSMIT_BUFFER_COUNT is less than or equal to TRANS-<br>MIT_BUFFER_TRIGGER<br>0=TRANSMIT_BUFFER_COUNT is greater than TRANS-<br>MIT_BUFFER_TRIGGER                                                                                                                                                     |      |         |                |
| 9      | TRANSMIT_BUFFER_EMPTY  1=The Transmit Buffer is empty                                                                                                                                                                                                                                                     | R    | 1h      | RESET          |
|        | 0=The Transmit Buffer is not empty                                                                                                                                                                                                                                                                        |      |         |                |
| 8      | TRANSMIT_BUFFER_FULL                                                                                                                                                                                                                                                                                      | R    | 0h      | RESET          |
|        | 1=The Transmit Buffer is full<br>0=The Transmit Buffer is not full                                                                                                                                                                                                                                        |      |         |                |
| 7:5    | Reserved                                                                                                                                                                                                                                                                                                  | RES  | -       | -              |
| 4      | PROGRAMMING_ERROR This bit if a programming error is detected. Programming errors are listed in Section 24.11.4, "Error Conditions".                                                                                                                                                                      | R/WC | 0h      | RESET          |
|        | 1=Programming Error detected 0=No programming error detected                                                                                                                                                                                                                                              |      |         |                |
| 3      | RECEIVE_BUFFER_ERROR                                                                                                                                                                                                                                                                                      | R/WC | 0h      | RESET          |
|        | 1=Underflow error occurred (attempt to read from an empty Receive Buffer) 0=No underflow occurred                                                                                                                                                                                                         |      |         |                |
| 2      | TRANSMIT_BUFFER_ERROR                                                                                                                                                                                                                                                                                     | R/WC | 0h      | RESET          |
|        | 1=Overflow error occurred (attempt to write to a full Transmit Buffer) 0=No overflow occurred                                                                                                                                                                                                             |      |         |                |
| 1      | DMA_COMPLETE This field has no meaning if DMA is not enabled.                                                                                                                                                                                                                                             | R/WC | 0h      | RESET          |
|        | This bit will be set to '1' when the DMA controller asserts the DONE signal to the SPI controller. This occurs either when the SPI controller has closed the DMA transfer, or the DMA channel has completed its count. If both Transmit and Receive DMA transfers are active,                             |      |         |                |
|        | then this bit will only assert after both have completed. If CLOSE_TRANSFER_ENABLE is enabled, DMA_COMPLETE and TRANSFER_COMPLETE will be asserted simultaneously. This status is not inhibited by the description buffers, so it can fire on all valid description buffers while operating in that mode. |      |         |                |
|        | 1=DMA completed 0=DMA not completed                                                                                                                                                                                                                                                                       |      |         |                |

| Offset | 10h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |      |         |                |
|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|---------|----------------|
| Bits   | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Туре | Default | Reset<br>Event |
| 0      | TRANSFER_COMPLETE In Manual Mode (neither DMA nor Description Buffers are enabled), this bit will be set to '1' when the transfer matches TRANS-FER_LENGTH.  If DMA Mode is enabled, this bit will be set to '1' when DMA_COMPLETE is set to '1'.  In Description Buffer Mode, this bit will be set to '1' only when the Last Buffer completes its transfer.  In all cases, this bit will be set to '1' if the STOP bit is set to '1' and the controller has completed the current 8 bits being copied.  1=Transfer completed 0=Transfer not complete | R/WC | 0h      | RESET          |

## 24.12.6 QMSPI BUFFER COUNT STATUS REGISTER

| Offset | 14h                                                                            |      |         |                |
|--------|--------------------------------------------------------------------------------|------|---------|----------------|
| Bits   | Description                                                                    | Туре | Default | Reset<br>Event |
| 31:16  | RECEIVE_BUFFER_COUNT                                                           | R    | 0h      | RESET          |
|        | This is a count of the number of bytes currently valid in the Receive Buffer.  |      |         |                |
| 15:0   | TRANSMIT_BUFFER_COUNT                                                          | R    | 0h      | RESET          |
|        | This is a count of the number of bytes currently valid in the Transmit Buffer. |      |         |                |

## 24.12.7 QMSPI INTERRUPT ENABLE REGISTER

| Offset | 18h                                                                                 |      |         |                |
|--------|-------------------------------------------------------------------------------------|------|---------|----------------|
| Bits   | Description                                                                         | Туре | Default | Reset<br>Event |
| 31:15  | Reserved                                                                            | RES  | -       | -              |
| 14     | RECEIVE_BUFFER_REQUEST_ENABLE                                                       | R/W  | 0h      | RESET          |
|        | 1=Enable an interrupt if RECEIVE_BUFFER_REQUEST is asserted 0=Disable the interrupt |      |         |                |
| 13     | RECEIVE_BUFFER_EMPTY_ENABLE                                                         | R/W  | 1h      | RESET          |
|        | 1=Enable an interrupt if RECEIVE_BUFFER_EMPTY is asserted 0=Disable the interrupt   |      |         |                |
| 12     | RECEIVE_BUFFER_FULL_ENABLE                                                          | R/W  | 0h      | RESET          |
|        | 1=Enable an interrupt if RECEIVE_BUFFER_FULL is asserted 0=Disable the interrupt    |      |         |                |
| 11     | Reserved                                                                            | RES  | -       | -              |

| Offset | 18h                                                                                  |      |         |                |
|--------|--------------------------------------------------------------------------------------|------|---------|----------------|
| Bits   | Description                                                                          | Туре | Default | Reset<br>Event |
| 10     | TRANSMIT_BUFFER_REQUEST_ENABLE                                                       | R/W  | 0h      | RESET          |
|        | 1=Enable an interrupt if TRANSMIT_BUFFER_REQUEST is asserted 0=Disable the interrupt |      |         |                |
| 9      | TRANSMIT_BUFFER_EMPTY_ENABLE                                                         | R/W  | 0h      | RESET          |
|        | 1=Enable an interrupt if TRANSMIT_BUFFER_EMPTY is asserted 0=Disable the interrupt   |      |         |                |
| 8      | TRANSMIT_BUFFER_FULL_ENABLE                                                          | R/W  | 0h      | RESET          |
|        | 1=Enable an interrupt if TRANSMIT_BUFFER_FULL is asserted 0=Disable the interrupt    |      |         |                |
| 7:5    | Reserved                                                                             | RES  | -       | -              |
| 4      | PROGRAMMING_ERROR_ENABLE                                                             | R/W  | 0h      | RESET          |
|        | 1=Enable an interrupt if PROGRAMMING_ERROR is asserted 0=Disable the interrupt       |      |         |                |
| 3      | RECEIVE_BUFFER_ERROR_ENABLE                                                          | R/W  | 0h      | RESET          |
|        | 1=Enable an interrupt if RECEIVE_BUFFER_ERROR is asserted 0=Disable the interrupt    |      |         |                |
| 2      | TRANSMIT_BUFFER_ERROR_ENABLE                                                         | R/W  | 0h      | RESET          |
|        | 1=Enable an interrupt if TRANSMIT_BUFFER_ERROR is asserted 0=Disable the interrupt   |      |         |                |
| 1      | DMA_COMPLETE_ENABLE                                                                  | R/W  | 0h      | RESET          |
|        | 1=Enable an interrupt if DMA_COMPLETE is asserted 0=Disable the interrupt            |      |         |                |
| 0      | TRANSFER_COMPLETE_ENABLE                                                             | R/W  | 0h      | RESET          |
|        | 1=Enable an interrupt if TRANSFER_COMPLETE is asserted 0=Disable the interrupt       |      |         |                |

# 24.12.8 QMSPI BUFFER COUNT TRIGGER REGISTER

| Offset | 1Ch                                                                                                                                                               |      |         |                |
|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|---------|----------------|
| Bits   | Description                                                                                                                                                       | Туре | Default | Reset<br>Event |
| 31:16  | RECEIVE_BUFFER_TRIGGER An interrupt is triggered if the RECEIVE_BUFFER_COUNT field is greater than or equal to this value. A value of '0' disables the interrupt. | R/W  | 0h      | RESET          |
| 15:0   | TRANSMIT_BUFFER_TRIGGER An interrupt is triggered if the TRANSMIT_BUFFER_COUNT field is less than or equal to this value. A value of '0' disables the interrupt.  | R/W  | 0h      | RESET          |

## 24.12.9 QMSPI TRANSMIT BUFFER REGISTER

| Offset | 20h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      |         |                |
|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|---------|----------------|
| Bits   | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Туре | Default | Reset<br>Event |
| 31:0   | TRANSMIT_BUFFER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | W    | 0h      | RESET          |
|        | Writes to this register store data to be transmitted from the SPI Master to the external SPI Slave. Writes to this block will be written to the Transmit FIFO. A 1 Byte write fills 1 byte of the FIFO. A Word write fills 2 Bytes and a Doubleword write fills 4 bytes. The data must always be aligned to the bottom most byte (so 1 byte write is on bits [7:0] and Word write is on [15:0]). An overflow condition,TRANSMIT_BUFFER_ERROR will happen, if a write to a full FIFO occurs.  Write accesses to this register increment the TRANS- |      |         |                |
|        | Write accesses to this register increment the TRANS-MIT_BUFFER_COUNT field.                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |      |         |                |

## 24.12.10 QMSPI RECEIVE BUFFER REGISTER

| Offset | 24h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |      |         |                |
|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|---------|----------------|
| Bits   | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Туре | Default | Reset<br>Event |
| 31:0   | RECEIVE_BUFFER                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | R    | 0h      | RESET          |
|        | Buffer that stores data from the external SPI Slave device to the SPI Master (this block), which is received over MISO or IO.  Reads from this register will empty the Rx FIFO. A 1 Byte read will have valid data on bits [7:0] and a Word read will have data on bits [15:0]. It is possible to request more data than the FIFO has (underflow condition), but this will cause an error (RECEIVE_BUFFER_ERROR).  Read accesses to this register decrement the RECEIVE BUFFER COUNT field. |      |         |                |

## 24.12.11 QMSPI CHIP SELECT TIMING REGISTER

| Offset | 28h                                                                                                                                       |      |         |                |
|--------|-------------------------------------------------------------------------------------------------------------------------------------------|------|---------|----------------|
| Bits   | Description                                                                                                                               | Туре | Default | Reset<br>Event |
| 31:24  | DELAY_CS_OFF_TO_CS_ON                                                                                                                     | R/W  | 06h     | RESET          |
|        | This selects the number of system clock cycles between CS deassertion to CS assertion. This is the minimum pulse width of CS deassertion. |      |         |                |
|        | Note: this field delays the start of the next transaction, it does not delay the status of the current transaction.                       |      |         |                |
| 23:20  | Reserved                                                                                                                                  | RES  | 0h      | RESET          |

# **CEC1712**

| Offset | 28h                                                                                                                                                                                                                                 |      |         |                |
|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|---------|----------------|
| Bits   | Description                                                                                                                                                                                                                         | Туре | Default | Reset<br>Event |
| 19:16  | DELAY_LAST_DATA_HOLD                                                                                                                                                                                                                | R/W  | 6h      | RESET          |
|        | This selects the number of system clock cycles between CS deassertion to the data ports for WP and HOLD switching from input to output. This is only used if the WP/HOLD functions are in use and only on IO2/WP and IO3/HOLD pins. |      |         |                |
| 15:12  | Reserved                                                                                                                                                                                                                            | RES  | 0h      | RESET          |
| 11:8   | DELAY_CLK_STOP_TO_CS_OFF  This selects the number of system clock cycles between the last clock edge and the deassertion of CS.                                                                                                     | R/W  | 4h      | RESET          |
| 7:4    | Reserved                                                                                                                                                                                                                            | RES  | 0h      | RESET          |
| 3:0    | DELAY_CS_ON_TO_CLOCK_START                                                                                                                                                                                                          | R/W  | 6h      | RESET          |
|        | This selects the number of system clock cycles between CS assertion to the start of the SPI Clock. An additional ½ SPI Clock delay is inherently added to allow pre-set-up of the data ports.                                       |      |         |                |

## 24.12.12 QMSPI DESCRIPTION BUFFER 0 REGISTER

| Offset | 30h                                                                                                                                                                                                                                                                                                                  |       |         |                |
|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|---------|----------------|
| Bits   | Description                                                                                                                                                                                                                                                                                                          | Туре  | Default | Reset<br>Event |
| 31:17  | _                                                                                                                                                                                                                                                                                                                    | R/W   | 0h      | RESET          |
|        | The length of the SPI transfer. The count is in bytes or bits, depending on the value of TRANSFER_LENGTH_BITS. A value of '0' means an infinite length transfer.                                                                                                                                                     |       |         |                |
| 16     | DESCRIPTION_BUFFER_LAST                                                                                                                                                                                                                                                                                              | R/W   | 0h      | RESET          |
|        | If this bit is '1' then this is the last Description Buffer in the chain. When the transfer described by this buffer completes the TRANS-FER_COMPLETE status will be set to '1'. If this bit is '0', then this is not the last buffer in use. When the transfer completes the next buffer in the last buffer in use. |       |         |                |
| 15:12  | fer will be activated, and no additional status will be asserted.  DESCRIPTION_BUFFER_NEXT_POINTER                                                                                                                                                                                                                   | R/W   | 0h      | RESET          |
| 10.12  | This defines the next buffer to be used if Description Buffers are enabled and this is not the last buffer. This can point to the current buffer, creating an infinite loop.                                                                                                                                         | 10,00 | Oll     | KEGET          |
| 11:10  | TRANSFER_UNITS                                                                                                                                                                                                                                                                                                       | R/W   | 0h      | RESET          |
|        | 3=TRANSFER_LENGTH defined in units of 16-byte segments 2=TRANSFER_LENGTH defined in units of 4-byte segments 1=TRANSFER_LENGTH defined in units of bytes 0=TRANSFER_LENGTH defined in units of bits                                                                                                                  |       |         |                |

| Offset | 30h                                                                                                                                                                                                                                                            |      |         |                |
|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|---------|----------------|
| Bits   | Description                                                                                                                                                                                                                                                    | Туре | Default | Reset<br>Event |
| 9      | CLOSE_TRANFSER_ENABLE                                                                                                                                                                                                                                          | R/W  | 0h      | RESET          |
|        | This selects what action is taken at the end of a transfer. This bit must be set only on the Last Buffer.                                                                                                                                                      |      |         |                |
|        | 1=The transfer is terminated. The Chip Select de-asserts, the SPI interface returns to IDLE and the DMA interface completes the transfer.                                                                                                                      |      |         |                |
|        | 0=The transfer is not closed. Chip Select remains asserted and the DMA interface and the SPI interface remain active                                                                                                                                           |      |         |                |
| 8:7    | RX_DMA_ENABLE                                                                                                                                                                                                                                                  | R/W  | 0h      | RESET          |
|        | This bit enables DMA support for Receive Transfer. If enabled, DMA will be requested to empty the FIFO until either the interface reaches TRANSFER_LENGTH or the DMA sends a termination request. The size defined here must match DMA programmed access size. |      |         |                |
|        | 1=DMA is enabled and set to 1 Byte<br>2=DMA is enabled and set to 2 Bytes<br>3=DMA is enabled and set to 4 Bytes                                                                                                                                               |      |         |                |
|        | 0=DMA is disabled. All data in the Receive Buffer must be emptied by firmware                                                                                                                                                                                  |      |         |                |
| 6      | RX_TRANSFER_ENABLE This bit enables the receive function of the SPI interface.                                                                                                                                                                                 | R/W  | 0h      | RESET          |
|        | 1=Receive is enabled. Data received from the SPI Slave is stored in the Receive Buffer 0=Receive is disabled                                                                                                                                                   |      |         |                |
| 5:4    | TX_DMA_ENABLE                                                                                                                                                                                                                                                  | R/W  | 0h      | RESET          |
|        | This bit enables DMA support for Transmit Transfer. If enabled, DMA will be requested to fill the FIFO until either the interface reaches TRANSFER_LENGTH or the DMA sends a termination request. The size defined here must match DMA programmed access size. |      |         |                |
|        | 1=DMA is enabled.and set to 1 Byte                                                                                                                                                                                                                             |      |         |                |
|        | 2=DMA is enabled and set to 2 Bytes<br>3=DMA is enabled and set to 4 Bytes                                                                                                                                                                                     |      |         |                |
|        | 0=DMA is enabled and set to 4 Bytes<br>0=DMA is disabled. All data in the Transmit Buffer must be emptied<br>by firmware                                                                                                                                       |      |         |                |
| 3:2    | TX_TRANSFER_ENABLE                                                                                                                                                                                                                                             | R/W  | 0h      | RESET          |
|        | This field bit selects the transmit function of the SPI interface.                                                                                                                                                                                             |      |         |                |
|        | 3=Transmit Enabled in 1 Mode. The MOSI or IO Bus will send out only 1's. The Transmit Buffer will not be used 2=Transmit Enabled in 0 Mode. The MOSI or IO Bus will send out                                                                                   |      |         |                |
|        | only 0's. The Transmit Buffer will not be used.  1=Transmit Enabled. Data will be fetched from the Transmit Buffer and sent out on the MOSI or IO Bus.                                                                                                         |      |         |                |
|        | 0=Transmit is Disabled. No data is sent. This will cause the MOSI be to be undriven, or the IO bus to be undriven if Receive is also disabled.                                                                                                                 |      |         |                |

| Offset | 30h                                                                                                                                                           |      |         |                |
|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|------|---------|----------------|
| Bits   | Description                                                                                                                                                   | Туре | Default | Reset<br>Event |
| 1:0    | INTERFACE_MODE                                                                                                                                                | R/W  | 0h      | RESET          |
|        | This field sets the transmission mode. If this field is set for Dual Mode or Quad Mode then either TX_TRANSFER_ENABLE or RX_TRANSFER_ENABLE <b>must</b> be 0. |      |         |                |
|        | 3=Reserved                                                                                                                                                    |      |         |                |
|        | 2=Quad Mode                                                                                                                                                   |      |         |                |
|        | 1=Dual Mode                                                                                                                                                   |      |         |                |
|        | 0=Single/Duplex Mode                                                                                                                                          |      |         |                |

#### 24.12.13 QMSPI DESCRIPTION BUFFER 1 REGISTER

The format for this register is the same as the format of the QMSPI Description Buffer 0 Register.

#### 24.12.14 QMSPI DESCRIPTION BUFFER 2 REGISTER

The format for this register is the same as the format of the QMSPI Description Buffer 0 Register.

#### 24.12.15 QMSPI DESCRIPTION BUFFER 3 REGISTER

The format for this register is the same as the format of the QMSPI Description Buffer 0 Register.

#### 24.12.16 QMSPI DESCRIPTION BUFFER 4 REGISTER

The format for this register is the same as the format of the QMSPI Description Buffer 0 Register.

#### 24.12.17 QMSPI DESCRIPTION BUFFER 5 REGISTER

The format for this register is the same as the format of the QMSPI Description Buffer 0 Register.

#### 24.12.18 QMSPI DESCRIPTION BUFFER 6 REGISTER

The format for this register is the same as the format of the QMSPI Description Buffer 0 Register.

#### 24.12.19 QMSPI DESCRIPTION BUFFER 7 REGISTER

The format for this register is the same as the format of the QMSPI Description Buffer 0 Register.

#### 24.12.20 QMSPI DESCRIPTION BUFFER 8 REGISTER

The format for this register is the same as the format of the QMSPI Description Buffer 0 Register.

## 24.12.21 QMSPI DESCRIPTION BUFFER 9 REGISTER

The format for this register is the same as the format of the QMSPI Description Buffer 0 Register.

#### 24.12.22 QMSPI DESCRIPTION BUFFER 10 REGISTER

The format for this register is the same as the format of the QMSPI Description Buffer 0 Register.

#### 24.12.23 QMSPI DESCRIPTION BUFFER 11 REGISTER

The format for this register is the same as the format of the QMSPI Description Buffer 0 Register.

#### 24.12.24 QMSPI DESCRIPTION BUFFER 12 REGISTER

The format for this register is the same as the format of the QMSPI Description Buffer 0 Register.

#### 24.12.25 QMSPI DESCRIPTION BUFFER 13 REGISTER

The format for this register is the same as the format of the QMSPI Description Buffer 0 Register.

## 24.12.26 QMSPI DESCRIPTION BUFFER 14 REGISTER

The format for this register is the same as the format of the QMSPI Description Buffer 0 Register.

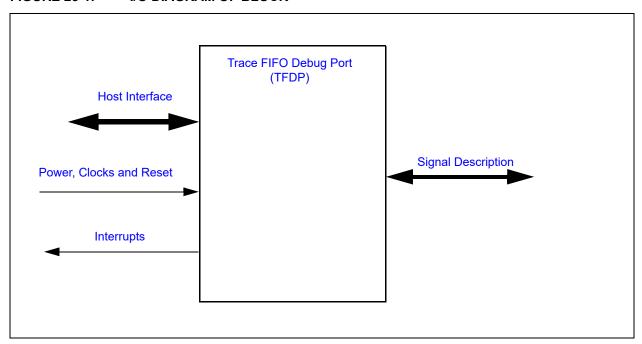
#### 24.12.27 QMSPI DESCRIPTION BUFFER 15 REGISTER

The format for this register is the same as the format of the QMSPI Description Buffer 0 Register.

# 25.0 TRACE FIFO DEBUG PORT (TFDP)

## 25.1 Introduction

The TFDP serially transmits Embedded Controller (EC)-originated diagnostic vectors to an external debug trace system.


## 25.2 References

No references have been cited for this chapter.

#### 25.3 Interface

This block is designed to be accessed externally via the pin interface and internally via a registered host interface.

FIGURE 25-1: I/O DIAGRAM OF BLOCK



## 25.4 Signal Description

The Signal Description Table lists the signals that are typically routed to the pin interface.

TABLE 25-1: SIGNAL DESCRIPTION

| Name      | Direction | Description                              |
|-----------|-----------|------------------------------------------|
| TFDP Clk  | Output    | Derived from EC Bus Clock.               |
| TFDP Data | Output    | Serialized data shifted out by TFDP Clk. |

## 25.5 Host Interface

The registers defined for the Trace FIFO Debug Port (TFDP) are accessible by the various hosts as indicated in Section 3.2, "Block Overview and Base Addresses".

# 25.6 Power, Clocks and Reset

This section defines the Power, Clock, and Reset parameters of the block.

#### 25.6.1 POWER DOMAINS

| Name | Description                                                                       |
|------|-----------------------------------------------------------------------------------|
| _    | The logic and registers implemented in this block are powered by this power well. |

# 25.6.2 CLOCK INPUTS

| Name  | Description                    |
|-------|--------------------------------|
| 48MHz | This is the main system clock. |

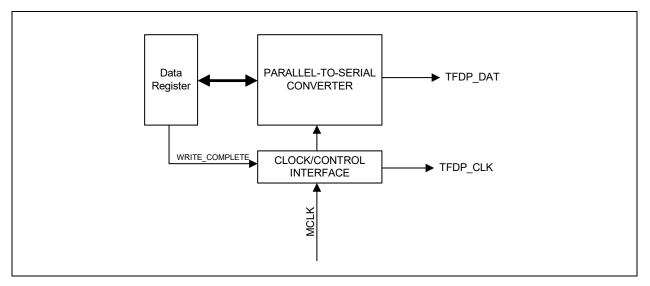
#### 25.6.3 RESETS

| Name      | Description                                                                          |
|-----------|--------------------------------------------------------------------------------------|
| RESET_SYS | This signal resets all the registers and logic in this block to their default state. |

## 25.7 Interrupts

There are no interrupts generated from this block.

#### 25.8 Low Power Modes

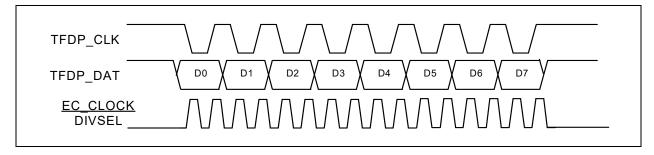

The Trace FIFO Debug Port (TFDP) may be put into a low power state by the chip's Power, Clocks, and Reset (PCR) circuitry.

## 25.9 Description

The TFDP is a unidirectional (from processor to external world) two-wire serial, byte-oriented debug interface for use by processor firmware to transmit diagnostic information.

The TFDP consists of the Debug Data Register, Debug Control Register, a Parallel-to-Serial Converter, a Clock/Control Interface and a two-pin external interface (TFDP Clk, TFDP Data). See Figure 25-2.

#### FIGURE 25-2: BLOCK DIAGRAM OF TFDP DEBUG PORT




The firmware executing on the embedded controller writes to the Debug Data Register to initiate a transfer cycle (Figure 25-2). The Debug Data Register is loaded into a shift register and shifted out on TFDP\_DAT LSB first at the programmed TFDP\_CLK Clock rate (Figure 25-3).

Data is transferred in one direction only from the Debug Data Register to the external interface. The data is shifted out at the clock edge. The clock edge is selected by the EDGE\_SEL bit in the Debug Control Register. After being shifted out, valid data will be presented at the opposite edge of the TFDP\_CLK. For example, when the EDGE\_SEL bit is '0' (default), valid data will be presented on the falling edge of the TFDP\_CLK. The Setup Time (to the falling edge of TFDP\_CLK) is 10 ns, minimum. The Hold Time is 1 ns, minimum.

When the Serial Debug Port is inactive, the TFDP\_CLK and TFDP\_DAT outputs are '1.' The EC Bus Clock clock input is the transfer clock.

FIGURE 25-3: DATA TRANSFER



### 25.10 EC-Only Registers

Registers for this block are shown in the following summary table. Addresses for each register are determined by adding the offset to the Base Address for the Trace FIFO Debug Port (TFDP) Block in the Block Overview and Base Address Table in Section 3.0, "Device Inventory".

**TABLE 25-2: REGISTER SUMMARY** 

| Offset                     | Register Name |  |
|----------------------------|---------------|--|
| 00h Debug Data Register    |               |  |
| 04h Debug Control Register |               |  |

#### 25.10.1 DEBUG DATA REGISTER

The Debut Data Register is Read/Write. It always returns the last data written by the TFDP or the power-on default '00h'.

| Offset | 00h                                                                                                                                                                                                   |      |         |                |
|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|---------|----------------|
| Bits   | Description                                                                                                                                                                                           | Type | Default | Reset<br>Event |
| 7:0    | DATA  Debug data to be shifted out on the TFDP Debug port. While data is being shifted out, the Host Interface will 'hold-off' additional writes to the data register until the transfer is complete. | R/W  | 00h     | RESET<br>_SYS  |

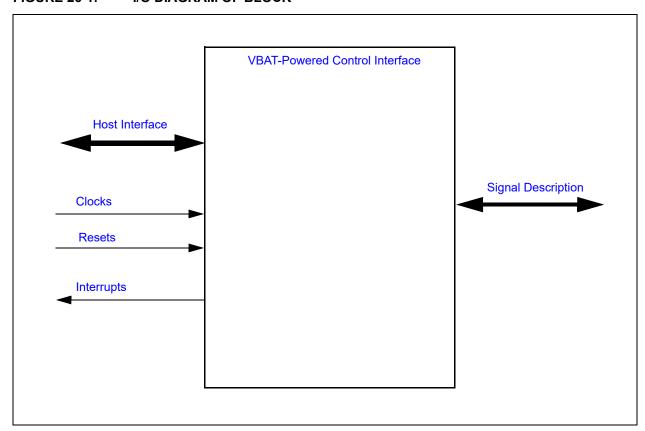
# 25.10.2 DEBUG CONTROL REGISTER

| Offset | 04h                                                                                                                                                                                        |      |         |                |
|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|---------|----------------|
| Bits   | Description                                                                                                                                                                                | Туре | Default | Reset<br>Event |
| 7      | Reserved                                                                                                                                                                                   | RES  | -       | -              |
| 6:4    | IP_DELAY Inter-packet Delay. The delay is in terms of TFDP Debug output clocks. A value of 0 provides a 1 clock inter-packet period, while a value of 7 provides 8 clocks between packets: | R/W  | 000b    | RESET<br>_SYS  |
| 3:2    | DIVSEL Clock Divider Select. The TFDP Debug output clock is determined by this field, according to Table 25-3, "TFDP Debug Clocking":                                                      | R/W  | 00b     | RESET<br>_SYS  |
| 1      | EDGE_SEL  1=Data is shifted out on the falling edge of the debug clock  0=Data is shifted out on the rising edge of the debug clock (Default)                                              | R/W  | Ob      | RESET<br>_SYS  |
| 0      | EN Enable.  1=Clock enabled 0=Clock is disabled (Default)                                                                                                                                  | R/W  | Ob      | RESET<br>_SYS  |

TABLE 25-3: TFDP DEBUG CLOCKING

| divsel | TFDP Debug Clock |
|--------|------------------|
| 00     | 24 MHz           |
| 01     | 12 MHz           |
| 10     | 6 MHz            |
| 11     | Reserved         |

#### 26.0 VBAT-POWERED CONTROL INTERFACE


## 26.1 General Description

The VBAT-Powered Control Interface (VCI) has VBAT-powered combinational logic and input and output signal pins. The block interfaces with the Real Time Clock as well as the Week Alarm.

## 26.2 Interface

This block is designed to be accesses externally via the pin interface and internally via a registered host interface.

FIGURE 26-1: I/O DIAGRAM OF BLOCK



# 26.3 Signal Description

**TABLE 26-1: EXTERNAL SIGNAL DESCRIPTION** 

| Name        | Direction | Description                                                                                                                                                                               |
|-------------|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| VCI_IN[3:0] | INPUT     | Active-low inputs that can cause wakeup or interrupt events.                                                                                                                              |
|             |           | Note: The VCI IP supports up to seven VCI_IN inputs. These inputs are generically referred to as VCI_INx. Input signals not routed to pins or balls on the package are connected to VBAT. |
| VCI_OUT     | OUTPUT    | Output status driven by this block.                                                                                                                                                       |

**TABLE 26-2: INTERNAL SIGNAL DESCRIPTION** 

| Name       | Direction | Description                                                                                                                       |
|------------|-----------|-----------------------------------------------------------------------------------------------------------------------------------|
| Week_Alarm | INPUT     | Signal from the Week Timer block. The alarm is asserted by the timer when the Week_Alarm Power-Up Output is asserted              |
| RTC_Alarm  | INPUT     | Signal from the Real Time Clock block. The alarm is asserted by the RTC when the RTC_ALRM signal is asserted.                     |
| VTR_PWRGD  | INPUT     | Status signal for the state of the VTR power rail. This signal is high if the power rail is on, and low if the power rail is off. |

#### 26.4 Host Interface

The registers defined for the VBAT-Powered Control Interface are accessible only by the EC.

## 26.5 Power, Clocks and Resets

This section defines the Power, Clock, and Reset parameters of the block.

#### 26.5.1 POWER DOMAINS

| Name | Description                                                                                                           |
|------|-----------------------------------------------------------------------------------------------------------------------|
| VBAT | This power well sources all of the internal registers and logic in this block.                                        |
| _    | The power well sources register access by the host. The block continues to operate internally while this rail is down |

## 26.5.2 CLOCKS

This block does not require clocks.

#### 26.5.3 RESETS

| Name       | Description                                                                                                                                                                          |
|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| RESET_VBAT | This reset signal is used reset all of the registers and logic in this block.                                                                                                        |
| RESET_SYS  | This reset signal is used to inhibit the bus communication logic, and isolates this block from VTR_CORE powered circuitry on-chip. Otherwise it has no effect on the internal state. |

# 26.6 Interrupts

| Source      | Description                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| VCI_IN[3:0] | These interrupts are routed to the Interrupt Aggregator. They are only asserted when both VBAT and VTR_CORE are powered. Edge detection and assertion level for the interrupt are configured in the GPIO Pin Control Registers for the GPIOs that shares pins with VCI_INx# inputs. The interrupts are equivalent to the GPIO interrupts for the GPIOs that share the pins, but appear on different registers in the Interrupt Aggregator. |

### 26.7 Low Power Modes

The VBAT-powered Control Interface has no low-power modes. It runs continuously while the VBAT well is powered.

#### 26.8 General Description

The VBAT-Powered Control Interface (VCI) is used to drive the VCI\_OUT pin. The output pin can be controlled either by VBAT-powered inputs, or by firmware when the VTR\_CORE is active and the EC is powered and running. When the VCI\_OUT pin is controlled by hardware, either because VTR\_CORE is inactive or because the VCI block is configured for hardware control, the VCI\_OUT pin can be asserted by a number of inputs:

- When one or more of the VCI\_INx# pins are asserted. By default, the VCI\_INx# pins are active low, but firmware
  can switch each input individually to an active-high input. See Section 26.8.1, "Input Polarity".
- · When the Week Alarm from the Week Alarm Interface is asserted
- · When the RTC Alarm from the Real Time Clock is asserted

Firmware can configure which of the hardware pin inputs contribute to the VCI\_OUT output by setting the enable bits in the VCI Input Enable Register. Even if the input pins are not configured to affect VCI\_OUT, firmware can monitor their current state through the status bits in the VCI Register. Firmware can also enable EC interrupts from the state of the input pins.

Each of the VCI INx# pins can be configured for additional properties.

- By default, each of the VCI\_INx# pins have an input glitch filter. All glitch filters can be disabled by the FIL-TERS BYPASS bit in the VCI Register
- Assertions of each of the VCI\_INx# pins can optionally be latched, so hardware can maintain the assertion of a
  VCI\_INx# even after the physical pin is de-asserted, or so that firmware can determine which of the VCI\_INx#
  inputs contributed to VCI\_OUT assertion. See the Latch Enable Register and the Latch Resets Register.
- Rising edges and falling edges on the VCI\_INx# pins are latched, so firmware can detect transitions on the VCI\_INx# pins even if the transitions occurred while EC power was not available. See Section 26.8.2, "Edge Event Status".

If none of the additional properties are required, firmware can disable a VCI\_INx# pin completely, by clearing both the corresponding bit in the VCI Input Enable Register and the corresponding bit in the VCI Buffer Enable Register. When both bits are '0', the input is disabled and will not be a drain on the VBAT power rail.

When VTR\_CORE power is present and the EC is operating, firmware can configure the VCI\_OUT pin to operate as a general-purpose output pin. The VCI\_OUT pin is firmware-controlled when the FW\_EXT bit in the VCI Register is '1'. When firmware is controlling the output, the state of VCI\_OUT is defined by the VCI\_FW\_CNTRL bit in the same register. When VTR\_CORE is not present (the VTR\_PWRGD input is low), the VCI\_OUT pin is also determined by the hardware circuit.

The following figures illustrate the VBAT-Power Control Interface logic:

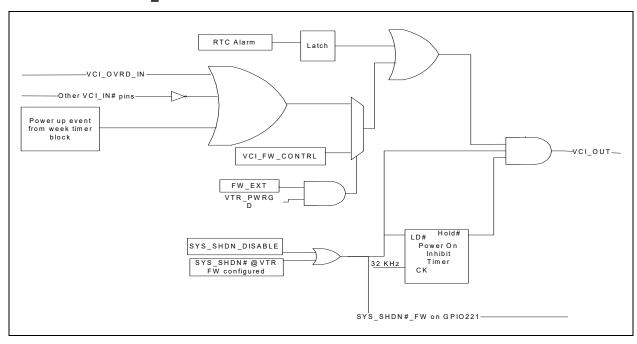



FIGURE 26-2: VCI\_OUT BLOCK DIAGRAM

The VCI\_INx# Logic in the block diagram is illustrated in the following figure:

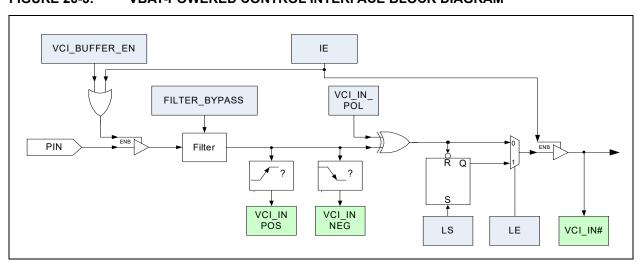



FIGURE 26-3: VBAT-POWERED CONTROL INTERFACE BLOCK DIAGRAM

## 26.8.1 INPUT POLARITY

The VCI\_INx# pins have an optional polarity inversion. The inversion takes place after any input filtering and before the VCI\_INx# signals are latched in the VCI\_INx# status bits in the VCI Register. Edge detection occurs before the polarity inversion. The inversion is controlled by battery-backed configuration bits in the VCI Polarity Register.

#### 26.8.2 EDGE EVENT STATUS

Each VCI\_INx# input pin is associated with two register bits used to record edge transitions on the pins. The edge detection takes place after any input filtering, before polarity control and occurs even if the VCI\_INx# input is not enabled as part of the VCI\_OUT logic (the corresponding control bit in the VCI Input Enable Register is '0') or if the state of the

VCI\_INx# input is not latched (the corresponding control bit in the Latch Enable Register is '0'). One bit is set whenever there is a high-to-low transition on the VCI\_INx# pin (the VCI Negedge Detect Register) and the other bit is set whenever there is a low-to-high transition on the VCI\_INx# pin (the VCI Posedge Detect Register).

In order to minimize power drain on the VBAT circuit, the edge detection logic operates only when the input buffer for a VCI\_INx# pin is enabled. The input buffer is enabled either when the VCI\_INx# pin is configured to determine the VCI\_OUT pin, as controlled by the VCI\_IN[1:0]# field of the VCI Register, or when the input buffer is explicitly enabled in the VCI Input Enable Register. When the pins are not enabled transitions on the pins are ignored.

#### 26.8.3 VCI PIN MULTIPLEXING

Each of the VCI inputs, as well as VCI\_OUT, are multiplexed with standard VTR\_CORE-powered GPIOs. When VTR\_CORE power is off, the mux control is disabled and the pin always reverts to the VCI function. The VCI\_INx# function should be disabled in the VCI Input Enable Register VCI Buffer Enable Register and for any pin that is intended to be used as a GPIO rather than a VCI\_INx#, so that VCI\_OUT is not affected by the state of the pin.

#### 26.8.4 POWER ON INHIBIT TIMER

The Power On Inhibit Timer prevents the VBAT-Powered Control Interface VCI\_OUT pin from being asserted for a programmable time period after the SYS\_SHDN# pin asserted. This holdoff time can be used to give a system the opportunity to cool down after a thermal shutdown before allowing a user to attempt to turn the system on. While the Inhibit Timer is asserted, the VCI\_OUT pin remains de-asserted and is unaffected by the VCI, Week Alarm and RTC interfaces.

The holdoff time is configured using the Holdoff Count Register. By setting the Holdoff Count Register to 0 the Inhibit Timer is disabled. When disabled, the HOLDOFF# signal is de-asserted and no counting takes place.

The HOLDOFF# output is asserted within one 32.768KHz clock cycle from the time SYS\_SHDN# is asserted.

The following figure illustrates the operation of the Inhibit Timer:

SYS\_SHDN#

SYS\_SHDN#

8-BIT
COUNTER

32.768 KHz

SCALE

CK

FIGURE 26-4: POWER ON INHIBIT TIMER

The SCALE function reduces the 32.768KHz clock to 8Hz, so that the 8-bit counter counts intervals of 125ms. The following table shows some of examples of the effect of several settings of the Holdoff Count Register:

TABLE 26-3: HOLDOFF TIMING EXAMPLES

| Holdoff Count Register | Holdoff Time (SEC) |
|------------------------|--------------------|
| 0                      | Disabled (default) |
| 1                      | 0.125              |
| 5                      | 0.625              |
| 10                     | 1.25               |
| 15                     | 1.875              |
| 100                    | 12.5               |
| 150                    | 18.75              |

TABLE 26-3: HOLDOFF TIMING EXAMPLES (CONTINUED)

| Holdoff Count Register | Holdoff Time (SEC) |
|------------------------|--------------------|
| 200                    | 25                 |
| 255                    | 31.875             |

# 26.9 EC Registers

Registers for this block are shown in the following summary table. Addresses for each register are determined by adding the offset to the Base Address for the VBAT-Powered Control Interface Block in the Block Overview and Base Address Table in Section 3.0, "Device Inventory".

**TABLE 26-4: REGISTER SUMMARY** 

| EC Offset | Register Name               |
|-----------|-----------------------------|
| 00h       | VCI Register                |
| 04h       | Latch Enable Register       |
| 08h       | Latch Resets Register       |
| 0Ch       | VCI Input Enable Register   |
| 10h       | Holdoff Count Register      |
| 14h       | VCI Polarity Register       |
| 18h       | VCI Posedge Detect Register |
| 1Ch       | VCI Negedge Detect Register |
| 20h       | VCI Buffer Enable Register  |

#### 26.9.1 VCI REGISTER

| Offset  | 00h                                                                                                                                       |            |               |                |
|---------|-------------------------------------------------------------------------------------------------------------------------------------------|------------|---------------|----------------|
| Bits    | Description                                                                                                                               | Туре       | Default       | Reset<br>Event |
| 31:19   | Reserved                                                                                                                                  | RES        | -             | -              |
| 18      | MCHP reserved<br>Should be set to zero                                                                                                    |            | 0             | RESET<br>_VBAT |
| 17      | RTC_ALRM  If enabled by RTC_ALRM_LE, this bit is set to '1' if the RTC Alarm signal is asserted. It is reset by writes to RTC_ALRM_LS.    | R          | 0             | RESET<br>_VBAT |
| 16      | WEEK_ALRM If enabled by WEEK_ALRM_LE, this bit is set to '1' if the Week Alarm signal is asserted. It is reset by writes to WEEK_ALRM_LS. | R          | 0             | RESET<br>_VBAT |
| 15:13   | Reserved                                                                                                                                  | RES        | -             | -              |
| Note 1: | The VCL IN[3:0]# bits default to the state of their respective input pin                                                                  | s. The VCI | OUT bit is de | etermined      |

Note 1: The VCI\_IN[3:0]# bits default to the state of their respective input pins. The VCI\_OUT bit is determined by the VCI hardware circuit

| Bits | Description                                                                                                                                                                                                                                                                       | Туре | Default       | Rese<br>Even                       |
|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|---------------|------------------------------------|
| 12   | FILTERS_BYPASS                                                                                                                                                                                                                                                                    | R/W  | 0             | RESE                               |
|      | The Filters Bypass bit is used to enable and disable the input filters on the VCI_INx# pins. See Section 47.17, "VBAT-Powered Control Interface Timing".                                                                                                                          |      |               | _VBA                               |
|      | 1=Filters disabled<br>0=Filters enabled (default)                                                                                                                                                                                                                                 |      |               |                                    |
| 11   | FW_EXT                                                                                                                                                                                                                                                                            | R/W  | 0             | RESE                               |
|      | This bit controls selecting between the external VBAT-Powered Control Interface inputs, or the VCI_FW_CNTRL bit output to control the VCI_OUT pin.                                                                                                                                |      |               | _SY:<br>and<br>RESE<br>_VB/        |
|      | 1=VCI_OUT is determined by the VCI_FW_CNTRL field, when VTR_CORE is active                                                                                                                                                                                                        |      |               |                                    |
|      | <b>Note:</b> 0=VCI_OUT is determined by the external inputs.                                                                                                                                                                                                                      |      |               |                                    |
| 10   | VCI_FW_CNTRL                                                                                                                                                                                                                                                                      | R/W  | 0             | RESI                               |
|      | This bit can allow EC firmware to control the state of the VCI_OUT pin. For example, when VTR_PWRGD is asserted and the FW_EXT bit is '1', clearing the VCI_FW_CNTRL bit de-asserts the active high VCI_OUT pin.                                                                  |      |               | _SY<br>and<br>RESI<br>_VB/         |
|      | BIOS must set this bit to '1' prior to setting the FW_EXT bit to '1' on power up, in order to avoid glitches on the VCI_OUT pin.                                                                                                                                                  |      |               |                                    |
| 9    | VCI_OUT                                                                                                                                                                                                                                                                           | R    | See           | _                                  |
|      | This bit provides the current status of the VCI_OUT pin.                                                                                                                                                                                                                          |      | Note 1        |                                    |
| 8    | Reserved                                                                                                                                                                                                                                                                          | RES  | -             | -                                  |
| 7    | VCI_OUT/GPIO Select If this bit is 1 the signal is powered by VBAT and the output pin will be driven by VCI_OUT logic. If this bit is 0 the signal is powered by VTRx and the output pin will be driven according to GPIO Pin Control Registers.  1= VBAT Powered  0= VTR Powered | R/W  | 1             | RESE<br>_SY<br>and<br>RESE<br>_VBA |
| 6:4  | Reserved                                                                                                                                                                                                                                                                          | RES  | -             | -                                  |
| 3:0  | VCI_IN[3:0]#  These bits provide the latched state of the associated VCI_INx# pin, if latching is enabled or the current state of the pin if latching is not enabled. In both cases, the value is determined after the action of the VCI Polarity Register.                       | R    | See<br>Note 1 |                                    |

# 26.9.2 LATCH ENABLE REGISTER

| Offset | 04h                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      |         |                |
|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|---------|----------------|
| Bits   | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Туре | Default | Reset<br>Event |
| 31:18  | Reserved                                                                                                                                                                                                                                                                                                                                                                                                                                                     | RES  | -       | -              |
| 17     | RTC_ALRM_LE Latch enable for the RTC Power-Up signal.  1=Enabled. Assertions of the RTC Alarm are held until the latch is reset by writing the correspondingLS[3:0] bit  0=Not Enabled. The RTC Alarm signal is not latched but passed directly to the VCI_OUT logic                                                                                                                                                                                         | R/W  | Oh      | RESET<br>_VBAT |
| 16     | WEEK_ALRM_LE Latch enable for the Week Alarm Power-Up signal.  1=Enabled. Assertions of the Week Alarm are held until the latch is reset by writing the correspondingLS[3:0] bit  0=Not Enabled. The Week Alarm signal is not latched but passed directly to the VCI_OUT logic                                                                                                                                                                               | R/W  | Oh      | RESET _VBAT    |
| 15:4   | Reserved                                                                                                                                                                                                                                                                                                                                                                                                                                                     | RES  | -       | -              |
| 3:0    | LE[3:0] Latching Enables. Latching occurs after the Polarity configuration, so a VCI_INx# pin is asserted when it is '0' if VCI_IN_POL[3:0] is '0', and asserted when it is '1 'if VCI_IN_POL[3:0] is '1'.  For each LE[x] bit in the field: 1=Enabled. Assertions of the VCI_INx# pin are held until the latch is reset by writing the corresponding LS[3:0] bit 0=Not Enabled. The VCI_INx# signal is not latched but passed directly to the VCI_OUT logic | R/W  | 30h     | RESET<br>_VBAT |

## 26.9.3 LATCH RESETS REGISTER

| Offset | 08h                                                                                                                                                                                                                 |      |         |                |
|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|---------|----------------|
| Bits   | Description                                                                                                                                                                                                         | Туре | Default | Reset<br>Event |
| 31:18  | Reserved                                                                                                                                                                                                            | RES  | -       | -              |
| 17     | RTC_ALRM_LS RTC Alarm Latch Reset. When this bit is written with a '1', the RTC Alarm Event latch is reset The RTC Alarm input to the latch has priority over the Reset input Reads of this register are undefined. | W    | -       | -              |

# **CEC1712**

| Offset | 08h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      |         |                |
|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|---------|----------------|
| Bits   | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Type | Default | Reset<br>Event |
| 16     | WEEK_ALRM_LS Week Alarm Latch Reset. When this bit is written with a '1', the Week Alarm Event latch is reset The Week Alarm input to the latch has priority over the Reset input Reads of this register are undefined.                                                                                                                                                                                                                                                                                                                | W    | -       | -              |
| 15:4   | Reserved                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | RES  | -       | -              |
| 3:0    | LS[3:0] Latch Resets. When a Latch Resets bit (LS[x]) is written with a '1', the corresponding VCI_INx# latch is de-asserted ('1').  The VCI_INx# input to the latch has priority over the Latch Reset input, so firmware cannot reset the latch while the VCI_INx# pin is asserted. Firmware should sample the state of the pin in the VCI Register before attempting to reset the latch. As noted in the Latch Enable Register, the assertion level is determined by the VCI_IN_POL[3:0] bit.  Reads of this register are undefined. | W    | -       | -              |

# 26.9.4 VCI INPUT ENABLE REGISTER

| Offset | 0Ch                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      |         |                |
|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|---------|----------------|
| Bits   | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Type | Default | Reset<br>Event |
| 31:4   | Reserved                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | RES  | -       | -              |
| 3:0    | IE[3:0] Input Enables for VCI_INx# signals.  After changing the input enable for a VCI input, firmware should reset the input latch and clear any potential interrupt that may have been triggered by the input, as changing the enable may cause the internal status to change.  For each IE[x] bit in the field: 1=Enabled. The corresponding VCI_INx# input is not gated and toggling the pin will affect the VCI_OUT pin 0=Not Enabled. The corresponding VCI_INx# input does not affect the VCI_OUT pin, even if the input is '0.' Unless the corresponding bit in the VCI Buffer Enable Register is 1, latches are not asserted, even if the VCI_INx# pin is low, during a VBAT power transition | R/W  | 7h      | RESET_VBAT     |

## 26.9.5 HOLDOFF COUNT REGISTER

| Offset | 10h                                                                                                                                                                                                                                                                                                            |      |         |                |
|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|---------|----------------|
| Bits   | Description                                                                                                                                                                                                                                                                                                    | Туре | Default | Reset<br>Event |
| 31:8   | Reserved                                                                                                                                                                                                                                                                                                       | RES  | -       | -              |
| 7:0    | HOLDOFF_TIME These bits determine the period of time the VCI_OUT logic is inhibited from re-asserting VCI_OUT after a SYS_SHDN# event.  FFh-01h=The Power On Inhibit Holdoff Time is set to a period between 125ms and 31.875 seconds. See Table 26-3 for examples 0=The Power On Inhibit function is disabled | RW   | 0       | RESET<br>_VBAT |

# 26.9.6 VCI POLARITY REGISTER

| Offset | 14h                                                                                                                                                                                                          |      |         |                |
|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|---------|----------------|
| Bits   | Description                                                                                                                                                                                                  | Type | Default | Reset<br>Event |
| 31:4   | Reserved                                                                                                                                                                                                     | RES  | -       | -              |
| 3:0    | VCI_IN_POL[3:0] These bits determine the polarity of the VCI_INx input signals:  For each VCI_IN_POL[x] bit in the field: 1=Active High. The value on the pins is inverted before use 0=Active Low (default) | RW   | 0       | RESET<br>_VBAT |

## 26.9.7 VCI POSEDGE DETECT REGISTER

| Offset | 18h                                                                                                                                                                                                           |      |         |                |
|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|---------|----------------|
| Bits   | Description                                                                                                                                                                                                   | Type | Default | Reset<br>Event |
| 31:7   | Reserved                                                                                                                                                                                                      | RES  | -       | -              |
| 3:0    | VCI_IN_POS[3:0] These bits record a low to high transition on the VCI_INx# pins. A "1" indicates a transition occurred.  For each VCI_IN_POS[x] bit in the field: 1=Positive Edge Detected 0=No edge detected | R/WC | 0       | RESET<br>_VBAT |

# 26.9.8 VCI NEGEDGE DETECT REGISTER

| Offset | 1Ch                                                                                                                                                                                                           |      |         |                |
|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|---------|----------------|
| Bits   | Description                                                                                                                                                                                                   | Type | Default | Reset<br>Event |
| 31:4   | Reserved                                                                                                                                                                                                      | RES  | -       | -              |
| 3:0    | VCI_IN_NEG[3:0] These bits record a high to low transition on the VCI_INx# pins. A "1" indicates a transition occurred.  For each VCI_IN_NEG[x] bit in the field: 1=Negative Edge Detected 0=No edge detected | R/WC | 0       | RESET _VBAT    |

# 26.9.9 VCI BUFFER ENABLE REGISTER

| Offset | 20h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |         |                |
|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|---------|----------------|
| Bits   | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Туре | Default | Reset<br>Event |
| 31:4   | Reserved                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | RES  | -       | -              |
| 3:0    | VCI_BUFFER_EN[3:0] Input Buffer enable.  After changing the buffer enable for a VCI input, firmware should reset the input latch and clear any potential interrupt that may have been triggered by the input, as changing the buffer may cause the internal status to change.  This register has no effect when VTR_CORE is powered. When VTR_CORE is on, the input buffers are enabled only by the IE[3:0] bit.  For each VCI_BUFFER_EN[x] bit in the field:  1=VCI_INx# input buffer enabled independent of the IE[3:0] bit. The edge detection latches for this input are always enabled  0=VCI_INx# input buffer enabled by the IE[3:0] bit. The edge detection latches are only enabled when the IE[3:0] bit is '1' (default) | RW   | 0       | RESET<br>_VBAT |

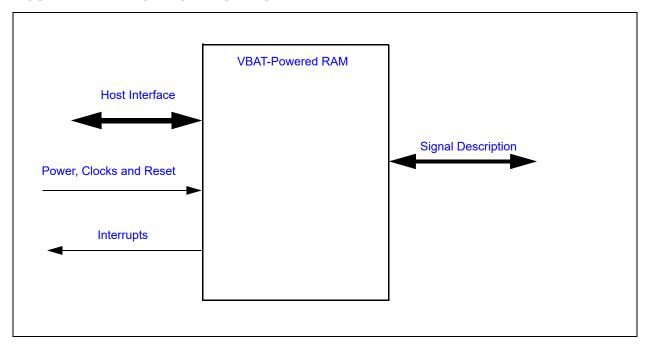
#### 27.0 VBAT-POWERED RAM

#### 27.1 Overview

The VBAT Powered RAM provides a 64 Byte Random Accessed Memory that is operational while the main power rail is operational, and will retain its values powered by battery power while the main rail is unpowered.

## 27.2 References

No references have been cited for this feature.


## 27.3 Terminology

There is no terminology defined for this section.

#### 27.4 Interface

This block is designed to be accessed internally via a registered host interface.

FIGURE 27-1: I/O DIAGRAM OF BLOCK



## 27.5 Signal Description

There are no external signals for this block.

#### 27.6 Host Interface

The contents of the VBAT RAM are accessible only by the Embedded Controller (EC).

## 27.7 Power, Clocks and Reset

This section defines the Power, Clock, and Reset parameters of the block.

#### 27.7.1 POWER DOMAINS

| Name     | Description                                                                        |
|----------|------------------------------------------------------------------------------------|
| VTR_CORE | The main power well used when the VBAT RAM is accessed by the EC.                  |
| VBAT     | The power well used to retain memory state while the main power rail is unpowered. |

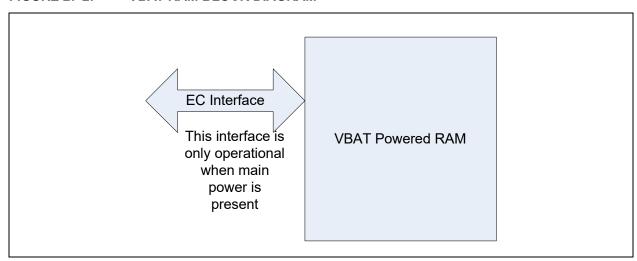
#### 27.7.2 CLOCK INPUTS

No special clocks are required for this block.

#### 27.7.3 RESETS

| Name       | Description                                                                          |
|------------|--------------------------------------------------------------------------------------|
| RESET_VBAT | This signal resets all the registers and logic in this block to their default state. |

## 27.8 Interrupts


This block does not generate any interrupts.

#### 27.9 Low Power Modes

The VBAT-Powered RAM automatically enters a low power mode whenever it is not being accessed by the EC. There is no chip-level Sleep Enable input.

#### 27.10 Description

#### FIGURE 27-2: VBAT RAM BLOCK DIAGRAM



The VBAT Powered RAM provides a 64 Byte Random Accessed Memory that is operational while VTR\_CORE is powered, and will retain its values powered by VBAT while VTR\_CORE is unpowered. The RAM is organized as a 16 words x 32-bit wide for a total of 64 bytes.

The contents of the VBAT RAM is indeterminate after a RESET\_VBAT.

**Note:** Any secret customer information stored on chip in VBAT memory must be encrypted for best security practices

#### 28.0 VBAT REGISTER BANK

#### 28.1 Introduction

This chapter defines a bank of registers powered by VBAT.

#### 28.2 Interface

This block is designed to be accessed internally by the EC via the register interface.

#### 28.3 Power, Clocks and Reset

This section defines the Power, Clock, and Reset parameters of the block.

#### 28.3.1 POWER DOMAINS

| Name | Description                                                             |
|------|-------------------------------------------------------------------------|
|      | The VBAT Register Bank are all implemented on this single power domain. |

#### 28.3.2 CLOCK INPUTS

This block does not require any special clock inputs. All register accesses are synchronized to the host clock.

#### 28.3.3 RESETS

| Name       | Description                                                                                                            |
|------------|------------------------------------------------------------------------------------------------------------------------|
| RESET_VBAT | This reset signal, which is an input to this block, resets all the logic and registers to their initial default state. |

#### 28.4 Interrupts

This block does not generate any interrupt events.

#### 28.5 Low Power Modes

The VBAT Register Bank is designed to always operate in the lowest power consumption state.

## 28.6 Description

The VBAT Register Bank block is a block implemented for aggregating miscellaneous battery-backed registers required the host and by the Embedded Controller (EC) Subsystem that are not unique to a block implemented in the EC subsystem.

#### 28.7 EC Registers

Registers for this block are shown in the following summary table. Addresses for each register are determined by adding the offset to the Base Address for the VBAT Register Bank Block in the Block Overview and Base Address Table in Section 3.0, "Device Inventory".

TABLE 28-1: REGISTER SUMMARY

| Offset | Register Name                        |
|--------|--------------------------------------|
| 00h    | Power-Fail and Reset Status Register |
| 04h    | TEST                                 |
| 08h    | Clock Enable Register                |
| 0Ch    |                                      |
| 10h    | TEST                                 |
| 14h    |                                      |

TABLE 28-1: REGISTER SUMMARY (CONTINUED)

| Offset | Register Name              |
|--------|----------------------------|
| 1Ch    |                            |
| 20h    | Monotonic Counter Register |
| 24h    | Counter HiWord Register    |
| 2Ch    | TEST                       |

## 28.7.1 POWER-FAIL AND RESET STATUS REGISTER

The Power-Fail and Reset Status Register collects and retains the VBAT RST and WDT event status when VTR\_CORE is unpowered.

| Address | 00h                                                                                                                                                                                                                             |      |         |                |
|---------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|---------|----------------|
| Bits    | Description                                                                                                                                                                                                                     | Туре | Default | Reset<br>Event |
| 7       | VBAT_RST The VBAT_RST bit is set to '1' by hardware when a RESET_VBAT is detected. This is the register default value. To clear VBAT RST EC firmware must write a '1' to this bit; writing a '0' to VBAT RST has no affect.     | R/WC | 1       | RESET_<br>VBAT |
| 6       | SYSRESETREQ This bit is set to '1b' if a RESET_SYS was triggered by an ARM SYSRESETREQ event.  This bit is cleared to '0b' when written with a '1b'; writes of a '0b' have no effect.                                           | R/WC | -       | -              |
| 5       | WDT This bit is set to '1b' if a RESET_SYS was triggered by a Watchdog Timer event.  This bit is cleared to '0b' when written with a '1b'; writes of a '0b' have no effect.                                                     | R/WC | 0       | RESET_<br>VBAT |
| 4       | RESETI This bit is set to '1b' if a RESET_SYS was triggered by a low signal on the nRESET_IN input pin.  This bit is cleared to '0b' when written with a '1b'; writes of a '0b' have no effect.                                 | R/WC | 0       | RESET_<br>VBAT |
| 3       | TEST                                                                                                                                                                                                                            | R/WC | 0       | RESET_<br>VBAT |
| 2       | SOFT_SYS_RESET Status This bit is set to '1b' if a was triggered by an assertion of the SOFT_SYS_RESET bit in the System Reset Register. This bit is cleared to '0b' when written with a '1b'; writes of a '0b' have no effect. | R/WC | 0       | RESET_<br>VBAT |
| 1       | Reserved                                                                                                                                                                                                                        | RES  | -       | -              |
| 0       | Reserved                                                                                                                                                                                                                        | RES  | -       | -              |

## 28.7.2 CLOCK ENABLE REGISTER

| Address | 08h                                                                                                                                                                                                                                                                                                                                                                |      |         |                |
|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|---------|----------------|
| Bits    | Description                                                                                                                                                                                                                                                                                                                                                        | Туре | Default | Reset<br>Event |
| 31:3    | Reserved                                                                                                                                                                                                                                                                                                                                                           | RES  | 1       | -              |
| 2       | 32KHZ_SOURCE                                                                                                                                                                                                                                                                                                                                                       | R/W  | 0b      | RESET_<br>VBAT |
| 1       | EXT_32K This bit selects the source for the 32KHz clock domain.  1=The 32KHZ_IN VTR-powered pin is used as a source for the 32KHz clock domain. If an activity detector does not detect a clock on the selected source, the 32KHz Clock internal clock source is automatically selected  0=The 32KHz Clock source is used as the source for the 32KHz clock domain | R/W  | 0b      | RESET_<br>VBAT |
| 0       | Test                                                                                                                                                                                                                                                                                                                                                               | R    | 0b      | -              |

## 28.7.3 MONOTONIC COUNTER REGISTER

| Address | 20h                                                                                                                           |      |         |                |
|---------|-------------------------------------------------------------------------------------------------------------------------------|------|---------|----------------|
| Bits    | Description                                                                                                                   | Туре | Default | Reset<br>Event |
| 31:0    | MONOTTONIC_COUNTER  Read-only register that increments by 1 every time it is read. It is reset to 0 on a VBAT Power On Reset. | R    | 0b      | RESET_<br>VBAT |

## 28.7.4 COUNTER HIWORD REGISTER

| Address | 24h                                                                                                                                                                                                                                                        |      |         |                |
|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|---------|----------------|
| Bits    | Description                                                                                                                                                                                                                                                | Туре | Default | Reset<br>Event |
| 31:0    | COUNTER_HIWORD Thirty-two bit read/write register. If software sets this register to an incrementing value, based on an external non-volatile store, this register may be combined with the Monotonic Counter Register to form a 64-bit monotonic counter. | R/W  | 0b      | RESET_<br>VBAT |

#### 29.0 EC SUBSYSTEM REGISTERS

#### 29.1 Introduction

This chapter defines a bank of registers associated with the EC Subsystem.

#### 29.2 References

None

#### 29.3 Interface

This block is designed to be accessed internally by the EC via the register interface.

#### 29.4 Power, Clocks and Reset

This section defines the Power, Clock, and Reset parameters of the block.

#### 29.4.1 POWER DOMAINS

| Name     | Description                                                           |
|----------|-----------------------------------------------------------------------|
| VTR_CORE | The logic and registers implemented in this block are powered by this |
|          | power well.                                                           |

#### 29.4.2 CLOCK INPUTS

This block does not require any special clock inputs. All register accesses are synchronized to the host clock.

#### 29.4.3 RESETS

| Name           | Description                                                                                                           |
|----------------|-----------------------------------------------------------------------------------------------------------------------|
| RESET_SYS      | This signal resets all the registers and logic in this block to their default state, except WDT Event Count Register. |
| RESET_SYS_nWDT | This signal resets the WDT Event Count Register register. This reset is not asserted on a WDT Event.                  |
| RESET_VTR      | This reset signal is asserted only on VTR_CORE power on.                                                              |

#### 29.5 Interrupts

This block does not generate any interrupt events.

#### 29.6 Low Power Modes

The EC Subsystem Registers may be put into a low power state by the chip's Power, Clocks, and Reset (PCR) circuitry. When this block is commanded to sleep it will still allow read/write access to the registers.

#### 29.7 Description

The EC Subsystem Registers block is a block implemented for aggregating miscellaneous registers required by the Embedded Controller (EC) Subsystem that are not unique to a block implemented in the EC subsystem.

## 29.8 EC-Only Registers

Registers for this block are shown in the following summary table. Addresses for each register are determined by adding the offset to the Base Address for the EC Subsystem Registers Block in the Block Overview and Base Address Table in Section 3.0, "Device Inventory".

**TABLE 29-1: REGISTER SUMMARY** 

| Offset | Register Name                              |
|--------|--------------------------------------------|
| 00h    | Reserved                                   |
| 04h    | AHB Error Address Register                 |
| 08h    | TEST                                       |
| 0Ch    | TEST                                       |
| 10h    | TEST                                       |
| 14h    | AHB Error Control Register                 |
| 18h    | Interrupt Control Register                 |
| 1Ch    | ETM TRACE Enable Register                  |
| 20h    | Debug Enable Register                      |
| 28h    | WDT Event Count Register                   |
| 2Ch    | TEST                                       |
| 30h    | TEST                                       |
| 34h    | TEST                                       |
| 38h    | Reserved                                   |
| 3Ch    | TEST                                       |
| 40h    | PECI Disable Register                      |
| 44h    | TEST                                       |
| 48h    | TEST                                       |
| 54h    | TEST                                       |
| 5Ch    | TEST                                       |
| 60h    | TEST                                       |
| 64h    | GPIO Bank Power Register                   |
| 68h    | TEST                                       |
| 6Ch    | TEST                                       |
| 90h    | Virtual Wire Source Configuration Register |
| 100h   | TEST                                       |

## 29.8.1 AHB ERROR ADDRESS REGISTER

| Offset | 04h                                                                                                                                                                                                                                                                                                                          |       |         |                |
|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|---------|----------------|
| Bits   | Description                                                                                                                                                                                                                                                                                                                  | Туре  | Default | Reset<br>Event |
| 31:0   | AHB_ERR_ADDR In priority order:  1. AHB address is registered when an AHB error occurs on the processors AHB master port and the register value was already 0. This way only the first address to generate an exception is captured.  2. The processor can clear this register by writing any 32-bit value to this register. | R/WZC | Oh      | RESET_<br>SYS  |

## 29.8.2 AHB ERROR CONTROL REGISTER

| Offset | 14h         |      |         |                |
|--------|-------------|------|---------|----------------|
| Bits   | Description | Туре | Default | Reset<br>Event |
| 7:2    | Reserved    | RES  | -       | -              |

# **CEC1712**

| Offset | 14h                                                                                       |      |         |                |
|--------|-------------------------------------------------------------------------------------------|------|---------|----------------|
| Bits   | Description                                                                               | Туре | Default | Reset<br>Event |
| 1      | TEST                                                                                      | R/W  | 0h      | RESET_<br>SYS  |
| 0      | AHB_ERROR_DISABLE  1=EC memory exceptions are disabled 0=EC memory exceptions are enabled | R/W  | 0h      | RESET_<br>SYS  |

## 29.8.3 INTERRUPT CONTROL REGISTER

| Offset | 18h                                                                                                                                                                                                                        |      |         |                |
|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|---------|----------------|
| Bits   | Description                                                                                                                                                                                                                | Туре | Default | Reset<br>Event |
| 31:1   | Reserved                                                                                                                                                                                                                   | RES  | -       | -              |
| 0      | NVIC_EN This bit enables Alternate NVIC IRQ's Vectors. The Alternate NVIC Vectors provides each interrupt event with a dedicated (direct) NVIC vector.  1=Alternate NVIC vectors enabled 0=Alternate NVIC vectors disabled | R/W  | 1b      | RESET_<br>SYS  |

## 29.8.4 ETM TRACE ENABLE REGISTER

| Offset | 1Ch                                                                                                                                                                       |      |         |                |
|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|---------|----------------|
| Bits   | Description                                                                                                                                                               | Туре | Default | Reset<br>Event |
| 31:1   | Reserved                                                                                                                                                                  | RES  | -       | -              |
| 0      | TRACE_EN This bit enables the ARM TRACE debug port (ETM/ITM). The Trace Debug pins are forced to the TRACE functions.  1=ARM TRACE port enabled 0=ARM TRACE port disabled | R/W  | 0b      | RESET_<br>SYS  |

## 29.8.5 DEBUG ENABLE REGISTER

| Offset | 20h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      |         |                |
|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|---------|----------------|
| Bits   | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Туре | Default | Reset<br>Event |
| 31:5   | Reserved                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | RES  | -       | -              |
| 4      | BOUNDARY SCAN PORT ENABLE  1= Enable Boundary scan port enable The Boundary Scan Tap controller is accessible via JTAG Port 0= Disable Boundary scan port enable The Boundary scan Tap controller is not accessible via JTAG Port.  If JTAG_STRAP pin is sampled low, this bit cannot enable Boundary scan mode.  Please refer to TAP Controller Select Strap Option for usage of this bit.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | R/W  | 0h      | RESET_<br>SYS  |
| 3      | DEBUG_PU_EN  If this bit is set to '1b' internal pull-up resistors are automatically enabled on the appropriate debugging port wires whenever the debug port is enabled (the DEBUG_EN bit in this register is '1b' and the JTAG_RST# pin is high). The setting of DEBUG_PIN_CFG determines which pins have pull-ups enabled when the debug port is enabled.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | R/W  | 0h      | RESET_<br>SYS  |
| 2:1    | DEBUG_PIN_CFG This field determines which pins are affected by the JTAG_RST# debug enable pin.  3=Reserved 2=The pins associated with the JTAG TCK and TMS switch to the debug interface when JTAG_RST# is de-asserted high. The pins associated with TDI and TDO remain controlled by the associated GPIO. This setting should be used when the ARM Serial Wire Debug (SWD) is required for debugging and the Serial Wire Viewer is not required  1=The pins associated with the JTAG TCK, TMS and TDO switch to the debug interface when JTAG_RST# is de-asserted high. The pin associated with TDI remains controlled by the associated GPIO. This setting should be used when the ARM Serial Wire Debug (SWD) and Serial Wire Viewer (SWV) are both required for debugging  0=All four pins associated with JTAG (TCK, TMS, TDI and TDO) switch to the debug interface when JTAG_RST# is de-asserted high. This setting should be used when the JTAG TAP controller is required for debugging | R/W  | Oh      | RESET_<br>SYS  |

| Offset | 20h                                                                                                                                                                                                                                                                                                                                                        |      |         |                |
|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|---------|----------------|
| Bits   | Description                                                                                                                                                                                                                                                                                                                                                | Туре | Default | Reset<br>Event |
| 0      | DEBUG_EN This bit enables the JTAG/SWD debug port.  1=JTAG/SWD port enabled. A high on JTAG_RST# enables JTAG or SWD, as determined by SWD_EN  0=JTAG/SWD port disabled. JTAG/SWD cannot be enabled (the JTAG_RST# pin is ignored and the JTAG signals remain in their non-JTAG state)  If JTAG_RST# pin is sampled low, this bit cannot enable JTAG mode. | R/W  | 0b      | RESET_<br>SYS  |

## 29.8.6 WDT EVENT COUNT REGISTER

| Offset    | 28h                                                                                                                                                                                                                     |              |              |                         |
|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|--------------|-------------------------|
| Bits      | Description                                                                                                                                                                                                             | Туре         | Default      | Reset<br>Event          |
| 31:4      | Reserved                                                                                                                                                                                                                | RES          | -            | -                       |
| 3:0       | WDT_EVENT_COUNT This field is cleared to 0 on a reset triggered by the main power on reset, but not on a reset triggered by the Watchdog Timer.  This field people to be written by application to indicate the number. | R/W          | 0b           | RESET_<br>SYS_n-<br>WDT |
| Note 1: T | This field needs to be written by application to indicate the number of times a WDT fired before loading a good EC code image. Note 1 he recommended procedure is to first clear the WDT Status Regis                   | eter follows | ad by increm | enting the              |

## 29.8.7 PECI DISABLE REGISTER

WDT\_EVENT\_COUNT.

| Offset | 40h                                                                                                                                                                                                                                                                    |      |         |                |
|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|---------|----------------|
| Bits   | Description                                                                                                                                                                                                                                                            | Туре | Default | Reset<br>Event |
| 31:1   | Reserved                                                                                                                                                                                                                                                               | RES  | -       | -              |
| 0      | PECI_DISABLE This bit reduces leakage current through the CPU voltage reference pin if PECI or SB-TSI are not used.  1=The VREF_VTT function is disabled, independent of the mux setting of the GPIO that shares the pin is not disabled 0=The VREF_VTT pin is enabled | R/W  | 0b      | RESET_<br>SYS  |

## 29.8.8 GPIO BANK POWER REGISTER

| Offset | 64h                                                                                                                                                       |                                   |         |                |
|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|---------|----------------|
| Bits   | Description                                                                                                                                               | Type                              | Default | Reset<br>Event |
| 31:8   | Reserved                                                                                                                                                  | RES                               | -       | _              |
| 7      | GPIO Bank Power Lock  0 = VTR_LEVEL bits[2:0] and GPIO Bank Power Lock bit are R/W  1 = VTR_LEVEL bits[2:0] and GPIO Bank Power Lock bit are  Read Only   | Bit[7]=0<br>R/W<br>Bit[7]=1<br>RO | 0h      | RESET<br>_SYS  |
|        | This bit cannot be cleared once it is set to '1'. Writing zero has no effect.                                                                             |                                   |         |                |
| 6:3    | Reserved                                                                                                                                                  | RES                               | i       | _              |
| 1      | VTR_LEVEL2  Voltage level on VTR2 power rail. Software will set this bit based on the VTR2_STAP pin.  1=VTR2 is powered by 1.8V 0=VTR2 is powered by 3.3V | see<br>Bit[7]                     | 0h      | RESET _SYS     |
| 0      | TEST  This is a TEST bit and should be always programmed to 0b for proper functioning of the device.                                                      | RW                                | 0h      | RESET<br>_SYS  |

Note: The Boot ROM reads the VTR\_LEVEL2 values from the SPI Flash Header and writes the VTR\_LEV-EL2,bits. If the SPI Flash load fails, the Boot ROM clears all VTR\_LEVEL2, bits.

# **CEC1712**

## 29.8.9 VIRTUAL WIRE SOURCE CONFIGURATION REGISTER

| Offset | 90h                                                                                                                                                                                                                 |       |         |                |
|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|---------|----------------|
| Bits   | Description                                                                                                                                                                                                         | Туре  | Default | Reset<br>Event |
| 31:3   | Reserved                                                                                                                                                                                                            | RES   | -       | -              |
| 1:0    | VWIRE_SOURCE VWIRE_SOURCE [2] should always be programmed to 1b.                                                                                                                                                    | RW    | 7h      | RESET_<br>SYS  |
|        | VWIRE_SOURCE [1] 0 = The hardware source MBX_Host_SMI affects the state of th SMI# (SRC1) bit of the SMVW02 register. 1 = The hardware source MBX_Host_SMI does not affect the S (SRC1) bit of the SMVW02 register. |       |         |                |
|        | <b>Note:</b> Firmware can always write to the SRC1 bit of SMVW02 register.                                                                                                                                          | f the |         |                |
|        | VWIRE_SOURCE [0]                                                                                                                                                                                                    |       |         |                |
|        | 0=The hardware source EC_SCI# affects the state of the (SRC0) bit of the SMVW02 register.                                                                                                                           | SCI#  |         |                |
|        | 1= The hardware source EC_SCI# does not affect the SCI# (SI bit of the SMVW02 register.                                                                                                                             | RC0)  |         |                |
|        | <b>Note:</b> Firmware can always write to the SRC0 bit of SMVW02 register.                                                                                                                                          | f the |         |                |

#### 30.0 SECURITY FEATURES

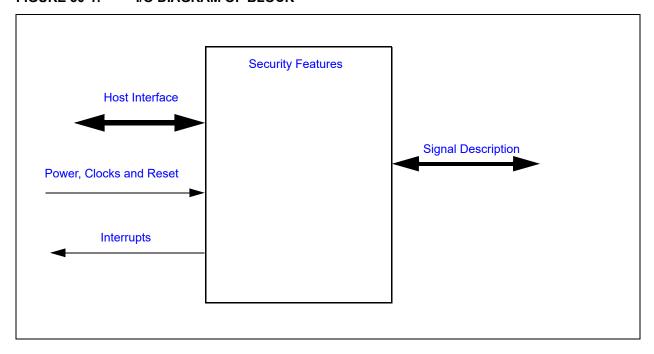
#### 30.1 Overview

This device includes a set of components that can support a high level of system security. Hardware support is provided for:

- · Authentication, using public key algorithms
- · Integrity, using Secure Hash Algorithms (SHA)
- · Privacy, using symmetric encryption (Advanced Encryption Standard, AES)
- · Entropy, using a true Random Number Generator

#### 30.2 References

- American National Standards Institute, "Public Key Cryptography for the Financial Services Industry: Key Agreement and Key Transport Using Elliptic Curve Cryptography", X9.63-2011, December 2011
- American National Standards Institute, "Public Key Cryptography for the Financial Servic3es Industry: The Elliptic Curve Digital Signature Algorithm (ECDSA)", X9.62-2005, November 2005
- International Standards Organization, "Information Technology Security techniques Cryptographic techniques based on elliptic curves -- Part 2: Digital Signatures", ISO/IEC 15946-2, December 2002
- National Institute of Standards and Technology, "Secure Hash Standard (SHS)", FIPS Pub 180-4, March 2012
- National Institute of Standards and Technology, "Digital Signature Standard (DSS)", FIPS Pub 186-3, June 2009
- National Institute of Standards and Technology, "Advanced Encryption Standard (AES)", FIPS Pub 197, November 2001
- National Institute of Standards and Technology, "Recommendation for Block Cipher Modes of Operation", FIPS SP 800-38A, 2001
- RSA Laboratories, "PKCS#1 v2.2: RSA Cryptography Standard", October 2012


### 30.3 Terminology

There is no terminology defined for this section.

#### 30.4 Interface

This block is designed to be accessed internally via a registered host interface.

FIGURE 30-1: I/O DIAGRAM OF BLOCK



## 30.5 Signal Description

There are no external signals for this block.

## 30.6 Host Interface

Registers for the cryptographic hardware are accessible by the EC.

## 30.7 Power, Clocks and Reset

## 30.7.1 POWER DOMAINS

| Name     | Description                                                       |
|----------|-------------------------------------------------------------------|
| VTR_CORE | The main power well used when the VBAT RAM is accessed by the EC. |

#### 30.7.2 CLOCK INPUTS

No special clocks are required for this block.

## 30.7.3 RESETS

| Name      | Description                                                                          |  |
|-----------|--------------------------------------------------------------------------------------|--|
| RESET_SYS | This signal resets all the registers and logic in this block to their default state. |  |

#### 30.8 Interrupts

This section defines the Interrupt Sources generated from this block.

| Source                                              | Description                            |  |  |
|-----------------------------------------------------|----------------------------------------|--|--|
| Public Key Engine                                   |                                        |  |  |
| PKE_ERROR                                           | Public Key Engine core error detected  |  |  |
| PKE END                                             | Public Key Engine completed processing |  |  |
| Symmetric Encryption                                |                                        |  |  |
| AES Symmetric Encryption block completed processing |                                        |  |  |
| Cryptographic Hashing                               |                                        |  |  |
| HASH HASH                                           |                                        |  |  |
| Random Number Generator                             |                                        |  |  |
| RNG Random Number Generator filled its FIFO         |                                        |  |  |

#### 30.9 Low Power Modes

The Security Features may be put into a low power state by the chip's Power, Clocks, and Reset (PCR) circuitry.

#### 30.10 Description

The security hardware incorporates the following functions:

#### 30.10.1 SYMMETRIC ENCRYPTION/DECRYPTION

Standard AES encryption and decryption, with key sizes of 128 bits, 192 bits and 256 bits, are supported with a hardware accelerator. AES modes that can be configured include Electronic Code Block (ECB), Cipher Block Chaining (CBC), Counter Mode (CTR), Output Feedback (OFB) and Cipher Feedback (CFB).

#### 30.10.2 CRYPTOGRAPHIC HASHING

Standard SHA hash algorithms, including SHA-1, SHA-224, SHA-256, SHA-384 and SHA-512, are supported by hardware.

#### 30.10.3 PUBLIC KEY CRYPTOGRAPHIC ENGINE

A large variety of public key algorithms are supported directly in hardware. These include:

- RSA encryption and decryption, with key sizes of 1024 bits, 2048 bits, 3072 bits and 4096 bits
- Elliptic Curve point multiply, with all standard NIST curves, using either binary fields or prime fields
- Elliptic Curve point multiply with Curve25519
- The Elliptic Curve Digital Signature Algorithm (ECDSA), using all supported NIST curves
- The Elliptic Curve Korean Certificate-based Digital Signature Algorithm (EC-KCDSA), using all supported NIST curves
- The Edwards-curve Digital Signature Algorithm (EdDSA), using Curve25519
- Miller-Rabin primality testing

The Public Key Engine includes a 24KB cryptographic SRAM, which can be accessed by the EC when the engine is not in operation. With its private SRAM memory, the Public Key Engine can process public key operations independently of the EC.

# **CEC1712**

#### 30.10.4 TRUE RANDOM NUMBER GENERATOR

A true Random Number Generator, which includes a 1K bit FIFO for pre-calculation of random bits.

#### 30.10.5 MONOTONIC COUNTER

The Monotonic Counter is defined in Section 28.7.3, "Monotonic Counter Register". The counter automatically increments every time it is accessed, as long as VBAT power is maintained. If it is necessary to maintain a monotonic counter across VBAT power cycles, the Counter HiWord Register can be combined with the Monotonic Counter Register to form a 64-bit monotonic counter. Firmware would be responsible for updating the Counter HiWord on a VBAT POR. The HiWord could be maintained in a non-volatile source, such as the EEPROM or an external SPI Flash.

#### 30.10.6 CRYPTOGRAPHIC API

The Boot ROM includes an API for direct software access to cryptographic functions. API functions for Hashing and AES include a DMA interface, so the operations can function on large blocks of SRAM with a single call.

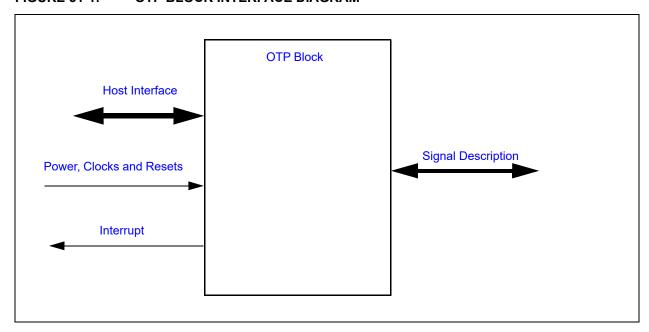
## 30.11 Registers

#### TABLE 30-1: CRYPTOGRAPHIC SRAM

| Block Instance     | Start Address | End Address | Size |
|--------------------|---------------|-------------|------|
| Cryptographic SRAM | 4010_0000h    | 4010_5FFF   | 24KB |

## 31.0 OTP BLOCK

## 31.1 Introduction


The OTP Block provides a means of programming and accessing a block of One Time Programmable memory.

## 31.2 Terminology

None.

#### 31.3 Interface

FIGURE 31-1: OTP BLOCK INTERFACE DIAGRAM



## 31.4 Signal Description

There are no external signals from this block

## 31.5 Host Interface

The registers defined for the OTP Block are accessible by the EC.

## 31.6 Interrupt Interface

**TABLE 31-1: INTERRUPT SIGNALS** 

| Source    | Description                                                                     |  |
|-----------|---------------------------------------------------------------------------------|--|
| OTP_READY | The OTP_READY interrupt will be generated whenever an OTP command is completed. |  |

## 31.7 Power, Clocks and Resets

This section defines the Power, Clock, and Reset parameters of the block.

#### 31.7.1 POWER DOMAINS

#### TABLE 31-2: POWER SOURCES

| Name     | Description                                                                               |  |
|----------|-------------------------------------------------------------------------------------------|--|
| VTR_CORE | This power well sources all of the registers and logic in this block, except where noted. |  |
| VTR      | This is the IO voltage for the block.                                                     |  |

#### 31.7.2 CLOCKS

This section describes all the clocks in the block, including those that are derived from the I/O Interface as well as the ones that are derived or generated internally.

#### TABLE 31-3: CLOCKS

| Name  | Description                                               |
|-------|-----------------------------------------------------------|
| 48MHz | This clock signal drives selected logic (e.g., counters). |

#### 31.7.3 RESETS

#### **TABLE 31-4: RESET SIGNALS**

| Name      | Description                                                            |
|-----------|------------------------------------------------------------------------|
| RESET_SYS | This reset signal resets all of the registers and logic in this block. |

#### 31.8 Low Power Modes

The OTP always comes up in low power mode and stays in that state unless the firmware needs to use it

## 31.9 Description

The OTP Block has a capacity of 8 K bits arranged as 1K x 8 bits.

**Note:** Any secret customer information stored on chip in OTP memory must be encrypted for best security practices

## 31.10 OTP Memory Map

Please refer to Boot ROM document for this information.

TABLE 31-5: REGISTER SUMMARY

| Offset | Register Name           |  |
|--------|-------------------------|--|
| 44h    | OTP Write Lock Register |  |
| 48h    | OTP Read Lock Register  |  |

#### 31.10.1 OTP WRITE LOCK REGISTER

| Offset | 44h                                                                                         |       |         |                |
|--------|---------------------------------------------------------------------------------------------|-------|---------|----------------|
| Bits   | Description                                                                                 | Туре  | Default | Reset<br>Event |
| 31:0   | OTP_WRLOCK                                                                                  | R/W1S | 0h      | RESET_         |
|        | When any of these bits are set, the corresponding 32 byte range in the OTP is not writable. |       |         | SYS            |

#### 31.10.2 OTP READ LOCK REGISTER

| Offset | 48h                                                                                                    |       |         |                |
|--------|--------------------------------------------------------------------------------------------------------|-------|---------|----------------|
| Bits   | Description                                                                                            | Туре  | Default | Reset<br>Event |
| 31:0   | OTP_RDLOCK When any of these bits are set, the corresponding 32 byte range in the OTP is not readable. | R/W1S | 0h      | RESET_<br>SYS  |

- **Note 1:** OTP Memory can be locked by writing to OTP bytes 1012 1019. Boot ROM will then lock the region on every Boot preventing the code that is loaded from accessing this memory location.
  - **2:** Application FW can write to the above lock registers and lock the memory region preventing other code loaded from accessing the locked region. This is useful in multistage boot loaders

#### 32.0 TEST MECHANISMS

#### 32.1 ARM Test Functions

Test mechanisms for the ARM are described in Section 5.0, "ARM M4 Based Embedded Controller".

### 32.2 JTAG Boundary Scan

Note: Boundary Scan operates in 4-wire JTAG mode only. This is not supported by 2-wire SWD.

JTAG Boundary Scan includes registers and functionality as defined in IEEE 1149.1 and the CEC1712 BSDL file. Functionality implemented beyond the standard definition is summarized in Table 32-2. The CEC1712 Boundary Scan JTAG ID is shown in Table 1-1.

**Note:** Must wait a minimum of 35ms after a POR to accurately read the Boundary Scan JTAG ID. Reading the JTAG ID too soon may return a Boundary Scan JTAG ID of 00000000h. This is not a valid ID value.

#### 32.2.1 TAP CONTROLLER SELECT STRAP OPTION

The TAP Controller Select Strap Option determines the JTAG slave that is selected when JTAG\_RST# is not asserted. The state of the TAP Controller Select Strap Option pin, defined in the Pin Configuration chapter (JTAG\_STRAP), is sampled by hardware at POR according to the Slave Select Timing as defined in Section 34.14, "JTAG Interface Timing" The same JTAG port is used for accessing boundary scan and ARM TAP Controller based on the JTAG STRAP pin.

TABLE 32-1: illustrates the selection of the Tap controller over the JTAG port

By default the ARM Tap controller defaults to 2-Pin mode and may be configured to 4- pin

**TABLE 32-1: TAP CONTROLLER SELECTION** 

| JTAG_ST<br>RAP Pin<br>Value at<br>Power On | JTAG_RST# | BOUNDARY SCAN<br>PORT ENABLE <b>Bit</b> | DEBUG_EN (JTAG<br>Debug Disable) Bit | Description                                                                                                                                          |
|--------------------------------------------|-----------|-----------------------------------------|--------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0                                          | 0         | Х                                       | х                                    | Boundary scan/ ARM Tap controller cannot be accessed through JTAG port                                                                               |
| 0                                          | 1         | X                                       | 0                                    | Hardware does not enable Boundary scan functionality. BOUNDARY SCAN PORT ENABLE bit has no effect. ARM TAP controller cannot be accessed             |
| 0                                          | 1         | X                                       | 1                                    | Hardware does not enable Boundary<br>scan functionality. BOUNDARY SCAN<br>PORT ENABLE bit has no effect.<br>ARM TAP controller can be accessed       |
| 1                                          | 0         | x                                       | х                                    | Hardware does not enable Boundary<br>Scan functionality<br>Boundary Scan TAP controller or<br>ARM TAP controller is not accessible<br>via JTAG port. |

| JTAG_ST<br>RAP Pin<br>Value at<br>Power On | JTAG_RST# | BOUNDARY SCAN<br>PORT ENABLE <b>Bit</b> | DEBUG_EN (JTAG<br>Debug Disable) Bit | Description                                                                                                                                                                                 |
|--------------------------------------------|-----------|-----------------------------------------|--------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1                                          | 1         | 0                                       | х                                    | Hardware enables Boundary Scan functionality, but Boundary Scan Port is disabled. Boundary Scan TAP controller or ARM TAP controller is not accessible via JTAG port.                       |
| 1                                          | 1         | 1                                       | x                                    | Hardware enables Boundary Scan functionality and Boundary Scan Port is enabled. Boundary Scan TAP controller is accessible via JTAG port ARM TAP controller is not accessible via JTAG port |

## TABLE 32-2: EXTENDED BOUNDARY SCAN FUNCTIONALITY

| Bits   | Function                                       | Description                                                                                                                                                                                                                              |
|--------|------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 12, 14 | TAP Controller Select Strap<br>Option Override | When the Strap Option Override is '1,' the strap option is overridden to select the debug TAP Controller until the next time the strap is sampled.                                                                                       |
|        |                                                | To set Strap Override Function, write 0X1FFFFD to the TAP controller instruction register, then write 0x5000 to the TAP controller data register. Note that the instruction register is 18 bits long; the data register is 16 bits long. |

#### 33.0 ELECTRICAL SPECIFICATIONS

## 33.1 Maximum Ratings\*

\*Stresses exceeding those listed could cause permanent damage to the device. This is a stress rating only and functional operation of the device at any other condition above those indicated in the operation sections of this specification is not implied.

Note:

When powering this device from laboratory or system power supplies, it is important that the Absolute Maximum Ratings not be exceeded or device failure can result. Some power supplies exhibit voltage spikes on their outputs when the AC power is switched on or off. In addition, voltage transients on the AC power line may appear on the DC output. If this possibility exists, it is suggested that a clamp circuit be used.

#### 33.1.1 ABSOLUTE MAXIMUM THERMAL RATINGS

| Parameter                   | Maximum Limits                 |
|-----------------------------|--------------------------------|
| Operating Temperature Range | -40°C to +85°C Industrial      |
| Storage Temperature Range   | -55° to +150°C                 |
| Lead Temperature Range      | Refer to JEDEC Spec J-STD-020B |

#### 33.1.2 ABSOLUTE MAXIMUM SUPPLY VOLTAGE RATINGS

| Symbol     | Parameter                                               | Maximum Limits  |
|------------|---------------------------------------------------------|-----------------|
| VBAT       | 3.0V Battery Backup Power Supply with respect to ground | -0.3V to +3.63V |
| VTR_REG    | Main Regulator Power Supply with respect to ground      | -0.3V to +3.63V |
| VTR_ANALOG | 3.3V Analog Power Supply with respect to ground         | -0.3V to +3.63V |
| VTR1       | 3.3V Power Supply with respect to ground                | -0.3V to +3.63V |
| VTR2       | 3.3V or 1.8V Power Supply with respect to ground        | -0.3V to +3.63V |

#### 33.1.3 ABSOLUTE MAXIMUM I/O VOLTAGE RATINGS

| Parameter                       | Maximum Limits                |  |  |  |
|---------------------------------|-------------------------------|--|--|--|
| Voltage on any Digital Pin with | Determined by Power Supply of |  |  |  |
| respect to ground               | I/O Buffer and Pad Type       |  |  |  |

## 33.2 Operational Specifications

## 33.2.1 POWER SUPPLY OPERATIONAL CHARACTERISTICS

TABLE 33-1: POWER SUPPLY OPERATING CONDITIONS

| Symbol     | Parameter                   | MIN   | TYP  | MAX   | Units |
|------------|-----------------------------|-------|------|-------|-------|
| VBAT       | Battery Backup Power Supply | 2.0   | 3.0  | 3.465 | V     |
| VTR_REG    | Main Regulator Power Supply | 1.71  | 3.0  | 3.465 | V     |
| VTR_ANALOG | Analog Power Supply         | 3.135 | 3.3  | 3.465 | V     |
| VTRx       | 3.3V Power Supply           | 3.135 | 3.3  | 3.465 | V     |
|            | 1.8V Power Supply           | 1.71  | 1.80 | 1.89  | V     |

**Note:** The specification for the VTRx supplies are +/- 5%.

#### 33.2.2 AC ELECTRICAL SPECIFICATIONS

The AC Electrical Specifications for the clock input time are defined in Section 34.4, "Clocking AC Timing Characteristics". The clock rise and fall times use the standard input thresholds of 0.8V and 2.0V unless otherwise specified and the capacitive values listed in this section.

#### 33.2.3 CAPACITIVE LOADING SPECIFICATIONS

The following table defines the maximum capacitive load validated for the buffer characteristics listed in Table 33-3, "DC Electrical Characteristics" and the AC characteristics defined in Section 34.4, "Clocking AC Timing Characteristics".

CAPACITANCE  $T_A = 25$ °C; fc = 1MHz;  $V_{cc} = 3.3$  VDC

Note: All output pins, except pin under test, tied to AC ground.

#### TABLE 33-2: MAXIMUM CAPACITIVE LOADING

| Parameter                                    | Symbol           |     | Limits | Unit | Notes |        |
|----------------------------------------------|------------------|-----|--------|------|-------|--------|
| raiametei                                    | Symbol           | MIN | TYP    | MAX  | Oilit | Notes  |
| Input Capacitance of PECI_IO                 | C <sub>IN</sub>  |     |        | 10   | pF    |        |
| Output Load Capacitance supported by PECI_IO | C <sub>OUT</sub> |     |        | 10   | pF    |        |
| Input Capacitance (all other input pins)     | C <sub>IN</sub>  |     |        | 10   | pF    | Note 1 |
| Output Capacitance (all other output pins)   | C <sub>OUT</sub> |     |        | 20   | pF    | Note 2 |

Note 1: All input buffers can be characterized by this capacitance unless otherwise specified.

2: All output buffers can be characterized by this capacitance unless otherwise specified.

## 33.2.4 DC ELECTRICAL CHARACTERISTICS FOR I/O BUFFERS

**TABLE 33-3: DC ELECTRICAL CHARACTERISTICS** 

| Parameter                                       | Symbol           | MIN         | TYP         | MAX         | Units | Comments                                                                                                                 |
|-------------------------------------------------|------------------|-------------|-------------|-------------|-------|--------------------------------------------------------------------------------------------------------------------------|
|                                                 | ı                | Р           | IO Type E   | Buffer      | •     |                                                                                                                          |
| All PIO Buffers  Pull-up Resistor  @3.3V  @1.8V | R <sub>PU</sub>  | 34<br>35    | 52<br>60    | 95<br>105   | ΚΩ    | Internal PU selected via the GPIO Pin Control Register.                                                                  |
| All PIO Buffers  Pull-down Resistor @3.3V @1.8V | R <sub>PD</sub>  | 38<br>36    | 63<br>63    | 127<br>118  | ΚΩ    | Internal PD selected via the GPIO Pin Control Register.                                                                  |
| PIO  DRIVE_STRENGTH = 00b                       |                  |             |             |             |       | The drive strength is determined by programming bits[5:4] of the Pin Control Register 2  Same characteristics as an IO-2 |
| DRIVE_STRENGTH = 01b                            | _                |             |             |             | _     | mA.  Same characteristics as an IO-4 mA.                                                                                 |
| DRIVE_STRENGTH = 10b                            | _                |             |             |             | _     | Same characteristics as an IO-8 mA.                                                                                      |
| DRIVE_STRENGTH = 11b                            | _                |             |             |             | _     | Same characteristics as an IO-<br>12 mA.                                                                                 |
| I Type Input Buffer                             |                  |             |             |             |       | TTL Compatible Schmitt Trigger Input                                                                                     |
| Low Input Level                                 | V <sub>ILI</sub> |             |             | 0.3x<br>VTR | V     |                                                                                                                          |
| High Input Level                                | V <sub>IHI</sub> |             | 0.7x<br>VTR |             | V     |                                                                                                                          |
| Schmitt Trigger Hysteresis                      | V <sub>HYS</sub> |             | 400         |             | mV    |                                                                                                                          |
| O-2 mA Type Buffer                              |                  |             |             |             |       |                                                                                                                          |
| Low Output Level                                | V <sub>OL</sub>  |             |             | 0.4         | V     | I <sub>OL</sub> = 2 mA (min)                                                                                             |
| High Output Level                               | V <sub>OH</sub>  | VTR-<br>0.4 |             |             | V     | I <sub>OH</sub> = -2 mA (min)                                                                                            |
| IO-2 mA Type Buffer                             | _                |             |             |             | -     | Same characteristics as an I and an O-2mA.                                                                               |
| OD-2 mA Type Buffer                             |                  |             |             |             |       |                                                                                                                          |
| Low Output Level                                | V <sub>OL</sub>  |             |             | 0.4         | V     | I <sub>OL</sub> = 2 mA (min)                                                                                             |

TABLE 33-3: DC ELECTRICAL CHARACTERISTICS (CONTINUED)

| Parameter             | Symbol          | MIN         | TYP | MAX | Units | Comments                                     |
|-----------------------|-----------------|-------------|-----|-----|-------|----------------------------------------------|
| IOD-2 mA Type Buffer  | _               |             |     |     | -     | Same characteristics as an I and an OD-2mA.  |
| O-4 mA Type Buffer    |                 |             |     |     |       |                                              |
| Low Output Level      | V <sub>OL</sub> |             |     | 0.4 | V     | I <sub>OL</sub> = 4 mA (min)                 |
| High Output Level     | V <sub>OH</sub> | VTR-<br>0.4 |     |     | V     | I <sub>OH</sub> = -4 mA (min)                |
| IO-4 mA Type Buffer   | _               |             |     |     | -     | Same characteristics as an I and an O-4mA.   |
| OD-4 mA Type Buffer   |                 |             |     |     |       |                                              |
| Low Output Level      | V <sub>OL</sub> |             |     | 0.4 | V     | I <sub>OL</sub> = 4 mA (min)                 |
| IOD-4 mA Type Buffer  | _               |             |     |     | -     | Same characteristics as an I and an OD-4mA.  |
| O-8 mA Type Buffer    |                 |             |     |     |       |                                              |
| Low Output Level      | V <sub>OL</sub> |             |     | 0.4 | V     | I <sub>OL</sub> = 8 mA (min)                 |
| High Output Level     | V <sub>OH</sub> | VTR-<br>0.4 |     |     | V     | I <sub>OH</sub> = -8 mA (min)                |
| IO-8 mA Type Buffer   |                 |             |     |     | _     | Same characteristics as an I and an O-8mA.   |
| OD-8 mA Type Buffer   |                 |             |     |     |       |                                              |
| Low Output Level      | V <sub>OL</sub> |             |     | 0.4 | V     | I <sub>OL</sub> = 8 mA (min)                 |
| IOD-8 mA Type Buffer  | _               |             |     |     | -     | Same characteristics as an I and an OD-8mA.  |
| O-12 mA Type Buffer   |                 |             |     |     |       |                                              |
| Low Output Level      | V <sub>OL</sub> |             |     | 0.4 | V     | I <sub>OL</sub> = 12mA (min)                 |
| High Output Level     | V <sub>OH</sub> | VTR-<br>0.4 |     |     | V     | I <sub>OH</sub> = -12mA (min)                |
| IO-12 mA Type Buffer  | _               |             |     |     | -     | Same characteristics as an I and an O-12mA.  |
| OD-12 mA Type Buffer  |                 |             |     |     |       |                                              |
| Low Output Level      | V <sub>OL</sub> |             |     | 0.4 | V     | I <sub>OL</sub> = 12mA (min)                 |
| IOD-12 mA Type Buffer | _               |             |     |     | _     | Same characteristics as an I and an OD-12mA. |

TABLE 33-3: DC ELECTRICAL CHARACTERISTICS (CONTINUED)

| Parameter                                                                                                                                | Symbol           | MIN                 | TYP                  | MAX   | Units                                                                          | Comments                                                               |  |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------|------------------|---------------------|----------------------|-------|--------------------------------------------------------------------------------|------------------------------------------------------------------------|--|--|--|--|
| I_AN Type Buffer                                                                                                                         |                  |                     |                      |       |                                                                                |                                                                        |  |  |  |  |
| I_AN Type Buffer<br>(Analog Input Buffer)                                                                                                | I_AN             | Voltage<br>-0.3V to | range on ¡<br>+3.63V | oins: | These buffers are not 5V tolerant buffers and they are not backdrive protected |                                                                        |  |  |  |  |
| ADC Reference Pins                                                                                                                       |                  |                     |                      |       |                                                                                |                                                                        |  |  |  |  |
| VREF_ADC                                                                                                                                 |                  |                     |                      |       |                                                                                |                                                                        |  |  |  |  |
| Voltage (Option A)                                                                                                                       | V                |                     | VTR                  |       | V                                                                              | Connect to same power supply as VTR                                    |  |  |  |  |
| Voltage (Option B)                                                                                                                       | V                | 2.97                | 3.0                  | 3.03  | V                                                                              |                                                                        |  |  |  |  |
| Input Impedance                                                                                                                          | R <sub>REF</sub> |                     | 75                   |       | ΚΩ                                                                             |                                                                        |  |  |  |  |
| Input Low Current                                                                                                                        | ILEAK            | -0.05               |                      | +0.05 | μА                                                                             | This buffer is not 5V tolerant This buffer is not backdrive protected. |  |  |  |  |
| Note: Tolerance for the pins are not 5VT Unless the pin chapter explicitly indicates specific pin has "Over-voltage protection" feature. |                  |                     |                      |       |                                                                                |                                                                        |  |  |  |  |

# 33.2.4.1 Pin Leakage

Leakage characteristics for all digital I/O pins is shown in the following Pin Leakage table, unless otherwise specified. Two exceptions are pins with Over-voltage protection and Backdrive protection. Leakage characteristics for Over-Voltage protected pins and Backdrive protected pins are shown in the two sub-sections following the Pin Leakage table.

TABLE 33-4: PIN LEAKAGE (VTR=3.3V + 5%; VTR = 1.8V +5%)

| $(TA = -40^{\circ}C \text{ to } +85^{\circ}C)$ |                 |  |  |      |    |               |  |
|------------------------------------------------|-----------------|--|--|------|----|---------------|--|
| Leakage Current                                | I <sub>IL</sub> |  |  | +/-2 | μΑ | VIN=0V to VTR |  |

## OVER-VOLTAGE PROTECTION TOLERANCE

Note: 5V tolerant pins have both backdrive protection and over-voltage protection.

All the I/O buffers that do not have "Over-voltage Protection" are can only tolerate up to +/-10% I/O operation (or +1.98V when powered by 1.8V, or 3.63V when powered by 3.3V).

Functional pins that have "Over-voltage Protection" can tolerate up to 3.63V when powered by 1.8V, or 5.5V when powered by 3.3V. These pins are also backdrive protected. Backdrive Protection characteristics are shown in the following table:

TABLE 33-5: 5V TOLERANT LEAKAGE CURRENTS (VTR=3.3-5%)

| Parameter                                                    | Symbol          | MIN | TYP | MAX | Units | Comments |  |  |
|--------------------------------------------------------------|-----------------|-----|-----|-----|-------|----------|--|--|
| $(TA = -40^{\circ}C \text{ to } +85^{\circ}C)$               |                 |     |     |     |       |          |  |  |
| Three-State Input<br>Leakage Current<br>for 5V Tolerant Pins | I <sub>IL</sub> | 2μΑ |     | 9μΑ |       |          |  |  |

**Note:** These measurements are done without an external pull-up.

## TABLE 33-6: 3.6V TOLERANT LEAKAGE CURRENTS (VTR = 1.8V-5%)

| Parameter                                                                    | Symbol | MIN | TYP        | MAX         | Units | Comments |
|------------------------------------------------------------------------------|--------|-----|------------|-------------|-------|----------|
|                                                                              |        |     | (TA = -40) | °C to +85°C | C)    |          |
| Three-State Input<br>Leakage Current for<br>Under-Voltage Toler-<br>ant Pins | Ę      | 1µA |            | 2μΑ         |       |          |

**Note:** This measurements are done without an external pull-up.

## **BACKDRIVE PROTECTION**

## TABLE 33-7: BACKDRIVE PROTECTION LEAKAGE CURRENTS (VTR=0V)

| Parameter                                      | Symbol          | MIN | TYP | MAX | Units | Comments  |  |
|------------------------------------------------|-----------------|-----|-----|-----|-------|-----------|--|
| $(TA = -40^{\circ}C \text{ to } +85^{\circ}C)$ |                 |     |     |     |       |           |  |
| Input Leakage                                  | I <sub>IL</sub> | -1  |     | 2   | μΑ    | VIN@3.47V |  |
| Input Leakage                                  | I <sub>IL</sub> | -2  |     | 9   | μA    | VIN@5.0V  |  |

## 33.2.5 ADC ELECTRICAL CHARACTERISTICS

#### **TABLE 33-8: ADC CHARACTERISTICS**

| Symbol           | Parameter                              | MIN   | TYP | MAX          | Units | Comments                              |
|------------------|----------------------------------------|-------|-----|--------------|-------|---------------------------------------|
| VTR_<br>ANALOG   | Analog Supply Voltage (powered by VTR) | 3.135 | 3.3 | 3.465        | V     |                                       |
| V <sub>RNG</sub> | Input Voltage Range                    | 0     |     | VREF<br>_ADC | V     | Range of VREF_ADC input to ADC ground |
| RES              | Resolution                             | _     | -   | 10/12        | Bits  | Guaranteed Mono-<br>tonic             |
| ACC              | Absolute Accuracy                      | _     | 2   | 4            | LSB   |                                       |

TABLE 33-8: ADC CHARACTERISTICS (CONTINUED)

| Symbol  | Parameter                       | MIN  | TYP   | MAX | Units      | Comments                  |
|---------|---------------------------------|------|-------|-----|------------|---------------------------|
| DNL     | Differential Non Linearity, DNL | -1   | _     | +1  | LSB        | Guaranteed Mono-<br>tonic |
| INL     | Integral Non Linearity, INL     | -3.0 | _     | +3  | LSB        | Guaranteed Mono-<br>tonic |
| Egain   | Gain Error, Egain               | -2   | _     | 2   | LSB        |                           |
| Eoffset | Offset Error, EOFFSET           | -2   | -     | 2   | LSB        |                           |
| CONV    | Conversion Time                 |      | 1.125 |     | μS/channel |                           |
| II      | Input Impedance                 | 4    | 4.5   | 5.3 | MΩ         |                           |

## 33.2.6 THERMAL CHARACTERISTICS

TABLE 33-9: THERMAL OPERATING CONDITIONS

| Rating                                                                                                                                                   | Symbol | MIN | TYP                      | MAX | Unit |
|----------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-----|--------------------------|-----|------|
| Consumer Temperature Devices                                                                                                                             |        |     |                          |     |      |
| Operating Junction Temperature Range                                                                                                                     | TJ     | 0   | _                        | 125 | °C   |
| Operating Ambient Temperature Range - Industrial                                                                                                         | TA     | -40 | _                        | +85 | °C   |
| Power Dissipation: Internal Chip Power Dissipation: PINT = VDD x (IDD – S IOH)  I/O Pin Power Dissipation: I/O = S (({VDD – VOH} x IOH) + S (VOL x IOL)) | PD     | (1  | 69.3<br>PINT + PI/0      | ))  | mW   |
| Maximum Allowed Power Dissipation                                                                                                                        | PDMAX  | (7  | ΓJ <sup>a</sup> – ΤΑ)/θ. | JA  | W    |

a.Tj Max value is at ambient of 70°C.

**Note:** Junction to ambient thermal resistance, Theta-JA (θJA), and Junction to case thermal resistance, Theta-JC (θJC), numbers are achieved by package simulations.

## 33.3 Power Consumption

TABLE 33-11: VTR SUPPLY CURRENT, I\_VTR

|     |     |                 | VTR1                      |                        |                        | VTR2                      |                        |                        |       |             |  |
|-----|-----|-----------------|---------------------------|------------------------|------------------------|---------------------------|------------------------|------------------------|-------|-------------|--|
| vcc | VTR | 48 MHz<br>Clock | Typical<br>(3.3V,<br>25C) | Max<br>(3.45V,<br>70C) | Max<br>(3.45V,<br>85C) | Typical<br>(3.3V,<br>25C) | Max<br>(3.45V,<br>70C) | Max<br>(3.45V,<br>85C) | Units | Comments    |  |
| On  | On  | 48MHz           | 0.15                      | 0.16                   | 0.17                   | 0.01                      | 0.02                   | 0.02                   | mA    | Full On     |  |
| On  | On  | PLL<br>Gated    | 0.15                      | 0.16                   | 0.17                   | 0.01                      | 0.02                   | 0.02                   | mA    | Light Sleep |  |
| On  | On  | PLL Off         | 0.04                      | 0.05                   | 0.06                   | 0.01                      | 0.02                   | 0.02                   | mA    | Heavy Sleep |  |
| Off | On  | 48MHz           | 0.15                      | 0.16                   | 0.17                   | 0.01                      | 0.02                   | 0.02                   | mA    | Full On     |  |
| Off | On  | PLL<br>Gated    | 0.15                      | 0.16                   | 0.17                   | 0.01                      | 0.02                   | 0.02                   | mA    | Light Sleep |  |
| Off | On  | PLL Off         | 0.04                      | 0.05                   | 0.06                   | 0.01                      | 0.02                   | 0.02                   | mA    | Heavy Sleep |  |

TABLE 33-12: VTR SUPPLY CURRENT, I\_VTR

|     |     |                 | ٧                         | TR_REG                 | )                      | ,                         | VTR_PLI                | -                      | VT                        | R_ANAL                 | OG                     |       |             |
|-----|-----|-----------------|---------------------------|------------------------|------------------------|---------------------------|------------------------|------------------------|---------------------------|------------------------|------------------------|-------|-------------|
| vcc | VTR | 48 MHz<br>Clock | Typical<br>(3.3V,<br>25C) | Max<br>(3.45V,<br>70C) | Max<br>(3.45V,<br>85C) | Typical<br>(3.3V,<br>25C) | Max<br>(3.45V,<br>70C) | Max<br>(3.45V,<br>85C) | Typical<br>(3.3V,<br>25C) | Max<br>(3.45V,<br>70C) | Max<br>(3.45V,<br>85C) | Units | Comments    |
| On  | On  | 48MHz           | 7.5                       | 11.5                   | 13.5                   | 0.10                      | 0.11                   | 0.11                   | 1.2                       | 1.5                    | 1.5                    | mA    | Full On     |
| On  | On  | PLL<br>Gated    | 2.0                       | 5.5                    | 7.0                    | 0.1                       | 0.11                   | 0.11                   | 0.15                      | 0.15                   | 0.17                   | mA    | Light Sleep |
| On  | On  | PLL Off         | 0.2                       | 3.5                    | 5.25                   | 0.01                      | 0.01                   | 0.01                   | 0.15                      | 0.15                   | 0.17                   | mA    | Heavy Sleep |
| Off | On  | 48MHz           | 7.5                       | 11.5                   | 13.5                   | 0.10                      | 0.11                   | 0.11                   | 1.2                       | 1.5                    | 1.5                    | mA    | Full On     |
| Off | On  | PLL<br>Gated    | 2.0                       | 5.5                    | 7.0                    | 0.10                      | 0.11                   | 0.11                   | 0.15                      | 0.15                   | 0.17                   | mA    | Light Sleep |
| Off | On  | PLL Off         | 0.2                       | 3.5                    | 5.25                   | 0.01                      | 0.01                   | 0.01                   | 0.15                      | 0.15                   | 0.17                   | mA    | Heavy Sleep |

**Note 1:** Full On is defined as follows: The processor is not sleeping, the PLL is powered and the following blocks are Active: ADC, EC Subsystem, Hibernation Timer, Interrupt Controller, PWM, TFDP, Basic Timers, JTAG, RTC.

TABLE 33-13: ADDITIONAL VTR SUPPLY CURRENT WITH VARIOUS BLOCKS ENABLED

|        |                                                                                                                   |                 |                           | VTR1                   |                        | VT                        | R_ANAL                 | OG                     |       |             |  |
|--------|-------------------------------------------------------------------------------------------------------------------|-----------------|---------------------------|------------------------|------------------------|---------------------------|------------------------|------------------------|-------|-------------|--|
| vcc    | VTR                                                                                                               | 48 MHz<br>Clock | Typical<br>(3.3V,<br>25C) | Max<br>(3.45V,<br>70C) | Max<br>(3.45V,<br>85C) | Typical<br>(3.3V,<br>25C) | Max<br>(3.45V,<br>70C) | Max<br>(3.45V,<br>85C) | Units | Comments    |  |
| On/Off | On                                                                                                                | 48MHz           |                           |                        |                        | 0.45                      | 0.50                   | 0.50                   | mA    | ADC enabled |  |
| Note   | Note 1: The values in this table are added to the values in VTR Supply Current, I_VTR excluding the sleep states. |                 |                           |                        |                        |                           |                        |                        |       |             |  |

<sup>2:</sup> The sleep states are defined in the System Sleep Control Register in the Power, Clocks and Resets Chapter

# **CEC1712**

TABLE 33-14: VBAT SUPPLY CURRENT, I\_VBAT (VBAT=3.3V)

| vcc | VTR | 48 MHz PLL | Typical<br>(3.3V,<br>25 <sup>0</sup> C) | Max<br>(3.3V,<br>25 <sup>0</sup> C) | Units | Comments                                                                                                                                                        |
|-----|-----|------------|-----------------------------------------|-------------------------------------|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Off | Off | Off        | 14                                      | 20                                  | uA    | Internal 32kHz oscillator - supplied by coin cell                                                                                                               |
| Off | On  | Off        | 65                                      | 70                                  | uA    | Internal 32kHz oscillator - add to VTR power well that supplies this current through the diode or is connected to the VBAT pin. This is not from the coin cell. |
| Off | Off | Off        | 14.5                                    | 20                                  | uA    | 32kHz crystal oscillator                                                                                                                                        |
| Off | Off | Off        | 14                                      | 20                                  | uA    | External 32kHz clock on XTAL2 pin -Running                                                                                                                      |
| Off | Off | Off        | 14                                      | 20                                  | uA    | External 32kHz clock on XTAL2 pin -Low                                                                                                                          |

## 34.0 TIMING DIAGRAMS

## 34.1 Power-up and Power-down Timing

## FIGURE 34-1: VTR/VBAT POWER-UP TIMING

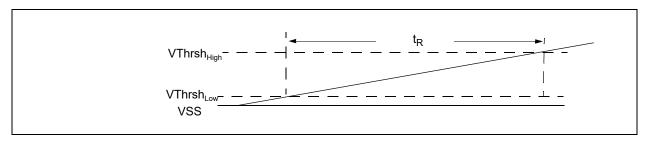



FIGURE 34-2: VTR RESET AND POWER-DOWN

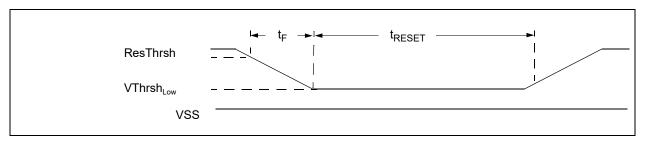
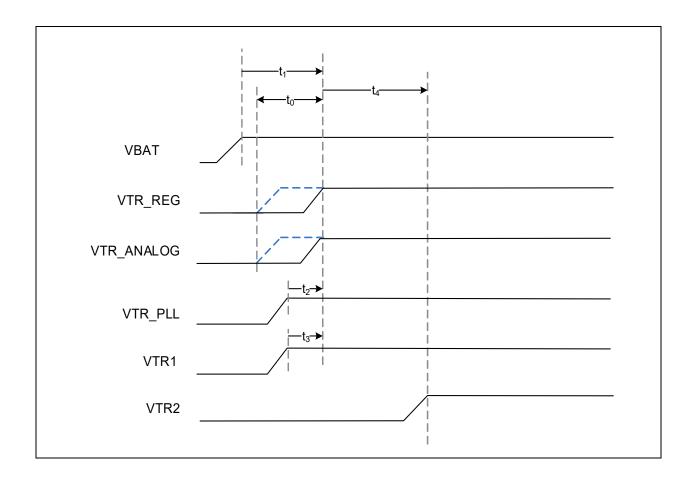




TABLE 34-1: VTR/VBAT TIMING PARAMETERS

| Symbol                 | Parameter                         | MIN          | TYP  | MAX          | Units | Notes |
|------------------------|-----------------------------------|--------------|------|--------------|-------|-------|
| t <sub>F</sub>         | VTR Fall time                     | 30           |      |              | μS    | 1     |
|                        | VBAT Fall time                    | 30           |      |              | μS    |       |
| t <sub>R</sub>         | VTR Rise time                     | 0.050        |      | 20           | ms    | 1     |
|                        | VBAT Rise time                    | 0.100        |      | 20           | ms    |       |
| t <sub>RESET</sub>     | Minimum Reset Time                | 1            |      |              | μS    |       |
| VThrsh <sub>Low</sub>  | VTR Low Voltage Threshold         | 0.1 ×<br>VTR |      |              | V     | 1     |
|                        | VBAT Low Voltage Threshold        | 0.1 × VBAT   |      |              | V     |       |
| VThrsh <sub>High</sub> | VTR High Voltage Threshold        |              |      | 0.9 ×<br>VTR | V     | 1     |
|                        | VBAT High Voltage Threshold       |              |      | 0.9 × VBAT   | V     |       |
| ResThrsh               | VTR Reset Threshold               | 0.5          | 1.8  | 2.7          | V     | 1     |
|                        | VBAT Reset Threshold              | 0.5          | 1.25 | 1.9          | V     |       |
| Note 1:                | √TR applies to both VTR_REG and \ | /TR_ANALOG   | I    |              | 1     | 1     |

## 34.2 Power Sequencing

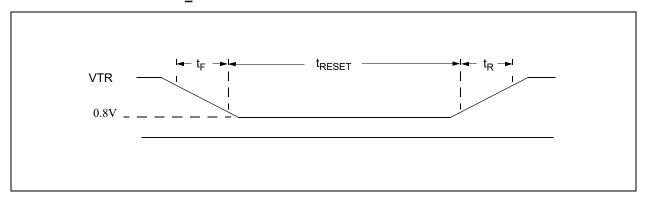


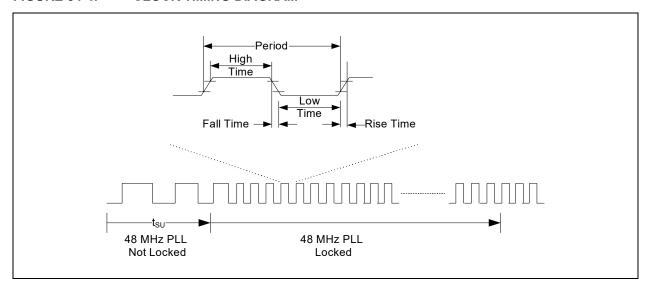
Note 1: VTR\_ANALOG and VTR\_REG may ramp in either order

- **2:** VBAT must rise no later than VTR\_ANALOG and VTR\_REG. This relationship is guaranteed by the recommended battery circuit in the layout guidelines.
- 3: The SHD\_CS# pin, which is powered by VTR2, must be powered before the Boot ROM samples this pin.
- **4:** Minimum operating threshold values for Power Rails are defined in Table 33-1, "Power Supply Operating Conditions".

## 34.3 nRESET\_IN Timing

## FIGURE 34-3: NRESET\_IN TIMING





TABLE 34-2: RESETI# TIMING PARAMETERS

| Symbol             | Parameter                                     | Lin            | nits   | Units  | Comments |  |
|--------------------|-----------------------------------------------|----------------|--------|--------|----------|--|
| Зуппоот            | raiametei                                     | MIN            | MAX    | Oilles | Comments |  |
| t <sub>F</sub>     | nRESET_IN Fall time                           | 0              | 1      | ms     |          |  |
| t <sub>R</sub>     | nRESET_IN Rise time                           | 0              | 1      | ms     |          |  |
| t <sub>RESET</sub> | Minimum Reset Time                            | 1              |        | μS     | Note 1   |  |
| Note 1:            | The nRESET IN input nin can tolerate glitches | of no more tha | n 50nc |        |          |  |

**Note 1:** The nRESET\_IN input pin can tolerate glitches of no more than 50ns.

## 34.4 Clocking AC Timing Characteristics

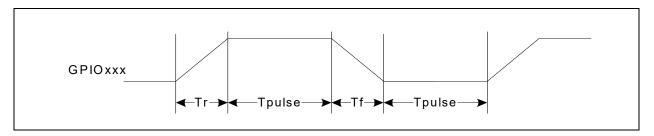
FIGURE 34-4: CLOCK TIMING DIAGRAM



**TABLE 34-3: CLOCK TIMING PARAMETERS** 

| Clock                    | Symbol          | Parameters                                                                        | MIN   | TYP | MAX   | Units |
|--------------------------|-----------------|-----------------------------------------------------------------------------------|-------|-----|-------|-------|
| 48 MHz PLL               | t <sub>SU</sub> | Start-up accuracy from power-on-<br>reset and waking from Heavy<br>Sleep (Note 4) | -     | -   | 3     | ms    |
|                          | -               | Operating Frequency (locked to 32KHz single-ended input) (Note 1)                 | 47.5  | 48  | 48.5  | MHz   |
|                          | -               | Operating Frequency (Note 1)                                                      | 46.56 | 48  | 49.44 | MHz   |
|                          | CCJ             | Cycle to Cycle Jitter(Note 2)                                                     | -200  |     | 200   | ps    |
|                          | t <sub>DO</sub> | Output Duty Cycle                                                                 | 45    | -   | 55    | %     |
| 32MHz Ring<br>Oscillator | -               | Operating Frequency                                                               | 16    | -   | 48    | MHz   |

- Note 1: The 48MHz PLL is frequency accuracy is computed by adding +/-1% to the accuracy of the 32kHz reference clock.
  - 2: The Cycle to Cycle Jitter of the 48MHz PLL is +/-200ps based on an ideal 32kHz clock source. The actual jitter on the 48MHz clock generated is computed by adding the clock jitter of the 32kHz reference clock to the 48MHz PLL jitter (e.g., 32kHz jitter +/- 200ps).
  - 3: An external single-ended 32KHz clock is required to have an accuracy of +/- 100 ppm.
  - 4: PLL is started, either from waking from the Heavy Sleep mode, or after a Power On Reset


TABLE 34-3: CLOCK TIMING PARAMETERS (CONTINUED)

| Clock                                            | Symbol | Parameters          | MIN      | TYP    | MAX      | Units |
|--------------------------------------------------|--------|---------------------|----------|--------|----------|-------|
| 32KHz sin-<br>gle-<br>ended<br>input<br>(Note 3) | -      | Operating Frequency | -        | 32.768 | -        | kHz   |
|                                                  | -      | Period              | (Note 3) | 30.52  | (Note 3) | μs    |
|                                                  | -      | High Time           | 10       |        |          | us    |
|                                                  | -      | Low Time            | 10       |        |          | us    |
|                                                  | -      | Fall Time           | -        | -      | 1        | us    |
|                                                  | -      | Rise Time           | -        | -      | 1        | us    |

- Note 1: The 48MHz PLL is frequency accuracy is computed by adding +/-1% to the accuracy of the 32kHz reference clock.
  - 2: The Cycle to Cycle Jitter of the 48MHz PLL is +/-200ps based on an ideal 32kHz clock source. The actual jitter on the 48MHz clock generated is computed by adding the clock jitter of the 32kHz reference clock to the 48MHz PLL jitter (e.g., 32kHz jitter +/- 200ps).
  - 3: An external single-ended 32KHz clock is required to have an accuracy of +/- 100 ppm.
  - 4: PLL is started, either from waking from the Heavy Sleep mode, or after a Power On Reset

## 34.5 **GPIO Timings**

FIGURE 34-5: GPIO TIMING



**TABLE 34-4: GPIO TIMING PARAMETERS** 

| Symbol             | Parameter                  | MIN  | TYP | MAX  | Unit | Notes |
|--------------------|----------------------------|------|-----|------|------|-------|
| t <sub>R</sub>     | GPIO Rise Time (push-pull) | 0.54 |     | 1.31 | ns   | 1     |
| t <sub>F</sub>     | GPIO Fall Time             | 0.52 |     | 1.27 | ns   |       |
| t <sub>R</sub>     | GPIO Rise Time (push-pull) | 0.58 |     | 1.46 | ns   | 2     |
| t <sub>F</sub>     | GPIO Fall Time             | 0.62 |     | 1.48 | ns   |       |
| t <sub>R</sub>     | GPIO Rise Time (push-pull) | 0.80 |     | 2.00 | ns   | 3     |
| t <sub>F</sub>     | GPIO Fall Time             | 0.80 |     | 1.96 | ns   |       |
| t <sub>R</sub>     | GPIO Rise Time (push-pull) | 1.02 |     | 2.46 | ns   | 4     |
| t <sub>F</sub>     | GPIO Fall Time             | 1.07 |     | 2.51 | ns   |       |
| t <sub>pulse</sub> | GPIO Pulse Width           | 60   |     |      | ns   |       |

Note 1: Pad configured for 2ma, CL=2pF

2: Pad configured for 4ma, CL=5pF

3: Pad configured for 8ma, CL=10pF

4: Pad configured for 12ma, CL=20pF

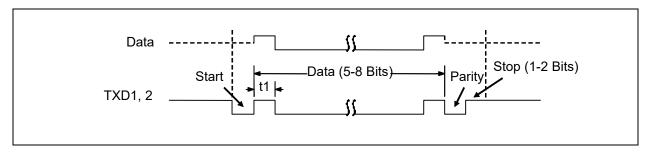
# **CEC1712**

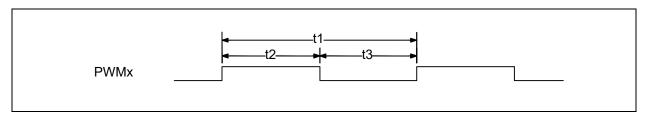
## 34.6 Boot from SPI Flash Timing

Refer to CEC1712 Boot ROM document for the sequence and timing.

## 34.7 Serial Port (UART) Data Timing

### FIGURE 34-6: SERIAL PORT DATA





TABLE 34-5: SERIAL PORT DATA PARAMETERS

| Name | Description               | MIN | TYP                            | MAX | Units |
|------|---------------------------|-----|--------------------------------|-----|-------|
| t1   | Serial Port Data Bit Time |     | t <sub>BR</sub><br>(Note<br>1) |     | nsec  |

Note 1: tBR is 1/Baud Rate. The Baud Rate is programmed through the Baud\_Rate\_Divisor bits located in the Programmable Baud Rate Generator registers. The selectable baud rates are listed in Table 10-8, "UART Baud Rates using Clock Source 1.8432MHz" and Table 10-9, "UART Baud Rates using Clock Source 48MHz"Some of the baud rates have some percentage of error because the clock does not divide evenly. This error can be determined from the values in these baud rate tables.

# 34.8 PWM Timing

### FIGURE 34-7: PWM OUTPUT TIMING



**TABLE 34-6: PWM TIMING PARAMETERS** 

| Name           | Description | MIN    | TYP | MAX     | Units |
|----------------|-------------|--------|-----|---------|-------|
| t1             | Period      | 42ns   |     | 23.3sec |       |
| t <sub>f</sub> | Frequency   | 0.04Hz |     | 24MHz   |       |
| t2             | High Time   | 0      |     | 11.65   | sec   |
| t3             | Low Time    | 0      |     | 11.65   | sec   |
| t <sub>d</sub> | Duty cycle  | 0      |     | 100     | %     |

# 34.9 Fan Tachometer Timing

### FIGURE 34-8: FAN TACHOMETER INPUT TIMING

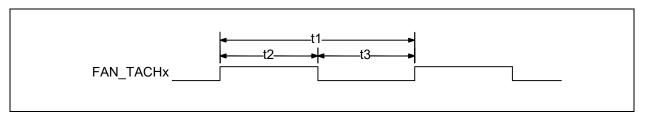



TABLE 34-7: FAN TACHOMETER INPUT TIMING PARAMETERS

| Name  | Description                                                                                               | MIN | TYP | MAX | Units |  |  |  |
|-------|-----------------------------------------------------------------------------------------------------------|-----|-----|-----|-------|--|--|--|
| t1    | Pulse Time                                                                                                | 100 |     |     | µsec  |  |  |  |
| t2    | Pulse High Time                                                                                           | 20  |     |     |       |  |  |  |
| t3    | Pulse Low Time                                                                                            | 20  |     |     |       |  |  |  |
| Noto: | Note: t is the clock used for the techamoter counter. It is 20.52 * proceeder where the proceeder is pro- |     |     |     |       |  |  |  |

trach is the clock used for the tachometer counter. It is 30.52 \* prescaler, where the prescaler is programmed in the Fan Tachometer Timebase Prescaler register.

# 34.10 Blinking/Breathing PWM Timing

### FIGURE 34-9: BLINKING/BREATHING PWM OUTPUT TIMING

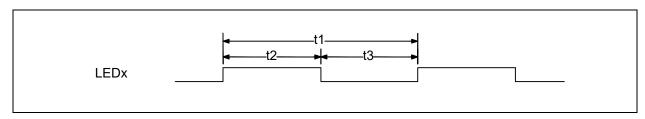



TABLE 34-8: BLINKING/BREATHING PWM TIMING PARAMETERS, BLINKING MODE

| Name           | Description | MIN     | TYP | MAX   | Units |
|----------------|-------------|---------|-----|-------|-------|
| t1             | Period      | 7.8ms   |     | 32sec |       |
| t <sub>f</sub> | Frequency   | 0.03125 |     | 128   | Hz    |
| t2             | High Time   | 0       |     | 16    | sec   |
| t3             | Low Time    | 0       |     | 16    | sec   |
| t <sub>d</sub> | Duty cycle  | 0       |     | 100   | %     |

TABLE 34-9: BLINKING/BREATHING PWM TIMING PARAMETERS, GENERAL PURPOSE

| Name           | Description | MIN    | TYP | MAX      | Units |
|----------------|-------------|--------|-----|----------|-------|
| t1             | Period      | 5.3µs  |     | 21.8ms   |       |
| t <sub>f</sub> | Frequency   | 45.8Hz |     | 187.5kHz |       |
| t2             | High Time   | 0      |     | 10.9     | ms    |
| t3             | Low Time    | 0      |     | 10.9     | ms    |
| t <sub>d</sub> | Duty cycle  | 0      |     | 100      | %     |

# 34.11 I2C/SMBus Timing

FIGURE 34-10: I2C/SMBUS TIMING

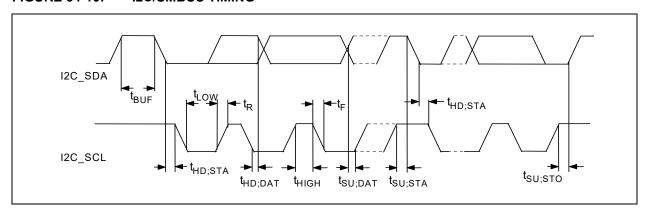
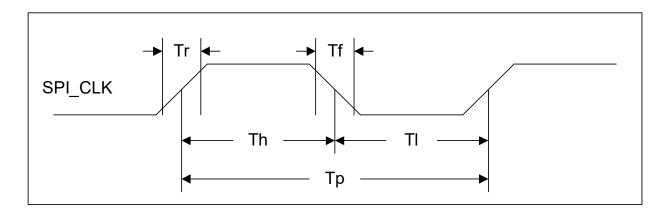


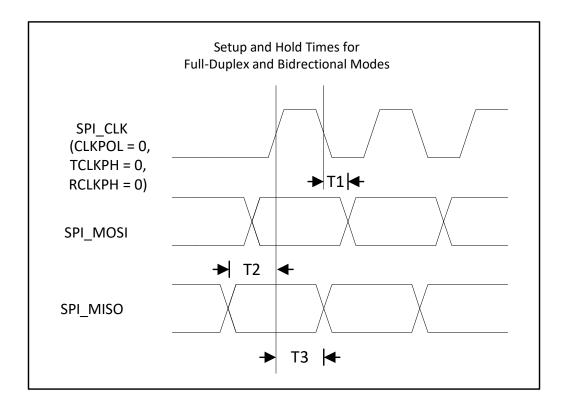

TABLE 34-10: I2C/SMBUS TIMING PARAMETERS

| Symbol              | Parameter                   |      | Standard-<br>Mode |     | Fast-<br>Mode |      | Fast-<br>Mode Plus |     |
|---------------------|-----------------------------|------|-------------------|-----|---------------|------|--------------------|-----|
|                     |                             | MIN  | MAX               | MIN | MAX           | MIN  | MAX                |     |
| f <sub>SCL</sub>    | SCL Clock Frequency         |      | 100               |     | 400           |      | 1000               | kHz |
| t <sub>BUF</sub>    | Bus Free Time               | 4.7  |                   | 1.3 |               | 0.5  |                    | μs  |
| t <sub>SU;STA</sub> | START Condition Set-Up Time | 4.7  |                   | 0.6 |               | 0.26 |                    | μs  |
| t <sub>HD;STA</sub> | START Condition Hold Time   | 4.0  |                   | 0.6 |               | 0.26 |                    | μs  |
| $t_{LOW}$           | SCL LOW Time                | 4.7  |                   | 1.3 |               | 0.5  |                    | μs  |
| t <sub>HIGH</sub>   | SCL HIGH Time               | 4.0  |                   | 0.6 |               | 0.26 |                    | μs  |
| t <sub>R</sub>      | SCL and SDA Rise Time       |      | 1.0               |     | 0.3           |      | 0.12               | μs  |
| t <sub>F</sub>      | SCL and SDA Fall Time       |      | 0.3               |     | 0.3           |      | 0.12               | μs  |
| t <sub>SU;DAT</sub> | Data Set-Up Time            | 0.25 |                   | 0.1 |               | 0.05 |                    | μs  |
| t <sub>HD;DAT</sub> | Data Hold Time              | 0    |                   | 0   |               | 0    |                    | μs  |
| t <sub>SU;STO</sub> | STOP Condition Set-Up Time  | 4.0  |                   | 0.6 |               | 0.26 |                    | μs  |

# 34.12 Quad SPI Master Controller - Serial Peripheral Interface (QMSPI) Timings

### FIGURE 34-11: SPI CLOCK TIMING





TABLE 34-11: SPI CLOCK TIMING PARAMETERS

| Name  | Description                                                          | MIN                       | TYP                       | MAX                       | Units |
|-------|----------------------------------------------------------------------|---------------------------|---------------------------|---------------------------|-------|
| Tr    | SPI Clock Rise Time. Measured from 10% to 90%.                       |                           |                           | 3                         | ns    |
| Tf    | SPI Clock Fall Time. Measured from 90% to 10%.                       |                           |                           | 3                         | ns    |
| Th/TI | SPI Clock High Time/SPI Clock<br>Low Time                            | 40% of<br>SPCLK<br>Period | 50% of<br>SPCLK<br>Period | 60% of<br>SPCLK<br>Period | ns    |
| Тр    | SPI Clock Period – As selected<br>by SPI Clock Generator<br>Register | 20.8                      |                           | 5,333                     | ns    |

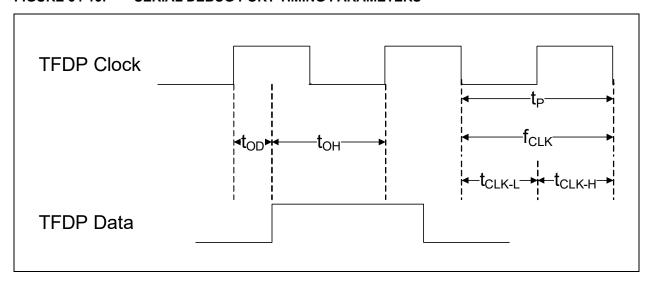
**Note 1:** Test conditions are as follows: output load is CL=30pF, pin drive strength setting is 4mA and slew rate setting is slow.

2: SPI\_IO[3:0] signals also have the same Tr and Tf values

FIGURE 34-12: SPI SETUP AND HOLD TIMES



**Note:** SPI\_IO[3:0] obey the SPI\_MOSI and SPI\_MISO timing. In the 2-pin SPI Interface implementation, SPI\_IO0 pin is the SPI Master-Out/Slave-In (MOSI) pin and the SPI\_IO1 pin is the Master-In/Slave-out (MISO) pin.


TABLE 34-12: SPI SETUP AND HOLD TIMES PARAMETERS

| Name | Description        | MIN | TYP | MAX | Units |
|------|--------------------|-----|-----|-----|-------|
| T1   | Data Output Delay  |     |     | 2   | ns    |
| T2   | Data IN Setup Time | 5.5 |     |     | ns    |
| Т3   | Data IN Hold Time  | 0   |     |     | ns    |

**Note:** Test conditions are as follows: output load is CL=30pF, pin drive strength setting is 4mA and slew rate setting is slow

# 34.13 Serial Debug Port Timing

FIGURE 34-13: SERIAL DEBUG PORT TIMING PARAMETERS



**TABLE 34-13: SERIAL DEBUG PORT INTERFACE TIMING PARAMETERS** 

| Name               | Description                                            | MIN TYP MAX                      |   |      | Units |
|--------------------|--------------------------------------------------------|----------------------------------|---|------|-------|
| f <sub>clk</sub>   | TFDP Clock frequency (see note)                        | 2.5                              | - | 24   | MHz   |
| t <sub>P</sub>     | TFDP Clock Period.                                     | 1/fclk                           |   |      | μs    |
| t <sub>OD</sub>    | TFDP Data output delay after falling edge of TFDP_CLK. | 5                                |   |      | nsec  |
| t <sub>OH</sub>    | TFDP Data hold time after falling edge of TFDP Clock   | t <sub>P</sub> - t <sub>OD</sub> |   |      | nsec  |
| t <sub>CLK-L</sub> | TFDP Clock Low Time                                    | $t_{P}/2 - 3$ $t_{P}/2 + 3$      |   | nsec |       |
| t <sub>CLK-H</sub> | TFDP Clock high Time (see Note 1)                      | $t_{p}/2 - 3$ $t_{p}/2 + 3$      |   |      | nsec  |

Note 1: When the clock divider for the embedded controller is an odd number value greater than 2h, then t<sub>CLK-L</sub> = t<sub>CLK-H</sub> + 15 ns. When the clock divider for the embedded controller is 0h, 1h, or an even number value greater than 2h, then t<sub>CLK-L</sub> = t<sub>CLK-H</sub>.

# 34.14 JTAG Interface Timing

FIGURE 34-14: JTAG POWER-UP & ASYNCHRONOUS RESET TIMING

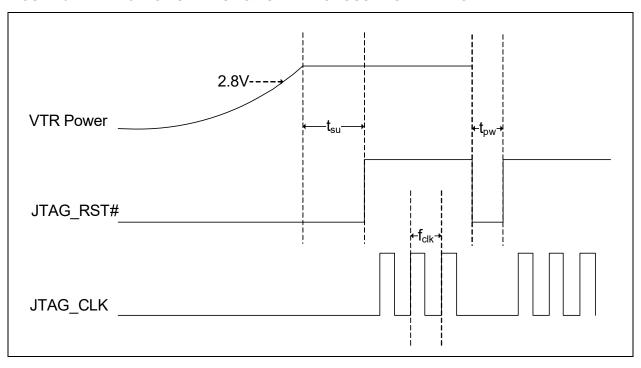
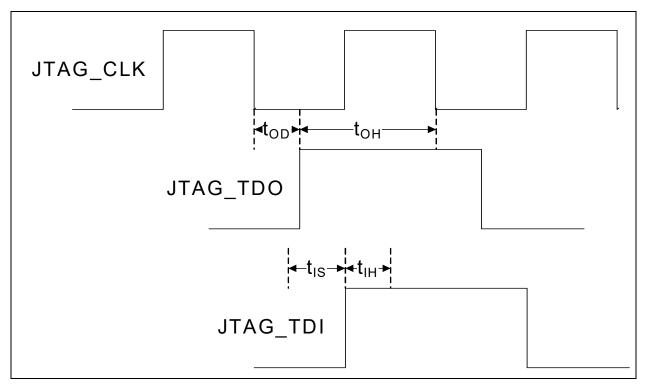




FIGURE 34-15: JTAG SETUP & HOLD PARAMETERS



**TABLE 34-14: JTAG INTERFACE TIMING PARAMETERS** 

| Name             | Description                                       | MIN                      | TYP | MAX | Units |
|------------------|---------------------------------------------------|--------------------------|-----|-----|-------|
| t <sub>su</sub>  | JTAG_RST# de-assertion after VTR power is applied | 5                        |     |     | ms    |
| t <sub>pw</sub>  | JTAG_RST# assertion pulse width                   | 500                      |     |     | nsec  |
| f <sub>clk</sub> | JTAG_CLK frequency (see note)                     |                          |     | 48  | MHz   |
| t <sub>OD</sub>  | TDO output delay after falling edge of TCLK.      | 5                        |     | 10  | nsec  |
| t <sub>OH</sub>  | TDO hold time after falling edge of TCLK          | 1 TCLK - t <sub>OD</sub> |     |     | nsec  |
| t <sub>IS</sub>  | TDI setup time before rising edge of TCLK.        | 5                        |     |     | nsec  |
| t <sub>IH</sub>  | TDI hold time after rising edge of TCLK.          | 5                        |     |     | nsec  |

Note: f<sub>clk</sub> is the maximum frequency to access a JTAG Register.

## APPENDIX A: DATA SHEET REVISION HISTORY

## TABLE A-1: REVISION HISTORY

| Revision               | Section/Figure/Entry                                                                               | Correction                                          |
|------------------------|----------------------------------------------------------------------------------------------------|-----------------------------------------------------|
| DS00003416B (10-21-20) | Figure 4-3, "Resets Block<br>Diagram"                                                              | Diagram added                                       |
|                        | Table 4-4, "Source Clock Definitions"                                                              | Table updated with crystal oscillator information   |
|                        | Section 4.5.4, "32KHz Clock"                                                                       | Section updated with crystal oscillator information |
|                        | Table 33-14, "VBAT Supply<br>Current, I_VBAT<br>(VBAT=3.3V)"                                       | Table added                                         |
|                        | Section 34.12, "Quad SPI<br>Master Controller - Serial<br>Peripheral Interface (QMSPI)<br>Timings" | Section added                                       |
| DS00003416A (03-05-20) |                                                                                                    | Document Release                                    |

#### THE MICROCHIP WEB SITE

Microchip provides online support via our WWW site at <a href="www.microchip.com">www.microchip.com</a>. This web site is used as a means to make files and information easily available to customers. Accessible by using your favorite Internet browser, the web site contains the following information:

- **Product Support** Data sheets and errata, application notes and sample programs, design resources, user's guides and hardware support documents, latest software releases and archived software
- General Technical Support Frequently Asked Questions (FAQ), technical support requests, online discussion groups, Microchip consultant program member listing
- Business of Microchip Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

#### CUSTOMER CHANGE NOTIFICATION SERVICE

Microchip's customer notification service helps keep customers current on Microchip products. Subscribers will receive e-mail notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.

To register, access the Microchip web site at www.microchip.com. Under "Support", click on "Customer Change Notification" and follow the registration instructions.

#### **CUSTOMER SUPPORT**

Users of Microchip products can receive assistance through several channels:

- · Distributor or Representative
- · Local Sales Office
- · Field Application Engineer (FAE)
- · Technical Support

Customers should contact their distributor, representative or field application engineer (FAE) for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in the back of this document.

Technical support is available through the web site at: http://microchip.com/support

## PRODUCT IDENTIFICATION SYSTEM

 $\label{thm:condition} \mbox{To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.}$ 

| PART NO. <sup>(1)</sup> - Device To | X -<br> <br>tal SRAM    | XX -<br> <br>Version/<br>Revision         | XXX <sup>(2)</sup> -<br> <br>Temp range/<br>Package | [X] <sup>(3)</sup><br> <br>Tape &Reel<br>Option |      | ample:  CEC1712H-B2-I/SX = CEC1712, 256KB total SRAM, Standard ROM, ROM Version 2, 84- WFBGA, Tray packaging                                                                                                                              |
|-------------------------------------|-------------------------|-------------------------------------------|-----------------------------------------------------|-------------------------------------------------|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Device:                             | CEC1712 <sup>(1)</sup>  | Embedded<br>Integration                   | Controller with The                                 | ermal Monitor                                   |      |                                                                                                                                                                                                                                           |
| Total SRAM                          | Н                       | 256KB                                     |                                                     |                                                 | Note | te 1: These products meet the halogen maximum concentration values per IEC61249-2-21.  2: All package options are RoHS compliant.                                                                                                         |
| Version/<br>Revision:               | B#                      | B = Standa<br>Number                      | rd Version, # = Ver                                 | rsion Revision                                  |      | For RoHS compliance and environmental information, please visit <a href="http://www.micro-chip.com/pagehandler/en-us/aboutus/ehs.html">http://www.micro-chip.com/pagehandler/en-us/aboutus/ehs.html</a>                                   |
| Temperature<br>Range                | 1/                      | -40°C to +8                               | 5 <sup>o</sup> C (Industrial)                       |                                                 |      | 3: Tape and Reel identifier only appears in the<br>catalog part number description. This identi-<br>fier is used for ordering purposes and is not<br>printed on the device package. Check with<br>your Microchip Sales Office for package |
| Package:                            | SX                      | 84 pin WFB<br>0.65mm pite                 | GA <sup>(2))</sup> , 7mm x 7mı<br>ch                | m body,                                         |      | availability with the Tape and Reel option.                                                                                                                                                                                               |
| Tape and Reel<br>Option:            | Blank = Tra<br>TR = Tap | y packaging<br>se and Reel <sup>(3)</sup> |                                                     |                                                 |      |                                                                                                                                                                                                                                           |
|                                     |                         |                                           |                                                     |                                                 | -    |                                                                                                                                                                                                                                           |

#### Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specifications contained in their particular Microchip Data Sheet.
- · Microchip believes that its family of products is secure when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods being used in attempts to breach the code protection features of the Microchip devices. We believe that these methods require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Attempts to breach these code protection features, most likely, cannot be accomplished without violating Microchip's intellectual property rights.
- Microchip is willing to work with any customer who is concerned about the integrity of its code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of its code. Code protection does not
  mean that we are guaranteeing the product is "unbreakable." Code protection is constantly evolving. We at Microchip are
  committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection
  feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or
  other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication is provided for the sole purpose of designing with and using Microchip products. Information regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications.

THIS INFORMATION IS PROVIDED BY MICROCHIP "AS IS". MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION INCLUDING BUT NOT LIMITED TO ANY IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE OR WARRANTIES RELATED TO ITS CONDITION, QUALITY, OR PERFORMANCE.

IN NO EVENT WILL MICROCHIP BE LIABLE FOR ANY INDIRECT, SPECIAL, PUNITIVE, INCIDENTAL OR CONSEQUENTIAL LOSS, DAMAGE, COST OR EXPENSE OF ANY KIND WHATSOEVER RELATED TO THE INFORMATION OR ITS USE, HOWEVER CAUSED, EVEN IF MICROCHIP HAS BEEN ADVISED OF THE POSSIBILITY OR THE DAMAGES ARE FORESEEABLE. TO THE FULLEST EXTENT ALLOWED BY LAW, MICROCHIP'S TOTAL LIABILITY ON ALL CLAIMS IN ANY WAY RELATED TO THE INFORMATION OR ITS USE WILL NOT EXCEED THE AMOUNT OF FEES, IF ANY, THAT YOU HAVE PAID DIRECTLY TO MICROCHIP FOR THE INFORMATION. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless otherwise stated.

#### **Trademarks**

The Microchip name and logo, the Microchip logo, Adaptec, AnyRate, AVR, AVR logo, AVR Freaks, BesTime, BitCloud, chipKIT logo, CryptoMemory, CryptoRF, dsPIC, FlashFlex, flexPWR, HELDO, IGLOO, JukeBlox, KeeLoq, Kleer, LANCheck, LinkMD, maXStylus, maXTouch, MediaLB, megaAVR, Microsemi, Microsemi logo, MOST, MOST logo, MPLAB, OptoLyzer, PackeTime, PIC, picoPower, PICSTART, PIC32 logo, PolarFire, Prochip Designer, QTouch, SAM-BA, SenGenuity, SpyNIC, SST, SST Logo, SuperFlash, Symmetricom, SyncServer, Tachyon, TimeSource, tinyAVR, UNI/O, Vectron, and XMEGA are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries

AgileSwitch, APT, ClockWorks, The Embedded Control Solutions Company, EtherSynch, FlashTec, Hyper Speed Control, HyperLight Load, IntelliMOS, Libero, motorBench, mTouch, Powermite 3, Precision Edge, ProASIC, ProASIC Plus, ProASIC Plus logo, Quiet-Wire, SmartFusion, SyncWorld, Temux, TimeCesium, TimeHub, TimePictra, TimeProvider, WinPath, and ZL are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any Capacitor, Anyln, AnyOut, Augmented Switching, BlueSky, BodyCom, CodeGuard, CryptoAuthentication, CryptoAutomotive, CryptoCompanion, CryptoController, dsPICDEM, dsPICDEM.net, Dynamic Average Matching, DAM, ECAN, Espresso T1S, EtherGREEN, IdealBridge, In-Circuit Serial Programming, ICSP, INICnet, Intelligent Paralleling, Inter-Chip Connectivity, JitterBlocker, maxCrypto, maxView, memBrain, Mindi, MiWi, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, PowerSmart, PureSilicon, QMatrix, REAL ICE, Ripple Blocker, RTAX, RTG4, SAM-ICE, Serial Quad I/O, simpleMAP, SimpliPHY, SmartBuffer, SMART-I.S., storClad, SQI, SuperSwitcher, SuperSwitcher II, Switchtec, SynchroPHY, Total Endurance, TSHARC, USBCheck, VariSense, VectorBlox, VeriPHY, ViewSpan, WiperLock, XpressConnect, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

The Adaptec logo, Frequency on Demand, Silicon Storage Technology, and Symmcom are registered trademarks of Microchip Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

AMBA, Arm, Arm7, Arm7TDMI, Arm9, Arm11, Artisan, big.LITTLE, Cordio, CoreLink, CoreSight, Cortex, DesignStart, DynamlQ, Jazelle, Keil, Mali, Mbed, Mbed Enabled, NEON, POP, RealView, SecurCore, Socrates, Thumb, TrustZone, ULINK, ULINK2, ULINK-ME, ULINK-PLUS, ULINKpro, µVision, Versatile are trademarks or registered trademarks of Arm Limited (or its subsidiaries) in the US and/or elsewhere.

All other trademarks mentioned herein are property of their respective companies

© 2020, Microchip Technology Incorporated, All Rights Reserved.

ISBN: 9781522469582

For information regarding Microchip's Quality Management Systems, please visit www.microchip.com/quality.



# Worldwide Sales and Service

#### **AMERICAS**

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200

Fax: 480-792-7277 Technical Support:

http://www.microchip.com/ support

Web Address: www.microchip.com

Atlanta Duluth, GA

Tel: 678-957-9614 Fax: 678-957-1455

**Austin, TX** Tel: 512-257-3370

Boston

Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca, IL

Tel: 630-285-0071 Fax: 630-285-0075

Dallas

Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

**Detroit** Novi, MI

Tel: 248-848-4000

Houston, TX Tel: 281-894-5983

Tel: 281-894-5983
Indianapolis
Noblesville, IN

Tel: 317-773-8323 Fax: 317-773-5453 Tel: 317-536-2380

Los Angeles

Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608 Tel: 951-273-7800

**Raleigh, NC** Tel: 919-844-7510

New York, NY Tel: 631-435-6000

**San Jose, CA** Tel: 408-735-9110 Tel: 408-436-4270

**Canada - Toronto** Tel: 905-695-1980 Fax: 905-695-2078

#### ASIA/PACIFIC

Australia - Sydney Tel: 61-2-9868-6733

**China - Beijing** Tel: 86-10-8569-7000

**China - Chengdu** Tel: 86-28-8665-5511

**China - Chongqing** Tel: 86-23-8980-9588

**China - Dongguan** Tel: 86-769-8702-9880

**China - Guangzhou** Tel: 86-20-8755-8029

China - Hangzhou Tel: 86-571-8792-8115

China - Hong Kong SAR Tel: 852-2943-5100

China - Nanjing Tel: 86-25-8473-2460

China - Qingdao Tel: 86-532-8502-7355

**China - Shanghai** Tel: 86-21-3326-8000

China - Shenyang Tel: 86-24-2334-2829

**China - Shenzhen** Tel: 86-755-8864-2200

China - Suzhou Tel: 86-186-6233-1526

China - Wuhan

Tel: 86-27-5980-5300 China - Xian

Tel: 86-29-8833-7252 **China - Xiamen** Tel: 86-592-2388138

**China - Zhuhai** Tel: 86-756-3210040

#### ASIA/PACIFIC

India - Bangalore Tel: 91-80-3090-4444

India - New Delhi Tel: 91-11-4160-8631

India - Pune Tel: 91-20-4121-0141

**Japan - Osaka** Tel: 81-6-6152-7160

Japan - Tokyo

Tel: 81-3-6880- 3770 Korea - Daegu

Tel: 82-53-744-4301

Korea - Seoul Tel: 82-2-554-7200

Malaysia - Kuala Lumpur Tel: 60-3-7651-7906

Malaysia - Penang Tel: 60-4-227-8870

Philippines - Manila Tel: 63-2-634-9065

**Singapore** Tel: 65-6334-8870

**Taiwan - Hsin Chu** Tel: 886-3-577-8366

Taiwan - Kaohsiung Tel: 886-7-213-7830

**Taiwan - Taipei** Tel: 886-2-2508-8600

Thailand - Bangkok Tel: 66-2-694-1351

Vietnam - Ho Chi Minh Tel: 84-28-5448-2100

#### **EUROPE**

Austria - Wels Tel: 43-7242-2244-39 Fax: 43-7242-2244-393

**Denmark - Copenhagen** Tel: 45-4485-5910 Fax: 45-4485-2829

Finland - Espoo Tel: 358-9-4520-820

France - Paris Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

Germany - Garching Tel: 49-8931-9700

**Germany - Haan** Tel: 49-2129-3766400

**Germany - Heilbronn** Tel: 49-7131-72400

Germany - Karlsruhe Tel: 49-721-625370

**Germany - Munich** Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

Germany - Rosenheim Tel: 49-8031-354-560

Israel - Ra'anana Tel: 972-9-744-7705

Italy - Milan Tel: 39-0331-742611 Fax: 39-0331-466781

Italy - Padova Tel: 39-049-7625286

**Netherlands - Drunen** Tel: 31-416-690399 Fax: 31-416-690340

Norway - Trondheim Tel: 47-7288-4388

**Poland - Warsaw** Tel: 48-22-3325737

**Romania - Bucharest** Tel: 40-21-407-87-50

**Spain - Madrid** Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

**Sweden - Gothenberg** Tel: 46-31-704-60-40

Sweden - Stockholm Tel: 46-8-5090-4654

**UK - Wokingham** Tel: 44-118-921-5800 Fax: 44-118-921-5820

# **Mouser Electronics**

**Authorized Distributor** 

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

# Microchip:

CEC1712H-B2-I/SX CEC1712H-S2-I/SX