

PNP POWER SILICON TRANSISTOR

Qualified per MIL-PRF-19500/535

DESCRIPTION

This high speed transistor is rated at 5 amps and is military qualified up to a JANTXV level. This TO-59 isolated package is available with a 180 degree lead orientation. Microsemi also offers numerous other products to meet higher and lower power voltage regulation applications.

Important: For the latest information, visit our website http://www.microsemi.com.

FEATURES

- JEDEC registered 2N5003 and 2N5005.
- Internal metallurgical bond option available.
- JAN, JANTX, and JANTXV, qualification per MIL-PRF-19500/535 available.
- RoHS compliant versions available (commercial grade only).

APPLICATIONS / BENEFITS

- Fast switching capable 0.5 μ s rise time.
- High frequency response.
- TO-59 case with Isolated terminals.
- Class 3B to ESD per MIL-STD-750 Method 1020.

MAXIMUM RATINGS

Parameters/Test Conditions	Symbol	Value	Unit	
Junction and Storage Temperature	T_J and T_{STG}	-65 to +200	°C	
Thermal Resistance Junction-to-Am	R _{ÐJA}	88	°C/W	
Thermal Resistance Junction-to-Cas	R _{eJC}	3.0	°C/W	
Collector Current	lc	5.0	А	
		Ic ⁽³⁾	10	
Collector-Emitter Voltage		V _{CEO}	80	V
Collector-Base Voltage	V _{CBO}	100	V	
Emitter-Base Voltage		V _{EBO}	5.5	V
Steady-State Power Dissipation	@ $T_A = +25^{\circ}C^{(1)}$	PD	2.0	W
	@ $T_{C} = +25^{\circ}C^{(2)}$		58	

Notes: 1. Derate linearly 11.4 mW/°C for $T_A > +25^{\circ}C$.

- 2. Derate linearly 331 mW/°C for $T_c > +25^{\circ}C$.
 - 3. This value applies for PW \leq 8.3 ms, duty cycle \leq 1%.

<u>Qualified Levels:</u> JAN, JANTX, and JANTXV

Marking may vary.

TO-59 (TO-210AA) Isolated Package

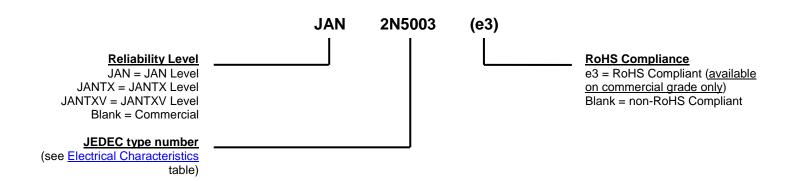
MSC – Lawrence

6 Lake Street, Lawrence, MA 01841 1-800-446-1158 (978) 620-2600 Fax: (978) 689-0803

MSC – Ireland

Gort Road Business Park, Ennis, Co. Clare, Ireland Tel: +353 (0) 65 6840044 Fax: +353 (0) 65 6822298

Website:


www.microsemi.com

MECHANICAL and PACKAGING

- CASE: Nickel Plated.
- TERMINALS: Solder Dip over Nickel Plating. RoHS compliant Matte/Tin available on commercial grade only.
- MARKING: Manufacturer's ID, Date Code, Part Number, BeO.
- POLARITY: See Package Outline Drawing on last page.
- See Package Dimensions on last page.

PART NOMENCLATURE

	SYMBOLS & DEFINITIONS			
Symbol	Definition			
C _{obo}	Common-base open-circuit output capacitance.			
I _{CEO}	Collector cutoff current, base open.			
I _{CES}	Collector emitter cutoff current, circuit between base and emitter.			
I _{EBO}	Emitter cutoff current, collector open.			
h _{FE}	Common-emitter static forward current transfer ratio.			
V _{CEO}	Collector-emitter voltage, base open.			
V _{CBO}	Collector-emitter voltage, emitter open.			
V _{EBO}	Emitter-base voltage, collector open.			

Characteristic		Symbol	Min.	Max.	Unit
PFF CHARACTERISTICS					
Collector-Emitter Breakdown Voltage			80		V
l _C = 100 mA		V _{(BR)CEO}	00		V
Collector-Emitter Cutoff Current		I _{CEO}		50	μA
$V_{CE} = 40 \text{ V}, I_{B} = 0$		I CEO		50	μΑ
Collector-Emitter Cutoff Current				1.0	μA
$V_{CE} = 60 \text{ V}, \text{ V}_{BE} = 0$		I _{CES}		1.0	μ Α mA
$V_{CE} = 100 \text{ V}, \text{ V}_{BE} = 0$					
Emitter-Base Cutoff Current				1.0	μA
$V_{BE} = 4.0 \text{ V}, I_{C} = 0$		I _{EBO}		1.0	mA
$V_{BE} = 5.5 \text{ V}, I_{C} = 0$					
N CHARACTERISTICS					
Forward-Current Transfer Ratio					
$I_{\rm C} = 50$ mA, $V_{\rm CE} = 5.0$ V	2N5003	h _{FE}	20		
$I_{\rm C} = 2.5 \text{ A}, V_{\rm CE} = 5.0 \text{ V}$	2110000		30	90	
$I_{\rm C} = 5.0 \text{ A}, V_{\rm CE} = 5.0 \text{ V}$			20		
10 - 0.070, 70 = 0.070					
I _C = 50 mA, V _{CE} = 5.0 V	2N5005		50		
$I_{C} = 2.5 \text{ A}, V_{CE} = 5.0 \text{ V}$			70	200	
$I_{C} = 5.0 \text{ A}, V_{CE} = 5.0 \text{ V}$			40		
Base-Emitter Voltage Non-saturated		14			
$V_{CE} = 5.0 \text{ V}, \text{ I}_{C} = 2.5 \text{ A}$		V _{BE}		1.45	V
Collector-Emitter Saturation Voltage					
I _C = 2.5 A, I _B = 250 mA		V _{CE(sat)}		0.75	V
$I_{\rm C} = 5.0 \text{ A}, I_{\rm B} = 500 \text{ mA}$				1.5	
Base-Emitter Saturation Voltage					
I _C = 2.5 A, I _B = 250 mA		V _{BE(sat)}		1.45	V
$I_{\rm C} = 5.0$ A, $I_{\rm B} = 500$ mA				2.2	
				1	
Common Emitter Small-Signal Short-Circuit Forward Current Transfer Ratio	2015002	h _{fe}	20		
	2N5003	10	20 50		
$I_{C} = 100 \text{ mA}, V_{CE} = 5.0 \text{ V}, f = 1 \text{ kHz}$	2N5005		50	ļ	
Magnitude of Common Emitter Small-Signal Short-Circuit		h _{fe}			
Forward Current Transfer Ratio	2N5003	I. iel	6.0		
$I_{C} = 500 \text{ mA}, V_{CE} = 5.0 \text{ V}, f = 10 \text{ MHz}$	2N5005		7.0		
Output Capacitance		Cobo			pF

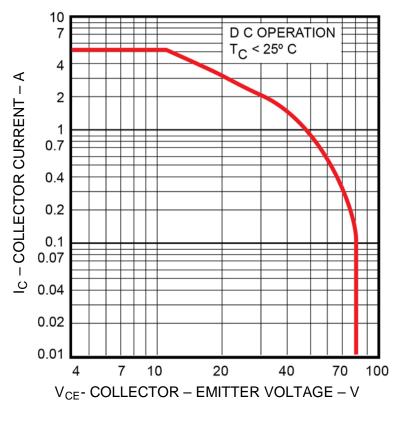
SWITCHING CHARACTERISTICS

 $V_{CB} = 10 V, I_E = 0, f = 1 MHz$

Turn-On Time				
I _C = 5 A; I _{B1} = 500 mA		t _{on}	0.5	μS
Storage Time	I _{B2} = -500 mA	t _s	1.4	μS
Fall Time	$V_{BE(OFF)} = 3.7 \text{ V}$	t _f	0.5	μS
Turn-Off Time				
$R_L = 6 Ohms$		t _{off}	1.5	μS

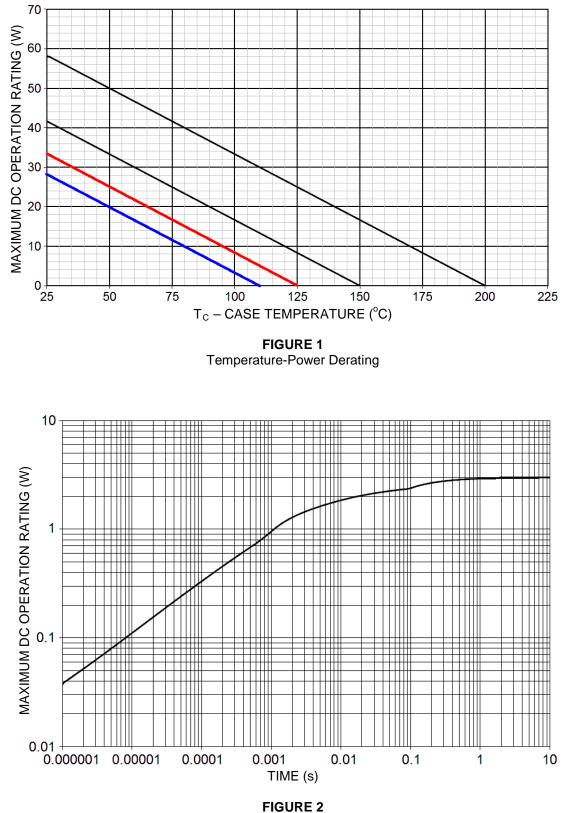
 C_{obo}

pF

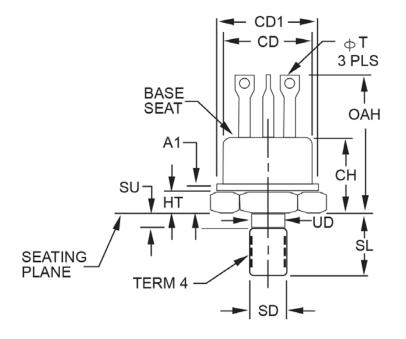

250

ELECTRICAL CHARACTERISTICS @ $T_c = 25^{\circ}C$ unless otherwise noted. (continued)

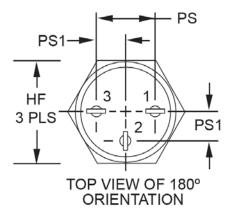
SAFE OPERATING AREA (See Figure below and MIL-STD-750, Test Method 3053)


DC Tests $T_{C} = +25^{\circ}C$, $V_{CE} = 0$, $t_{P} = 1$ second 1 Cycle Test 1 $V_{CE} = 12$ V, $I_{C} = 5$ A Test 2 $V_{CE} = 32$ V, $I_{C} = 1.7$ A Test 3 $V_{CE} = 80$ V, $I_{C} = 100$ mA

Maximum safe operating area


GRAPHS

Thermal Impedance



PACKAGE DIMENSIONS

NOTES:

- 1. Dimensions are in inches.
- 2. Millimeters are given for general information only.
- 3. See NSB Handbook H28, "Screw-Thread Standards for Federal Services".
- 4. The orientation of the terminals in relation to the hex flats is not controlled.
- 5. All three terminals.
- 6. The case temperature may be measured anywhere on the seating plane within .125 inch (3.18 mm) of the stud.
- 7. Terminal spacing measured at the base seat only.
- 8. This dimension applies to the location of the center line of the terminals.
- 9. Terminal 1, emitter; terminal 2, base; terminal 3, collector. Collector lead is isolated from the case.
- 10. In accordance with ASME Y14.5M, diameters are equivalent to Φx symbology.

-					-
Symbol	Inches		Millimeters		Notes
-,	Min	Max	Min	Max	
A1		.250		6.35	
CD	.330	.360	8.38	9.14	
CD1	.370	.437	9.40	11.10	
СН	.320	.468	8.13	11.89	
HF	.424	.437	10.77	11.10	
HT	.090	.150	2.29	3.81	
OAH	.575	.763	14.61	19.38	5
PS	.185	.215	4.70	5.46	4, 8
PS1	.090	.110	2.29	2.79	4, 8
SL	.400	.455	10.16	11.56	
SU		.078		1.98	7
Т	.040	.065	1.02	1.65	
UD	.155	.189	3.94	4.80	

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Microchip:

2N5005 2N5003 Jantxv2N5005 Jan2N5005 Jantx2N5005 JANS2N5005