MAX20327

12V Capable, Low-R_{ON}, Beyond-the-Rails™ DPDT Analog Switch

General Description

The MAX20327 ultra-small, low-on-resistance (R_{ON}) double-pole/double-throw (DPDT) analog switches feature Beyond-the-RailsTM capability that allows signals from -5.5V to +12V to pass without distortion, even when the power supply is below the signal range. The low on-resistance (0.2 Ω) also makes the devices ideal for low-distortion switching applications, such as audio or video.

The MAX20327 is fully specified to operate from a single +1.6V to +5.5V power supply. Because of the low supply current requirement, V_{CC} can be provided by a GPIO. When power is not applied, the switches go to a high-impedance mode and all analog signal ports can withstand signals from -5.5V to +5.5V. The switches are controlled with a single control bit, CB.

The MAX20327 is available in a 1.6mm x 1.6mm, 0.4mm pitch, 9-bump wafer-level package (WLP) and operates over the -40°C to +85°C extended temperature range.

Applications

- Cell phone
- Tablet
- Portable Audio/Video Equipment
- Portable Navigation Devices

Benefits and Features

- Distortion-Free Beyond-the-Rails Signaling
 - Negative Voltage Audio and Video Signal Capable
 - -5.5V to +12V Analog Signal Range Independent of Voc
 - On-Resistance 0.2Ω (Typ)
 - +1.6V to +5.5V Single-Supply Range
 - Total Harmonic Distortion Plus Noise 0.001% (Typ)
 - On-Resistance Flatness 0.001Ω (Typ)
- Low Supply Current 30μA (Typ) at 1.6V
 - · Can be Powered by GPIO
 - High-Impedance Mode When V_{CC} Not Applied
- ESD Protection on COM
 - ±15kV Human Body Model
 - ±8kV IEC 61000-4-2 Air Gap
 - ±6kV IEC 61000-4-2 Contact
- Design Flexibility
 - · Break-Before-Make Operation
 - 9-Bump WLP (1.6mm x 1.6mm)
 - -40°C to +85°C Operating Temperature Range

Ordering Information appears at end of data sheet.

MAX20327

12V Capable, Low-R_{ON}, Beyond-the-Rails™ DPDT Analog Switch

Absolute Maximum Ratings

V _{CC} , CB to GND0.3V to +6V	Continuous Power Dissipation (T _A = +70°C,
NC_, NO_ to GND6V to +12.5V	derate 11.91mW/°C above +70°C.)952.8mW
COM_ to GND (V _{CC} < 1.6V)6V to +6V	Operating Temperature Range40°C to +85°C
COM_ to GND ($V_{CC} \ge 1.6V$)6V to (+17.5 - V_{NC} / V_{NO})V	Junction Temperature+150°C
Continuous Current NC_, NO_, COM1.1A to +1.1A	Storage Temperature Range65°C to +150°C
Peak Current NC_, NO_, COM_	Soldering Temperature (reflow)+260°C
(50% duty cycle, 10ms pulse)1.6A to +1.6A	

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Package Information

WLP

PACKAGE CODE	W91P1+1			
Outline Number	21-100195			
Land Pattern Number	Refer to Application Note 1891			
Thermal Resistance, Four-Layer Board:				
Junction to Ambient (θ _{JA})	83.98°C/W			
Junction to Case (θ _{JC})	N/A			

For the latest package outline information and land patterns (footprints), go to www.maximintegrated.com/packages. Note that a "+", "#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a four-layer board. For detailed information on package thermal considerations, refer to www.maximintegrated.com/thermal-tutorial.

Electrical Characteristics

 $(V_{CC} = +1.6V \text{ to } +5.5V, T_A = -40^{\circ}\text{C} \text{ to } +85^{\circ}\text{C}, \text{ unless otherwise noted.}$ Typical values are at $V_{CC} = +2.5V, T_A = +25^{\circ}\text{C}, \text{ unless otherwise noted.}$ (Note 1))

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	
POWER SUPPLY				'	1	1	
Power-Supply Range	V _{CC}		1.6		5.5	V	
Power-Supply Rejection Ratio	PSRR	R _{COM} _ = 32Ω, f = 20kHz		80		dB	
Supply Current	Icc	V_{CC} = +1.6V, V_{CB} = 0V or V_{CC}		30	50	μА	
опры оптен	100	V_{CC} = +4.2V, V_{CB} = 0V or V_{CC}		55	90		
ANALOG SWITCH (NC_1	to COM_, NO_ to	COM_)					
Analog Signal Range	$V_{ extsf{NC}}, V_{ extsf{NO}}, \ V_{ extsf{COM}}$		-5.5		+12	V	
On Basistanas	D	V _{CC} = 2.5V, V _{COM} = 0V, I _{COM} = 100mA (Note 2)	0.20 0.35		0.35		
On-Resistance	R _{ON}	V _{CC} = 1.8V, V _{COM} = 0V, I _{COM} = 100mA (Note 2)		0.25	0.5	Ω	
On-Resistance Match Between Channels	ΔR _{ON}	V _{CC} = 2.5V, V _{NC} = 0V, I _{COM} = 100mA, between same NC_and NO_channel		0.002	0.03	Ω	
On-Resistance Flatness	R _{FLAT}	V _{CC} = 2.5V, I _{COM} = 100mA, V _{COM} = -5.5V to +12V (Note 3, Note 4)		0.001	0.05	Ω	
NC_ or NO_ Off-Leakage Current	I _{NO_(OFF)} / I _{NC_(OFF)}	V _{CC} = 2.5V, switch open, V _{NO} or V _{NC} = -5.5V, +12V, V _{COM} = -5.5V, +12V unconnected	-250		+250	nA	
COM Off-Leakage Current	ICOM_(OFF)	V _{CC} = 0V, T _A = 25°C, V _{COM} = -5.5V, +12V, V _{NO} or V _{NC} = -5.5V, +12V, unconnected	-1		+1	μΑ	
COM On-Leakage Current	I _{COM_(ON)}	V _{CC} = 2.5V, switch closed, V _{COM} = V _{NO} = -5.5V, +12V, unconnected	-250		+250	nA	
TIMING CHARACTERIST	ics						
Turn-On Time	t _{ON}	V_{NO} or V_{NC} = 0V, +R _L = 50 Ω (Figure 2)			300	μs	
Turn-Off Time	t _{OFF}	V_{NO} or V_{NC} = 0V, +R _L = 50 Ω (Figure 1)		5	30	μs	
Break-Before-Make Time	t _{BBM}	$R_L = 50\Omega$, time for both NC/NO switches are open during transition (Figure 2)	0		300	μs	
AUDIO PERFORMANCE							
Total Harmonic Distortion Plus Noise	THD + N	$f = 20$ Hz to 20 kHz, V_{COM} = 0.5 V _{P-P} , $R_S = R_L = 600Ω$, DC bias = 0		0.001		%	
Off-Isolation	V _{ISO}	$R_S = R_L = 50\Omega$; $V_{COM} = 0.5V_{P-P}$, $f = 100kHz$, $V_{CC} = 0V$, DC bias = 0.25V, Figure 3		-60		dB	
Crosstalk	V _{CT}	$R_S = R_L = 50\Omega, V_{COM} = 0.5V_{P-P},$ f = 100kHz (Figure 3)		-100		dB	
-3dB Bandwidth	BW	$R_S = R_L = 50\Omega$		100		MHz	

Electrical Characteristics (continued)

 $(V_{CC} = +1.6V \text{ to } +5.5V, T_A = -40^{\circ}\text{C} \text{ to } +85^{\circ}\text{C}, \text{ unless otherwise noted.}$ Typical values are at $V_{CC} = +2.5V, T_A = +25^{\circ}\text{C}, \text{ unless otherwise noted.}$ (Note 1))

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
NC_ Off-Capacitance	C _{NC_(OFF)}	$V_{NC}/V_{NO} = 0.5V_{P-P}, f = 1MHz$		4		pF
NO_ Off-Capacitance	C _{NO_(OFF)}	$V_{NC}/V_{NO} = 0.5V_{P-P}, f = 1MHz$		4		pF
COM_ On-Capacitance	C _{COM_(ON)}	$V_{NC}/V_{NO} = 0.5V_{P-P}, f = 1MHz$		6		pF
DIGITAL I/O (CB)						
Input Logic High Voltage	V_{IH}		1.4			V
Input Logic Low Voltage	V_{IL}				0.4	V
Input Leakage Current	I _{IN}	V _{CB} = 0 or V _{CC}	-100		+100	nA
THERMAL PROTECTION						
Thermal Shutdown	T _{SHDN}			150		°C
Thermal Hysteresis	T _{HYST}			20		°C
ESD PROTECTION						
		НВМ		±15		
COM_		IEC61000-4-2 Air-Gap Discharge		±8		kV
		IEC61000-4-2 Contact Discharge		±6		
All other pins		НВМ		±2		kV

- Note 1: All specifications are 100% production tested at T_A = +25°C, unless otherwise noted. Specifications are over T_A = -40°C to +85°C and are guaranteed by design.
- Note 2: The same limits apply for V_{COM} = -5.5V to +5.5V with NC_ channels and 0V to 12V with NO_ channels. These are guaranteed by design.
- **Note 3:** Flatness is defined as the difference between the maximum and minimum value of on-resistance, as measured over specified analog signal ranges.
- Note 4: Guaranteed by design; not production tested.

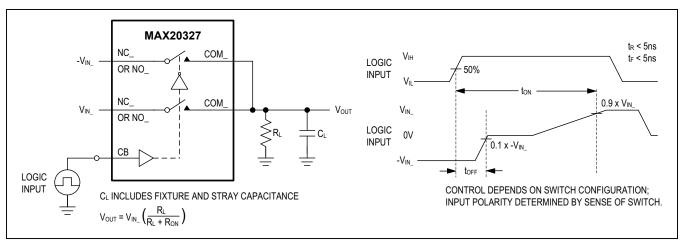


Figure 1. Switching Time

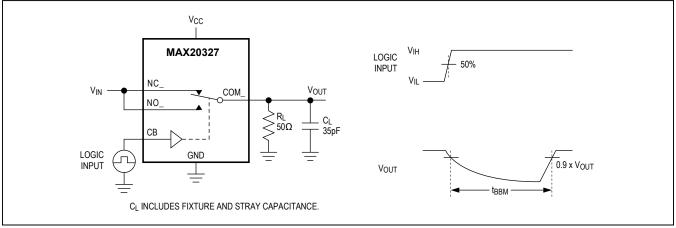


Figure 2. Break-Before-Make Interval

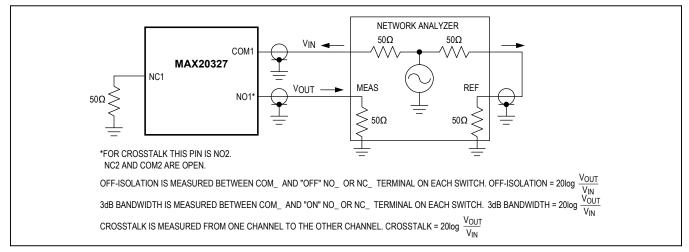
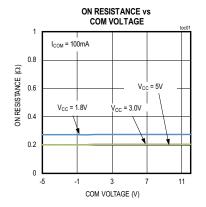
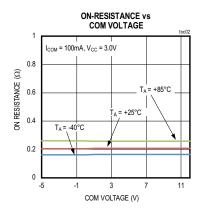
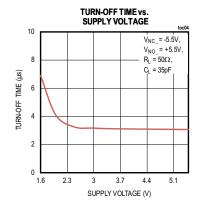
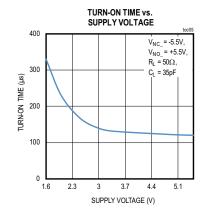
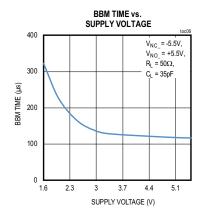
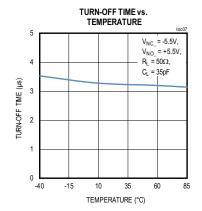




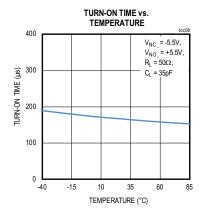
Figure 3. 3dB Bandwidth, Off-Isolation, and Crosstalk

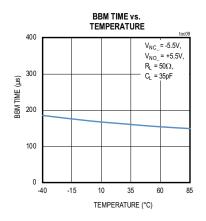

Typical Operating Characteristics

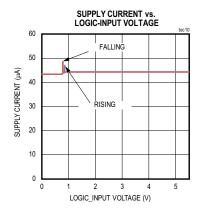

 V_{CC} = +2.5V, T_A = +25°C, unless otherwise noted.

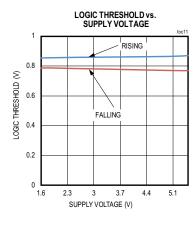


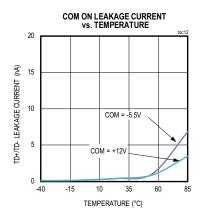


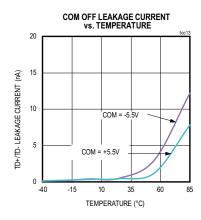


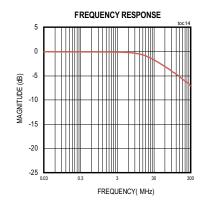


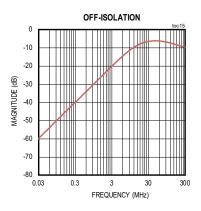


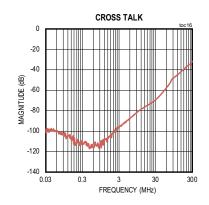

Typical Operating Characteristics (continued)

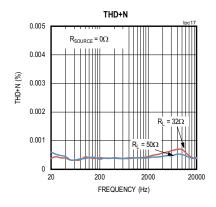

 V_{CC} = +2.5V, T_A = +25°C, unless otherwise noted.

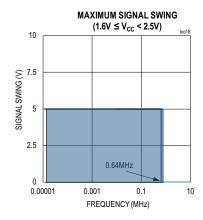


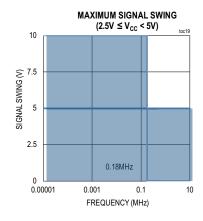


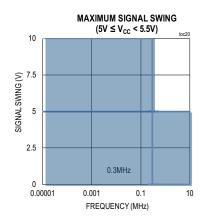







Typical Operating Characteristics (continued)


 V_{CC} = +2.5V, T_A = +25°C, unless otherwise noted.



Bump Configuration

Bump Descriptions

PIN	NAME	FUNCTION		
A1	NC1	Normally Closed Terminal for Switch 1		
A2	СВ	Digital Control Input. Drive CB low to connect COM_ to NC Drive CB high to connect COM_ to NO		
A3	NC2	Normally Closed Terminal for Switch 2		
B1	COM1	Common Terminal for Switch 1		
B2	GND	Ground		
В3	COM2	Common Terminal for Switch 2		
C1	NO1	Normally Open Terminal for Switch 1		
C2	V _{CC}	Positive Supply Voltage Input. Bypass V _{CC} to GND with a 0.1µF capacitor as close to the device as possible.		
C3	NO2	Normally Open Terminal for Switch 2		

Detailed Description

The MAX20327 is an ultra-small, low on-resistance, high ESD-protected DPDT switch that operates from a +1.6V to +5.5V supply, and is designed to pass analog signals, such as AC-biased or DC-biased audio and video signals. These switches feature the low on-resistance (R_{ON}) necessary for high-performance switching applications. The Beyond-the-Rails signal capability of the MAX20327 allows signals below ground and above V_{CC} to pass without distortion.

Analog Signal Levels

The MAX20327 is bidirectional, allowing NO_, NC_, and COM_ to be configured as either inputs or outputs. The topology of the switches allows the signal to drop below ground without the need of an external negative voltage supply.

Digital Control Input

The MAX20327 provides a single-bit control logic input, CB. CB controls the switch position, as shown in the Typical Application Circuits.

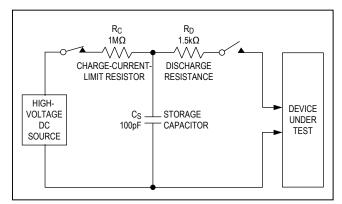


Figure 4. Human Body ESD Test Model

Applications Information

Extended ESD Protection

ESD-protection structures are incorporated on all pins to protect against electrostatic discharges up to ±2kV (HBM) encountered during handling and assembly. COM1 and COM2 are further protected against ESD up to ±15kV (HBM), ±8kV (Air-Gap Discharge), and ±6kV (Contact Discharge) without damage. NO_ and NC_ are protected against ESD up to ±2kV (HBM) without damage. The ESD structures withstand high ESD both in normal operation and when the device is powered down. After an ESD event, the devices continue to function without latchup.

ESD Test Conditions

ESD performance depends on a variety of conditions. Contact Maxim for a reliability report that documents test methodology and test results.

Human Body Model

Figure 4 shows the Human Body Model. Figure 5 shows the current waveform it generates when discharged into a low impedance. This model consists of a 100pF capacitor charged to the ESD voltage of interest that is then discharged into the device through a 1.5kΩ resistor.

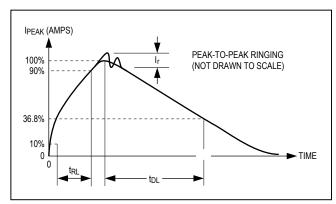


Figure 5. Human Body Current Waveform

12V Capable, Low-R_{ON}, Beyond-the-Rails™ DPDT Analog Switch

IEC 61000-4-2

The IEC 61000-4-2 standard covers ESD testing and performance of finished equipment. It does not specifically refer to integrated circuits. The major difference between tests done using the HBM and IEC 61000-4-2 is higher peak current in IEC 61000-4-2,

 $50M\Omega$ TO $100M\Omega$ 330Ω **-**///~ \bigvee CHARGE-CURRENT-DISCHARGE LIMIT RESISTOR RESISTANCE HIGH-DEVICE VOLTAGE C_S ___ STORAGE UNDER DC CAPACITOR TEST SOURCE

Figure 6. IEC 61000-4-2 ESD Test Model

because series resistance is lower in the IEC 61000-4-2 model. Hence, the ESD withstand voltage measured to IEC 61000-4-2 is generally lower than that measured using the HBM. Figure 6 shows the IEC 61000-4-2 model and Figure 7 shows the current waveform for the ±8kV, IEC 61000-4-2, Level 4, ESD Contact-Discharge Method.

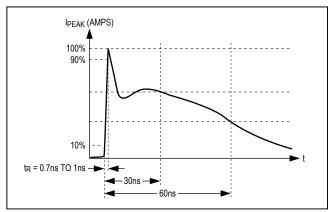
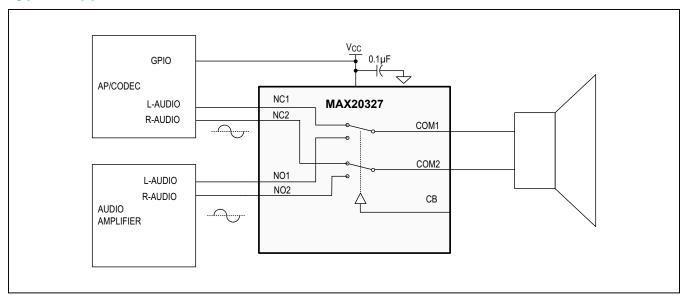
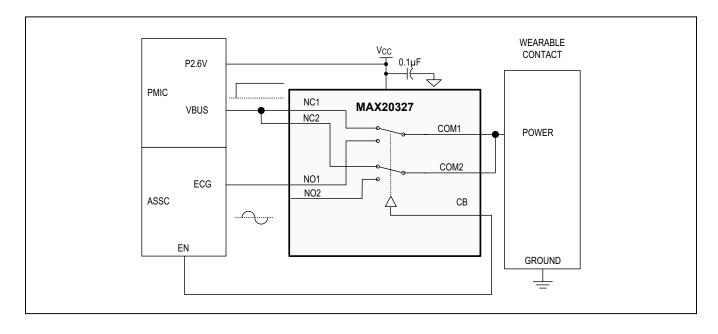




Figure 7. IEC 61000-4-2 ESD Generator Current Waveform

Typical Application Circuits

Ordering Information

PART NUMBER	TEMP RANGE	PIN-PACKAGE	[TOP MARKING]	PACKAGE OUTLINE DRAWING
MAX20327EWL+T	-40°C to +85°C	9 WLP	ALA	21-100195

⁺ Denotes a lead(Pb)-free/RoHS-compliant package.

T Denotes tape-and-reel.

MAX20327

12V Capable, Low-RON, Beyond-the-Rails™ DPDT Analog Switch

Revision History

REVISION NUMBER	REVISION DATE	DESCRIPTION	PAGES CHANGED
0	6/18	Initial release	_

For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642, or visit Maxim Integrated's website at www.maximintegrated.com.

Maxim Integrated cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim Integrated product. No circuit patent licenses are implied. Maxim Integrated reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max limits) shown in the Electrical Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Maxim Integrated:

MAX20327EWL+ MAX20327EWL+T