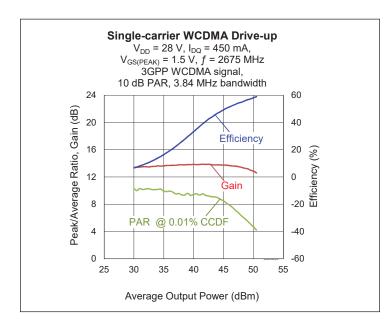


PXAE261908NF


Thermally-Enhanced High Power RF LDMOS FET 240 W, 28 V, 2515 – 2675 MHz

Description

The PXAE261908NF is a 240-watt (P_{3dB}) LDMOS FET intended for use in multi-standard cellular power amplifier applications in the 2515 to 2675 MHz frequency band. Features include input and output matching, high gain and a thermally-enhanced package with earless flange. Manufactured with an advanced LDMOS process, this device provides excellent thermal performance and superior reliability.

PXAE261908NF Package PG-HBSOF-6-3

Features

- · Broadband internal input and output matching
- · Asymmetric Doherty design
 - Main: P_{3dB} = 90 W typical
 - Peak: P_{3dB} = 180 W typical
- Typical pulsed CW performance, 2675 MHz, 28 V
 - Output power at P_{1dB} = 51 W
 - Output power at P_{3dB} = 240 W
 - Gain = 11.8 dB
 - Efficiency = 60%
- Capable of handling 10:1 VSWR at 28 V, 32 W (CW) output power
- Integrated ESD protection
- Human Body Model, Class 2 (per ANSI/ESDA/JEDEC JS-001)
- · Low thermal resistance
- · Pb-free and RoHS compliant

RF Characteristics

Single-carrier WCDMA Specifications (tested in the Doherty test fixture)

 V_{DD} = 28 V, I_{DQ} = 450 mA, $V_{GS(PEAK)}$ = 1.5 V, P_{OUT} = 32 W avg, f = 2675 MHz, 3GPP signal, channel bandwidth = 3.84 MHz, peak/average = 10 dB @ 0.01% CCDF

_					
Characteristic	Symbol	Min	Тур	Max	Unit
Gain	G_{ps}	12.8	13.5	_	dB
Drain Efficiency	η_{D}	45	47.5	_	%
Adjacent Channel Power Ratio	ACPR	_	-28	-26	dBc
Output PAR at 0.01% probability on CCDF	OPAR	7.6	8	_	dB

All published data at T_{CASE} = 25°C unless otherwise indicated

ESD: Electrostatic discharge sensitive device—observe handling precautions!

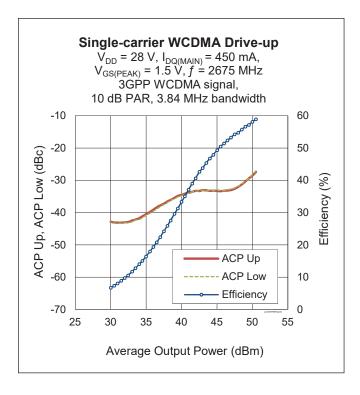
DC Characteristics

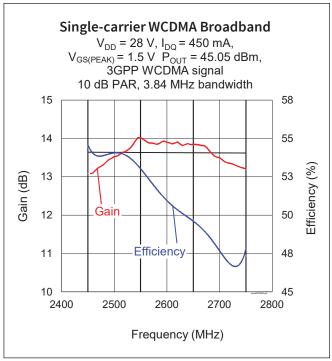
Characteristic		Conditions	Symbol	Min	Тур	Max	Unit
Drain-source Breakdown	Voltage	$V_{GS} = 0 \text{ V}, I_{DS} = 10 \text{ mA}$	V _{(BR)DSS}	65	_	_	V
Drain Leakage Current		$V_{DS} = 28 \text{ V}, V_{GS} = 0 \text{ V}$	I _{DSS}	_	_	1	μΑ
		$V_{DS} = 63 \text{ V}, V_{GS} = 0 \text{ V}$	I _{DSS}	_	_	10	μΑ
Gate Leakage Current		V _{GS} = 10 V, V _{DS} = 0 V	I _{GSS}	_	_	1	μA
On-state Resistance	(main)	$V_{GS} = 10 \text{ V}, V_{DS} = 0.1 \text{ V}$	R _{DS(on)}	_	0.08	_	Ω
	(peak)	$V_{GS} = 10 \text{ V}, V_{DS} = 0.1 \text{ V}$	R _{DS(on)}	_	0.03	_	Ω
Operating Gate Voltage	(main)	V _{DS} = 28 V, I _{DQ} = 450 mA	V _{GS}	2.7	3	3.3	V
	(peak)	$V_{DS} = 28 \text{ V}, I_{DQ} = 0 \text{ mA}$	V_{GS}	_	1.5	_	V

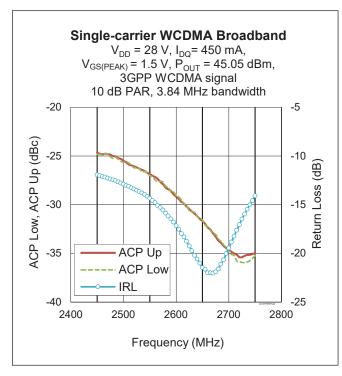
Maximum Ratings

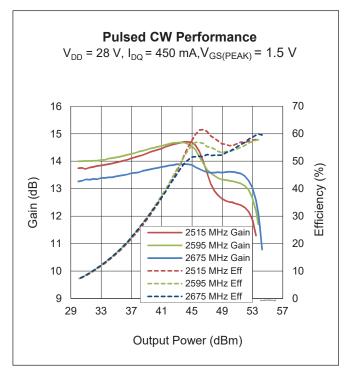
Parameter	Symbol	Value	Unit
Drain-source Voltage	V_{DSS}	65	V
Gate-source Voltage	V_{GS}	-6 to +10	V
Operating Voltage	V_{DD}	0 to +32	V
Junction Temperature	TJ	225	°C
Storage Temperature Range	T_{STG}	-65 to +150	°C

Thermal Characteristics

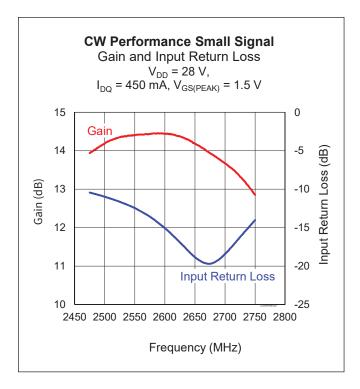

Characteristic		Symbol	Value	Unit	
Thermal Resistance	(main, T _{CASE} = 70°C, 32 W CW)	$R_{ heta JC}$	0.96	°C/W	
	(peak, T _{CASE} = 70°C, 56 W CW)	$R_{ heta JC}$	0.36	°C/W	

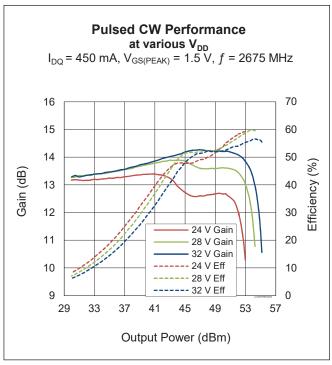

Ordering Information


Type and Version	Order Code	Package	Shipping	
PXAE261908NF V1 R5	PXAE261908NF-V1-R5	PG-HBSOF-6-3	Tape & Reel, 500 pcs	



Typical Performance (data taken in the production test fixture)





Typical Performance (cont.)

Load Pull

Main Side (Doherty) Load Pull Performance – Pulsed CW signal: 10 μsec pulse width, 10% duty cycle, 28 V, I_{DO} = 460 mA, class AB

			P _{1dB}									
	Max Output Power						Max Drain Efficiency					
Freq [MHz]	$\mathbf{Z}\mathbf{s}$ $[\Omega]$	z ι [Ω]	Gain [dB]	P _{1dB} [dBm]	P _{3dB} [W]	η _D [%]	z ι [Ω]	Gain [dB]	P _{1dB} [dBm]	P _{3dB} [W]	η _D [%]	
2515	4.7 – j16.2	3.4 – j6.1	16.4	49.30	85	55.4	5.6 – j4.0	18.1	48.14	65	63.0	
2595	7.5 – j18.4	3.3 – j6.3	16.4	49.30	85	54.8	5.6 – j4.7	18.2	48.15	65	62.0	
2675	12.4 – j22.5	3.3 – j6.5	16.7	48.70	74	49.3	5.5 – j4.7	18.6	47.70	59	56.0	

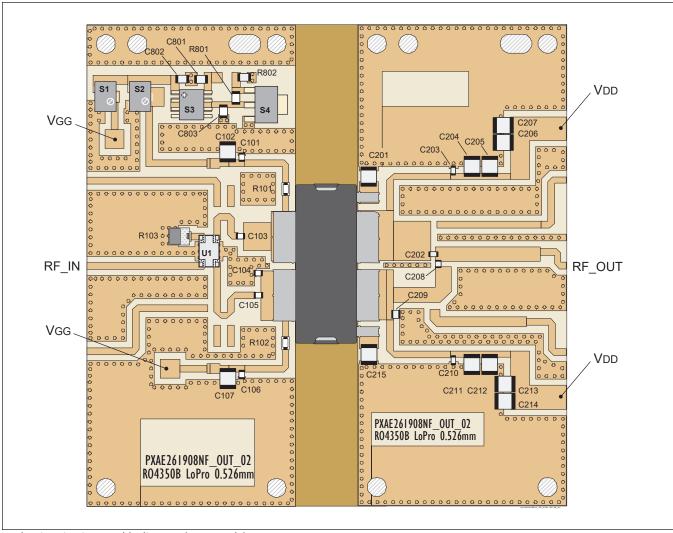
			P _{3dB}									
				Max Drain Efficiency								
Freq [MHz]	$\mathbf{Z}\mathbf{s}$ $[\Omega]$	z ι [Ω]	Gain [dB]	P _{3dB} [dBm]	P _{3dB} [W]	η _D [%]	z ι [Ω]	Gain [dB]	P _{3dB} [dBm]	P _{3dB} [W]	η _D [%]	
2515	4.7 – j16.2	3.3 – j6.4	14.2	50.04	101	55.3	5.7 – j4.1	16.1	48.80	76	63.0	
2595	7.5 – j18.4	3.0 – j6.8	14.0	50.11	103	54.0	5.4 – j4.8	16.1	48.90	78	62.0	
2675	12.4 – j22.5	3.3 – j7.1	14.4	49.60	91	49.3	5.4 – j4.2	16.7	48.30	68	56.0	

Tables continued nex page

Load Pull (cont.)

Peak Side Doherty Load Pull Performance – Pulsed CW signal: 10 μ sec pulse width, 10% duty cycle, V_{DD} = 28 V, I_{DQ} = 10 mA, class B

			P_{1dB}									
				Max Drain Efficiency								
Freq [MHz]	$\mathbf{Z}\mathbf{s}$ $[\Omega]$	z ι [Ω]	Gain [dB]	P _{3dB} [dBm]	P _{1dB} [W]	η _D [%]	z ι [Ω]	Gain [dB]	P _{1dB} [dBm]	P _{3dB} [W]	η _D [%]	
2515	3.0 - j13.2	4.4 – j7.1	14.2	52.50	178	58.2	4.7 – j3.6	15.4	51.00	126	66.0	
2595	3.4 - j14.5	4.7 – j8.1	14.1	52.33	171	53.4	4.4 – j4.1	15.7	50.90	123	64.0	
2675	6.3 - j15.0	5.8 – j8.7	14.4	52.20	166	52.7	4.7 – j5.0	15.8	51.00	126	60.0	


			P _{3dB}									
		Max Output Power						Max Drain Efficiency				
Freq [MHz]	Zs $[\Omega]$	z ι [Ω]	Gain [dB]	P _{3dB} [dBm]	P _{3dB} [W]	η _D [%]	z ι [Ω]	Gain [dB]	P _{3dB} [dBm]	P _{3dB} [W]	η _D [%]	
2515	3.0 - j13.2	4.9 – j8.1	11.8	53.12	205	55.5	5.0 – j3.9	13.4	51.80	151	65.0	
2595	3.4 – j14.5	5.7 – j8.7	12.0	53.00	200	53.3	4.8 – j4.8	13.5	52.00	158	63.0	
2675	6.3 – j15.0	6.3 – j8.9	12.3	52.80	191	52.4	4.7 – j5.4	13.6	51.90	155	60.0	

See next page for evaluation circuit information.

Evaluation Circuit, 2515 - 2675 MHz

DUT	PXAE261908NF V1
Test Fixture Part No.	LTA/PXAE261908NF-V1
PCB	Rogers 4350B LoPro , 0.526 mm [0.0207"] thick, 1 oz. copper, ϵ_r = 3.66

Evaluation circuit assembly diagram (not to scale)

Bias Sequencing

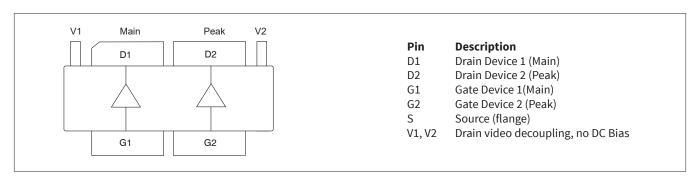
Bias ON

- 1. Ensure RF is turned off
- 2. Apply pinch-off voltage of 0 V to the gate
- 3. Apply nominal drain voltage
- 4. Bias gate to desired quiescent drain current
- 5. Apply RF

Bias OFF

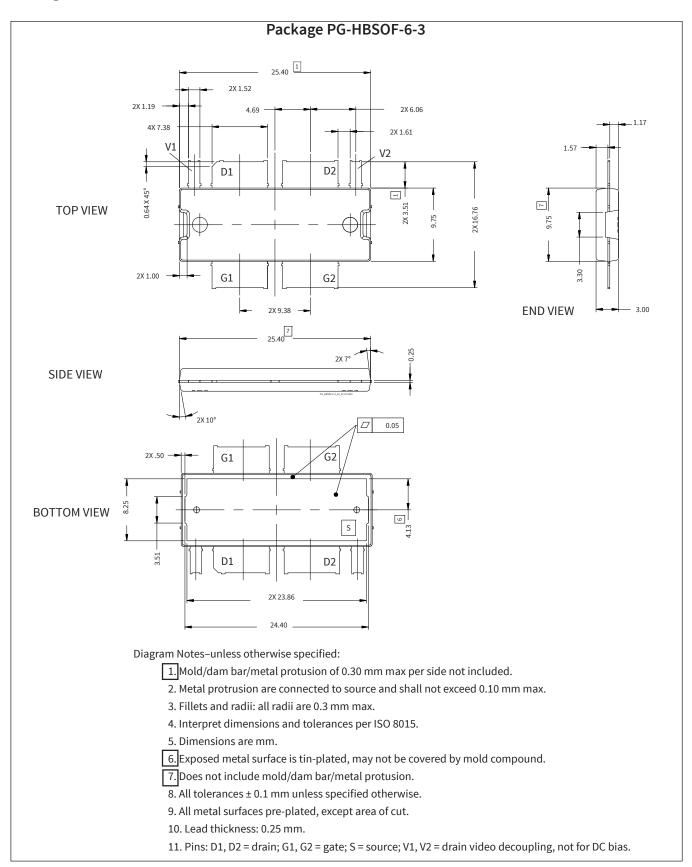
- 1. Turn RF off
- 2. Appliy pinch-off voltage of 0 V to the gate
- 3. Turn off drain voltage
- 4. Turn off gate voltage

6



Evaluation Circuit (cont.)

Components Table


Component	Description	Manufacturer	P/N
Input			
C101, C103, C105, C106	Capacitor, 20 pF	ATC	ATC800A200JT250T
C102, C107	Capacitor, 10 µF, 50 V	Taiyo Yuden	UMK325C7106MM-T
C104	Capacitor, 0.6 pF	ATC	ATC800A0R6CT250T
R101, R102	Resistor, 2.49 ohms	Vishay Dale	CRCW12062R49FKEA
R103	Resistor, 50 ohms	RICHARDSON	C8A50Z4A
U1	Hybrid coupler	ANAREN	X3C35P1-02S
C801,C802, C803	Capacitor, 1,000 pF	Murata Electronics	GRM188R72A102KA01D
R801	Chip resistor, 1.2K ohms	Panasonic Electronic Components	ERJ-3GEYJ122V
R802	Chip resistor, 1.3K ohms	Panasonic Electronic Components	ERJ-3GEYJ132V
S1, S2	Variable resistor, 2K ohms	Bourns Inc.	3224W-1-202E
S3	Voltage regulator	Texas Instruments	LM78L05ACM
S4	Transistor	Diodes Incorporated	BCP5616TA
Output			
C201, C204, C205, C206, C207, C211, C212, C213, C214, C215	Capacitor, 10 μF, 50 V	Taiyo Yuden	UMK325C7106MM-T
C202	Capacitor, 3.9 pF	ATC	ATC800A3R9CT250T
C203, C208, C210	Capacitor, 20 pF	ATC	ATC800A200JT250T
C209	Capacitor, 1.0 pF	ATC	ATC100B1R0CW500XB

Pinout Diagram (top view)

Package Outline Specifications

Notes & Disclaimer

MACOM Technology Solutions Inc. ("MACOM"). All rights reserved.

These materials are provided in connection with MACOM's products as a service to its customers and may be used for informational purposes only. Except as provided in its Terms and Conditions of Sale or any separate agreement, MACOM assumes no liability or responsibility whatsoever, including for (i) errors or omissions in these materials; (ii) failure to update these materials; or (iii) conflicts or incompatibilities arising from future changes to specifications and product descriptions, which MACOM may make at any time, without notice. These materials grant no license, express or implied, to any intellectual property rights.

THESE MATERIALS ARE PROVIDED "AS IS" WITH NO WARRANTY OR LIABILITY, EXPRESS OR IMPLIED, RELATING TO SALE AND/OR USE OF MACOM PRODUCTS INCLUDING FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHT, ACCURACY OR COMPLETENESS, OR SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES WHICH MAY RESULT FROM USE OF THESE MATERIALS.

MACOM products are not intended for use in medical, lifesaving or life sustaining applications. MACOM customers using or selling MACOM products for use in such applications do so at their own risk and agree to fully indemnify MACOM for any damages resulting from such improper use or sale.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

MACOM:

LTA/PXAE261908NF-V1